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a b s t r a c t

In this paper, we introduce a theoretical basis for a Hadoop-based neural network for parallel and
distributed feature selection in Big Data sets. It is underpinned by an associative memory (binary) neural
network which is highly amenable to parallel and distributed processing and fits with the Hadoop
paradigm. There are many feature selectors described in the literature which all have various strengths
and weaknesses. We present the implementation details of five feature selection algorithms constructed
using our artificial neural network framework embedded in Hadoop YARN. Hadoop allows parallel and
distributed processing. Each feature selector can be divided into subtasks and the subtasks can then
be processed in parallel. Multiple feature selectors can also be processed simultaneously (in parallel)
allowing multiple feature selectors to be compared. We identify commonalities among the five features
selectors. All can be processed in the framework using a single representation and the overall processing
can also be greatly reduced by only processing the common aspects of the feature selectors once and
propagating these aspects across all five feature selectors as necessary. This allows the best feature
selector and the actual features to select to be identified for large and high dimensional data sets through
exploiting the efficiency and flexibility of embedding the binary associative-memory neural network in
Hadoop.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/)

1. Introduction

The meaning of ‘‘big’’ with respect to data is specific to
each application domain and dependent on the computational
resources available. Here we define ‘‘Big Data’’ as large, dynamic
collections of data that cannot be processed using traditional
techniques, a definition adapted from (Franks, 2012; Zikopoulos &
Eaton, 2011). Today, data is generated continually by an increasing
range of processes and in ever increasing quantities driven by Big
Data mechanisms such as cloud computing and on-line services.
Business and scientific data from many fields, such as finance,
astronomy, bioinformatics and physics, are often measured in
terabytes (1012 bytes). Big Data is characterised by its complexity,
variety, speed of processing and volume (Laney, 2001). It is
increasingly clear that exploiting the power of these data is
essential for information mining. These data often contain too
much noise (Liu, Motoda, Setiono, & Zhao, 2010) for accurate
classification (Dash & Liu, 1997; Han & Kamber, 2006), prediction
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(Dash & Liu, 1997; Guyon & Elisseeff, 2003) or outlier detection

(Hodge, 2011). Thus, only some of the features (dimensions) are

related to the target concept (classification label or predicted

value). Also, if there are too many data features then the data

points become sparse. If data is too sparse then distance measures

such as the popular Euclidean distance and the concept of nearest

neighbours become less applicable (Ertöz, Steinbach, & Kumar,

2003). Many machine learning algorithms are adversely affected

by this noise and these superfluous features in terms of both their

accuracy and their ability to generalise. Consequently, the data

must be pre-processed by the classification or prediction algorithm

itself or by a separate feature selection algorithm to prune these

superfluous features (Kohavi & John, 1997; Witten & Frank, 2000).

The benefits of feature selection include: reducing the data

size when superfluous features are discarded, improving the

classification/prediction accuracy of the underlying algorithm

where the algorithm is adversely affected by noise, producing

a more compact and easily understood data representation and

reducing the execution time of the underlying algorithm due to

the smaller data size. Reducing the execution time is extremely

important for Big Data, which has a high computational resource

demand on memory and CPU time.

In this paper, we focus on feature selection in vast data sets for

parallel and distributed classification systems. We aim to remove
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noise and reduce redundancy to improve classification accuracy.

There is a wide variety of techniques proposed in the machine

learning literature for feature selection including Correlation-

based Feature Selection (Hall, 1998), Principal Component Analysis

(PCA) (Jolliffe, 2002), Information Gain (Quinlan, 1986), Gain

Ratio (Quinlan, 1992), Mutual Information Selection (Wettscherek,

1994), Chi-square Selection (Liu & Setiono, 1995), Probabilistic Las

Vegas Selection (Liu & Setiono, 1996) and Support Vector Machine

Feature Elimination (Guyon, Weston, Barnhill, & Vapnik, 2002).

Feature selectors produce feature scores. Some feature selectors

also select the best set of features to use while others just rank

the features with the scores. For these feature rankers, the best set

of features must then be chosen by the user, for example, using

greedy search (Witten & Frank, 2000).

It is often not clear to the user which feature selector to use

for their data and application. In their analysis of feature selection,

Guyon and Elisseeff (2003) recommend evaluating a variety of

feature selectors before deciding the best for their problem.

Therefore, we propose that users exploit our framework to run

a variety of feature selectors in parallel and then evaluate the

feature sets chosen by each selector using their own specific

criteria. Having multiple feature selectors available also provides

the opportunity for ensemble feature selection where the results

from a range of feature selectors are merged to generate the

best set of features to use. Feature selection is a combinatorial

problem so needs to be implemented as efficiently as possible

particularly on big data sets.We have previously developed a k-NN

classification (Hodge & Austin, 2005; Weeks, Hodge, O’Keefe,

Austin, & Lees, 2003) and prediction algorithm (Hodge, Krishnan,

Austin, & Polak, 2011) using an associativememory (binary) neural

network called the Advanced Uncertain Reasoning Architecture

(AURA) (Austin, 1995). This multi-faceted k-NN motivated a

unified feature selection framework exploiting the speed and

storage efficiency of the associative memory neural network. The

framework lends itself to parallel and distributed processing across

multiple nodes allowing vast data sets to be processed. This could

be done by processing the data at the same geographical location

using a single machine with multiple processing cores (Weeks,

Hodge, & Austin, 2002) or at the same geographical location using

multiple compute nodes (Weeks et al., 2002) or even distributed

processing of the data at multiple geographical locations.

Data mining tools such as Weka (Witten & Frank, 2000),

Matlab, R and SPSS provide feature selection algorithms for data

mining and analytics. However, these products are designed for

small scale data analysis. Researchers have parallelised individual

feature selection algorithms using MapReduce/Hadoop (Chu et al.,

2007; Reggiani, 2013; Singh, Kubica, Larsen, & Sorokina, 2009;

Sun, 2014). Data mining libraries such as Mahout (https://

mahout.apache.org) and MLib (https://spark.apache.org/mllib/)

and data mining frameworks such as Radoop (https://rapidminer.

com/products/radoop/) include a large number of data mining

algorithms including feature selectors. However, they do not

explicitly tackle processing reuse with a view to multi-user and

multi-task resource allocation. Zhang, Kumar, and Ré (2014)

developed a database systems framework for optimised feature

selection providing a range of algorithms. They observed that

there are reuse opportunities that could yield orders of magnitude

performance improvements on feature selection workloads as we

will also demonstrate here using AURA in an Apache Hadoop

(https://hadoop.apache.org/) framework.

The main contributions of this paper are:

• To extend the AURA framework to parallel and distributed

processing of vast data sets in Apache Hadoop,

• To describe five feature selectors in terms of the AURA frame-
work. Two of the feature selectors have been implemented in
AURA but not using Hadoop (Hodge, Jackson, & Austin, 2012;
Hodge, O’Keefe, & Austin, 2006) and the other three have not
been implemented in AURA before,

• To theoretically analyse the resulting framework to show how
the five feature selectors have common requirements to enable
reuse.

• To theoretically analyse the resulting framework to show how
we reduce the number of computations. The larger the data set
then the more important this reduction becomes.

