1,244 research outputs found

    Intelligent PID Controller of Flexible Link Manipulator with Payload

    Get PDF
    This paper presents the experimental study of intelligent PID controller with the present of payload. The controllers were constructed to optimally track the desired hub angle and vibration suppression of DLFRM. The hub angle and end-point vibration models were identified based on NNARX structure. The results of all developed controllers were analyzed in terms of trajectory tracking and vibration suppression of DLFRM subjected to disturbance. The simulation studies showed that the intelligent PID controllers have provided good performance. Further investigation via experimental studies was carried out. The results revealed that the intelligent PID control structure able to show similar performance up to 20 g of payload hold by the system. Once the payload increased more than 20 g, the performance of the controller degrades. Thus, it can be concluded that, the controllers can be applied in real application, provided the tuning process were carried out with the existence of the maximum payload which will be subjected in the system. The 20 g payload value can act as uncertainty for the controller performance

    Thin-Walled Cylindrical Shell Storage Tank under Blast Impacts: Finite Element Analysis

    Get PDF
    Thin-walled cylindrical shell storage tanks are pressure vessels in which the walls of the vessel have a thickness that is much smaller than the overall size of the vessel. These types of structures have global applications in various industries, including oil refineries and petrochemical plants. However, these storage tanks are vulnerable to fire and explosions. Therefore, a parametric study using numerical simulation was carried out, considering the internal liquid level, wall thickness, material yield strength, constraint conditions, and blast intensity, with a diameter of 100 m and height of 22.5 m under different blast loads using the finite element analysis method. The thickness of the tank wall is varied as 10 mm, 20 mm, 30 mm, and 40 mm, while the fill level of internal fluid is varied as 25, 50, 75, and 100%. The blast simulation was conducted using LS-DYNA software. The numerical results are then compared with analytical results. The effects of blast intensity, standoff distance, wall thickness, and fill level of internal fluid on the structural behaviour of the storage tank were investigated and discussed.publishedVersio

    Vibration suppression of the horizontal flexible plate using proportional– integral–derivative controller tuned by particle swarm optimization

    Get PDF
    This paper presents the development of an active vibration control for vibration suppression of the horizontal flexible plate structure using proportional–integral–derivative controller tuned by a conventional method via Ziegler–Nichols and an intelligent method known as particle swarm optimization algorithm. Initially, the experimental rig was designed and fabricated with all edges clamped at the horizontal position of the flexible plate. Data acquisition and instrumentation systems were designed and integrated into the experimental rig to collect input–output vibration data of the flexible plate. The vibration data obtained through experimental study was used to model the system using system identification technique based on auto-regressive with exogenous input structure. The plate system was modeled using particle swarm optimization algorithm and validated using mean squared error, one-step ahead prediction, and correlation tests. The stability of the model was assessed using pole zero diagram stability. The fitness function of particle swarm optimization algorithm is defined as the mean squared error between the measured and estimated output of the horizontal flexible plate system. Next, the developed model was used in the development of an active vibration control for vibration suppression on the horizontal flexible plate system using a proportional–integral–derivative controller. The proportional–integral–derivative gains are optimally determined using two different ways, the conventional method tuned by Ziegler–Nichols tuning rules and the intelligent method tuned by particle swarm optimization algorithm. The performances of developed controllers were assessed and validated. Proportional–integral–derivative-particle swarm optimization controller achieved the highest attenuation value for first mode of vibration by achieving 47.28 dB attenuation as compared to proportional–integral–derivative-Ziegler–Nichols controller which only achieved 34.21 dB attenuation

    An experimental and numerical investigation on strengthening the upright component of thin-walled cold-formed steel rack structures

