228 research outputs found

    Comparing of radial and tangencial geometric for cylindric panorama

    Full text link
    Cameras generally have a field of view only large enough to capture a portion of their surroundings. The goal of immersion is to replace many of your senses with virtual ones, so that the virtual environment will feel as real as possible. Panoramic cameras are used to capture the entire 360°view, also known as panoramic images.Virtual reality makes use of these panoramic images to provide a more immersive experience compared to seeing images on a 2D screen. This thesis, which is in the field of Computer vision, focuses on establishing a multi-camera geometry to generate a cylindrical panorama image and successfully implementing it with the cheapest cameras possible. The specific goal of this project is to propose the cameras geometry which will decrease artifact problems related to parallax in the panorama image. We present a new approach of cylindrical panoramic images from multiple cameras which its setup has cameras placed evenly around a circle. Instead of looking outward, which is the traditional ”radial” configuration, we propose to make the optical axes tangent to the camera circle, a ”tangential” configuration. Beside an analysis and comparison of radial and tangential geometries, we provide an experimental setup with real panoramas obtained in realistic conditionsLes caméras ont généralement un champ de vision à peine assez grand pour capturer partie de leur environnement. L’objectif de l’immersion est de remplacer virtuellement un grand nombre de sens, de sorte que l’environnement virtuel soit perçu comme le plus réel possible. Une caméra panoramique est utilisée pour capturer l’ensemble d’une vue 360°, également connue sous le nom d’image panoramique. La réalité virtuelle fait usage de ces images panoramiques pour fournir une expérience plus immersive par rapport aux images sur un écran 2D. Cette thèse, qui est dans le domaine de la vision par ordinateur, s’intéresse à la création d’une géométrie multi-caméras pour générer une image cylindrique panoramique et vise une mise en œuvre avec les caméras moins chères possibles. L’objectif spécifique de ce projet est de proposer une géométrie de caméra qui va diminuer au maximum les problèmes d’artefacts liés au parallaxe présent dans l’image panoramique. Nous présentons une nouvelle approche de capture des images panoramiques cylindriques à partir de plusieurs caméras disposées uniformément autour d’un cercle. Au lieu de regarder vers l’extérieur, ce qui est la configuration traditionnelle ”radiale”, nous proposons de rendre les axes optiques tangents au cercle des caméras, une configuration ”tangentielle”. Outre une analyse et la comparaison des géométries radiales et tangentielles, nous fournissons un montage expérimental avec de vrais panoramas obtenus dans des conditions réaliste

    Tele-immersive display with live-streamed video.

    Get PDF
    Tang Wai-Kwan.Thesis (M.Phil.)--Chinese University of Hong Kong, 2001.Includes bibliographical references (leaves 88-95).Abstracts in English and Chinese.Abstract --- p.iAcknowledgement --- p.iiiChapter 1 --- Introduction --- p.1Chapter 1.1 --- Applications --- p.3Chapter 1.2 --- Motivation and Goal --- p.6Chapter 1.3 --- Thesis Outline --- p.7Chapter 2 --- Background and Related Work --- p.8Chapter 2.1 --- Panoramic Image Navigation --- p.8Chapter 2.2 --- Image Mosaicing --- p.9Chapter 2.2.1 --- Image Registration --- p.10Chapter 2.2.2 --- Image Composition --- p.12Chapter 2.3 --- Immersive Display --- p.13Chapter 2.4 --- Video Streaming --- p.14Chapter 2.4.1 --- Video Coding --- p.15Chapter 2.4.2 --- Transport Protocol --- p.18Chapter 3 --- System Design --- p.19Chapter 3.1 --- System Architecture --- p.19Chapter 3.1.1 --- Video Capture Module --- p.19Chapter 3.1.2 --- Video Streaming Module --- p.23Chapter 3.1.3 --- Stitching and Rendering Module --- p.24Chapter 3.1.4 --- Display Module --- p.24Chapter 3.2 --- Design Issues --- p.25Chapter 3.2.1 --- Modular Design --- p.25Chapter 3.2.2 --- Scalability --- p.26Chapter 3.2.3 --- Workload distribution --- p.26Chapter 4 --- Panoramic Video Mosaic --- p.28Chapter 4.1 --- Video Mosaic to Image Mosaic --- p.28Chapter 4.1.1 --- Assumptions --- p.29Chapter 4.1.2 --- Processing Pipeline --- p.30Chapter 4.2 --- Camera Calibration --- p.33Chapter 4.2.1 --- Perspective Projection --- p.33Chapter 4.2.2 --- Distortion --- p.36Chapter 4.2.3 --- Calibration Procedure --- p.37Chapter 4.3 --- Panorama Generation --- p.39Chapter 4.3.1 --- Cylindrical and Spherical Panoramas --- p.39Chapter 4.3.2 --- Homography --- p.41Chapter 4.3.3 --- Homography Computation --- p.42Chapter 4.3.4 --- Error Minimization --- p.44Chapter 4.3.5 --- Stitching Multiple Images --- p.46Chapter 4.3.6 --- Seamless Composition --- p.47Chapter 4.4 --- Image Mosaic to Video Mosaic --- p.49Chapter 4.4.1 --- Varying Intensity --- p.49Chapter 4.4.2 --- Video Frame Management --- p.50Chapter 5 --- Immersive Display --- p.52Chapter 5.1 --- Human Perception System --- p.52Chapter 5.2 --- Creating Virtual Scene --- p.53Chapter 5.3 --- VisionStation --- p.54Chapter 5.3.1 --- F-Theta Lens --- p.55Chapter 5.3.2 --- VisionStation Geometry --- p.56Chapter 5.3.3 --- Sweet Spot Relocation and Projection --- p.57Chapter 5.3.4 --- Sweet Spot Relocation in Vector Representation --- p.61Chapter 6 --- Video Streaming --- p.65Chapter 6.1 --- Video Compression --- p.66Chapter 6.2 --- Transport Protocol --- p.66Chapter 6.3 --- Latency and Jitter Control --- p.67Chapter 6.4 --- Synchronization --- p.70Chapter 7 --- Implementation and Results --- p.71Chapter 7.1 --- Video Capture --- p.71Chapter 7.2 --- Video Streaming --- p.73Chapter 7.2.1 --- Video Encoding --- p.73Chapter 7.2.2 --- Streaming Protocol --- p.75Chapter 7.3 --- Implementation Results --- p.76Chapter 7.3.1 --- Indoor Scene --- p.76Chapter 7.3.2 --- Outdoor Scene --- p.78Chapter 7.4 --- Evaluation --- p.78Chapter 8 --- Conclusion --- p.83Chapter 8.1 --- Summary --- p.83Chapter 8.2 --- Future Directions --- p.84Chapter A --- Parallax --- p.8