• To demonstrate parallel and distributed processing in the
framework allowing Big Data to be analysed.

In our AURA framework, the feature selectors all use one com-
mon data representation. We only need to process any common
elements once and can propagate the common elements to all
feature selectors that require them. Thus, we can rapidly and ef-
ficiently determine the best feature selector and the best set of
features to use for each data set under investigation. In Section 2,
we discuss AURA and related neural networks and how to store
and retrieve data from AURA, Section 3 demonstrates how to im-
plement five feature selection algorithms in the AURA unified
framework and Section 4 describes parallel and distributed feature
selection using AURA. We than analyse the unified framework in
Section 5 to identify common aspects of the five feature selectors
and how they can be implemented in the unified framework in the
most efficient way. Section 6 details the overall conclusions from
our implementations and analyses.

2. Binary neural networks

AURA (Austin, 1995) is a hetero-associative memory neural
network (Palm, 2013). An associative memory is addressable
through its contents and a hetero-associative memory stores
associations between input and output vectors where the vectors
are different (Palm, 2013). AURA uses binary Correlation Matrix
Memories (CMMs): binary hetero-associative matrices that store
and retrieve patterns usingmatrix calculus. They are non-recursive
and fully connected. Input vectors (stimuli) address the CMM
rows and output vectors address the CMM columns. Binary
neural networks have a number of advantages compared to
standard neural networks including rapid one-pass training, high
levels of data compression, computational simplicity, network
transparency, a partial match capability and a scalable architecture
that can be easily mapped onto high performance computing
platforms including parallel and distributed platforms (Weeks
et al., 2002). AURA is implemented as a C++ software library.

Previous parallel and distributed applications of AURA have
included distributed text retrieval (Weeks et al., 2002), distributed
time-series signal searching (Fletcher, Jackson, Jessop, Liang, &
Austin, 2006) and conditionmonitoring (Austin, Brewer, Jackson, &
Hodge, 2010). This new development will augment these existing
techniques and is aimed at these same domains. It will couple
feature selection, classification and prediction with the speed and
storage efficiency of a binary neural network allowing parallel
and distributed data mining. This makes AURA ideal to use as the
basis of an efficient distributed machine learning framework. A
more formal definition of AURA, its components andmethods now
follows.

2.1. AURA

The AURA methods use binary input I and output O vectors to
efficiently store records in a CMM M as in Eq. (1) using the binary

https://mahout.apache.org
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Fig. 1. Showing a CMM learning input vector In associated with output vector On

on the left. The CMM on the right shows the CMM after five associations IjO
T
j . Each

column of the CMM represents a record. Each row represents a feature value for

qualitative features or a quantisation of feature values for quantitative features and

each set of rows (shown by the horizontal lines) represents the set of values or set

of quantisations for a particular feature.

rule (Palm, 2013).

M =


IjO
T
j where ∨ is logical OR. (1)

Training (construction of a CMM) is a single epoch process with
one training step for each input–output association (each IjO

T
j in

Eq. (1)) which equates to one step for each record j in the
data set. Thus, the trained CMM M represents {(I1 × OT

1 ), (I2 ×

OT
2 ), . . . (In × OT

n)} superimposed using bitwise or . IjO
T
j is an

estimate of the weight matrixW (j) of the synaptic connections of
the neural network as a linear associatorwith binaryweights.W (j)
forms a mapping representing the association described by the jth
input/output pair of vectors. As a consequence of using unipolar
elements {0,1} throughout, the value at eachmatrix componentwij

means the existence of an association between elements i and j .
The trained CMMM is then effectively an encoding (correlation) of
theN weightmatricesW for allN records in the data set. Individual
weights within the weight matrix update using a generalisation of
Hebbian learning (Hebb, 1949) where the state for each synapse
(matrix element) is binary valued. Every synapse can update its
weight independently using a local learning rule (Palm, 2013).
Local learning is biologically plausible and computationally simple
allowing parallel and rapid execution. The learning process is
illustrated in Fig. 1.

For feature selection, the data are stored in the CMM which
forms an index of all features in all records. During training, the
input vectors Ij represent the feature and class values and are
associated with a unique output vector Oj representing a record.
Fig. 1 shows a trained CMM. In this paper, we set only one bit in the
vector Oj indicating the location of the record in the data set, the
first record has the first bit set, the second record has the second
bit set etc. Using a single set bit makes the length of Oj potentially
large. However, exploiting a compact list representation (Hodge &
Austin, 2001) (more detail is provided in Section 4.3.1) means we
can compress the storage representation.

2.2. Data

The AURA feature selector, classifier and predictor framework
can handle qualitative features (symbolic and discrete numeric)
and quantitative features (continuous numeric).

The raw data sets need pre-processing to allow them to be used
in the binary AURA framework. Qualitative features are enumer-
ated and each separate token maps onto an integer (Token →

Integer) which identifies the bit to set within the vector. For ex-
ample, a SEX_TYPE feature would map as (F → 0) and (M → 1).

Fig. 2. Showing a CMM recall. Applying the recall input vector Rk to the CMM M

retrieves a summed integer vector S with the match score for each CMM column. S

is then thresholded to retrieve the matches. The threshold here is either Willshaw

with value 3 retrieving all columns that sum to 3 or more or L-Max with value 2 to

retrieve the 2 highest scoring columns.

Any quantitative features are quantised (mapped to discrete bins)
(Hodge & Austin, 2012). Each individual bin maps onto an integer
which identifies the bit to set in the input vector. Next, we describe
the simple equi-width quantisation. We note that the Correlation-
Based Feature Selector described in Section 3.2 uses a different
quantisation technique to determine the bin boundaries. However,
once the boundaries are determined, the mapping to CMM rows is
the same as described here.

To quantise quantitative features, a range of input values for
feature Ff map onto each bin. Each bin maps to a unique integer
as in Eq. (2) to index the correct location for the feature in Ij . In
this paper, the range of feature values mapping to each bin is equal
to subdivide the feature range into b equi-width bins across each
feature.

Rfi → binsfk → Integer fk + offset


Ff


where Ff ∈ F , fi is a value of Ff and cardinality


Integer fk



≡ cardinality(binsfk ).

(2)

In Eq. (2), offset(Ff ) is a cumulative integer offset within the
binary vector for each feature Ff ,→ is amany-to-onemapping and
→ is a one-to-one mapping. The offset for the next feature Ff+1 is
given by offset(Ff+1) = offset(Ff )+nBins(Ff )where nBins(Ff ) is
the number of bins for feature Ff .

For each record in the data set.
For each feature.
Calculate bin for feature value.
Set bit in vector as in Eq. (2).

2.3. AURA recall

To recall the matches for a query (input) record, we firstly
produce a recall input vector Rk by quantising the target values
for each feature to identify the bins (CMM rows) to activate as in
Eq. (3). During recall, the presentation of recall input vector Rk

elicits the recall of output vector Ok as vector Rk contains all of
the addressing information necessary to access and retrieve vector
Ok . Recall is effectively the dot product of the recall input vector Rk

and CMM M , as in Eq. (3) and Fig. 2.

