
An Experimental and Numerical Investigation on 
Strengthening the Upright Component of Thin-

Walled Cold-Formed Steel Rack Structures  

Ehsan Taheri 

A thesis submitted to fulfil the requirements of the degree of 
Doctor of Philosophy 

Centre for Infrastucture Engineering (CIE) 

October 2021 



I 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright 2021, Ehsan Taheri. This document is copyrighted material. Under copyright law, no parts of this 
document may be reproduced without the expressed permission of the author. 

  



II 
 

Abstract 

Cold-formed steel (CFS) racking systems are widely used for storing products in warehouses. 

However, as commonly used structures in storage systems, thin-walled open sections are subjected 

to stability loss because of various buckling modes, including flexural, local, torsional and 

distortional. This research proposes a novel technique to increase the ultimate capacity of uprights, 

utilising bolts and spacers, under flexural and compressive loads. The proposed components are 

attached externally to the sections in certain pitches along the length. In this regard, axial tests 

were performed on 72 upright frames and nine single uprights with various lengths and 

thicknesses. Also, the impact of using reinforcing elements was evaluated by investigating the 

failure modes and ultimate load results. It was concluded that the reinforcement technique is able 

to restrain upright flanges and therefore improve the upright profiles' strength. 

For testing the flexural behaviour, 18 samples of three types were made, including non-reinforced 

sections and two types of sections reinforced along the upright length at different pitches. After 

that, monotonic loading was applied along both the minor and major axes of the samples. The 

suggested reinforcing method leads to increasing the flexural capacity of the upright sections about 

both the major and minor axes. Also, by using reinforcing system, the flexural performance was 

improved, and buckling and deformation were constrained. 

In addition, the reinforcement technique was evaluated by Finite Element (FE) method. Moreover, 

Artificial Intelligence (AI) and Machine Learning (ML) algorithms were deployed to predict the 

normalised ultimate load and deflection of the profiles.  

Following the empirical tests, the axial and flexural performance of different CFS upright profiles 

with various lengths, thicknesses and reinforcement spacings were simulated and examined. Finite 

element (FE) method was utilised to assess the proposed reinforcement technique in various 

upright profiles and produce a verified database for the analytical study. Also, in order to determine 

the most influential parameter on the strength, the Feature Selection technique was carried out on 

the results of FEM. Then, to predict the normalised ultimate load, by feature selection method, a 

hybrid AI network, which was a combination of Multi-Layer Perceptron (MLP) algorithm and 

Particle Swarm Optimisation method (PSO) was developed. The correlation coefficient (R), root 

mean square error (RMSE), Nash–Sutcliffe efficiency (NSE), mean absolute error (MAE) and 
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Wilmot’s index of agreement (WI) are employed as the measure of accuracy. It was indicated that 

the geometrical parameters contribute to the capacity and deflection of the specimens. Based on 

the performance evaluation criteria, the detection and optimisation process for the best model were 

performed through tuning other algorithm parameters. Obtained results showed that the normalised 

ultimate load and deflection could be predicted using the hybrid intelligent model. 

Finally, it was shown that the reinforcing technique improved the capacity of the samples. 

Consequently, the proposed reinforcements could be considered a highly effective and low-cost 

technique to strengthen the axial and flexural behaviour of open CFS sections considering a trade-

off between performance and cost of utilising the approach. 
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 Introduction 

Rapid development in different industries has led to high demand for improving the quality of 

warehousing systems to store the products in secure places before distributing them to the market. 

To this end, the progress in CFS storage rack systems has been notably increased in various 

industries. Uprights are recognised as one of the crucial sections of the racking systems, which 

play a significant role in supporting the loads like columns in buildings. The performance of 

racking frames is affected by the general behaviour of the uprights since these thin-walled 

structures are subjected to stability loss because of combined various failure modes such as the 

interaction of local, distortional and flexural buckling. In addition, extreme loading conditions 

have a significant effect on the stability of uprights in racking systems. 

Recent research indicates that buckling modes of CFS uprights have been studied more than the 

weaknesses of the uprights under loading. To improve the ultimate capacity of open CFS sections 

using partial closure, several studies have been performed; however, many experimental 

investigations were still required to be applied for enhancing the capacity of uprights. Hence, this 

research is aimed to present a new technique for increasing the strength of uprights in racking 

structures and controlling buckling, utilising reinforcements along the upright length. In fact, the 

main purpose is to identify solutions that can be applied by the industry rapidly and without any 

considerable cost and changes in performance or the procedure of assembly. In this regard, full-

scale experiential studies have been performed on uprights with various thicknesses and heights to 

evaluate the performance and strength of upright frames with and without reinforcement. The 

findings consist of ultimate capacities, failure mechanisms and deformation modes, followed by a 

discussion of the experimental data.  

In order to examine the influence of various reinforcement spacing on the upright strength, finite 

element (FE) modelling has also been deployed. Different types of FE models have been designed 

and explained comprehensively, and their unique characteristics are mentioned. Besides, to predict 

the axial and flexural performance of upright frames and verify the FE models, artificial 

intelligence (AI) techniques were employed. As the properties of CFS sections have been 
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successfully predicted by neural networks in the past, a multi-layer perceptron (MLP) approach is 

considered as the principal core of the AI technique. In this investigation, to determine the most 

influential property on the capacity, a feature selection based algorithm is considered and also 

deployed as another numerical method for verifying, optimising and predicting. The prediction of 

ultimate axial and flexural load and displacement has been successfully performed using the hybrid 

AI model on the basis of the feature selection method. The validation of FE results was also 

demonstrated successfully. In addition, a new MLP algorithm has been developed and combined 

with particle swarm optimisation, and the results have been discussed extensively.  

 Reinforcement Method 

Upright sections experience different instability modes under loadings such as local, distortional, 

and flexural or flexural-torsional buckling. Distortional buckling considerably affects the uprights' 

design, which has led to restricting the applicability of thin-walled CFS profiles. 

In general, the resistance of closed sections is remarkably higher than the flexural and compressive 

strength of open sections. This is due to the susceptibility of open sections to buckling compared 

to closed ones. However, the production of closed sections requires more cost and time since a 

complex overhaul of current practices and procedures is required on the part of CFS industry to 

achieve the intended outcome. Consequently, a partially closed section that is more cost-effective 

can improve the capacity of upright frames. For this purpose, in this research, a simple and 

innovative technique has been used for partially closing upright sections. The failure mode can be 

controlled by utilising this approach and effect a considerable change in its overall performance.  

A regular pattern of perforations is present on both the webs and the flanges of the racking upright 

profiles. To create a fast interconnection between beams and uprights, web perforation is 

employed, while the connection of brace components to uprights is allowed using perforations of 

flanges. Perforations that are not utilised to assemble the frame can be used for partial closing of 

sections. Hence, in the current study, at the location of perforations, connectors employing bolts, 

nuts and spacers are applied to connect flanges of open sections and then provide a partially closed 

section, which has much greater load capacity. Spacers as transverse elements are used for bracing 

of racking frames and are built up of plastic materials. A schematic of the considered reinforcing 

technique on the open CFS upright frame is shown in Figure 1-1. 
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Figure 1-1: Schematic of the proposed reinforcing method. 

 

Commonly, in the racking industry, single long uprights are deployed to reach the required height 

because cutting and splicing the elements require high cost and ample time. In the higher levels of 

racking structures where the exerted loads are lower than those at bottom levels, the sections' 

thickness is the same as the thickness at the lower height for simplicity. But, this strategy is not 

economical. In other words, for the higher levels, the upright section would be overdesigned, 

which is uneconomical. On the other hand, the proposed approach can be employed to overcome 

excess steel utilisation. Storage racks can be designed with thinner upright sections, which are 

strengthened by the proposed technique in their lower levels. The construction cost of these 

structures can be reduced considerably using this method. 

Also, to examine the workability and ability of the considered technique, an initial numerical 

analysis was implemented, and it was shown that the load-bearing capacity of standard uprights 

could be improved using this method. In this study, the proposed reinforcement technique is a 

straightforward, cost-effective and timesaving method that can be used for different CFS open 

sections. 

 Axial Experimental Test 

At the structural laboratory of Western Sydney University, a comprehensive experimental 

investigation was designed and performed to evaluate the influence of reinforcement on the upright 

capacity. Experiments using two scenarios of reinforcements (utilising reinforcement at 200 mm 

and 400 mm spacing) on different upright lengths from short to long with two thicknesses were 

conducted. In order to determine the buckling load and failure mode of the upright frames, at first, 
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the test was applied on samples without reinforcement as control specimens. Thereafter, to 

examine the influence of the reinforced system, the samples strengthened by bolts and spacers 

were tested once more. 

Nine single uprights and 72 upright frames, each consisting of two uprights connected by diagonal 

bracing, were made using available rack sections in the market. In order to investigate the impact 

of thickness on the results, a standard section with two thicknesses (1.6 mm and 2.5 mm) was used 

for racking frames. Figure 1-2 depicts the geometry of the section and the details of perforation. A 

sample specimen is shown in Figure 1-3, and several lengths, including 1200 mm, 1800 mm, 2400 

mm, 3000 mm, and 3600 mm, have been deployed to obtain various modes of failure and their 

corresponding interaction.  

Figure 1-2: Section and perforation details. 
 

 

 
Figure 1-3: Schematic of a 3600 mm long specimen. 
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The influence of reinforcement on the compressive capacity of uprights was examined by attaching 

bolts and spacers to the upright at 400 mm and 200 mm spacing along the upright length. The 

details of experiments and obtained results in the study are given in Chapter 2 and published in an 

article entitled "Investigation of a Method for Strengthening Perforated Cold-Formed Steel 

Profiles under Compression Loads”. 

 Flexural Experimental Test 

In order to determine the ultimate moment capacity of the specified reinforced uprights about their 

major and minor axes, and examine its improvement using suggested reinforcement, several four-

point bending tests were carried out. To measure the flexural capacity and failure modes of the 

reinforced sections, which comprised conventional upright frames and upright frames 

strengthened by bolt and spacer systems, monotonic tests were performed. 

To perform the tests, eighteen specimens, including nine single uprights and nine frames, were 

considered. The bending frames were built from two upright columns connected by diagonal 

bracing. Two groups of specimens were constructed with or without reinforcements. The flexural 

behaviour of the samples without reinforcements was examined throughout the monotonic test. 

The direction of loading was about the minor and major axes, respectively. Samples with 

reinforcements located at 200 mm and 300 mm spacing along the upright length have also been 

examined about their minor and major axes. The study details and results are given in Chapter 3 

and was published in a paper entitled “Experimental and Numerical Investigation of a Method for 

Strengthening Cold-Formed Steel Profiles in Bending”. 

 Finite Element (FE) Modelling 

FE modelling in this research was applied to examine the influence of different reinforcement 

spacings, lengths and thicknesses on the uprights' strength. The employed numerical technique is 

presented thoroughly and then validated by experimental results. In the end, the influence of 

various reinforcement spacings is examined by the verified numerical model. To demonstrate the 

accuracy of the FEM findings, a comparison between each simulated load-deflection curve and 

the corresponding test curve was performed, and for each model, linear regression is depicted. The 
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numerical and experimental results are compared, and accuracy and compatibility between them 

were investigated. 

In order to achieve a validated database for the AI method, a parametric FE study was performed 

on the suggested reinforcement system, examining the effect of different reinforcement spacings 

on the strength of the profiles with various thicknesses.  All FE modellings are carried out using 

ABAQUS software. In addition, to obtain a comprehensive dataset, various upright lengths were 

modelled. The results of FE models are presented in details in Chapter 4 and Chapter 5 and were 

published as journal articles. 

 Strength and Displacement Prediction using Artificial Intelligence  

Artificial intelligence (AI) consists of several intelligent techniques that examine each problem 

based on a designated intelligence algorithm. In engineering problems, most of the applications of 

AI methods have concentrated on the prediction and verification of data. The accuracy of 

prediction is affected by different factors such as type of technique, error, evaluating the problems 

before prediction and so on. Backpropagation (BP) method, as a classic approach, is commonly 

presented to train artificial neural networks (ANNs). Machine learning is a subset of AI algorithms, 

which takes advantage of a learning circuit. 

In this study, a multi-layer perceptron (MLP) neural network is combined with a particle swarm 

optimisation (PSO) algorithm which is based on the random production of the initial population. 

In this hybrid neural network, the feature selection technique is used instead of outdated 

approaches to identify the most influential input. The main purpose of the current study is to 

employ the feature selection technique to determine the most influential factors on the flexural and 

axial capacity of CFS uprights for predicting and identifying deflection and ultimate load 

simultaneously. 

The results of several experiments and FE models have been considered as the dataset of this study. 

