We consider the problem of finding cryptographically suitable Jacobians. By
applying a probabilistic generic algorithm to compute the zeta functions of low
genus curves drawn from an arbitrary family, we can search for Jacobians
containing a large subgroup of prime order. For a suitable distribution of
curves, the complexity is subexponential in genus 2, and O(N^{1/12}) in genus
3. We give examples of genus 2 and genus 3 hyperelliptic curves over prime
fields with group orders over 180 bits in size, improving previous results. Our
approach is particularly effective over low-degree extension fields, where in
genus 2 we find Jacobians over F_{p^2) and trace zero varieties over F_{p^3}
with near-prime orders up to 372 bits in size. For p = 2^{61}-1, the average
time to find a group with 244-bit near-prime order is under an hour on a PC.Comment: 22 pages, to appear in Mathematics of Computatio