    3D panoramic imaging for virtual environment construction

    Get PDF
    The project is concerned with the development of algorithms for the creation of photo-realistic 3D virtual environments, overcoming problems in mosaicing, colour and lighting changes, correspondence search speed and correspondence errors due to lack of surface texture. A number of related new algorithms have been investigated for image stitching, content based colour correction and efficient 3D surface reconstruction. All of the investigations were undertaken by using multiple views from normal digital cameras, web cameras and a ”one-shot” panoramic system. In the process of 3D reconstruction a new interest points based mosaicing method, a new interest points based colour correction method, a new hybrid feature and area based correspondence constraint and a new structured light based 3D reconstruction method have been investigated. The major contributions and results can be summarised as follows: • A new interest point based image stitching method has been proposed and investigated. The robustness of interest points has been tested and evaluated. Interest points have been proved robust to changes in lighting, viewpoint, rotation and scale. • A new interest point based method for colour correction has been proposed and investigated. The results of linear and linear plus affine colour transforms have proved more accurate than traditional diagonal transforms in accurately matching colours in panoramic images. • A new structured light based method for correspondence point based 3D reconstruction has been proposed and investigated. The method has been proved to increase the accuracy of the correspondence search for areas with low texture. Correspondence speed has also been increased with a new hybrid feature and area based correspondence search constraint. • Based on the investigation, a software framework has been developed for image based 3D virtual environment construction. The GUI includes abilities for importing images, colour correction, mosaicing, 3D surface reconstruction, texture recovery and visualisation. • 11 research papers have been published.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Image mosaicing based condition monitoring approach for multi robots at production lines in industrial autonomy systems

    Get PDF
    In today industry, manufacturing become big and serial as it never been before thanks to the autonomy robots. Hitches on such autonomy systems used in industrial production may cause production delaying. In this study, it is aimed to obtain alive bird's eye view map of full system in order to monitor manufacturing robots at production facilities that are big and impossible to be monitored with only one camera. Finding the similar scenes of input images, estimation of homography, warping and blending operations are applied respectively in order to mosaic the images by twos. Thus the robots in the facility can be observed in one screen. With observation of the obtained images, faults on cyber-physical systems that may cause damage in machines which are not cheap can be handled beforetime

    高速ビジョンを用いたリアルタイムビデオモザイキングと安定化に関する研究

    Get PDF
    広島大学(Hiroshima University)博士(工学)Doctor of Engineeringdoctora

    Modeling and Simulation in Engineering

    Get PDF
    This book provides an open platform to establish and share knowledge developed by scholars, scientists, and engineers from all over the world, about various applications of the modeling and simulation in the design process of products, in various engineering fields. The book consists of 12 chapters arranged in two sections (3D Modeling and Virtual Prototyping), reflecting the multidimensionality of applications related to modeling and simulation. Some of the most recent modeling and simulation techniques, as well as some of the most accurate and sophisticated software in treating complex systems, are applied. All the original contributions in this book are jointed by the basic principle of a successful modeling and simulation process: as complex as necessary, and as simple as possible. The idea is to manipulate the simplifying assumptions in a way that reduces the complexity of the model (in order to make a real-time simulation), but without altering the precision of the results

    Panorama Generation for Stereoscopic Visualization of Large-Scale Scenes

    Full text link
    In this thesis, we address the problem of modeling and stereoscopically visualizing large-scale scenes captured with a single moving camera. In many applications that image large-scale scenes the critical information desired is the 3D spatial information of stationary objects and movers within the scene. Stereo panoramas, like regular panoramas, provide a wide field-of-view that can represent the entire scene, with the stereo panoramas additionally representing the motion parallax and allowing for 3D visualization and reconstruction of the scene. The primary issue with stereo panorama construction methods is that they are constrained for a particular camera motion model; typically the camera is constrained to move along a linear or circular path. Here we present a method for constructing stereo panoramas for general camera motion, and we develop a (1) Unified Stereo Mosaic Framework that handles general camera motion models. To construct stereo panoramas for general motion we created a new (2) Stereo Mosaic Layering algorithm that speeds up panorama construction enabling real-time applications. In large-scale scene applications it is often the case that the scene will be imaged persistently by passing over the same path multiple times or two or more sensors of different modalities will pass over the the same scene. To address these issues we developed methods for (3) Multi-Run and Multi-Modal Mosaic Alignment. Finally, we developed an (4) Intelligent Stereo Visualization that allows a viewer to interact and stereoscopically view the stereo panoramas developed from general motion
    corecore