    Get PDF
    Cold-formed steel (CFS) racking systems are widely used for storing products in warehouses. However, as commonly used structures in storage systems, thin-walled open sections are subjected to stability loss because of various buckling modes, including flexural, local, torsional and distortional. This research proposes a novel technique to increase the ultimate capacity of uprights, utilising bolts and spacers, under flexural and compressive loads. The proposed components are attached externally to the sections in certain pitches along the length. In this regard, axial tests were performed on 72 upright frames and nine single uprights with various lengths and thicknesses. Also, the impact of using reinforcing elements was evaluated by investigating the failure modes and ultimate load results. It was concluded that the reinforcement technique is able to restrain upright flanges and therefore improve the upright profiles' strength. For testing the flexural behaviour, 18 samples of three types were made, including non-reinforced sections and two types of sections reinforced along the upright length at different pitches. After that, monotonic loading was applied along both the minor and major axes of the samples. The suggested reinforcing method leads to increasing the flexural capacity of the upright sections about both the major and minor axes. Also, by using reinforcing system, the flexural performance was improved, and buckling and deformation were constrained. In addition, the reinforcement technique was evaluated by Finite Element (FE) method. Moreover, Artificial Intelligence (AI) and Machine Learning (ML) algorithms were deployed to predict the normalised ultimate load and deflection of the profiles. Following the empirical tests, the axial and flexural performance of different CFS upright profiles with various lengths, thicknesses and reinforcement spacings were simulated and examined. It was shown that the reinforcing technique improved the capacity of the samples. Consequently, the proposed reinforcements could be considered a highly effective and low-cost technique to strengthen the axial and flexural behaviour of open CFS sections considering a trade-off between performance and cost of utilising the approach

    Material relation to assess the crashworthiness of ship structures

    Get PDF
    A ship collision accident can result in severe environmental damage and loss of life. Therefore the non-linear finite element method with shell elements is used to assess the crashworthiness of ship steel structures through collision simulations. However, a non-linear finite element-based benchmark revealed inconsistencies and inaccuracies in the results of collision analysis using current material relations and failure criteria. To overcome these problems in this thesis, the steel material's true strain and stress relation is derived in a novel way from tensile experiments until failure on the basis of optical measurements. The novel material relation is obtained until failure with respect to the strain reference length. Furthermore, this material relation, including failure, can be varied to accommodate different finite element sizes. By this means good correspondence in numerical results for the simulation of tensile and plate specimens and complex topologies under indentation loading is achieved for different mesh sizes ranging from 0.88 mm to 140 mm. It is shown that the choice of a constant strain failure criterion suffices for thin steel ship structures. Furthermore, a procedure to optimise a conventional ship side structure for crashworthiness in the conceptual design stage is presented. This procedure extends the assessment procedure for structural arrangements from Germanischer Lloyd. The energy absorbed until inner plate rupture during a right-angle ship collision is used as an optimisation objective. This procedure exploits the novel element length-dependent strain and stress relation, including failure. A particle swarm algorithm is used to identify the crashworthy conceptual design. By this means a crashworthy conceptual ship side structure is obtained, which can absorb significantly more energy than the initial rules-based concept with a reasonable weight increase

    Modelling and control of horizontal flexible plate using particle swarm optimization

    Get PDF
    This paper presents the modeling and active vibration control using an evolutionary swarm algorithm known as particle swarm optimization. Initially, a flexible plate experimental rig was designed and fabricated with all clamped edges as boundary conditions constrained at horizontal position. The purpose of the experimental rig development is to collect the input-output vibration data. Next, the data acquisition and instrumentation system were designed and integrated with the experimental rig. Several procedures were conducted to acquire the input-output vibration data. The collected vibration data were then utilized to develop the system model. The parametric modeling using particle swarm optimization was devised using an auto regressive model with exogenous model structure. The developed model was validated using mean square error, one step ahead prediction, correlation tests and pole-zero diagram stability. Then, the developed model was used for the development of controller using an active vibration control technique. It was found that particle swarm optimization based on the active vibration control using Ziegler-Nichols method has successfully suppressed the unwanted vibration of the horizontal flexible plate system. The developed controller achieved the highest attenuation value at the first mode of vibration which is the dominant mode in the system with 34.37 dB attenuation

    Application of Surrogate Based Optimisation in the Design of Automotive Body Structures