ST = RT
k · M . (3)

If Rk appeared in the training set, we get an integer-valued
vector S (the summed output vector), composed of the required
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Fig. 3. Diagram showing the feature value row and the class values row excited to

determine co-occurrences (C = c


Fj = fi).

output vector multiplied by a weight based on the dot product
of the input vector with itself. If the recall input Rk is not from
the original training set, then the system will recall the output Ok

associated with the closest stored input to Rk , based on the dot
product between the test and training inputs.

Matching is a combinatorial problem but can be achieved in
a single pass in AURA. AURA can also exploit the advantages of
sparse vectors (Palm, 2013) during recall by only activating regions
of interest. If the input vector Rk has 1000 bits indexing 1000 CMM
rows then only the rows addressed by a set bit in the input vector
need be examined (as shown in Figs. 2 and 3). For a 10 bit set vector
then only 10 of the 1000 rows are activated. The input pattern
Rk would be said to have a saturation of (10/1000 = 0.01). The
total amount of data that needs to be examined is reduced by a
factor that is dependent on this saturation providing that the data
is spread reasonably evenly between the rows and the CMM is
implemented effectively. Using smart encoding schemes can bring
the performance improvement resulting from very low saturation
input patterns to over 100-fold (Weeks et al., 2002).

The AURA technique thresholds the summed output S to
produce a binary output vector T as given in Eq. (4).

Tj =



1 if Sj ≥ θ
0 otherwise.

(4)

For exact match, we use the Willshaw threshold (Willshaw,
Buneman, & Longuet-Higgins, 1969) to set θ . This sets a bit in the
thresholded output vector for every location in the summedoutput
vector that has a value higher than or equal to θ . The value of θ
varies according to the task. If there are ten features in the data
and we want to find all stored records that match the ten feature
values of the input vector then we set θ to 10. Thus, for full match
θ = b1, where b1 is set to the number of set bits in the input
vector. For partial matching, we use the L-Max threshold (Casasent
& Telfer, 1992). L-Max thresholding essentially retrieves at least L
topmatches. Our AURA software library automatically sets θ to the
highest integer value that will retrieve at least L matches.

Feature selection described in Section 3 requires both exact
matching usingWillshaw thresholding and partial matching using
L-Max thresholding.

3. Feature selection

There are two fundamental approaches to feature selection
(Kohavi & John, 1997; Witten & Frank, 2000): (1) filters select the
optimal set of features independently of the classifier/predictor
algorithm while (2) wrappers select features which optimise

classification/prediction using the algorithm. We examine the
mapping of five filter approaches to the binary AURA architecture.
Filter approaches are more flexible than wrapper approaches
as they are not directly coupled to the algorithm and are thus
applicable to a wide variety of classification and prediction
algorithms. Our method exploits the high speed and efficiency
of the AURA techniques as feature selection is a combinatorial
problem.

We examine a mutual information approach Mutual Informa-

tion Feature Selection (MI) detailed in Section 3.1 that analyses
features on an individual basis, a correlation-based multivariate
filter approach Correlation-based Feature Subset Selection (CFS)

detailed in Section 3.2 that examines greedily selected subsets of
features, a revised Information Gain approach Gain Ratio (GR) de-
tailed in Section 3.3, a feature dependence approach Chi-Square

Feature selection(CS) detailed in Section 3.4 which is univariate,
and a univariate feature relevance approach Odds Ratio (OR) de-
tailed in Section 3.5.

Univariate filter approaches such as MI, CS or OR are quicker
than multivariate filters as they do not need to evaluate all com-
binations of subsets of features. The advantage of a multivariate
filter compared to a univariate filter lies in the fact that a univari-
ate approach does not account for interactions between features.
Multivariate techniques evaluate the worth of feature subsets by
considering both the individual predictive ability of each feature
and the degree of redundancy between the features in the set.

All five feature selection algorithms have their relative
strengths. We refer the reader to Forman (2003) and Varela, Mar-
tins, Aguiar, and Figueiredo (2013) for accuracy evaluations of
these feature selectors. These papers show that the best feature
selector varies with data and application. Using the CFS attribute
selector, Hall and Smith (1998) found significant improvement in
classification accuracy of k-NN on five of the 12 data sets they eval-
uated but a significant degradation in accuracy on two data sets.
Hence, different feature selectors are required for different data
sets and applications.

We note that the CFS as implemented by Hall (1998) uses
an entropy-based quantisation whereas we have used equi-width
quantisation for the other feature selectors (MI, GR, CS and OR).
We plan to investigate unifying the quantisation as a next step.
For the purpose of our analysis in Section 5, we assume that all
feature selectors are using identical quantisation. We assume that
all records are to be used during feature selection.

3.1. Mutual information feature selection

Wettscherek (1994) described a mutual information feature
selection algorithm. Themutual information between two features
is ‘‘the reduction in uncertainty concerning the possible values of

one feature that is obtained when the value of the other feature is

determined’’ (Wettscherek, 1994). MI is defined by Eq. (5):

MI


Fj, C


=

b(Fj )


i=1

nClass


c=1

p(C = c


Fj = fi)

· log2



p(C = c


Fj = fi)

p(C = c) · p(Fj = fi)



. (5)

To calculate p(C = c


Fj = fi), we use AURA to calculate
n(BVfi∧BVc)

N
.

AURA excites the row in the CMM corresponding to feature
value fi of feature Fj and the row in the CMM corresponding
to class value c as shown in Fig. 3. By thresholding the output
vector S at Willshaw threshold value = 2, we obtain a thresholded
output vector with a bit set for every co-occurrence. We can count
these set bits to determine the co-occurrence count. Furthermore,
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p (C = c) is the count of the number of set bitsn(BVc) in the binary
vector (CMM row) for c and p(Fj = fi) is the count of the number
of set bits n(BVf i) in the binary vector (CMM row) for fi as used by
GR.

TheMI calculatedusingAURA for qualitative features is given by
Eq. (6) where N is the number of records in the data set, rows(Fj)
is the number of CMM rows for feature Fj and nClass is the number
of classes:

MI


Fj, C


=

rows(Fj )


i=1

nClass


c=1

n(BVfi∧BVc)

N

· log2



n(BVfi∧BVc)

N

n(BVfi)

N
·

n(BVc)

N



. (6)

We can follow the same process for real/discrete ordered
numeric features in AURA. In this case, the mutual information is
given by Eq. (7):

MI


Fj, C


=

bins(Fj )


i=1

nClass


c=1

n(BVbi ∧ BVc)

N

· log2



n(BVbi∧BVc)

N

n(BVbi)

N
·

n(BVc)

N



(7)

where bins(Fj) is the number of bins (effectively the number of
rows) in the CMM for feature Fj and BVbi is the CMM row for the
bin mapped to by feature value fi.

The MI feature selector assumes independence of features and
scores each feature separately so it is the user’s prerogative to
determine the number of features to select. The major drawback
of the MI feature selector along with similar information theoretic
approaches, for example Information Gain, is that they are biased
towards features with the largest number of distinct values as this
splits the training records into nearly pure classes. Thus, a feature
with a distinct value for each record has a maximal information
score. The CFS and GR feature selectors make adaptations of
information theoretic approaches to prevent this biasing.