This dataset includes several inputs and one target output. Also, selecting the combination of the 

effective inputs for the prediction matrix, which is tuned by PSO, is performed as the main neural 

network model.  
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MLPs can solve the problems stochastically, which are very useful for research. This advantage 

provides approximate solutions for highly complicated issues, such as fitness approximation. In 

this study, MLP is fitted based on the selected data in the training phase throughout trail and test 

procedure that has been discussed in the related sections. Hence, MATLAB software was 

employed to predict the output, utilising hybrid PSO-MLP. The population size, iterations, 

damping ratio, personal and global learning coefficient and inertia weight are the parameters of 

PSO. Besides, the hidden layers and training function are the parameters of MLP neural network. 

Also, the characteristics of the parameter employed for FS have been demonstrated in the study. 

A dataset can contain a large number of input data; however, definitely, all inputs are not 

appropriate to be utilised in the neural network since some of them have almost no influence on 

the prediction of the output. On the other hand, other ones may lead to deviating the network. 

Consequently, if there are many inputs, finding the best combination is prolonged considerably. It 

should be mentioned that for this case, with a large number of repetitions, implementing the neural 

network and analysing its results is not possible due to various combinations of neural network 

settings. Hence, the best option to choose the multiple input modes and settings is based on prior 

experiences and primary suppositions.  

The application of AI in predicting the behaviour of sections and their properties have been 

explained in details in Chapter 4 and Chapter 5 and was published as journal articles.  
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 Literature Search Summary 

In recent years, the development of cold-formed steel (CFS) racking structures has been widely 

increased, worldwide, because of its structural advantages and workability, particularly in 

warehouse and storage usage (Shariati et al., 2019). In this regard, different methods have been 

used by researchers to improve the performance of these systems. 

The performance of uprights, as one of the most important components of racking structures, 

subjected to axial and flexural loading has been widely investigated. In order to achieve a set of 

coefficients for the optimal length of the uprights under compressive loads, Koen (2008) 

performed experimental studies on stub uprights and full upright frames. Davies et al. (1997) 

examined the local buckling of stub columns subjected to axial loads. They compared the obtained 

results with theoretical relations and the numerical approach. It was deduced that comprehensive 

experimental tests are not necessary for the design phase of the racking uprights. Trouncer and 

Rasmussen (2014) found that using EN 15512 (2009) to predict the ultimate load capacity of 

upright sections can provide more accurate results compared to predicting by Rack Manufacturers 

Institute (RMI) specifications. Gilbert & Rasmussen (2010) performed extensive experimental 

studies on individual parts of racking configurations, and some clarifications of the guidance 

provided by EN15512 (2009) were indicated to precisely obtain the in-plane global stiffness of the 

upright frames. 

In recent years, researchers have focused on the interaction of buckling modes of racking upright 

members. In an experimental study, Pedro et al. (2014) examined the local-distortional buckling 

interaction in fixed-end CFS uprights. Also, Roure et al. (2011) evaluated this parameter for short 

upright columns using the concept of reduced thickness of the stiffeners. It was found that the 

present design codes are not accurate, and the influence of buckling interaction should also be 

regarded. In another experimental investigation, the distortional buckling of upright frames with 

various heights was studied by Casafont et al. (2011). They obtained design formulations 

according to the combination of distortional and global buckling modes. 

The effect of perforations, as an important factor that influences the behaviour of upright sections 

under loading, was examined by Zhao et al. (2017).  It was concluded that the load-bearing 
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capacity and buckling failure mode of the structure can be highly governed by the perforations. 

Rhodes and Schneider (1994) investigated the effect of perforation position, dimensions, quantity, 

and patterns on the compressive performance of upright frames. Moen and Schafer (2008) 

evaluated the influence of perforation on the stability performance of upright frames using various 

experimental tests. They also showed that as well as the direct strength technique to design the 

rack systems, the experimental test is necessary (Moen & Shafer, 2009). Therefore, the design 

method for upright sections should be based on empirical approaches. Also, the axial loads were 

applied on perforated and non-perforated uprights having different lengths and load eccentricities 

to investigate the influence of perforations and loading on the strength of the upright (Baldassino 

et al., 1999).  

In general, perforated CFS elements are also sensitive against bending forces. Following the 

previous researches on the flexural performance of the perforated CFS profiles, cyclic and 

monotonic loadings were applied to these sections undergoing various types of deformations, 

especially buckling types (Chen et al., 2019). Various four-point bending tests were carried out by 

Yu and Schafer (2006) and Calderoni et al. (2009) to examine the flexural and distortional 

behaviour of C and Z-shaped built-up cold-formed steel sections. Rogers et al. (1997) investigated 

the bending moment of validated experimental data with various code provisions. A new design 

method was introduced by Hancock (1997) for distortional buckling strength of C and Z-shaped 

cold-formed steel sections. In an experimental and analytical study, C-shaped cold-formed steel 

beams with or without edge stiffeners were evaluated by Wang et al. (2009). It was found that 

stiffeners can considerably improve the flexural stiffness and buckling resistivity of the beams 

subjected to pure and non-pure bending tests. In another study, cold-formed steel built-up beams 

with web perforations were tested using a four-point bending method by Wang et al. (2015). Also, 

imperfections of local geometry were estimated. In several experimental and analytical studies, 

the behaviour of perforated cold-formed steel channel section beams was evaluated considering 

the influences of web–hole ratio. The more increase in the hole area led to more decrease in the 

ultimate distortional buckling moment (Yuan et al., 2017; Moen & Shafer, 2009; Zhao et al., 2019; 

Zhao et al., 2015; Dai et al., 2018; Yu et al. 2019). Besides, the findings showed that the size of 

the web holes has a direct effect on the distortional buckling moment so that by increasing the hole 

size, the buckling moment decreased. 
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The validity of Australia/New Zealand Standard (AS/NZS 4673:2001) for the flexural strength 

design of rectangular tubes made by cold-rolling steel was evaluated by Zhou et al. (2005). It was 

reported that the design code is reliable for normal strength steel and unreliable for high strength 

steel. Laim et al. (2013) performed different bending experiments and FE modellings on the 

flexural performance of cold-formed steel beams. Muftah et al. (2018) carried out several four-

point flexural tests on bolted built-up cold-formed steel beams while employing bolts and nuts 

systems. Based on the obtained results, by applying the loads on the webs, the flexural performance 

of the beams was only affected by bolt distances. Huang et al. (2018) suggested a new model to 

determine the distortional buckling moment of CFS channel sections with various stiffened webs. 

The obtained results had an acceptable agreement with those of the finite strip approach. The 

bearing capacity and distortional buckling moment can be increased using flange stiffeners (Wu 

et al., 2019). Also, the shear rigidity and distortional buckling load can be affected by slots, and 

the flexural performance is enhanced by the web stiffeners (Shafaei et al., 2019). 

Since the upright frames are vulnerable to failure under compressive and bending loads, different 

approaches have been developed in recent years to address this problem. Talikoti and Bajoria 

(2005) used spacers as partial reinforcement for open sections. It was reported that the capacity of 

uprights increases by setting spacers at proper intervals. Also, the failure mode and buckling could 

be changed concurrently. Veljkovic and Johansson (2008) examined the influence of partially 

closed CFS thin-walled sections. They worked on improving the torsional stiffness of the sections 

when utilised as columns. Manikandan and Arun (2016) studied the performance of the thin-walled 

channels having partially closed sections subjected to axial loading employing various stiffener 

plates. They found that utilising cover plates for partially reinforcing the systems leads to change 

of the distortional buckling to a combination of local and flexural-torsional buckling. Other 

researchers have recently performed some numerical evaluations to enhance the axial capacity of 

the upright (Anbarasu et al. 2013, 2014).  

Experimental studies require costly as well as time-consuming processes, which have inspired 

researchers to find other alternatives like numerical approaches. Considering the priority of the 

finite element method (FEM) compared to other numerical techniques, in recent years, this method 

has been widely deployed in various engineering applications, particularly CFS structures. The 

flexural performance of stiffened CFS slotted beams under various loading conditions was studied 
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by Visy et al. (2019). Nandini and Kalyanaraman (2010) numerically investigated the performance 

and strength of lipped channel beams with different lengths. They proposed a method for designing 

the mentioned beams under the interaction of local, distortional, and overall lateral-torsional 

buckling based on the Euro code provisions. In the literature, many studies have been carried out 

to simulate the performance and strength of CFS racking systems using FEM (Chu et al., 2004; 

Ye et al., 2016; Gilbert et al., 2012).  

In addition, neural networks have been recognised as accurate methods to predict the different 

characteristics of structural elements employing experimental results (Shariati et al., 2019; 2020). 

Different factors such as linearity or nonlinearity of data, the number of inputs and outputs and the 

novelty of the study are considered to select a specific type of neural network (Shariati et al., 2019; 

Shahgoli et al., 2020; Toghroli et al., 2020). The process of developing the network relies on trial 

and error identification, which the basic algorithm and possible supplementary methods detect 

(Armaghani et al., 2019; Mehrabi et al., 2021). 

In general, AI models have several advantages which lead to providing more accurate results in 

comparison with classic approaches (Shariati et al., 2019; 2020; Toghroli et al., 2020, Xu et al., 

2019, Li et al., 2021). Two important features of AI are learning and mocking, which make these 

techniques desirable for researchers (Armaghani et al., 2019; Guo et al., 2019; Xiao et al., 2021; 

Mousavi et al., 2021; Xiang et al., 2021). A raw model of ANNs is developed generally by using 

optimisation methods like back-propagation algorithms (Ao et al., 2016). ANN is able to address 

three types of problems: (1) classification, (2) function-approximation and (3) time series 

prediction (Mi et al., 2021; Zhang et al., 2021; Shariati et al., 2020; El-Kassas et al., 2001; Liu et 

al., 2021). However, classical approaches have some problems finding relations and directions of 

numbers at maximum or minimum values. Therefore, Metaheuristic (MT) optimisation algorithms 

such as GA (Shariati et al., 2019), particle swarm optimisation (PSO) (Shariati et al., 2019) and 

imperialist competitive algorithm (ICA) (Perera et al., 2009) can be employed to solve mentioned 

shortcomings. 

The performance of ANN in some cases can be enhanced using the global search feature of these 

techniques. Recently, ANNs and several optimisation methods have been used to solve 

complicated engineering problems. Adaptive Neuro-Fuzzy Inference System (ANFIS) is a subset 
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of ANNs, which has been identified as a reliable technique in the prediction process (Shahgoli et 

al., 2020). In medical investigations, the prediction capability of ANFIS has been proven in various 

applications (Yadollahpour et al., 2018; Ozkan et al., 2010). In China, a developed model of 

ANFIS was deployed for the prediction of infected cases with Covid-19 (Al-Qaness et al., 2020). 

Moreover, hybrid intelligent models are usually used to address multi-objective problems 

(Mehrabi et al., 2021; Feng et al., 2021). Hence, various optimisation algorithms can be hybridised 

with ANFIS to improve the precision and performance of the deployed technique. For example, 

the multi-verse optimiser (MVO) method was integrated with ANFIS to determine the 

consumption rate of materials using experimental data (Mehrabi et al., 2021). 

In this research, a combination of experimental tests, FE modelling and AI methods are used to 

investigate the proposed method for strengthening cold-formed open sections under axial and 

flexural loads.  

In addition to this summary, a complete list of relevant literature is included at the end of published 

papers comprising Chapters 3,4 and 5, respectively. 
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 Investigation of a Method for Strengthening Perforated Cold-
Formed Steel Profiles under Compression Loads (Journal 

Article 1) 

A reprint of this study entitled ‘Investigation of a Method for Strengthening Perforated Cold-

Formed Steel Profiles under Compression Loads’, Taheri, E.; Firouzianhaji, A.; Usefi, N.; 

Mehrabi, P.; Ronagh, H.; Samali, B. is published by Applied Sciences. 2019; 9(23):5085. 

https://doi.org/10.3390/app9235085. 
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 Abstract 

Cold-formed steel (CFS) storage rack structures are extensively used in various industries to store 

products in safe and secure warehouses before distribution to the market. Thin-walled open 

profiles that are typically used in storage rack structures are prone to loss of stability due to 

different buckling modes such as local, distortional, torsional and flexural, or any interaction 

between these modes. In this paper, an efficient way of increasing ultimate capacity of upright 

frames under compression load is proposed using bolts and spacers which are added externally to 

the section with certain pitches along the height. Hereinto, experimental tests on 81 upright frames 

with different thicknesses and different heights were conducted, and the effect of employing 

reinforcement strategies was examined through the failure mode and ultimate load results. Non-

linear finite element analyses were also performed to investigate the effect of different 

reinforcement spacing on the upright performance. The results showed that the reinforcement 

method could restrain upright flange and consequently increase the distortional strength of the 

upright profiles. This method can also be effective for any other light gauged steel open section 

with perforation. It was also observed that the reinforcement approach is much more useful for 

short length upright frames compared to the taller frames. 