    Get PDF
    The rapid development of automotive industry requires manufacturers to continuously reduce the development cost and time and to enhance the product quality. Thus, modern automotive design pays more attention to using CAE analysis based optimisation techniques to drive the entire design flow. This thesis focuses on the optimisation design to improve the automotive crashworthiness and fatigue performances, aiming to enhance the optimisation efficiency, accuracy, reliability, and robustness etc. The detailed contents are as follows: (1) To excavate the potential of crash energy absorbers, the concept of functionally graded structure was introduced and multiobjective designs were implemented to this novel type of structures. First, note that the severe deformation takes place in the tubal corners, multi-cell tubes with a lateral thickness gradient were proposed to better enhance the crashworthiness. The results of crashworthiness analyses and optimisation showed that these functionally graded multi-cell tubes are preferable to a uniform multi-cell tube. Then, functionally graded foam filled tubes with different gradient patterns were analyzed and optimized subject to lateral impact and the results demonstrated that these structures can still behave better than uniform foam filled structures under lateral loading, which will broaden the application scope of functionally graded structures. Finally, dual functionally graded structures, i.e. functionally graded foam filled tubes with functionally graded thickness walls, were proposed and different combinations of gradients were compared. The results indicated that placing more material to tubal corners and the maximum density to the outmost layer are beneficial to achieve the best performance. (2) To make full use of training data, multiple ensembles of surrogate models were proposed to maximize the fatigue life of a truck cab, while the panel thicknesses were taken as design variables and the structural mass the constraint. Meanwhile, particle swarm optimisation was integrated with sequential quadratic programming to avoid the premature convergence. The results illustrated that the hybrid particle swarm optimisation and ensembles of surrogates enable to attain a more competent solution for fatigue optimisation. (3) As the conventional surrogate based optimisation largely depends on the number of initial sample data, sequential surrogate modeling was proposed to practical applications in automotive industry. (a) To maximize the fatigue life of spot-welded joints, an expected improvement based sequential surrogate modeling method was utilized. The results showed that by using this method the performance can be significantly improved with only a relatively small number of finite element analyses. (c) A multiojective sequential surrogate modeling method was proposed to address a multiobjective optimisation of a foam-filled double cylindrical structure. By adding the sequential points and updating the Kriging model adaptively, more accurate Pareto solutions are generated. (4) While various uncertainties are inevitably present in real-life optimisations, conventional deterministic optimisations could probably lead to the violation of constraints and the instability of performances. Therefore, nondeterministic optimisation methods were introduced to solve the automotive design problems. (a) A multiobjective reliability-based optimisation for design of a door was investigated. Based on analysis and design responses surface models, the structural mass was minimized and the vertical sag stiffness was maximized subjected to the probabilistic constraint. The results revealed that the Pareto frontier is divided into the sensitive region and insensitive region with respect to uncertainties, and the decision maker is recommended to select a solution from the insensitive region. Furthermore, the reduction of uncertainties can help improve the reliability but will increase the manufacturing cost, and the tradeoff between the reliability target and performance should be made. (b) A multiobjective uncertain optimisation of the foam-filled double cylindrical structure was conducted by considering randomness in the foam density and wall thicknesses. Multiobjective particle swarm optimisation and Monte Carlo simulation were integrated into the optimisation. The results proved that while the performances of the objectives are sacrificed slightly, the nondeterministic optimisation can enhance the robustness of the objectives and maintain the reliability of the constraint. (c) A multiobjective robust optimisation of the truck cab was performed by considering the uncertainty in material properties. The general version of dual response surface model, namely dual surrogate model, was proposed to approximate the means and standard deviations of the performances. Then, the multiobjective particle optimisation was used to generate the well-distributed Pareto frontier. Finally, a hybrid multi-criteria decision making model was proposed to select the best compromise solution considering both the fatigue performance and its robustness. During this PhD study, the following ideas are considered innovative: (1) Surrogate modeling and multiobjective optimisation were integrated to address the design problems of novel functionally graded structures, aiming to develop more advanced automotive energy absorbers. (2) The ensembles of surrogates and hybrid particle swarm optimisation were proposed for the design of a truck cab, which could make full use of training points and has a strong searching capacity. (3) Sequential surrogate modeling methods were introduced to several optimisation problems in the automotive industry so that the optimisations are less dependent on the number of initial training points and both the efficiency and accuracy are improved. (4) The surrogate based optimisation method was implemented to address various uncertainties in real life applications. Furthermore, a hybrid multi-criteria decision making model was proposed to make the best compromise between the performance and robustness