3.2. Correlation-based feature subset selection

Hall (1998) proposed the Correlation-based Feature Subset
Selection (CFS). It measures the strength of the correlation
between pairs of features. CFS favours feature subsets that contain
features that are highly correlated to the class but uncorrelated
to each other to minimise feature redundancy. CFS is thus based
on information theory measured using Information Gain. Hall
and Smith (1997) used a modified Information Gain measure,
Symmetrical Uncertainty, (SU ) given in Eq. (8) to prevent bias
towards features with many distinct values (Section 3.1). SU

estimates the correlation between features by normalising the
value in the range [0, 1]. Two features are completely independent
if SU = 0 and completely dependent if SU = 1.

SU


Fj,Gl



= 2.0 ·



Ent


Fj


− Ent


Fj | Gl



Ent


Fj


+ Ent(Gl)



(8)

where the entropy of a feature Fj for all feature values fi is given as
Eq. (9):

Ent


Fj


= −

n(Fj )


i=1

p(fi)log2(p(fi)) (9)

and the entropy of feature Fj after observing values of feature Gl is
given as Eq. (10):

Ent


Fj | Gl



= −

n(Gl )


k=1

p(gk)

n(Fj )


i=1

p(fi | gk)log2(p(fi | gk)). (10)

Any quantitative features are discretised using Fayyad and
Irani’s entropy quantisation (Fayyad & Irani, 1993). The bin bound-
aries are determined using Information Gain and these quantisa-
tion bins map the data into the AURA CMM as previously.

CFS has many similarities to MI when calculating the values in
Eqs. (8)–(10) and through using the same CMM (Fig. 3) as noted
below.

In theAURACFS, for eachpair of features (Fj,Gl) to be examined,
the CMM is used to calculate Ent(Fj), Ent(Gl) and Ent(Fj | Gl)
from Eqs. (8)–(10). There are three parts to the calculation.

1. Ent(Fj) requires the count of data records for the particular
value fi of feature Fj which is n(BVf i) in Eq. (6) for qualitative
and class features and n(BVbi) in Eq. (7) for quantitative
features. AURA excites the row in the CMM corresponding to
feature value fi of feature Fj . This row is a binary vector (BV)
and is represented by BVf i. A count of bits set on the row gives
n(BVf i) from Eq. (6) and is achieved by thresholding the output
vector Sk from Eq. (4) at Willshaw value 1.

2. Similarly, Ent(Gl) counts the number of records where feature
Gl has value gk .

3. Ent(Fj | Gl) requires the number of co-occurrences of a partic-
ular value fi of feature Fj with a particular value gk of feature
Gln(BVf i ∧ BVgk) for qualitative features and n(BVbi ∧ BVbk)
for quantitative features and between a feature and the class
n(BVf i ∧ BVc) and n(BVbi ∧ BVc) for qualitative and quanti-
tative features respectively. If both the feature value row and
the class values row are excited then the summed output vec-
tor will have a two in the column of every record with a co-
occurrence of fi with cj as shown in Fig. 3. By thresholding the
summed output vector at a threshold of two, we can find all co-
occurrences. We represent this number of bits set in the vector
by n(BVf i ∧ BVc) which is a count of the set bits when BVc is
logically anded with BVf i.

CFS determines the feature subsets to evaluate using forward
search. Forward search works by greedily adding features to a
subset of selected features until some termination condition ismet
whereby adding new features to the subset does not increase the
discriminatory power of the subset above a pre-specified threshold
value. The major drawback of CFS is that it cannot handle strongly
interacting features (Hall & Holmes, 2003).

3.3. Gain ratio feature selection

Gain Ratio (GR) (Quinlan, 1992) is a new feature selector for the
AURA framework. GR is amodified InformationGain technique and
is used in the popularmachine learning decision tree classifier C4.5
(Quinlan, 1992). Information Gain is given in Eq. (11) for feature
Fj and the class C . CFS (Section 3.2) modifies Information Gain
to prevent biasing towards features with the most values. GR is
an alternative adaptation which considers the number of splits
(number of values) of each feature when calculating the score for
each feature using normalisation.

Gain


Fj, C


= Ent


Fj


− Ent(Fj | C) (11)

where Ent(Fj) is defined in Eq. (9) and Ent(Fj | C) is defined by
Eq. (10). Then Gain Ratio is defined as Eq. (12):

GainRatio


Fj, C


=
Gain(Fj, C)

IntrinsicValue(Fj)
(12)

where IntrinsicValue is given by Eq. (13):

IntrinsicValue


Fj


=

V


p=1

Sp

N
log2



Sp

N



(13)
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and V is the number of feature values (n(Fj)) for qualitative
features and number of quantisation bins n(bi) for quantitative
features and Sp is a subset of the records that have Fj = fi
for qualitative features or map to the quantisation bin bin(fi) for
quantitative features.

To implement GR using AURA,we train the CMMas described in
Section 2.1We can then calculateEnt(Fj) andEnt(Fj | C) as per the
CFS feature selector described in Section 3.2 to allowus to calculate
Gain(Fj, C). To calculate IntrinsicValue(Fj) we need to calculate
the number of records that have particular feature values. This is
achieved by counting the number of set bits n(BVf i) in the binary
vector (CMM row) for fi for qualitative features or n(BVbi) in the
binary vector for the quantisation bin bi for quantitative features.
We can store counts for the various feature values and classes as
we proceed so there is no need to calculate any count more than
once.

The main disadvantage of GR is that it tends to favour features
with low Intrinsic Value rather than high gain by overcompensat-
ing towards a feature just because its intrinsic information is very
low.

3.4. Chi-square algorithm

We now demonstrate how to implement a second new feature
selector in the AURA framework. The Chi-Square (CS) (Liu &
Setiono, 1995) algorithm is a feature ranker like MI, OR and GR
rather than a feature selector; it scores the features but it is the
user’s prerogative to select which features to use. CS assesses the
independence between a feature (Fj) and a class (C ) and is sensitive
to feature interactions with the class. Features are independent if
CS is close to zero. Forman (2003) and Yang and Pedersen (1997)
conducted evaluations of filter feature selectors and found that
CS is among the most effective methods of feature selection for
classification.

Chi-Square is defined as Eq. (14):

χ
2


Fj, C


=

b(Fj )


i=1

nClass


c=1

N ∗ (wz − yx)2

(w + y) ∗ (x + z) ∗ (w + x) ∗ (y + z)
(14)

where b(Fj) is the number of bins (CMM rows) representing
feature Fj , nClass is the number of classes, w is the number
of times fi and c co-occur, x is the number of times fi occurs
without c, y is the number of times c occurs without fi, z is the
number of times neither c nor fi occur. Thus, CS is predicated on
counting occurrences and co-occurrences and, hence, has many
commonalities with MI, CFS and GR.

• Fig. 3 shows how to produce a binary output vector (BVf i∧BVc)
for qualitative features or (BVbi∧BVc) for quantitative features
listing the co-occurrences of a feature value and a class value. It
is then simply a case of counting the number of set bits (1s) in
the thresholded binary vector T in Fig. 3 to countw.