Keywords: upright; cold-formed steel; compression behavior; bolt and spacer; reinforcement 

 Introduction 

By increasing the speed of development in various industries, there is a need for well-engineered 

warehousing systems to store the products in safe and secure warehouses before they are 

distributed to the market. For this purpose, cold-formed steel (CFS) storage rack structures have 

widely been developed to be used in different industries. Uprights are one of the main parts of the 

racking structures which have the important role of bearing loads like what columns do in 

buildings. The performance of racking frames depends on the overall behavior of the uprights, as 

these thin-walled structures are subjected to loss of stability due to the combination of different 

failure modes, such as the interaction of distortional and flexural buckling [1,2]. The stability of 

uprights in racking systems also becomes more critical under extreme loading scenarios [3,4,5,6]. 
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The compressive behavior of upright racking systems has been extensively studied in recent years. 

Experimental tests on stub uprights and full upright frames were carried out by Koen [7] in order 

to obtain a set of reduction coefficients for the effective length of the uprights under compression. 

Local buckling of stub column members under axial load was experimentally investigated by 

Davies et al. [8] and the results were compared with theoretical relations as well as the numerical 

method. They concluded that for the design stage of racking uprights, extensive experimental 

testing is not necessarily required. In another study, Trouncer and Rasmussen [9] investigated that 

the predicting ultimate load capacity of upright sections provided by EN 15512 [10] specification 

is more accurate than predictions by Rack Manufacturers Institute (RMI) specifications. 

Comprehensive experimental tests on individual components of racking systems were also carried 

out by Gilbert & Rasmussen [11], and some clarifications of the guidance provided by EN15512 

[10] were presented in order to accurately determine the in-plane global stiffness of the upright 

frame. 

The interaction of buckling modes of racking upright members has also been under the attention 

of researchers in recent years. The local-distortional buckling interaction in fixed-end CFS uprights 

was experimentally assessed by Pedro et al. [12]. In another project, local-distortional buckling 

interaction of short upright columns was studied by Roure et al. [13] through the concept of 

reduced thickness of the stiffeners. They reported that the current design codes are not accurate 

and the effect of buckling interaction needs to be also considered. In another study, Casafont et al. 

[14] experimentally evaluated the distortional buckling of upright frames with different heights 

and provided design formulations based on the combination of distortional and global buckling 

modes. 

In terms of perforation, which is an important parameter that can affect the performance of upright 

sections under compressive load, Zhao et al. [15] investigated the effect of perforation on 

compressive behavior of storage rack uprights. They showed that the perforation could 

significantly affect the load-bearing capacity as well as buckling failure mode of the system. The 

influence of perforation pattern including of perforation position, dimensions, and quantity on the 

compressive behavior of upright frames were also assessed by Rhodes and Schneider [16]. A series 

of experimental tests were conducted by Moen and Schafer [17] to examine the effect of 

perforation on the stability behavior of upright frames. In another study [18], they indicated that 
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direct strength method is not enough for the design of rack structures and the experimental test is 

also required; accordingly, the design approach for upright sections must be based on experimental 

test procedures. Baldassiono [19] also determined the effect of perforations and applying load on 

the upright strength through the axial tests on both perforated and non-perforated uprights with 

various length and load eccentricities. 

Considering the weaknesses of the upright frames under compressive loads, in recent years several 

methods have been proposed in order to improve the compressive behavior of racking uprights. 

Partial reinforcement of open sections using spacers was proposed by Talikoti and Bajoria [20]. 

They concluded that by installing spacers at appropriate intervals, the capacity of the uprights is 

improved and the mode of failure and buckling can be changed at the same time. Veljkovic and 

Johansson [21] also studied the effect of partially closing CFS thin-walled sections. They focused 

on increasing the torsional stiffness of these sections when used as columns in structures. An 

investigation for analyzing the behavior of thin-walled channels with partially closed sections 

under axial forces using different stiffener plates was conducted by Manikandan and Arun [22]. 

The result indicated that by partially reinforcing the sections using cover plates, the buckling mode 

changes from distortional to a combination of local and flexural torsional buckling. Recently, a 

few studies on improving the upright axial capacity have also been carried out by other researchers 

[23,24,25,26,27] which are mainly based on numerical parametric studies. 

Review of the past studies shows that a great number of research projects have been conducted on 

the investigation of buckling modes for CFS uprights and little attention has been given to address 

the weaknesses of the uprights under compressive load. Although some attempts have been made 

in order to increase the ultimate capacity of open CFS sections using partially closed methods, 

extensive experimental studies for increasing upright capacity is still required. Therefore, this 

study aims to propose a new approach in order to improve the strength of the uprights in racking 

systems and to control buckling issues using reinforcements along the upright length. The main 

idea is to gain solutions that can be implemented by the industry immediately without any major 

modifications to the way the industry operates or to the assembly procedure. Hereinto, a total of 

81 full-scale experimental tests were conducted on uprights with different heights and thicknesses 

in order to examine the compressive behavior and strength of upright frames with and without 

reinforcement. The results include the deformation modes, the failure mechanisms, and ultimate 
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capacities, followed by a discussion on the experimental data. A finite element (FE) model was 

also employed to investigate the effect of different reinforcement spacing on the upright strength. 

 Reinforcement Method 

Upright sections can undergo three modes of instabilities under compressive load: Local, 

distortional, and flexural or flexural-torsional buckling. The design of uprights is remarkably 

affected by distortional buckling, which has limited the applicability of thin-walled CFS profiles. 

Generally, the compressive strength of open sections is significantly lower than the compressive 

resistance of closed sections since open sections are more prone to warping and buckling effects 

than closed sections. Yet, closed section production is very costly and time-consuming as the CFS 

industry requires a complicated procedure for providing a section in a closed-form. Therefore, 

increasing the capacity of upright frames can be obtained by offering a partially closed section 

which is more straightforward and more cost-effective. To achieve this goal, an innovative and 

simple approach for partially closing of upright sections was employed in this study. Using this 

method, the mode of failure can be controlled to have a significant change in the overall behavior 

of the compression element.  

Each upright frame consists of a regular pattern of perforations which can be placed on both the 

web and the flanges. The web perforation is used for fast interconnection between beams and 

uprights, while the flanges’ perforations allow for the connection of brace components to uprights. 

Those perforations which are not in use in the section can also be employed for partial closing of 

section. Therefore, in this study, connectors using bolts, nuts, and spacers are utilized at the 

location of perforations to connect the flanges of the open section, and thereafter create a partially 

closed section offering a higher load capacity system. Spacers are the transverse elements made 

up of the plastic material, which are commonly used for bracing of racking frames. Figure 3-1 

schematically shows the proposed reinforcing method on the open CFS upright frame.   
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Figure 3-1: Schematic of the proposed reinforcing method. 

 
It should be noted that in the racking industry, usually a single long upright is employed for the 

total height since it is costly and time-consuming to cut and splice the element. This strategy is 

uneconomical because for higher levels of racking systems, where the applied loads are low 

compared to those at bottom levels, the thickness of sections is considered to be the same as 

thickness at the lower height. In other words, the upright section is overdesigned for the higher 

levels which causes some economic issues. The proposed method on the other hand can be used 

to overcome this unnecessary steel usage. Low thick upright sections can be utilized for storage 

rack in which the lower level is strengthened by the proposed method to provide higher capacity. 

This approach can significantly reduce the cost of making these structures. 

Preliminary numerical analysis was also performed in order to check the feasibility and capability 

of the proposed method, and it was found that this approach can increase the load-bearing capacity 

of standard uprights. The reinforcement method proposed in this study is a simple, time and cost-

effective approach which can be employed for many CFS open sections [28,29,30,31]. 

 Experimental Test 

An extensive experimental study was planned and carried out at the structural laboratory of 

Western Sydney University in order to investigate the effect of reinforcement on the upright 

capacity. Experimental tests on various upright lengths from short to long (as is used in the 

industry) with two different thicknesses were carried out using two scenarios of reinforcements 

(employing reinforcement at 200 mm and 400 mm). First, specimens without reinforcement were 

tested to capture the buckling strength and mode of failure of currently-in use upright frames. 
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Then, the specimens reinforced by bolts and spacers were tested again for evaluation of the effect 

of the reinforced system. 

3.4.1 Test Specimens 

Nine single uprights and 72 upright frames, each comprising two upright columns attached by 

diagonal bracing were constructed from commercially available rack sections. The convention 

used for designation of specimens is explained in Figure 3-2. 

 

 

Figure 3-2: Designation of specimens (values in mm). 
 
The test arrangement comprises a frame assembly with 840 mm width from the back of one 

upright’s web to the back of the other upright’s web in the frame. A standard section with two 

different thicknesses of 1.6 mm and 2.5 mm were utilized for the racking frames to examine the 

effect of thickness on the results. The geometry of the section as well as the perforation details are 

indicated in Figure 3-3. Due to commercial confidentiality reasons, all geometries are presented in 

non-dimensional form. In order to determine different failure modes and their corresponding 

interaction, different lengths of 1200 mm, 1800 mm, 2400 mm, 3000 mm, and 3600 mm were 

considered, as shown in Figure 3-4. Single upright profile was employed for 1200 mm length 

because of the limitation on having a full-frame with this length. To consider and prevent the 

effects of probable specimen geometric imperfections on the test results, each specimen was 

carefully checked, and all the dimensions were measured at the time of testing in order to identify 

any defects before the test procedure. So it was confirmed that geometric imperfections do not 

influence the final results.  
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Figure 3-3: Section and perforation details (mm). 
 

 
Figure 3-4: Schematic of specimens with different heights (mm). 

 
In order to evaluate the effect of reinforcement on the compressive behavior of uprights, bolts and 

spacers were attached to the upright at 400 mm and 200 mm space along the upright length. Figure 

3-5 shows the example pattern of bolt and spacer attachment for reinforcing of the sections. The 

details of each specimen including length, thickness, and reinforcement type are also provided in 

Table 3-1. 
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Figure 3-5: Reinforcement along the upright length by bolts and spacers. 
 
 
 
 

Table 3-1: Specimen details. 
Specimen Designation Length (mm) Reinforcement Type Thickness (mm) 
1200L-1.6T 

1200 
- 

1.6 

1200L-1.6T-400B @ 400 mm 
1200L-1.6T-200B @ 200 mm 
1800L-1.6T 

1800 
- 

1800L-1.6T-400B @ 400 mm 
1800L-1.6T-200B @ 200 mm 
2400L-1.6T 

2400 
- 

2400L-1.6T-400B @ 400 mm 
2400L-1.6T-200B @ 200 mm 
3000L-1.6T 

3000 
- 

3000L-1.6T-400B @ 400 mm 
3000L-1.6T-200B @ 200 mm 
3600L-1.6T 

3600 
- 

3600L-1.6T-400B @ 400 mm 
3600L-1.6T-200B @ 200 mm 
1800L-2.5T 

1800 
- 

2.5 

1800L-2.5T-400B @ 400 mm 
1800L-2.5T-200B @ 200 mm 
2400L-2.5T 

2400 
- 

2400L-2.5T-400B @ 400 mm 
2400L-2.5T-200B @ 200 mm 
3000L-2.5T 

3000 
- 

3000L-2.5T-400B @ 400 mm 
3000L-2.5T-200B @ 200 mm 
3600L-2.5T 

3600 
- 

3600L-2.5T-400B @ 400 mm 
3600L-2.5T-200B @ 200 mm 
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3.4.2 Material Properties 

Tensile coupon tests were also carried out to obtain the material properties including yield stress, 

ultimate stress, and elongation of the specimens. Three coupon samples for each thickness were 

cut from the flange of the upright where there was no perforation. A 300 kN capacity MTC Sintech 

testing machine with a rate of 0.01 mm/s was employed for coupon tests following the AS4600 

[32] procedures. Figure 3-6 shows the stress-strain curves for both 2.5 mm and 1.6 mm sections. 

The mean value of the ultimate tensile strength (σu), yield stress (σy), and elongation are also 

presented in Table 3-2. 

 

 

Figure 3-6: Coupon test results for uprights with 1.6 mm and 2.5 mm thickness. 
 
 

Table 3-2: Material properties of upright sections. 
Section Type Yield Stress, σy (MPa) Ultimate Stress, σu (MPa) Elongation (%) 
Uptight with 2.5 thickness 572 608 13 
Uptight with 1.6 thickness 563 591 11 

 

3.4.3 Test Rig and Test Setup 

The test rig was prepared according to AS 4084:2012 [33] section C.7.3.2 titled: Compression tests 

on uprights—determination of buckling curves. The test rig includes a frame assembly in which 

one of the two uprights is loaded axially, as shown in Figure 3-7. According to the code, the upright 

is loaded through ball bearings and fitted with base and cap plates. Specimens were free to rotate 



 

23 
 

about both axes due to the pin-ended bearing, while rotations about the y-axis, as well as torsion, 

were constrained by the bracing and its connection. 

 

 

Figure 3-7: (a) Schematic of compressive test on uprights; (b) testing rig. 
 

 
Figure 3-8: (a) Ball bearing; (b) cap plate. 