    Evolutionary swarm algorithm for modelling and control of horizontal flexible plate structures

    Get PDF
    Numerous advantages offered by the horizontal flexible structure have attracted increasing industrial applications in many engineering fields particularly in the airport baggage conveyor system, micro hand surgery and semiconductor manufacturing industry. Nevertheless, the horizontal flexible structure is often subjected to disturbance forces as vibration is easily induced in the system. The vibration reduces the performance of the system, thus leading to the structure failure when excessive stress and noise prevail. Following this, it is crucial to minimize unwanted vibration so that the effectiveness and the lifetime of the structure can be preserved. In this thesis, an intelligent proportional-integral-derivative (PID) controller has been developed for vibration suppression of a horizontal flexible plate structure. Initially, a flexible plate experimental rig was designed and fabricated with all clamped edges boundary conditions at horizontal position. Then, the data acquisition and instrumentation systems were integrated into the experimental rig. Several experimental procedures were conducted to acquire the input-output vibration data of the system. Next, the dynamics of the system was modeled using linear auto regressive with exogenous, which is optimized with three types of evolutionary swarm algorithm, namely, the particle swarm optimization (PSO), artificial bee colony (ABC) and bat algorithm (BAT) model structure. Their effectiveness was then validated using mean squared error, correlation tests and pole zero diagram stability. Results showed that the PSO algorithm has superior performance compared to the other algorithms in modeling the system by achieving lowest mean squared error of 6103947.4 , correlation of up to 95 % confidence level and good stability. Next, five types of PID based controllers were chosen to suppress the unwanted vibration, namely, PID-Ziegler Nichols (ZN), PID-PSO, PID-ABC, Fuzzy-PID and PID-Iterative Learning Algorithm (ILA). The robustness of the controllers was validated by exerting different types of disturbances on the system. Amongst all controllers, the simulation results showed that PID tuned by ABC outperformed other controllers with 47.60 dB of attenuation level at the first mode (the dominant mode) of vibration, which is equivalent to 45.99 % of reduction in vibration amplitude. By implementing the controllers experimentally, the superiority of PID-ABC based controller was further verified by achieving an attenuation of 23.83 dB at the first mode of vibration and 21.62 % of reduction in vibration amplitude. This research proved that the PID controller tuned by ABC is superior compared to other tuning algorithms for vibration suppression of the horizontal flexible plate structure

    Testing, simulation and optimisation of additively manufactured structural hollow sections

    Get PDF
    Additive manufacturing (AM) is gaining increasing prominence in the construction industry, offering the potential for enhanced design freedom and reduced material use. However, the performance of additively manufactured metallic structural elements and the possible benefits associated with the attainable optimised geometries have seldom been investigated. The primary aim of this study is therefore to conduct an experimental and numerical investigation of additively manufactured metallic components, considering material behaviour, welded components and optimised tubular profiles. An experimental investigation was first conducted to examine the microstructural and mechanical properties of AM materials. Two grades of powder bed fusion (PBF) stainless steel (316L and CX) were considered, and the weldability and joining characteristics of PBF 316L stainless steel were also examined. The underlying microstructures were characterised and correlated with the measured mechanical properties from tensile coupon tests. At the cross-sectional level, axial compression tests were carried out on PBF circular hollow sections; advanced measuring techniques, including 3D laser-scanning and digital image correlation, were employed in the tests. Finite element (FE) models were developed to replicate the test results and to generate supplementary cross-sectional resistance data. Comparisons between design predictions and the test and FE data were made to evaluate the applicability of the existing codified design rules to additively manufactured cross-sections. In order to increase the axial compressive resistance and to reduce the imperfection sensitivity of very slender circular cross-sections (or cylindrical shells), optimised corrugated shells were sought through the use of the Particle Swarm Optimisation algorithm in conjunction with cross-section profile generation and numerical analyses. An experimental investigation into the cross-sectional behaviour of the resulting optimised shells, additively manufactured by PBF in 316L and CX stainless steels, was undertaken. The test results verified that the corrugated cylindrical shells achieved significantly higher capacities than their circular counterparts and with reduced imperfection sensitivity.Open Acces
    • …
    corecore