• To count x for qualitative features, we logically subtract (BVf i ∧
BVc) from the binary vector (BVf i) to produce a binary vector
and count the set bits in the resulting vector. For quantitative
features, we subtract (BVbi ∧ BVc) from (BVbi) and count the
set bits in the resulting binary vector.

• To count y for qualitative features, we can logically subtract
(BVf i ∧ BVc) from (BVc) and count the set bits and likewise for
quantitative features we can subtract (BVbi ∧ BVc) from BVc
and count the set bits.

• If we logically or (BVf i) with (BVc), we get a binary vector
representing (Fj = fi) ∨ (C = c) for qualitative features. For
quantitative features, we can logically or (BVbi) with (BVc) to
produce (Fj = bin(fi)) ∨ (C = c). If we then logically invert
this new binary vector, we retrieve a binary vector representing
z and it is simply a case of counting the set bits to get the count
for z .

As with MI and OR, CS is univariate and assesses features on
an individual basis selecting the features with the highest scores,
namely the features that interact most with the class.

3.5. Odds ratio

The third new feature selector is Odds Ratio (OR) (see Forman,
2003). OR is another feature ranker. Standard OR is a two-class
feature ranker although it can be extended to multiple classes. It
is often used in text classification tasks as these are often two-
class problems. It performswell particularlywhen usedwith Naïve
Bayes Classifiers. OR reflects relevance as the likelihood (odds)
of a feature occurring in the positive class normalised by that
of the negative class. OR has many commonalities with MI, CFS
and GR but particularly with CS where it requires the same four
calculationsw, x, y and z (defined above in Section 3.4). Odds Ratio
is defined by Eq. (15):

OR


Fj, C


=

b(Fj )


i=1

wz

yx
(15)

whereb(Fj) is the number of bins (CMMrows) representing feature
Fj , w is the number of times fi and c co-occur, x is the number
of times fi occurs without c , y is the number of times c occurs
without fi, z is the number of times neither c nor fi occur. Thus,
OR is predicated on counting occurrences and co-occurrences. To
avoid division by zero the denominator is set to 1 if yx evaluates
to 0.

4. Parallel and distributed AURA

Feature selection is a combinatorial problem so a fast, efficient
and scalable platform will allow rapid analysis of large and high
dimensional data sets. AURA has demonstrated superior training
and recall speed compared to conventional indexing approaches
(Hodge & Austin, 2001) such as hashing or inverted file lists which
may be used for data indexing. AURA trains 20 times faster than
an inverted file list and 16 times faster than a hashing algorithm.
It is up to 24 times faster than the inverted file list for recall
and up to 14 times faster than the hashing algorithm. AURA
k-NN has demonstrated superior speed compared to conventional
k-NN (Hodge & Austin, 2005) and does not suffer the limitations of
other k-NN optimisations such as the KD-tree which only scales to
low dimensionality data sets (McCallum, Nigam, & Ungar, 2000).
We showed in Hodge et al. (2006) that using AURA speeds up
the MI feature selector by over 100 times compared to a standard
implementation of MI.

For very large data sets, the datamay be processed in parallel on
one compute node (such as a multi-core CPU) or across a number
of distributed compute nodes. Each compute node in a distributed
system can itself perform parallel processing.

4.1. Parallel AURA

In Weeks et al. (2002), we demonstrated a parallel search
implementation of AURA. AURA can be subdivided across multiple
processor cores within a single machine or spread across
multiple connected compute nodes. This parallel processing entails
‘‘striping’’ the CMMacross several parallel subsections. The CMM is
effectively subdivided vertically across the output vector as shown
in Fig. 4. In the data, the number of featuresm is usually much less
than the number of records N , m ≪ N . Therefore, we subdivide
the data along the number of records N (column stripes) as shown
in the leftmost example in Fig. 4.

Splitting the data across multiple CMM stripes using columns
means that the CMMcan store data as separate rowswithin a single
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Fig. 4. If a CMM contains large data it can be subdivided (striped) across a number of CMM stripes. In the left hand figure, the CMM is striped vertically (by time) and in the

right hand figure the CMM is striped horizontally (be feature subsets). On the left, each CMM stripe produces a thresholded output vector Tn containing the top k matches

(and their respective scores) for that stripe. All {Tn} are aggregated to form a single output vector T which is thresholded to list the top matches overall. On the right, each

stripe outputs a summed output vector Sn . All Sn are summed to produce an overall summed output vector which is thresholded to list the top matches overall.

stripe. Each record is containedwithin a single stripe. Each separate
CMM stripe outputs a thresholded vector from that CMM stripe.

If the number of features is large then it is possible to subdivide
the CMMs further. The CMM is divided vertically by the records
(column stripes) as before and then the column stripes are
subdivided by the input features (row stripes). Subdivision by
input features (row stripes) is shown in the rightmost diagram in
Fig. 4. Dividing the CMM using the features (row stripes) makes
assimilating the resultsmore complex than assimilating the results
for column stripes. Each row stripe produces a summed output
vector containing column subtotals for those features within the
stripe. The column subtotals need to be assimilated from all
row stripes that hold data for that column. Thus, we sum these
column subtotals to produce a column stripe vector C holding the
overall sum for each column in that stripe. Row striping involves
assimilating integer vectors of length c where c is the number of
columns for the column subdivision (column stripe).

4.2. Distributed AURA

There are two central challenges for distributed feature selec-
tion: firstly, maintaining a distributed data archive so that data
does not have to be moved to a central repository and secondly,
orchestrating the search process across the distributed data. Dif-
ferent data and applications will have different criteria that they
wish to optimise. These could be optimising communication over-
head, processing speed, memory usage or combinations of these
criteria. Hence, there is unlikely to be a single best technique for
distribution.

To distribute AURA, we use the striping mechanisms detailed
in the previous section. However, rather than spreading the
stripes within the cores of a multicore processor, we distribute
the stripes across computers within a distributed network. The
stripes need to be distributed for maximum efficiency. This
can be to maximise processing speed, to minimise memory
usage, to minimise communication overhead or a combination of
criteria. Distributing the stripes requires an efficient distribution
mechanism to underpin the procedure.

Orchestrated search with minimal data movement is provided
by the open source software project: Apache Hadoop (Shvachko,
Hairong, Radia, & Chansler, 2010). Hadoop operates on the premise
that ‘‘moving computation is cheaper than moving data’’ (Borthakur,
2008). Hadoop allows the distributed processing of large data sets
across clusters of commodity servers. It provides load balancing, is
highly scalable and has a very high degree of fault tolerance. It is
able to run on commodity hardware due to its ability to detect and
handle failures at the application layer. There aremultiple copies of
the stored data so, if one server or node is unavailable, its data can

be automatically replicated from a known good copy. If a compute
node fails thenHadoop automatically re-balances thework load on
the remaining nodes. Hadoop has demonstrated high performance
for a wide variety of tasks (Borthakur et al., 2011). It was initially
aimed at batch processing tasks so is ideally suited to the task of
feature selection where the feature selector is trained with the
training data and feature selection is run once on a large batch
of test data. Hadoop is currently developing real-time processing
capabilities. In this paper, we focus on batch processing and the
implementation details of the five feature selectors using AURA
with Hadoop.