 
For each test, the upright frame was assembled and positioned in the test rig between the two cap 

plates, which were designed to ensure uniform load distribution during the test. In order to 
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minimize any eccentricity of loading, the upright centroid coincided with the centroid of the ball 

bearing. One of the uprights of each frame was loaded through hemisphere and socket joint fitted 

with adjustable caps, as shown in Figure 3-9. The upright was free to move on both ends, and the 

cap did not restrain it as it was not touching the upright on the sides. The other upright was 

connected by loose bolts to a support column. There was clearance between the support column 

and the whole frame in order to be free to displace and deflect laterally. Figure 3-10 illustrates the 

test setup on a typical frame (3600 mm) and depicts the support and connection system used on 

both ends of one upright.  
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Figure 3-9: Adjustable cap connection supports. 
 

 
Figure 3-10: 3600 mm specimen and boundary conditions. 

 

3.4.4 Test Procedure 

According to the Australian Racking Code, AS4084: 2012 [33], a minimum of three tests are 

required for each specimen to determine the test data of each upright profile. The tests were carried 
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out by a universal testing machine, Instron 8506 with a 3000 kN compression capacity hydraulic 

jack. A load cell of 500 kN capacity was also attached to the jack equipped with a linear variable 

differential transformer (LVDT) positioned there to record the deformation. Axial load was applied 

to each of the specimens using a displacement rate of 0.02 mm/s. The applying load was continued 

until a significant drop in the load-displacement curve of the specimens was observed. 

 Preliminary Elastic Buckling 

In order to better understand the performance of a single upright member under compressive load, 

elastic buckling analyses for single upright with both thicknesses (1.6 mm and 2.5 mm) were 

conducted using the CUFSM package. Figure 3-11 shows the half-wavelength of sections after 

buckling analysis. It can be observed that for the different ranges of lengths in this study (1200 

mm to 3600 mm), the dominant elastic buckling modes are distortional or flexural-torsional modes. 

In addition, local buckling rarely occurs in these length ranges. This paper aims to investigate the 

uprights of the in-use commercial rack systems. The so-called signature curves shown in Figure 

3-11 refer to a single un-perforated profile and do not accurately predict the behavior of the 

perforated sections in a system. Besides, in a full upright frame, the connections at the location of 

bracings provide a restraint for distortional buckling which may change the buckle half-

wavelength associated with the distortional buckling mode. 
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Figure 3-11: Preliminary elastic buckling analyses for the individual un-perforated upright gross sections 
(stress values have not been disclosed due to confidentiality). 

 
It is expected that the favorable influence of the proposed reinforcement (attaching bolt and spacer) 

decreases by increasing the length of the element. This can be justified by the fact that the dominant 

mode of buckling will gradually change from distortional to flexural or flexural-torsional buckling 

for which the proposed reinforcement method will not be as effective. 

 Results 

Compression tests were performed on the upright frames with two different thicknesses and five 

lengths, and the effect of reinforcement at 400 mm and 200 mm was investigated. Ultimate load 

capacities, as well as failure modes, were recorded from the compression tests and the results were 

accurately analyzed. At the end of the test, failure modes were investigated based on the 

experimental observations. For some specimens, it was relatively difficult to detect which mode 

of failure is dominant since the interaction of two or three buckling modes had occurred. 

The ultimate load capacity of each test was extracted and normalized with respect to the gross 

cross-section (Ag) and the mean yielding strength (σy) due to the confidentiality matters. The 

normalized load-displacement curves of the specimens with 2.5 mm thickness are shown in Figure 

3-12. The normalized load value is related to the compressive load applied on top of the upright, 

while the displacement value shows the deformation of the top head of the upright measured by 

LVDT. For each specimen type, at least three tests were carried out as recommended by the 

Australian Racking code (AS4084: 2012) [33]. The reason for the different ultimate values for 
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these three tests of each specimen can be attributed to the fact that upright elements have different 

initial geometrical imperfections associated with the manufacturing processes [34]. 

 

 

 

 

Figure 3-12: Load displacement curves for 2.5 mm thick specimens. 
 
The normalized ultimate load capacity of each test, average value, and standard deviation for each 

specimen are provided in Table 3-3. In general, three types of failure modes were observed in the 

experimental tests: (a) Distortional buckling failure which was dominant for specimens with 1800 

mm length; (b) flexural or torsional mode or combination of them was also dominant for specimens 
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with 3000 mm and 3600 mm length; and (c) transition from distortional buckling to flexural 

buckling failure which happened for specimens with 2400 mm length. Local buckling was also 

observed in some specimens, especially for 200 mm reinforcement pitch in which the buckle half-

wavelength was limited to 200 mm. 

Table 3-3: The average normalized ultimate capacity of uprights with 2.5 mm thickness. 

Test Specimen 
Normalized Buckling Load ( 𝐟𝐟

𝛔𝛔𝐲𝐲 × 𝐀𝐀𝐠𝐠
) 

Without Bolt Reinforcement at 400 mm Reinforcement at 200 mm 

1800L-2.5T-Test 1 0.478 0.548 0.624 
1800L-2.5T-Test 2 0.442 0.552 0.639 
1800L-2.5T-Test 3 0.457 0.555 0.615 
Ave. * 0.457 0.550 0.627 
Std. ** 0.018 0.004 0.012 
2400L-2.5T-Test 1 0.443 0.522 0.510 
2400L-2.5T-Test 2 0.446 0.495 0.551 
2400L-2.5T-Test 3 0.472 0.482 0.556 
Ave. 0.454 0.499 0.538 
Std. 0.016 0.020 0.025 
3000L-2.5T-Test 1 0.385 0.431 0.445 
3000L-2.5T-Test 2 0.361 0.422 0.426 
3000L-2.5T-Test 3 0.360 0.365 0.422 
Ave. 0.370 0.403 0.433 
Std. 0.013 0.035 0.012 
3600L-2.5T-Test 1 0.270 0.294 0.292 
3600L-2.5T-Test 2 0.273 0.279 0.294 
3600L-2.5T-Test 3 0.258 0.302 0.350 
Ave. 0.269 0.289 0.310 
Std. 0.008 0.012 0.033 
* Average 
** Standard Deviation 

   

 

According to Figure 3-13, the buckling mode of specimens with 3600 mm and 3000 mm, was 

hardly affected by employing bolts and spacers at either 200 mm or 400 mm. Therefore, it was 

concluded that the load capacity for specimens with and without reinforcement at higher length is 

not affected as significantly as shorter specimens. This is mainly because the buckling mode of 

failure in high length upright is governed by flexural and torsional flexural buckling, and utilizing 

reinforcement strategy does not necessarily change or control the buckling mode. It can be noted 

that one of the most effective parameters that determine the failure mode of the uprights under 

compression is the upright height and reinforcement might not overcome this issue. 
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Figure 3-13: Failure modes of upright frames with 2.5 mm thickness. 
 
Interestingly, for the short specimens with 1800 mm and 2400 mm length, the reinforcement 

system was extremely effective. Distortional buckling was the primary failure mode for these 
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specimens and utilizing reinforcement could shorten the half-wavelength of the specimen resulting 

in capturing higher capacity when 400 mm and 200 mm bolts were used. The failure of the short 

specimens was primarily dominated by distortional buckling of the flange; while, for the taller 

uprights the elements were vulnerable to flexural-torsional buckling at mid-span where the 

uprights had low rigidity. 

The effect of section thickness on the performance of an upright is considerable and should be 

investigated through experimental tests. Hereinto, the uprights with lower thickness were also 

experimentally tested in order to have a better comparison with thicker uprights. The normalized 

load-displacement curves of specimens with 1.6 mm thickness and their failure modes are shown 

in Figure 3-14 and Figure 3-15. The average values of normalized ultimate capacity, as well as 

standard deviations, are also provided in Table 3-4. It was observed that in terms of thickness 

effect, as the cross-section area of this type of upright is smaller than the area of 2.5 mm thick 

upright, the ultimate load is significantly reduced. 
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Figure 3-14: Load displacement curves for 1.6 mm thick specimens. 
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Figure 3-15: Failure modes of upright frames with 1.6 mm thickness. 
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Table 3-4: The average normalized ultimate capacity of uprights with 1.6 mm thickness. 

Test Specimen 
Normalized Buckling Load ( 𝒇𝒇

𝝈𝝈𝒚𝒚 × 𝑨𝑨𝒈𝒈
) 

Without Bolt Reinforcement at 400 mm Reinforcement at 200 mm 
1200L-1.6T-Test 1 0.471 0.542 0.646 
1200L-1.6T-Test 2 0.483 0.504 0.665 
1200L-1.6T-Test 3 0.476 0.520 0.650 
Ave. 0.476 0.522 0.653 
Std. 0.005 0.018 0.009 
1800L-1.6T-Test 1 0.451 0.503 0.576 
1800L-1.6T-Test 2 0.444 0.503 0.610 
1800L-1.6T-Test 3 0.440 0.485 0.593 
Ave. 0.446 0.497 0.590 
Std. 0.005 0.010 0.017 
2400L-1.6T-Test 1 0.440 0.454 0.525 
2400L-1.6T-Test 2 0.450 0.475 0.504 
2400L-1.6T-Test 3 0.451 0.482 0.484 
Ave. 0.446 0.469 0.501 
Std. 0.006 0.014 0.020 
3000L-1.6T-Test 1 0.472 0.492 0.513 
3000L-1.6T-Test 2 0.469 0.465 0.533 
3000L-1.6T-Test 3 0.455 0.468 0.485 
Ave. 0.464 0.473 0.506 
Std. 0.009 0.014 0.024 
3600L-1.6T-Test 1 0.308 0.303 0.346 
3600L-1.6T-Test 2 0.320 0.328 0.339 
3600L-1.6T-Test 3 0.330 0.342 0.349 
Ave. 0.320 0.325 0.343 
Std. 0.011 0.019 0.004 

 
As shown in Figure 3-14 and Figure 3-15, the load-displacement trends and failure mode 

patterns for uprights with 1.6 mm thickness are somewhat similar to those observed in the tests 

for uprights with 2.5 mm thickness. For the 1.6 mm thick specimens, distortional buckling was 

the primary buckling failure for specimens with 1200 mm and 1800 mm length, while for the 

specimen with 2400 mm the failure was followed by flexural buckling or flexural-torsional 

buckling mode. For specimens with 3000 mm and 3600 mm length, the primary failure was 

flexural-torsional buckling of upright about the weak axis. 

Similar to uprights with 2.5 mm thickness, the failure mode observation reveals that the 

reinforcement has a slight influence on the ultimate load-bearing capacity of uprights with 3000 

mm and 3600 mm and the best application of reinforcement method is for lower lengths of 1200 

mm and 1800 mm due to the improvements in local and distortional buckling modes. 
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 Discussion 

In order to compare the capacity of different uprights, the average value of normalized ultimate 

loads was determined according to the test results. Figure 3-16 shows the normalized ultimate load 

capacity of uprights for both 1.6 mm and 2.5 mm thicknesses. The values of normalized ultimate 

loads are grouped by upright length and the type of reinforcement (bolt at 200 mm and 400 mm). 

As indicated in this figure, the ultimate load capacity improvement due to the reinforcement of the 

uprights, with different thickness and reinforcement, is decreased by increasing the upright length. 

This can be justified by this fact that at higher length the dominant buckling mode is flexural 

buckling failure mode which is not much affected by the proposed reinforcement method; 

therefore, increasing the ultimate capacity of the upright at higher lengths could not be achieved 

considerably. Figure 3-16 also indicates that employing bolt and spacer at 200 and 400 mm 

provides higher ultimate capacity compared to uprights without bolt and spacer which represents 

the capability of the proposed simple reinforcement method for increasing the load-bearing 

capacity of uprights. 

 

 

Figure 3-16: Comparison of normalized ultimate load capacity. 
 

The effect of reinforcement spacing on the ultimate load capacity of uprights is also illustrated in 

Figure 3-17. As shown in this figure, a significant difference in the increase of the ultimate load 

capacity is observed for specimens 1800L-1.6T and 1800L-2.5T with reinforcement spacing of 

200 mm compared to the 400 mm. For 1800L-1.6T upright, 33% and 12% increase in ultimate 

capacity resulted by employing bolts at 200 mm and 400 mm, respectively. A similar trend was 
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also observed for 1800L-2.5T upright with 37% and 20% increase in ultimate capacity by 

employing bolts at 200 mm and 400 mm, respectively. 

 

Figure 3-17: Effect of reinforcement by increasing the upright height. 
 
As shown in Figure 3-17, the effect of employing bolt and spacer in uprights ultimate capacity is 

decreased by increasing the upright height. Comparing 1800L-1.6T and 3600L-1.6T specimens 

show that the difference between the increase in load capacity of two types of reinforcement (bolt 

at 400 mm and 200 mm) decreases from 23% for 1800 mm upright to 5% for 3600 mm upright. 

