462,367 research outputs found

    Hadoop neural network for parallel and distributed feature selection

    Get PDF
    In this paper, we introduce a theoretical basis for a Hadoop-based neural network for parallel and distributed feature selection in Big Data sets. It is underpinned by an associative memory (binary) neural network which is highly amenable to parallel and distributed processing and fits with the Hadoop paradigm. There are many feature selectors described in the literature which all have various strengths and weaknesses. We present the implementation details of five feature selection algorithms constructed using our artificial neural network framework embedded in Hadoop YARN. Hadoop allows parallel and distributed processing. Each feature selector can be divided into subtasks and the subtasks can then be processed in parallel. Multiple feature selectors can also be processed simultaneously (in parallel) allowing multiple feature selectors to be compared. We identify commonalities among the five features selectors. All can be processed in the framework using a single representation and the overall processing can also be greatly reduced by only processing the common aspects of the feature selectors once and propagating these aspects across all five feature selectors as necessary. This allows the best feature selector and the actual features to select to be identified for large and high dimensional data sets through exploiting the efficiency and flexibility of embedding the binary associative-memory neural network in Hadoop

    Neural network based speech synthesizer: A preliminary report

    Get PDF
    A neural net based speech synthesis project is discussed. The novelty is that the reproduced speech was extracted from actual voice recordings. In essence, the neural network learns the timing, pitch fluctuations, connectivity between individual sounds, and speaking habits unique to that individual person. The parallel distributed processing network used for this project is the generalized backward propagation network which has been modified to also learn sequences of actions or states given in a particular plan

    Hyperswitch communication network

    Get PDF
    The Hyperswitch Communication Network (HCN) is a large scale parallel computer prototype being developed at JPL. Commercial versions of the HCN computer are planned. The HCN computer being designed is a message passing multiple instruction multiple data (MIMD) computer, and offers many advantages in price-performance ratio, reliability and availability, and manufacturing over traditional uniprocessors and bus based multiprocessors. The design of the HCN operating system is a uniquely flexible environment that combines both parallel processing and distributed processing. This programming paradigm can achieve a balance among the following competing factors: performance in processing and communications, user friendliness, and fault tolerance. The prototype is being designed to accommodate a maximum of 64 state of the art microprocessors. The HCN is classified as a distributed supercomputer. The HCN system is described, and the performance/cost analysis and other competing factors within the system design are reviewed

    System on fabrics architecture using distributed computing

    Get PDF
    This paper describes a novel, distributed sensor network with parallel processing capability based on the Instruction Systolic Array (ISA). A new computing paradigm is introduced where spatially distributed sensors are closely coupled to processing elements and the whole array forms a parallel computer. This may find applications in wearable devices for sensing the position and other metrics of a human body and rapidly processing that data. A new programming model to implement the distributed computer on fabrics is described. The fabric-based distributed computing concept has been validated using a number of parallel applications including a real-time shape sensing and reconstruction application. The exemplar wearable system based on the ISA concept has been realized using off-the-shelf microcontrollers and sensors. Results show that the application executes on the prototype ISA implementation in real time thus confirming the viability of the proposed architecture for fabric-resident computing devices

    Analysis of fault-tolerant neurocontrol architectures

    Get PDF
    The fault-tolerance of analog parallel distributed implementations of a multivariable aircraft neurocontroller is analyzed by simulating weight and neuron failures in a simplified scheme of analog processing based on the functional architecture of the ETANN chip (Electrically Trainable Artificial Neural Network). The neural information processing is found to be only partially distributed throughout the set of weights of the neurocontroller synthesized with the backpropagation algorithm. Although the degree of distribution of the neural processing, and consequently the fault-tolerance of the neurocontroller, could be enhanced using Locally Distributed Weight and Neuron Approaches, a satisfactory level of fault-tolerance could only be obtained by retraining the degrated VLSI neurocontroller. The possibility of maintaining neurocontrol performance and stability in the presence of single weight of neuron failures was demonstrated through an automated retraining procedure of the neurocontroller based on a pre-programmed choice and sequence of the training parameters

    Distributed data association for multi-target tracking in sensor networks

    Get PDF
    Associating sensor measurements with target tracks is a fundamental and challenging problem in multi-target tracking. The problem is even more challenging in the context of sensor networks, since association is coupled across the network, yet centralized data processing is in general infeasible due to power and bandwidth limitations. Hence efficient, distributed solutions are needed. We propose techniques based on graphical models to efficiently solve such data association problems in sensor networks. Our approach scales well with the number of sensor nodes in the network, and it is well--suited for distributed implementation. Distributed inference is realized by a message--passing algorithm which requires iterative, parallel exchange of information among neighboring nodes on the graph. So as to address trade--offs between inference performance and communication costs, we also propose a communication--sensitive form of message--passing that is capable of achieving near--optimal performance using far less communication. We demonstrate the effectiveness of our approach with experiments on simulated data

    Distributed modular RT-systems for detector DAQ, trigger and control applications

    Get PDF
    A modular approach to development of distributed modular system architecture for detector control, data acquisition and trigger data processing is proposed. A multilevel parallel-pipeline model of data acquisition, processing and control is proposed and discussed. Multiprocessor architecture with SCI-based interconnections is proposed as good high-performance system for parallel-pipeline data processing. A network (Ethernet -100) can be used for loading, monitoring and diagnostic purposes independent of basic interconnections. The modular cPCI-based structures with high speed modular interconnections are proposed for DAQ and control applications. For distributed control RT-systems, to construct the effective (cost-performance) systems the same platform of an Intel compatible processor board should be used. The basic computer multiprocessor nodes consist of high-power PC MB (Industrial Computer Systems), which are interconnected by SCI modules and link to embedded microprocessor-based sub-systems for control applications. The required number of multiprocessor nodes should be interconnected by SCI for parallel-pipeline data processing in real time (according to the multilevel model) and link to RT-systems for embedded control. (19 refs)
    corecore