Hadoop is highly configurable and can be optimised to the
user’s specific requirements, for example, optimising to minimise
memory overhead, optimising for fastest processing or optimising
to reduce communication overhead. Hence, we do not attempt to
evaluate Hadoop here. Instead, we focus on describing how tomap
AURA CMMs to Hadoop to create a feature evaluation framework.

There are two parts of Hadoop that we consider here: YARN
which assigns work to the nodes in a cluster and the Hadoop
Distributed File System (HDFS) which is a distributed file system
spanning all the nodes in the Hadoop cluster with a single
namespace.

YARN (Kumar et al., 2013) supersedes MapReduce in Hadoop.
YARN is able to run existing MapReduce applications. YARN
decouples resource management and scheduling from the data
processing. This means that data can continue to be streamed into
the systemsimultaneouslywithMapReduce batch jobs. YARNhas a
central resourcemanager that reconciles Hadoop system resources
according to constraints such as queue capacities or user-limits.
Node manager agents monitor the processing operations of
individual nodes in the cluster. The processing is controlled
by an ApplicationMaster which negotiates resources from the
central resource manager and works with the node manager
agents to execute and monitor the tasks. The actual MapReduce
procedure, divides (maps) the processing into separate chunks
which are processed in parallel. The outputs of the processing
tasks are combined (reduced) to generate a single result. The
input and output data for MapReduce can be stored in HDFS
on the same compute nodes used for processing the MapReduce
jobs. This produces a very high aggregate bandwidth across the
cluster. The user’s applications specify the input/output locations
and supply map and reduce functions via implementations of
appropriate interfaces and/or abstract-classes. The framework
takes care of distributing the software/configuration, scheduling
tasks, monitoring the tasks and re-executing any failed tasks.

HDFS links together the file systems on many local nodes to
make them into one big file system. HDFS assumes nodes will fail,
so it achieves reliability by replicating data across multiple nodes.
Processing data in situ on local nodes is efficient compared to
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Fig. 5. Figure showing distributed AURA recall in Hadoop. In the figure, there are three distributed compute nodes as shown by the shadingwith three CMM stripes per node

(3 CPU cores per node and one stripe per core). Thus, the top three stripes are on one compute node spread across three cores. In the map phase, the required input vectors

are applied to the CMM stripes and the summed output vector is recalled for each stripe. The summed output vector can be thresholded now or later following aggregation

as described in Section 4.3.1. During the reduce phase, these output vectors are aggregated at each compute node giving three aggregated vectors. Finally, the three vectors

are combined.

moving the data over the network to a single processing node. This
local processing architecture of Hadoop has resulted in very good
performance (Rutman, 2011) on cheap computer clusters even
with relatively slow network connections (such as 1 Gig Ethernet)
(Rutman, 2011). Hence, Hadoop is ideal to underpin our distributed
processing architecture.

4.3. Hadoop feature selection

Feature selection is a two part procedure. A training phase
described in Section 2.1 trains the data into the CMMs. A test
phase then applies test data to the trained CMMs and correlates
the results to produce feature selections. Each compute node holds
a CMM, CMM stripe or set of CMM stripes that stores all local data.
During training, CMMs are not immutable as each association in
Eq. (1) changes the underlying CMMsoHadoopMapReduce is not a
suitable paradigm for CMM training. Hence, the CMMs are trained
in a conventional fashion and uploaded to HDFS once trained. If
the data stored in a node’s CMM exceed the memory capacity of
that node then the CMM is subdivided into stripes as described
in Section 4.1 and shown in Figs. 4 and 5. The set of all CMM
stripes at a node stores all data for that node. Every CMM stripe
across the distributed system has to be coordinated so that record
identifiers (such as timestamps) are matched to allow the CMM
sum and threshold. Sum and threshold is column-based and relies
on columns representing the same datum. When the results from
different CMMs are unified then the columns from the various
CMMs need to be aligned. The system is very flexible; we only need
to access relevant CMM stripes so we can access subsets of data.
The approach is a combination of the striping described above in
Section 4.1 and the CMMdistribution described in Section 4.2 with
Hadoop orchestrating the search.

While the CMMs are being trained it is expedient to generate
a MapReduce input file of input vectors to be used to produce
the feature selections. These files will be split into batches by the
MapReduce software and the results will be correlated to produce
the feature selection scores. There is one input file per CMM stripe
and the input vectors in each file represent the set of input vectors
for recall to produce the feature selections.

Each CMM stripe that receives a search request, executes the
recall process described in Section 2.3. The candidate matches are
the set of stored patterns that are close to the query in the feature
space. In Hadoop the processing is coordinated by MapReduce
(Shvachko et al., 2010). Hadoop YARN schedules the MapReduce
tasks independently of the problem being solved. There is one
Map job for each input file. Therefore, we model feature selection
as a series of MapReduce jobs with each job representing one
CMM stripe and the tasks are batches of file iterations (batch
processing subsets of records) from the test data. The tasks are
processed in parallel on distributed nodes. Each CMM stripe is
read into a job. The recall function for CMM stripes is written as a
Map task. Each MapReduce job invokes multiple Map tasks, each
task represents a batch of recalls for a subset of input records,
the batches execute in parallel. The Hadoop Mapper keeps track
of the output vector versus record ID pairs so we know which
output vector is associated with which record. The Reduce tasks
perform the integer output vector thresholding as described in
Section 2.3 and write the data back into the file associated with
the CMM stripe. Multiple feature selectors can be run in parallel,
each executing as a series ofMapReduce jobs. The CMMs for feature
selection are immutable so subsequent iterations do not depend on
the results (or changes) of the CMMs.

This whole MapReduce process has to be coordinated. If the
MapReduce process is running at a single location then it can
be coordinated as a Java class that initiates the individual jobs
and then coordinates the results from all jobs to produce the
feature selection scores. If the processing is geographically dis-
tributed then it needs a more complete coordinator. This can be
achieved using for example the UNIX curl command and a mon-
itor process that determines when curl has collected new data.
Alternatively, it can be achieved using a distributed stream pro-
cessor such as Apache Flume (https://flume.apache.org/) or Storm
(https://storm.incubator.apache.org/). Essentially, whichever tool
is used this is a three part process: initiate the feature selection
process at each of the distributed nodes; retrieve the results data
from the distributed nodes; and, monitor when the results have
been returned from all nodes and combine them into a single uni-
fied result.

https://flume.apache.org/
https://storm.incubator.apache.org/
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4.3.1. Stripe vectors

For Big data, the CMMs are too big to store in a one computer’s
memory. Hence, they need to be striped acrossmultiple computers
as in Figs. 4 and 5. Each CMM stripe returns a vector representing
thematching results for the input vector with respect to that CMM
stripe. Palm (2013) has extensively analysed representations in
associative memories and found that sparse representations are
optimal because the number of matrix operations is proportional
to the number of set bits in the vectors. A sparse pattern will
have fewest set bits and require fewest operations. For our feature
selector, each CMM stripe can return its results as

1. an integer vector Sk (un-thresholded),
2. a thresholded vector Tk or
3. a list of the set bits in the thresholded vector.