The same behavior was also captured for 2.5 mm thickness upright (1800L-2.5T and 3600L-2.5T) 

showing that the difference between the increased ultimate loads for the two types of reinforcement 

is 17% and 5% for 1800 mm and 3600 mm uprights, respectively. This indicates that the 

application of bolt reinforcement in shorter pitches (200 mm) in longer uprights does not offer 

extra resistance as much as it provides for shorter uprights since the failure of longer uprights is 

dominated by flexural buckling mode. Therefore, it can be concluded that although reducing the 

spacing of the bolts and spacers can improve the distorsional buckling capacity considerably; as 

discussed earlier, the effect of the reinforcement spacing on buckling mode change for higher 

lengths uprights is not considerable. 

Figure 3-18 shows the effect of section thickness on the results of reinforced uprights. As shown 

in this figure, the reinforcement in 2.5 mm thick upright could increase the ultimate load capacity 

of upright much more than reinforcement in uprights with 1.6 mm thickness. A similar trend was 

observed in both types of uprights with 200 mm and 400 mm bolt and spacer; however, the 

difference between increased ultimate load for specimens with 200B is less than the difference 

between increased ultimate loads for specimens with 400B, for both thicknesses. In other words, 



 

38 
 

when uprights were reinforced with bolts at 200 mm, the increased ultimate load percentage for 

2.5 mm upright was closer to the increased ultimate load for upright with 1.6 mm compared to the 

other type of reinforcement (at 400 mm). 

 

Figure 3-18: Effect of reinforcement on the different upright thickness. 
 
For the 1800L-1.6T-400P and 1800L-2.5T-400P uprights, the increased ultimate load capacity was 

10% and 20%, respectively. Nevertheless, the values for the condition of having bolts spaced at  

200 mm were 33% and 37% for uprights with 1.6 mm and 2.5 mm thickness. Similar behavior was 

observed for the other upright heights showing that the 200 mm attachment of bolts can decrease 

the weakness of having a low thickness section. Yet, the decrease in ultimate capacity is lower 

when 2.5 mm thickness section is employed. For 3600L-2.5T uprights, the application of bolts at 

200 mm and 400 mm could increase the ultimate resistance by 15% and 7%, respectively; while 

for the same height and lower thickness (3600L-1.6T) the increased values are 7% (for bolts at 

200 mm) and 3% (for bolts at 200 mm) which indicates the weakness of reinforcement for low 

thickness sections at high length. 

According to the experimental results, it is recommended to use the reinforcement system for 

currently-in use racking frames in order to improve their performance under compression load. In 

addition, the steel tonnage of the frame and consequently, the cost of the rack system could be 

significantly decreased when thinner gauged sections with reinforcement are employed. It should 

be noted that this method is not limited to rack uprights and can also be used for any CFS C profile 

with flange perforations. For other CFS profiles such as L and T sections, further evaluation on 

the reinforcing method is required. As a future study, other reinforcement approaches can also be 

examined in order to find other feasible approaches for controlling torsional or flexural-torsional 

buckling modes which are the dominant failure modes for long uprights. Optimization techniques 
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can also be performed in order to determine the sufficient distance of the reinforcement with bolt 

and spacer [35,36]. 

 Finite Element (FE) Modelling 

In this paper, FE model is also employed in order to investigate the effect of other reinforcement 

spacing including 50 mm, 100 mm, 150 mm, 250 mm, 300 mm, and 350 mm on the strength of 

the upright frames. According to the experimental results, the reinforcement method was most 

effective for the uprights with lower height in which the distorsional buckling could significantly 

be controlled. Therefore, the detailed FE model with the simulation of all perforations is developed 

here for frames with 1800 mm height using ABAQUS package [37]. First, the numerical method 

is well presented in details and then verified against the experimental data provided in Section 3.6. 

Finally, the effect of the different reinforcement spacing is assessed through the validated 

numerical model. 

3.8.1 Material Properties 

The stress-strain data from the coupon tests were utilized for the simulation of the material 

properties. The true stress-strain relationship is used to account for the change in cross-section area 

of the coupon resulting from Poisson’s effects in numerical models [38,39]. The true stress (σtrue) 

and true strain (εtrue) can be obtained using the following equations: 

 

σtrue =  σ(1 + ε) (1.1) 

εtrue = ln(1 + ε) −
σtrue

E
 (1.2) 

 

where σ and ε are the stresses and strains obtained from the coupon tests. The von Mises yield 

criteria with isotropic hardening were also considered for the simulation. In addition, the Poisson 

ratio and the module of elasticity were assumed equal to 0.3 and 200 GPa, respectively. 
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3.8.2 Connections and Interactions 

Generally, two types of interactions need to be defined for the numerical model of upright frames 

under compression load: (a) The interaction between the upright flange edges and bracing web, 

and (b) the interaction between the webs of two braces at the location of the bolt connections. The 

surface to surface interaction with hard contact for normal behavior, as well as penalty method 

with the friction coefficient of 0.3 for the tangential behavior were adopted for model interactions. 

Coupling method and beam connectors were also utilized for modelling of the bolts. At each bolt 

location, a reference point was created at the center of the hole where the upright flange (at the 

hole region) was restrained to this reference point using the coupling method [37]. Then the 

reference points at two opposite sides of the upright section were connected to each other using a 

beam connector. This type of connector constrains the axial translational degree of freedom 

between connecting nodes, simulating the actual bolt behavior in the upright frame. Figure 3-19 

shows the interaction between frame elements as well as the modelling of the bolt in the upright 

frame. 
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Figure 3-19: Interaction of the frame elements as well as bolt modelling. 
 

3.8.3 Boundary Conditions and Loading 

Similar to the experimental test, the pinned-end condition was also adopted for modelling of the 

upright frame. All element edges at the top and bottom of the upright were constrained to a 

reference point at the cross-section neutral axis with coupling method in order to simulate the 

center of the ball bearings. This means that all the displacements of the cross-section at the end are 

tied to the centroid by coupling constraint. The concentrated load with displacement method was 

applied at the top reference point. At the other end of the upright, all three translations together 

were restrained (Ux = Uy = Uz = 0), while the rotations about the maximum and minimum moment 

of inertia axes were allowed to simulate the actual test conditions. 
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3.8.4 Mesh 

Shell elements were employed in this study since the thickness of the open CFS members is very 

small compared to their width and length; thus, buckling deformations could be explicitly 

modelled [37,40]. The four-noded shell element with reduced integration (S4R) was utilized for 

modelling of the frame elements. Convergence study was performed to capture the optimum mesh 

size for the upright and bracing members and it was observed that quad dominated meshes (type 

of mesh in the visual mode of ABAQUS) with dimensions of 10 mm were deemed satisfactory for 

frame elements. The final mesh used for the upright models is shown in Figure 3-20. 

 

Figure 3-20: (a) Full frame meshing, (b) meshing around the polygon perforations, and (c) meshing around 
the circular perforations. 

 

3.8.5 Validation of the FE Model 

Experimental results obtained from upright with 1800 mm height for both thicknesses were used 

to evaluate the validity and accuracy of the numerical model. Figure 3-21 and Figure 3-22 show 

the comparisons between the numerical and test results in terms of load-displacement curves for 

uprights with 1.6 mm and 2.5 mm thickness, respectively. As indicated in these figures, the 

developed FE model predicts well the overall load-displacement curve of the specimens. The slight 
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differences between the numerical and the experimental results can be attributed to this point that 

the load in the actual test could not precisely be applied at the centroid of the section which can 

cause a different eccentricity compared to numerical inputs. 

 

 

Figure 3-21: Comparison of the finite element (FE) model against the experimental data for 1.6 mm thick 
uprights. 

 

 
Figure 3-22: Comparison of the FE model against the experimental data for 2.5 mm thick uprights. 

 
Figure 3-23 also illustrates the final deformation of uprights for both numerical model and 

experimental test. Similar to the experimental deformations, the figure shows that the FE method 

is able to capture the overall behavior of the upright frames. 
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Figure 3-23: Comparison of failure modes, (a) 1800L-1.6T, (b)1800L-2.5T, (c)1800L-1.6T-400B. 
 
Comparing FE and experimental results in terms of the load-displacement curve and deformation 

contours shows that the FE model is capable of estimating the overall behavior of the upright 

frame. Therefore, the numerical modelling is reliable enough to undertake a further study for 

investigating the effects of different reinforcement spacing on the buckling behavior of uprights. 

3.8.6 Effect of Different Reinforcement Spacing 

Overall, eight different reinforcement spacings including 50 mm, 100 mm, 150 mm, 200 mm, 250 

mm, 300 mm, 350 mm, and 400 mm were considered for the parametric study. Due to the location 

of the perforations, the spacing allocation was limited to 50 mm intervals. The numerical analyses 

were performed for both 1.6 mm and 2.5 mm thick upright frames and the results were compared 

with each other. Figure 3-24 shows the normalized load-displacement curves of the numerical 

models for both thicknesses. It can be observed that, employing more reinforcement to partially 
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close the section leads to increase in the strength of the upright, which means that reinforcement 

should be taken into account, especially for uprights with a shorter length. 

 

 

Figure 3-24: Load-displacement curves of uprights with different reinforcement spacing. 
 
The normalized ultimate strength of the uprights with different reinforcement spacing is also 

represented in Figure 3-25. From this figure, it is concluded that by employing shorter 

reinforcement spacing, the ultimate strength of the sections increases, which may contribute to the 

reduction in the buckling length of the section and enhancement of load sharing between the bolts. 

In fact, the distortional buckling behavior is improved, and section failure is changed from 

distortional buckling to overall buckling mainly due to partial closing of the upright section. A 

similar outcome is observed for both thicknesses in which increasing the number of reinforcement 

improves the ultimate strength of the upright for both the type of sections. 
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Figure 3-25: The normalized ultimate load of 1800L uprights with different reinforcement ratio. 
 
Figure 3-26 also shows the percentage of increased ultimate strength using different reinforcement 

spacing in respect to upright without reinforcement condition. Generally, the reinforcement 

method could have a reasonable effect on the ultimate capacity of the upright frame through 

increasing its capacity to the range 10% to 45%. As indicated in this figure, the addition of 

reinforcement from 400 mm spacing to 50 mm spacing in 1800L models can enhance the frame’s 

strength around 35% and 40% for uprights with 1.6 and 2.5 thicknesses, respectively. It is also 

shown that up to 100 mm reinforcement spacing, decreasing the reinforcement spacing can 

noticeably increase the ultimate strength of the upright under compression load; however, less 

difference in increased ultimate load is observed when reinforcement spacing decreased from 100 

mm to 50 mm. 
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Figure 3-26: Percentage of increased ultimate load of 1800L uprights with different reinforcement spacing. 
 

 Conclusions 

This study investigated the effect of a proposed reinforcement method on the compressive 

performance of upright frames. An extensive experimental program was conducted on 75 upright 

frames, and 9 single uprights with different thicknesses and heights, and the corresponding results 

obtained from the tests were analyzed. The reinforcement system was proposed in such a way that 

bolts and spacers were attached along the upright height. Experimental tests showed that the 

application of the reinforcement system is significantly effective for increasing the load-bearing 

capacity when distortional buckling failure mode governs. However, the application of this method 

is not particularly useful for taller frames. This justifies the fact that this reinforcing method (i.e., 

using bolts and spacers to partially close off the open profile) is predominantly effective on 

distortional buckling mode and has minimal effect on other buckling modes (torsional, 

flexural/torsional, local, and flexural). In addition, compared to thinner uprights (1.6 mm thick), 

thicker uprights (2.5 mm thick) showed higher capacity improvement (percentage of increased 

load compared to unreinforced frame) when reinforced with bolts and spacers. The results also 

showed that the reinforcement has a significant influence not only on the ultimate load capacity 

but also on the buckling failure mode of low length upright frames (1200 mm, 1800 mm, and 2400 

mm). Numerical simulation was also employed in order to investigate the effect of different 

reinforcement spacing on the performance of the upright frame. It was indicated that up to 100 mm 
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reinforcement spacing, decreasing the reinforcement spacing can increase the ultimate strength of 

the upright under compression load; while less improvement was observed when reinforcement 

spacing decreased from 100 mm to 50 mm. 

Further experimental and theoretical attempts are required in order to better understand the 

behavior of open perforated profiles reinforced with bolts and spacers as well as other materials. 

Finite element method is also needed for a parametric study of different types of reinforcement 

systems. 
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 Abstract 

Perforated cold-formed steel (CFS) beams subjected to different bending scenarios should be able 

to deal with different buckling modes. There is almost no simple way to address this significant 

concern. This paper investigates the bending capacity and flexural behavior of a novel-designed 

system using bolt and nut reinforcing system through both experimental and numerical approaches. 

For the experiential program, a total of eighteen specimens of three types were manufactured: a 

non-reinforced section, and two sections reinforced along the upright length at 200 mm and 300 

mm pitches. Then, monotonic loading was applied to both the minor and major axes of the 

specimens. The finite element models were also generated and proved the accuracy of the test 

results. Using the proposed reinforcing system the flexural capacity of the upright sections was 

improved around either the major axis or minor axis. The 200 mm reinforcement type provided 

the best performance of the three types. The proposed reinforcing pattern enhanced flexural 

behavior and constrained irregular buckling and deformation. Thus, the proposed reinforcements 

can be a very useful and cost-effective method for strengthening all open CFS sections under 

flexural loading, considering the trade-off between flexural performance and the cost of using the 

method.  

Keywords: cold-formed steel; upright; monotonic loading 

 Introduction 

Steel pallet racking systems have been widely used around the world since the industrial 

revolution. Over the years, steel pallet racking has evolved from hot-rolled profiles to cold-formed 

steel (CFS) profiles in order to increase the structural performance in terms of engineering 

optimization. The benefit of steel pallet racking is its flexibility in using limited space in 

warehouses. The increase in popularity of steel storage racking means more types of applications 

are now required to meet the demands of customers [1]. However, the performance of the proposed 

sections needs to be well understood by full-scale testing. Generally, perforated CFS components 

are susceptible to bending forces. Following the previous study on the flexural behavior of the 

perforated CFS profiles, these sections have been subjected to cyclic and monotonic forces where 

they have experienced different kinds of deformations, notably different types of buckling [2]. 
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There are three primary types of buckling modes for CFS sections including local, distortional and 

global. Therefore, it is vital to find suitable ways to speed up constraining the buckling process. 

Yu and Schafer [3] and Calderoni et al. [4] performed a series of four-point bending tests to 

investigate the distortional and flexural performance of C and Z-shaped section built-up cold-

formed steels. Rogers et al. [5] evaluated the bending moment of existing authentic experimental 

results with different code provisions. Hancock et al. [6] proposed a new design approach of 

distortional buckling strength for C and Z-shaped cold-formed steel sections. Wang et al. [7] 

experimentally and analytically investigated C-shaped cold-formed steel beams with or without 

edge stiffeners. Using the stiffeners significantly enhanced the flexural stiffness and buckling 

resistivity of the beam under pure and non-pure bending tests. Wang et al. [8] performed a four-

point bending test program on cold-formed steel built-up section beams with web perforations. 

Local geometric imperfections were also measured. When the hole diameter to web depth ratio 

(dh/dw) increased from 0.25 to 0.5, the moment rotation capacity reduced slightly by 6%. However, 

increasing the ratio up to 0.7 reduced the capacity by 16%. The effects of the web–hole ratio on 

the performance of the perforated cold-formed steel channel section beams were experimentally 

and analytically investigated. The greater the increase in the hole area, the more reduction in the 

ultimate distortional buckling moment [9,10,11,12,13,14]. The reported results also illustrated that 

the size of the web holes directly affected the distortional buckling moment, with the bigger the 

hole, the lower the buckling moment. Zhou et al. [15] examined the authenticity of the 

Australia/New Zealand Standard (AS 1391) on the flexural strength design of rectangular tubes 

manufactured with cold-rolling steel, where the Australian standard has shown reliable design code 

and unreliable design procedure for normal and high strength steel, respectively. Laim et al. [16] 

conducted a series of bending tests and also finite element modellings on flexural behaviour of 

cold-formed steel beams. The authors reported that the dominant failure mode was distortional 

buckling. Folded-flange sections were developed to present the best performance under bending 

investigation compared to other typical and industrial sections (the flexural capacity increased by 

up to 50%), and using partial reinforcing significantly increased the beam strength against the 

lateral-torsional buckling [17,18]. Muftah et al. [19] performed a series of four-point flexural tests 

on bolted built-up cold-formed steel beams while using bolts and nuts system. According to the 

reported conclusions, when the loads were applied on the webs, the flexural behaviour of the beams 

was dependent just on bolt distances. Huang et al. [20] proposed a novel solution to the distortional 
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buckling moment for stiffened CFS beams based on the minimum potential energy rules and using 

web and flange stiffeners. The presence of flange stiffeners enhanced the bearing capacity and 

increased the distortional buckling moment [21]. The presence of slots affected both the shear 

rigidity and distortional buckling load and the web stiffeners improved the flexural behavior [22]. 

Following the literature, perforated CFS beams subjected to different bending scenarios should be 

able to deal with different buckling modes [23]. There is almost no simple way to address this 

significant concern. Hence, this study proposed a simple and low-cost reinforcing system for CFS 

uprights consisting of a bolt, nut and spacer. A series of four-point bending tests were performed 

on the specific stiffened perforated beams to measure the buckling-resistant moment of an upright 

section about its major and minor axes and to evaluate its improvement by proposed reinforcement. 

A total of eighteen monotonic tests were conducted to determine both the flexural capacity and 

failure modes of the reinforced sections, which consisted of uprights with 1.6 mm thickness 

strengthened by bolt and spacer systems. Finite element (FE) analysis was also performed by 

ABAQUS program and was verified by the experimental results. The comparison of the parametric 

study and test study showed both outstanding accuracy for the experimental results, and the 

proficiency of the proposed reinforcing system. 

 Reinforcement Method 

Three principal buckling modes for upright sections observed during the flexural test are 

distortional, flexural and flexural-torsional. However, the distortional buckling is the governing 

mode in the design of uprights, where excessive deformation occurs about a weaker principal axis. 

The typical upright frame consists of a regular pattern of perforations which can be placed on both 

the web and the lips. Web perforations are used for fast interconnection between beams and 

uprights, while lip perforations allow the connection of the brace components to uprights. The 

location of perforations which are not in use in the section lip can also be used to partially close 

off the section. Therefore, in this study, stiffeners comprised of fasteners, nuts and spacers were 

used at the location of perforations to connect the lips of the open sections and to improve the 

moment capacity of the system. These stiffeners are commonly used to attach the brace to uprights; 

hence, no further design is required for these connectors. 
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Time-consuming and costly stiffening methods, such as plate stiffeners and partially closing the 

sections, are not practical for upright frames already in use. Preliminary numerical analyses were 

also performed in order to check the feasibility and capability of the proposed reinforcing method, 

and it was found that this approach can increase the load-bearing capacity of standard uprights. 

The strengthening method proposed in this study is a handy and cost-effective approach that can 

be used for all racking systems, especially those which are currently in use in storage locations. 

This approach can be employed for all CFS open sections as well [24,25]. The reinforcement 

arrangement consisted of a bolt, nut and double spacer, where the spacer was the transverse 

element made up of the plastic material commonly used for bracing of racking by attaching to the 

lips of the section. The reinforcing details are demonstrated in Figure 4-1. 

 

(A) 

 

(B) 

Figure 4-1: Reinforcement by bolts and spacers: (A) Schematic view; (B) Along the upright. 
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 Experimental Campaign 

The experimental investigation was performed at the structural laboratory of Western Sydney 

University in order to determine the moment capacity of an upright section about its major and 

minor axes of bending and its improvement by different patterns of reinforcement by adding bolts, 

spacers and partially closing the sections. The experimental test details are discussed in the next 

section. 

4.4.1 Test Specimens 

Eighteen specimens consisting of nine single-upright and nine bending frames were prepared for 

testing. The bending frames including two upright columns attached by diagonal bracing were 

constructed from commercially available rack sections, and the ends of the frame were constrained 

by back-to-back bracing to avoid twisting. Specimens were produced in two groups, with or 

without reinforcements. The specimen specifications are tabulated in Table 4-1. Figure 4-2 

indicates the section and the perforation details as well as the frame configurations. 

 

(A) 
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(B) 

Figure 4-2: Configuration of the details: (A) Upright configuration; (B) Frame configuration (L and W in the 
Table 4-1). 
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Table 4-1: Specimen configurations. 

Specimen 
Type 

Geometry (mm) 
Reinforcemen
t 

Loading Direction 
* 

Length 
** 
Thickness 

*** 
Width 

**** 
Sp 

Major 
Axis 

Minor 
Axis 

SMIM 

2400 1.6 600 

- No  • 
SMIM - No  • 
SMIM - No  • 
SMJM - No •  
SMJM - No •  
SMJM - No •  
200RMIM 200 Yes  • 
200RMIM 200 Yes  • 
200RMIM 200 Yes  • 
200RMJM 200 Yes •  
200RMJM 200 Yes •  
200RMJM 200 Yes •  
300RMIM 300 Yes  • 
300RMIM 300 Yes  • 
300RMIM 300 Yes  • 
300RMJM 300 Yes •  
300RMJM 300 Yes •  
300RMJM 300 Yes •  

* Length = upright length. ** Thickness = upright thickness. *** Width = frame width (distance between two upright). ****  

Sp = distance between reinforcement bolts (reinforcement space). 

 

The convention used to designate the specimens is explained in Figure 4-3. The SMIM and SMJM 

specimens were manufactured without reinforcements, and their flexural behaviour was 

investigated during the monotonic test. Their loading direction was carried out on the minor and 

major axes, respectively. The 200RMIM and 200RMJM specimens were produced with 

reinforcements placed at 200 mm spacing along the upright length and were investigated about 

their minor and major axes respectively. The 300RMIM and 300RMJM specimens were developed 

according to the previous patterns except that their reinforcement spaces were 300 mm. 
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Figure 4-3: Designation of specimens. 
 

4.4.2 Material Properties 

The tensile coupon test is essential to identify the actual material properties of the test specimen. 

Three coupons from the upright flanges with no perforations were prepared for the coupon test. 

The CFS channel section was cleaned, cleared and cut into coupon-shaped flexural specimens. The 

tensile test was conducted according to AS4600 procedures [26]. 

The tensile test results were used for developing finite element models that are presented later in 

this paper. An MTS Sintech testing machine (TestResources Inc., Shakopee, MN, USA) with 300 

kN capacity and a rate of 0.01 mm/s was used for the coupon tests. Figure 4-4 shows the stress-

strain curves for 1.6 mm thickness sections. The mean values of the ultimate tensile strength (σu), 

and yield stress (σy) and elongation are presented in Table 4-2. 
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Figure 4-4: Stress-strain diagram for 1.6 mm thickness specimen. 

 
 

Table 4-2: Material properties of the upright section. 
Section Type Yield Stress, σy (MPa) Ultimate Stress, σu (MPa) Elongation (%) 
Upright with 1.6 mm thickness (Test 1) 561 578 10.3 
Upright with 1.6 mm thickness (Test 2) 557 585 9.6 
Upright with 1.6 mm thickness (Test 3) 571 610 10.1 
Average 563 591 10 

 

4.4.3 Test Set-Up 

The purpose of the four-point bending test is to determine the flexural moment capacity of an 

upright section about its major and minor axes of bending and its improvement by different 

patterns of reinforcement by adding bolts, spacers and partially closing its sections. The flexural 

test was carried out to simulate the pure bending using a four-point bending test according to AS 

4084:2012 [27] Section 7.3.4: Bending tests on upright sections (Figure 4-5). 
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Figure 4-5: Typical schematic four-point bending test. 
 
In the test section, the actuator was placed on two steel I-beams, and the I-beams were settled on 

the steel girders to transmit the applied force on spherical rollers. The steel spherical rollers were 

placed on the test specimen to facilitate the movement of the specimen not only to show the 

potential deformations but to simulate the real condition for pure bending. The rollers were placed 

on two perforated steel plates. The details and the schematic views of the minor axis test set-up 

are shown in Figure 4-6. 

 

(A) 
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as a single frame so that the specimens would demonstrate appropriate flexural behaviour during 

the monotonic loading. Also, the actuator was placed on two steel I-beams, and the I-beams were 

settled on two steel girders which transmitted the force onto the roller supports. Put et al. [28] 

performed a series of eccentrically and concentrically loading on the channel steel upright 

connections. The more eccentricity increases, the more beam strength decreases. Therefore, for 

the major axis tests, the rollers settled on four perforated steel angles attached to the web of the 

channel by four fasteners designed to exert the load to the shear center of the profile section. That 

being the case, the spherical rollers and loading angles were designed to let any possible 

displacement, especially the distortional buckling, happen. Also, the specimen was free to twist on 

the frictionless supports. By this means, this test arrangement permits buckling modes to occur 

similar to the real modes developed by the upright in its normal usage. Three tests for each type of 

the specimens and about each axis were carried out including unreinforced profiles and reinforced 

ones. 

 

(A) 
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crippling in the vicinity of the loading angles and rollers. This issue was addressed by using 

reinforcement just underneath the supports, as shown in Figure 4-8. 

 

Figure 4-8: Crippling of load points: (A) Typical crippling at flanges; (B) Specific crippling reinforcement. 
 
In total, 18 monotonic tests (single directional force) were conducted during the investigation 

based on AS 4084: 2012, Section 7.3.4: Bending tests on upright sections [27] to determine the 

failure moment and mode of the pallet racking’s uprights (Figure 4-9). 

 

 

(A) 
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(B) 

Figure 4-9: Test set-up: (A) minor axis test, (B) major axis test. 
 