Option 1 is the least efficient as, potentially, every column could
have an integer score so the vector would be an integer vector
of length N where N is the number of data records stored. This
integer vector can be thresholded for option 2 which produces a
binary vector. A binary vector requires less storage capacity than
an integer vector (1 bit per element for the binary vector compared
to 16 or 32 bits per element for the integer vector). For option 3,
we would return a list of the set bits. For this we can exploit a
compact list representation for representing binary vectors (Hodge
& Austin, 2001). This compact list representation is similar to
the pointer representation used in associative memories (Bentz,
Hagstroem, & Palm, 1997). It ensures that retrieval is proportional
to the number of set bits in the thresholded output vector so is
fast and scalable. The feature selection process produces a large
set of output vectors from the CMM stripes; namely, all vectors
necessary for all feature selectors. Option 3 allows AURA to be
used for distributed processingwith data sets ofmillions of records
while using a relatively small amount of memory and with a
massively reduced communication overhead. For example, if there
were 10,000,000 records in the data set then a vector would
have 10,000,000 elements. If only three records match (records;
8, 10 and 11) then processing {8, 10, 11} as indices requires much
less time, memory and communication bandwidth compared to
processing 10,000,000 binary digits. Hence, wherever possible we
use option 3.

The results need to be amalgamated for each feature selector
to produce the feature scores for that feature selector. The system
maintains an index of what data are stored where and what each
datum represents so the coordinating node can coordinate the
matching, receive all matching data and determine the set of best
matches across all searchable data. Each feature selector will have
a separate amalgamate program running at the coordinating node.
This program uses the required vectors and set bit counts returned
from AURA to produce the feature score as described in Sections 3
and 5.

5. Analysis of AURA feature selection

We demonstrate theoretically using a worked example that our
framework vastly reduces the number of required computations
compared to processing the feature selectors separately. The
worked example provides an easy and simple illustration of the
method on a small data size. We envisage using the feature
selector on Big Data sets where Big Data refers to data sets that
require at a minimum multiple CPUs but more likely multiple
compute nodes to process in tractable time for the application.
The larger the data set and the more time critical the data
processing then the more important our computation reduction
will become. MI, CFS, CS, OR and GR can all use a single CMM
representation for the data such as the CMM in Fig. 6. This overall
CMM is amenable to striping across the processing nodes to allow

Hadoop processing in a similar fashion to Figs. 4 and 5. The
framework is underpinned by Hadoop which has been thoroughly
evaluated in the literature (Kumar et al., 2013). Hadoop is highly
configurable large data set framework that can be optimised to the
user’s specific requirements, for example, optimising to minimise
memory overhead, optimising for fastest processing or optimising
to reduce communication overhead. Hence, we do not attempt to
evaluate Hadoop itself here but just focus on howweminimise the
number of feature selection computations to minimise processing.
Users will use our framework to select the best feature selector for
their data and application using their own specific criteria.

The feature selectors in Section 3 have many commonalities
when implemented in the unified AURA framework. We can
demonstrate the commonalities by analysing 12 records from the
Iris data set (Fisher, 1936). The Iris data are illustrated in Fig. 6
(left)when trained into the CMM. The 12 records have been trained
into a CMM using the four features and the class. Each feature is
quantitative and has been subdivided into five quantisation bins
of equal width. Fig. 6 (right) shows the same data divided into
four CMM stripes (CMMStripe1, CMMStripe2, CMMStripe3 and
CMMStripe4). The horizontal (row-based) striping means that the
features ‘‘sepal len’’ and ‘‘sepal width’’ are in the top stripes and
‘‘petal len’’, ‘‘petal width’’ and the class are in the bottom two stripes.
The vertical (column-based) striping means that the first 6 data
records are stored in the left two stripes and the other 6 records
in the right two stripes. If the data were time-series or sequential,
the column-based striping would form two time frames with the
oldest data in the left two stripes and the newest data in the right
two stripes. The input vectors are stored in a file for each CMM
or CMM stripe. These files can then be batch processed in the
Hadoop framework described. Within the evaluation, we consider
how the data and CMMs would be accommodated in our Hadoop
framework.

MI, CFS, CS, OR and GR all use BVf i (the binary vector where
(Fj = fi)), BVbi (the binary vector representing the quantisation
bin bin(fi)) andBVc (the binary vector representing all records that
have class label c). These only need to be extracted once and used
in each feature selector as appropriate. For example in Fig. 6, if
we want all records where 1.12 ≤ petal width < 1.58 then we
activate row 17 of the CMM. We can then Willshaw threshold the
resultant integer output vector S (000011110000) at level 1 and
retrieve the binary thresholded vector T with a bit set for every
matching record (bits 4, 5, 6, 7). For theHadoop distributed version,
only the relevant CMM stripes are queried in Fig. 6 (right). In this
case, activating row 17 of CMMStripe3 and CMMStripe4 queries
the relevant data. CMMStripe3 will output thresholded vector T3

with bits 5 and 6 set and CMMStripe4 will output T4 with bits 7
and 8 set. T3 and T4 can be concatenated to form a single vector
thresholded vector T (as in Fig. 4) with bits 4, 5, 6 and 7 set.
For the Hadoop distributed version, each CMM stripe CMMStripeX

outputs a list of the indices of the set bits in TX which are collected
by the coordinator.

CFS, GR and MI all require nBVf i a count of the number of data
records where a particular feature has a particular value Fj = fi
and BVc a count of the number of records where the class has a
particular label C = c . To count the number of records where
1.12 ≤ petal width < 1.58, we retrieve the binary thresholded
vector as above and count the number of set bits (bits 4, 5, 6 and
7 are set giving 4 matching records). For the Hadoop approach, we
coordinate the retrieval as above, concatenate the lists to produce
a single overall list of set bits and count the list length. T3 has bits
4 and 5 set and T4 has bits 6 and 7 set giving 4 matching records in
total.

CFS, CS, OR, GR and MI all use (BVf i ∧ BVc) and (BVbi ∧ BVv)
for qualitative and quantitative features respectively. For example,
we can find all records where 4.6 ≤ sepal len < 5.1 and the
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Fig. 6. The 12 records from the iris data set, quantised and trained into a single AURA CMM (left) and subdivided across 4 stripes of the CMM (right). The letters in rows

20–22 indicate the class of the record: A = Iris-setosa, B = Iris-versicolour, C = Iris-virginica.

class is A by activating rows 0 and 20 of the CMM, thresholding
S (1222000000) at Willshaw level 2 to give T with three bits set:
column 1, 2 and 3 in Fig. 6 (left). This takes more coordinating
in the Hadoop framework as the data for the feature value may
not be stored with the data for the class; they may be in different
CMM stripes. In Fig. 6 (right), activate row 0 in CMMStripe1

and CMMStripe2 and then activate row 20 in CMMStripe3 and
CMMStripe4. The coordinating program needs to correlate the
sections of the vector for the feature value and correlate the
sections of the vector for the class to form a single vector.
CMMStripe1 needs to be added (summed) with the output integer
vector of CMMStripe3 to give S1+3 and CMMStripe2 needs to be
added (summed) with the output integer vector of CMMStripe4

to give S2+4. The summed vectors can then be thresholded at 2
to give T1+3 with bits 1, 2 and 3 set (three matching records) and
T2+4 with no bits set (no matches). The two thresholded output
vectors are concatenated to produce T with bits 1, 2 and 3 set. If the
thresholded vectors are stored as lists of indices (see Section 4.3.1)
then this is simply a task of finding the common indices between
the two vectors.