4.4.4 Data Acquisition and Instrumentation 

The experiments were conducted using a Universal Testing Machine, Instron 8506 (Instron, 

Norwood, MA, USA) with 3000 kN capacity. The loading rate of 0.5 mm/min was applied to the 

specimens. The reading of the forces was measured by the load cell, whereas the deflection of the 

uprights was measured by linear variable differential transformers (LVDTs). The data was 

collected via data logger and sent to the computer then processed with Microsoft Excel. The data 

was measured at a frequency of 2 Hz, which means every 0.5 s. 

 Test Results and Discussion 

Eighteen specimens with 2400 mm length and 1.6 mm thickness were tested in three reinforcement 

compositions: without reinforcement, and with reinforcements at 200 mm and 300 mm. The tests 

aimed to investigate the reinforcement effect on flexural performance. The tests were designed to 

acquire both the flexural capacity and the failure modes during the loading process. 

The flexural moment capacity for each specimen was recorded and due to confidentiality matters, 

it was normalised with respect to the normalization factor (Nf = Z. σy), where Z was the shape 

factor of the section, and σy was the yield-stress extracted by the coupon tests. On the other hand, 

the deflection value represents the displacement of the mid-point in each specimen recorded by 
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LVDTs. For each specimen type, three tests were conducted to ensure the accuracy of the results 

for the upright flexural behaviour. 

4.5.1 Major Axis Test 

Figure 4-10 demonstrates the normalised bending moment versus deflection for unreinforced, 200 

mm and 300 mm reinforcement types under monotonic flexural tests. The 200 mm reinforcement 

type provided the highest flexural strength compared to the other two types. The normalized 

bending moment capacity for each specimen is tabulated in Table 4-3. Factors responsible for 

some differences in the results for the same specimen types could be related to the typical 

shortcomings during the set-up adjustment. 

 

 
(A) 

 
(B) 
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(C) 

 
Figure 4-10: Normalized bending moment–deflection about major axis curves: (A) SMJM; (B) 200RMJM; 

(C) 300RMJM. 
 

 

Table 4-3: The ultimate normalized bending capacity of specimens in the major axis test.: 

Test Specimen 
Normalised Ultimate Bending moment 
( 𝑴𝑴
𝝈𝝈𝒚𝒚 × 𝒁𝒁

) 

SMJM-Test1 0.330 
SMJM-Test2 0.342 
SMJM-Test3 0.325 
Average 0.332 
Standard deviation 0.008 
200RMJM-Test1 0.379 
200RMJM-Test2 0.391 
200RMJM-Test3 0.388 
Average 0.386 
Standard deviation  0.005 
300RMJM-Test1 0.354 
300RMJM-Test2 0.361 
300RMJM-Test3 0.356 
Average 0.357 
Standard deviation 0.003 

 

Both the distortional and local buckling were observed during major axis testing of the 

unreinforced frames (Figure 4-11). According to the observations, some notches were observed 

along with the failure mechanism at the local buckling zones. 
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(A) 

 

 

(B) 
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(C) 

Figure 4-11: The observed failure mode for unreinforced specimens during the major axis test: (A) SMJM-
test1; (B) SMJM-test2; (C) SMJM-test3. 

 

When the reinforced specimens with 200 mm reinforcing pitch were subjected to the monotonic 

displacement control test on the major axis, local buckling, as well as a combination of both local 

and distortional buckling, occurred during the experiments. The yielding notches were also 

observed as crippling signs in some areas (Figure 4-12). 

 

 

 

(A) 
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(B) 

 

 

(C) 

Figure 4-12: The observed failure mode for reinforced specimens with 200 mm reinforcing pitch during the 
major axis test: (A) 200RMJM-test1; (B) 200RMJM-test2; (C) 200RMJM-test3. 

 

Following the experimental investigation, the reinforced specimens with 300 mm reinforcing pitch 

were subjected to the major axis displacement control monotonic test (Figure 4-13). The governing 

failure mode at these tests was also the distortional and local buckling. 

 



 

72 
 

 

 

 
(A) 

 

 
(B) 

 

 
(C) 

Figure 4-13: The observed failure modes for reinforced specimens with 300 mm reinforcing space during the 
major axis test: (A) 300RMJM-test1; (B) 300RMJM-test2; (C) 300RMJM-test3. 
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To compare the flexural behaviour of the uprights, the mean curves shown in Figure 4-14 presented 

the effect of reinforcements with respect to the average normalized bending. According Figure 

4-14, it is clear that using reinforcements improves both the ultimate capacity and deflection of the 

specimens; however, this improvement has been enhanced by using the 200 mm reinforcement 

type. Figure 4-14 shows the 200 mm pitch improved the flexural behaviour of the uprights and 

also increased the bending capacity. 

 

 

Figure 4-14: The normalized major axis test average curves. 
 
The reported experimental results show the effectiveness of the presence of reinforcements. Figure 

4-15 compares the different reinforcement types used. In Figure 4-15, the 200 mm reinforcement 

type showed 13.8% and 7.35% enhanced capacity compared to the non-reinforced and 300 mm 

reinforcement type, respectively. The 300 mm type showed 6.97% improvement in bending 

capacity compared to the unreinforced specimen. Typically, the failure modes which were 

observed in the major axis experimental tests were local and distortional bucklings. 
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Figure 4-15: The ultimate normalized moment for major axis test with respect to the reinforcement type. 
 

4.5.2 Minor Axis Test 

Figure 4-16 presents the normalized bending moment–deflection curves for unreinforced, 200 mm 

and 300 mm reinforcement types where the flexural behaviour of the specimens under minor axis 

tests has been reported. 

 

 
(A) 
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(B) 

  
(C)  

Figure 4-16: Normalized bending moment–deflection about minor axis test curves: (A) SMIM; (B) 
200RMIM; (C) 300RMIM. 

 
The 200 mm reinforcement type captured the best flexural performance compared to the other 

two types. The normalized bending capacity for each specimen is also tabulated in Table 4-4. 

Table 4-4: The ultimate normalized bending capacity of specimens in the minor axis tests. 

Test Specimen 
Normalized Ultimate Bending Moment  

(
𝑴𝑴

𝝈𝝈𝒚𝒚 × 𝒁𝒁
) 

SMIM-Test1 0.193 
SMIM-Test2 0.203 
SMIM-Test3 0.195 
Average 0.197 
Standard deviation 0.005 
200RMIM-Test1 0.232 
200RMIM-Test2 0.239 
200RMIM-Test3 0.242 
Average 0.238 
Standard deviation 0.004 
300RMIM-Test1 0.211 
300RMIM-Test2 0.215 
300RMIM-Test3 0.202 
Average 0.209 
Standard deviation 0.006 
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Figure 4-17 represents the minor axis test for the single unreinforced uprights, showing the 

uprights’ distortional buckling in the tests. 

 

 
(A) 

 

 
(B) 
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(c) 

Figure 4-17: The observed failure mode for unreinforced specimens during the minor axis test: (A) SMIM-
test1; (B) SMIM-test2; (C) SMIM-test3. 

 
The reinforced specimens with 200 mm reinforcing space were subjected to the minor axis tests 

as shown in Figure 4-18. Based on the test observations, the mid-span deflections were much 

higher than the unreinforced specimens. The reinforced specimens exhibited no sudden torsion or 

twisting, but the bending capacity was enhanced significantly in the 200 mm reinforcing type. 

 

 

 

(A) 
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(B) 

 

 

(C) 

Figure 4-18: The observed failure mode for reinforced specimens with 200 mm reinforcing pitch during the 
minor axis test: (A) 200RMIM-test1; (B) 200RMIM-test2; (C) 200RMIM-test3. 

 
The minor axis test was performed on 300 mm reinforced specimens. Observations proved that 

increasing the reinforcing space decreases the section flexural capacity compared to the 200 mm 

specimens as well as the ultimate deflection of the sections at the time of failure (Figure 4-19). 
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(A) 

 

 

(B) 
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(C) 

Figure 4-19: The observed failure mode for reinforced specimens with 300 mm reinforcing pitch during the 
minor axis test: (A) 300RMIM-test1; (B) 300RMIM-test2; (C) 300RMIM-test3. 

 
The normalized mean bending moment versus deflection curves demonstrated in Figure 4-20 

represent the effects of the reinforcements in the minor axis tests. According to Figure 4-20, non-

reinforced specimens had lower bending capacity. However, 200 and 300 mm reinforcement types 

presented improved behaviour, especially in the ultimate capacity and deflection. 

 

Figure 4-20: The normalized minor axis average curves. 
 
Figure 4-21 presents the influence of performed reinforcement types. The 200 mm reinforcement 

type resulted in 12% and 17% improvement in ultimate bending capacity compared to the 300 mm 

reinforcement and non-reinforced types, respectively. The 300 mm type showed a 5.5% 

improvement in ultimate bending capacity compared to the non-reinforced specimen. 
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Figure 4-21: The ultimate normalized moment for the minor axis test by reinforcement type. 
 

4.5.3 Remarks on the Results 

Based on the results of both experimental and numerical investigations, the governing failure 

mechanisms can be categorized into two main types: buckling or crippling. First of all, local and 

distortional bucklings happened in almost every unreinforced specimen’s major axis test. These 

failure mechanisms were located near the weakest zone of the beam, which was typically the mid-

span of the specimens. Local bucklings were mostly observed in 200 mm type reinforced 

specimens, but the presence of condense reinforcing was acting as the constraining factor. As the 

reinforcing pitch was enlarged, the distortional buckling became the dominant failure mode as 

observed in the 300 mm reinforcing types. The change in the section’s half-wavelength resulted in 

the change of buckling mode and failure load. Reducing the half-wavelength by decreasing the 

reinforcement pitch increases the distortional buckling capacity as well as changing the mode from 

distortional to local–distortional in some cases. 

Secondly, in the case of crippling as another factor of failure, the unreinforced specimens failed 

due to this factor, especially in the major axis tests. The 200 mm and 300 mm reinforcing types 

also failed through the crippling mechanism; however, the ultimate load of crippling was different 

from the unreinforced specimens. The crippling failure mechanism was initiated by a yielding 
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notch which was exhibited on the flange. Then, due to the represented notch, the section became 

weak at that specific zone. Finally, this shortcoming led to the crippling and the frame collapsed. 

Regarding the presented results, the reinforced frames and single-uprights showed a much better 

flexural performance in both the major and minor axes monotonic tests, especially the ones with 

200 mm reinforcements. Furthermore, the specific reinforcements increased the section stiffness, 

and strengthened the uprights, especially where the uprights tend to deform or initiate buckling 

failure. For a better understanding, the observed buckling failure modes are demonstrated in the 

following sections using FE models. 

 Finite Element Models Arrangement 

Different techniques are available for data validations and predictions such as artificial neural 

networks [29,30,31,32,33,34], FE method [1,35,36], and finite strip method [37,38]. The FE 

method, which is generally carried out by FE programs such as ABAQUS and ANSYS, was 

performed in the current study as a reliable technique for empirical data validation and response 

prediction. Two different FE models were used in order to simulate the experimental results of 

reinforcement spacing, including 200 mm, 300 mm, and without reinforcement, on the flexural 

strength of the upright frames about either major or minor axes. Two different arrangements were 

considered: 

• Bending frame: The frame was modelled to simulate the major axis test, and other parts of 

the set-up were simulated throughout boundary condition and interaction descriptions. 

• Single beam: The beam was modelled to simulate the minor axis test, and the other 

components of the test were simulated using appropriate stiffeners and boundary 

conditions. 

Figure 4-22(A) shows the overall arrangement for the bending frame model and Figure 4-22(B) 

shows the same arrangement for single-uprights. The software ABAQUS/CAE v.12.1 was used to 

model the presented test specimens. The FE models were adjusted to replicate the tests. 
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(A) 

 

(B) 

Figure 4-22: The finite element model arrangement: (A) major axis; (B) minor axis. 
 

4.6.1 Element Type, Mesh Size and Material Model 

Both models were simulated using four-node shell element S4R available in ABAQUS [1]. This 

element is a thin, shear flexible, isometric quadrilateral shell with four nodes and five degrees of 

freedom per node, using reduced integration and bilinear interpolation scheme (Figure 4-23). 
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Figure 4-23: Typical finite element mesh of an upright section. 
 
The stress-strain results from the tensile tests were used to model the material properties. To 

consider the necking phenomena in the tensile tests, the true stress-strain relationship was used for 

the models [39,40] with the following 

σtrue =  σ(1 + ε) (4.1) 

εtrue = ln(1 + ε) −
σtrue

E
 (4.2) 

where σ and ε are the stresses and strains from the tensile tests. The von Mises yield criteria with 

isotropic hardening were also taken into account for the modelling. The modulus of elasticity was 

considered equal to 200 GPa and the Poisson ratio as 0.3 [1]. 