MI, CFS, CS, OR and GR all also need a count of the conjunction,
that is n(BVf i ∧ BVc) and n(BVbi ∧ BVc) for qualitative and
quantitative features respectively. Hence, we retrieve the binary
thresholded vector T as above and count the set bits.

Rather than calculating these elements multiple times, we can
take advantage of the commonalities by calculating each common
value, binary vector or count only once and propagating the result
to each feature selector that requires it. Following these common
calculations, all necessary calculations will have been made for
MI and GR. CFS just requires the pairwise feature versus feature

analyses (BVbi ∧ BVbk). These are performed in the same way

as the feature versus class analyses above. CS and OR require the

manipulation of some of the binary vectors to produce the logical

or vectors. This requires the coordination of the vectors. To find

(BVbi) ∨ (BV c), we combine the list of set bits for (BVbi) with

the list of set bits for (BV c) and count the resulting list length.

By calculating the common elements first, the remainder of the

calculations can be performed for each feature selector using either

this CMM and processing the algorithms in series or by generating

multiple copies of the CMM and processing them in parallel if

sufficient processing capacity is available.

Once all of the binary vectors have been retrieved by the

distributed Hadoop system, they need to be processed to calculate

the feature scores as per Section 3 using the various feature

selectors. A coordinator program organises this in parallel. There

is one feature score calculation process per feature selector

(currently five feature selectors are described here).

For the Iris data set, there are 20 feature row activations 20 ∗

BVbi and three class activations 3 ∗ BVc . To calculate (BVbi ∧

BVc) requires 20 × 3 = 60 calculations. Hence, there are
83 common calculations (20 + 3 + 60) across all five feature
selectors. CFS then needs to calculate (BVbi ∧ BVbk) which would
require 19! calculations if every feature value was compared to
every other. However, CFS uses greedy forward search so that
the number of comparisons is minimised (Hall, 1998) to a worst
case of (202 − 20)/2 = 190. We have already extracted all
20 ∗ BVbi binary vectors so CFS needs 190 logical ands but no
CMM accesses. We have saved a minimum of 20 CMM accesses for
BVbi and a maximum of 190 CMM accesses for worst case forward
search. Manipulating the binary vectors can be performed at the
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coordinating node and in parallel as a Hadoop batch process. CS
requires the logical or vectors (BVbi∨BVc). Again, we already have
all20∗BVbi binary vectors and all3∗BVc binary vectors so there are
20×3 = 60 logical ors to perform. Thus,wehave saved aminimum
of 20∗BV bi+3∗BV c = 23 CMMaccesses and potentially 60 CMM
accesses if all 60 or operations were performed in the CMM. Thus
MI requires 83 calculations, GR also requires 83, CFS requires 83
plus 190 and CS requires 83 plus 60. Without our reductions there
would be 83+83+83+190+83+60 calculations.Wehave reduced
this to 83+190+60. Additionally, 190+60 of these can use vectors
already extracted so there is no need to access the CMM. We have
saved 3 ∗ 83 = 249 recalls from the CMM by finding common
aspects, have removed a minimum of 20+ 23 further CMM recalls
and have reduced the other calculations to logical operations on
stored binary vectors. Theminimumsaving onCMMrecalls is given
by Eq. (16).

Saving = (3 × (n (BVbi) + n (BVc) + (n (BVbi) n (BVc))))

+ ((2 × n (BVbi)) + n (BVc)) . (16)

6. Conclusion

Massive and complex data sources pose challenges for data
mining but they also hold many opportunities. New information
can be uncovered, vast timelines of data are available for analysis
and the data models learned will be increasingly rich as the
training data expands. How the data is represented needs to be
carefully considered including careful preparation such as cleaning
and selecting feature subsets. In this paper we have introduced a
distributed processing framework for feature selection using the
AURA neural network and Apache Hadoop. There are currently five
feature selectors available which may be used independently or
coupled with the AURA k-NN for classification or prediction.

All five feature selectors can use a single trained CMM. We
have identified common aspects of the five feature selectors when
they are implemented in the AURA framework and indicated
how these common aspects may be processed as a common
block. All remaining aspects of the feature selectors can then be
implemented in parallel using duplicate copies of the trained CMM
as compute resources allow. CMMs lend themselves to distributed
processing as they can be striped (split) using both row-based and
column-based striping. The CMM created for feature selection can
be used directly for the AURA k-NN for classification or prediction
and any unwanted features (those not selected by the feature
selection) can simply be ignored (masked off). Alternatively, the
CMM can be retrained with only the required data if processing
speed and memory usage at recall time are the primary concern.

The AURA neural architecture has demonstrated superior train-
ing and recall speed compared to conventional indexing ap-
proaches such as hashing or inverted file lists (Hodge & Austin,
2001) and an AURA-based implementation of the MI feature se-
lector was over 100 times faster than a standard implementation
(Hodge et al., 2006). This is further augmented by using the scala-
bility of Hadoop. This combined platform allows rapid processing
of feature selectors on large and high dimensional data sets that
cannot be processed on standard computers. We envisage using
the method on data sets that require at a minimummultiple CPUs
but more likely multiple compute nodes to process. The method is
also best suited to data mining and analytics that processes a Big
Data file in a longer term processing run such as overnight rather
than on-line transaction processing which requires near real-time
updating. The user can then evaluate the feature sets chosen by the
feature selectors against their own data to determine the best fea-
ture selector and the best set of features. Additionally, each feature
selector (MI, CFS, GR, CS and OR) generates scores for the features
which can be used to weight the features duringmachine learning.

The technique is flexible and easily extended to other feature
selection algorithms. By implementing a range of feature selectors
in a single framework, we can also investigate ensemble feature
selection where the results from a range of feature selectors are
merged to generate a consensus overviewof the best set of features
to use.

We will investigate whether we can use Apache Spark, the
in-memory data analytics and cluster computing framework
(https://spark.apache.org/) to underpin the AURA feature selection
framework. Apache Spark is closely coupled with Hadoop and
allows YARN and MapReduce jobs to be run. Spark enables in-
memory computing and is reputed to be up to 100 times faster than
MapReduce (see https://spark.apache.org/). CMMs are optimised
for in-memory processing so fit well with the Spark paradigm. A
related development, Optimised Row Columnar (ORC) file format
is currently being adopted by Spark. ORC is a file storage format
that is tightly integrated with HDFS and provides optimisations for
both read performance and data compression. An ORC file divides
the data into groups of row data called stripes. This fits with the
stripes used inAURACMMsandwould allowadirectmapping from
ORC data file stripes to CMM stripes for optimised performance.

We plan to use the feature selection framework that we have
developed in this paper in conjunction with the AURA k-NN for
traffic analysis (Hodge et al., 2012; Hodge, Krishnan, Austin, &
Polak, 2010; Hodge et al., 2011), condition monitoring (Austin
et al., 2010) and railway infrastructuremonitoring in the NEWTON
Project (Hodge, O’Keefe, Weeks, & Moulds, 2015).
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