4.6.2 Connections and Interactions 

For a decisive simulation, two types of interactions were defined for the FE models of the uprights 

subjected to loading either about the major axis or the minor axis: (a) the existing interaction of 

flange edges and bracing, and (b) the interaction of bracing webs at bolt connections. The surface 

to surface interaction with hard contact for normal behaviour, as well as the penalty method with 
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4.6.4 Validation of the Finite Element Results 

According to the details in the previous sections, the FE models were generated, and the 

experimental simulations were carried out. The numerical results were extracted and compared 

with the existing test results and failure modes to be verified. Linear regression is a powerful tool 

to develop predicting models for estimating the engineering properties of different materials. In 

this section, linear regression analyses were performed on the FE model results to help validate 

the results obtained from the numerical models. 

4.6.4.1 Minor Axis 

The single-upright configuration for FE modelling has been used in this section. Figure 4-25 

compares the normalized bending moment–deflection curves of the FE model and experimental 

results. Figure 4-26 also illustrates the linear regression of the FE model mean curve with the 

experimental mean curve. Table 4-5 presents the evaluation criteria of the accuracy of the FE 

model predictions. 
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Figure 4-25: Finite element model and experimental curves for minor axis test set-up: (A) non-reinforced 
types; (B) 200 mm reinforced types; (C) 300 mm reinforced types. 

 
 
 
 
 
 

 

 
(A) 

 
(B) 

(C) 
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Figure 4-26: Comparison of finite element model against minor axis test results along with the linear 

regression: (A) and (B) non-reinforced model; (C) and (D) 200 mm reinforced model; (E) and (F) 300 mm 
reinforced model. 
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Table 4-5: Finite element model vs experimental results details in terms of evaluation criteria. 

Non-reinforced model 

Evaluation criteria 

Standard deviation 0.061 

Pearson (r) 0.998 

R2 0.996 

200 mm reinforced model 

Evaluation criteria 

Standard deviation 0.080 

Pearson (r) 0.993 

R2 0.998 

300 mm reinforced model 

Evaluation criteria 

Standard deviation 0.069 

Pearson (r) 0.998 

R2 0.9961 
 
 

According to Figure 4-26 and Table 4-5, the FE model results achieved outstanding accuracy and 

compatibility with the test results. In addition, Figure 4-27 compares the FE model failure modes 

of the uprights to the experimental failure modes where the developed FE model has well predicted 

the overall deformed shape. These uprights failed in distortional and local buckling mode. 

 

 

(A) 
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(B) 

Figure 4-27: Comparison of failure modes: (A) non-reinforced upright type; (B) 300 mm reinforced 
upright type. 

 

4.6.4.2 Major Axis 

A bending frame arrangement was used for the numerical assessment of the upright major axis 

test. Figure 4-28 compares the normalized bending moment–deflection curves between the FE 

model and experimental results. Figure 4-29 illustrates the linear regression of the FE model 

mean curve with the experimental mean curve. Table 4-6 presents the evaluation criteria for the 

accuracy of the FE model predictions. 

 

 

(A) (B) (C) 

 

Figure 4-28: Finite element model and experimental curves for major axis test set-up: (A) non-reinforced 
frame types; (B) 200 mm reinforced frame types; (C) 300 mm reinforced frame types. 
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Figure 4-29: Comparison of finite element model against major axis test results along with the linear 
regression: (A) and (B) non-reinforced model; (C) and (D) 200 mm reinforced model; (E) and (F) 300 mm 

reinforced model. 
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Table 4-6: Finite element model vs experimental results accuracy details in terms of evaluation criteria. 

Non-reinforced model 

Evaluation criteria 

Standard deviation 0.124 

Pearson (r) 0.998 

R2 0.997 

200 mm reinforced model 

Evaluation criteria 

Standard deviation 0.135 

Pearson (r) 0.995 

R2 0.991 

300 mm reinforced model 

Evaluation criteria 

Standard deviation 0.122 

Pearson (r) 0.999 

R2 0.998 
 
According to Figure 4-29 and Table 4-6, the FE results had appropriate convergence with the test 

results. Figure 4-30 compares the FE failure modes of the frame with the experimental failure 

modes where the developed FE model has well predicted the overall deformed shape. These 

upright frames failed by distortional and local buckling mode. 

 

(A) 
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(B) 

Figure 4-30: Comparison of failure mode: (A) non-reinforced upright type; (B) 300 mm reinforced upright 
type 

 

 Conclusions 

This study proposed a specific reinforcement system to enhance the flexural strength of CFS 

upright/beam sections. Eighteen specimens were fabricated and standard monotonic four-point 

bending displacement control experimental tests were performed to evaluate their bending 

capacity. All the specimens were made of perforated CFS uprights with 2400 mm length and 

1.6 mm thickness. Specimens without reinforcement and specimens with reinforcement at 200 

mm and 300 mm pitches were tested about their minor and major axes. The specimens for the 

minor axis test consisted of single uprights, while the tested specimens for the major axis tests 

were produced by combining two uprights as a frame employing conventional diagonal bracing 

to keep the set-up stable for accurate estimation of the flexural strength of reinforced and 

unreinforced uprights. 

Based on the reported observations, the governing failure modes were local, distortional and a 

combination of these modes of buckling both in the minor axis and major axis tests. Using the 

proposed reinforcements increases the bending moment capacity of the specimens by changing 

the half wavelength of the sections. Reinforcement at 200 mm pitches improves the ultimate 

flexural capacity compared to the unreinforced specimens by around 13.8% and 17% in major 

axis and minor axis tests, respectively. Using reinforcement at 300 mm pitches increases the 

bending moment capacity compared to the unreinforced specimens by 6.97% and 5.5% for the 

major axis and minor axis tests, respectively. The study emphasized that the proposed 
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reinforcements can be a very useful and cost-effective method for strengthening all open CFS 

sections under flexural loading, considering the trade-off between flexural performance and the 

cost of using the method. 
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 Abstract  

This study evaluates an innovative reinforcement method for cold-formed steel (CFS) upright 

sections through finite element assessment as well as prediction of the normalized ultimate load 

and deflection of the profiles by artificial intelligence (AI) and machine learning (ML) techniques. 

Following the previous experimental studies, several CFS upright profiles with different lengths, 

thicknesses and reinforcement spacings are modeled and analyzed under flexural loading. The 

finite element method (FEM) is employed to evaluate the proposed reinforcement method in 

different upright sections and to provide a valid database for the analytical study. To detect the 

most influential factor on flexural strength, the “feature selection” method is performed on the 

FEM results. Then, by using the feature selection method, a hybrid neural network (a combination 

of multi-layer perceptron algorithm and particle swarm optimization method) is developed for the 

prediction of normalized ultimate load. The correlation coefficient (R), root mean square error 

(RMSE), Nash–Sutcliffe efficiency (NSE), mean absolute error (MAE) and Wilmot’s index of 

agreement (WI) are used as the measure of precision. The results show that the geometrical 

parameters have almost the same contribution in the flexural capacity and deflection of the 

specimens. According to the performance evaluation indexes, the best model is detected and 

optimized by tuning other algorithm parameters. The results indicate that the hybrid neural 

network can successfully predict the normalized ultimate load and deflection. 

Keywords: cold-formed steel; upright; finite element method; feature selection method; multi-

layer perceptron; particle swarm optimization; neural network 

 Introduction 

Employing cold-formed steel (CFS) racking systems has been extensively developed around the 

world due to their valuable structural benefits and workability, especially for storage and 

warehouse applications [1]. In recent years, various researchers and engineers have investigated 

different approaches to enhance the overall performance of these systems by utilizing different 

CFS upright strengthening methods.  

In this regard, many studies indicated that CFS racking systems under flexural loading experience 

different types of failures, including distortional buckling failure modes [2], which can affect the 
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stability status of upright frames [3]. Various studies worked to improve different characteristics 

of uprights not only to enhance the bearing capacity, but also to extend the application of these 

systems. Following the study of racking system performances, Put et al. [4] applied a series of 

eccentrically and concentrically loading on the CFS upright connections and reported that by 

increasing the eccentricity, the beams strength decreases. Wang and Young [5] investigated novel 

CFS channel sections with double and single stiffeners and showed that local and distortional 

buckling can be controlled using this method. In another study, Calderoni et al. [6] conducted a 

series of monotonic and cyclic experiments on CFS members. Their results indicated that the CFS 

channels could not resist the buckling deformations due to the lack of flexural stiffness. Wang and 

Zhang [7] studied C-shaped CFS elements with or without edge stiffeners. They employed two 

types of stiffeners and reported an increase in the capacity of CFS members due to applying 

stiffeners. Taheri et al. [8]  evaluated the influence of a new reinforcement approach on the 

compressive  capacity of racking upright profiles. In another study, Taheri et al. [9] also performed 

a series of flexural tests on CFS sections with or without the reinforcement approach. The results 

indicated that the proposed reinforcements considerably improved the ultimate flexural capacity.  

The expensive and time-consuming nature of actual experimental tests has encouraged researchers 

to employ other types of approaches for structural evaluations, such as numerical methods. Since 

the finite element method (FEM) has major priorities in comparison to other numerical approaches, 

employing this technique has drastically increased for a variety of engineering problems, 

especially CFS racking systems. Visy et al. [10] numerically studied the flexural behavior of 

stiffened CFS slotted beams subjected to different loading scenarios. Nandini and Kalyanaraman 

[11], in a numerical investigation, studied the behavior and strength of Lipped channel beams of 

various lengths. They suggested an approach to design these beams under the interaction of local, 

distortional and overall lateral–torsional buckling based on the Euro code provisions. There are 

several other studies in the literature that simulated the behavior and strength of CFS racking 

frames through FEM [12–14].  

Artificial intelligence is a group of techniques related to intelligent methods that consider each 

problem with a defined intelligence algorithm. Most of the applications of these techniques in 

engineering problems are focused on either predicting or verifying a problem. Prediction accuracy 

depends on a variety of variables, such as error, soft computing approach, estimation of the 
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problems before the prediction process, etc. Backpropagation (BP) approaches, which are 

considered among classic techniques, are generally proposed to train artificial neural networks 

(ANN). Machine learning is another type of these algorithms that benefits from a learning circuit. 

Some of the rotational properties of CFS racking systems have been successfully estimated by the 

machine learning method in the past years [15]. In order to address classic algorithm deficiencies, 

some approaches, including genetic algorithm (GA) [16], particle swarm optimization (PSO) [17], 

and multi-layer perceptron (MLP) [18], have been proposed and utilized in different prediction 

cases in recent years. Generally, the PSO algorithm has been proved as a reliable technique to be 

combined with other types of intelligence algorithms based on different studies [19,20]. 

In this paper, the proposed reinforcement method for CFS uprights (previously presented by the 

authors [8,9]) is further investigated through FEM and machine learning algorithms. First, a finite 

element model is developed in ABAQUS software to simulate and analyze the CFS upright frames 

under flexural loading. Then, the FEM results are compared and verified by the experimental test 

data in the literature [9]. Thereafter, the verified FEM is employed for a parametric study to 

evaluate the performance of upright frames with different lengths, thicknesses and reinforcement 

spacing. Considering the FEM and test results (current study and test results in [9]), an artificial 

intelligence approach is also employed both for predicting the flexural capacity of the proposed 

system and verifying the FEM models. First, a feature selection based algorithm is used to find the 

most governing property of flexural strength and then a hybrid neural network (MLP algorithm in 

combination with PSO) is utilized for verification, optimization and prediction.  
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Table 5-1: Geometrical features of models. 
Upright Length (mm) Upright Thickness (mm) Reinforcement Spacing (mm) 

1800 
1.6 
2.0 
2.5 
3.0 

50 
100 
150 
200 
250 
300 

2400 

3000 

3600 
 

5.3.1 Material Properties 

The Poisson’s ratio and the modulus of elasticity are assumed to be 0.3 and 200 GPa, respectively 

[21]. Additionally, other material properties were derived according to the modified coupon test, 

which is indicated in Figure 5-2 and Table 5-2. The material law of the frame assembly was 

modeled using the bi-linear stress–strain relation [21]. 

 

 
                         
       (a)                                                                 (b) 

Figure 5-2: Coupon test results for uprights: (a) with 1.6 mm and (b) with 2.5 mm thickness [9]. 
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Table 5-2: Material properties of upright sections. 
Thickness (mm) Yield Stress, fy (MPa) Ultimate Stress, fu (MPa) Elongation (%) 
2.5 572 608 13 
1.6 563 591 11 

5.3.2 Connections and Interactions  

The penalty method with a surface-to-surface interaction is employed for models, where a friction 

coefficient of 0.3 is considered for the tangential response [21–23]. Hard contact is also adopted 

for normal behavior. For simulating the interaction of bolts, the coupling method is employed. A 

reference point is defined at the center of the bolt hole and then the end beam restraints are 

considered as a beam, using the contact pairs between the elements at the two opposite sides of the 

built-up sections. Figure 5-3 shows the existing interactions between the bending frame 

components model. 

 
Figure 5-3: Interactions between frame elements. 

5.3.3 Boundary Conditions and Loading 

All boundary components are constrained to simulate the test setup illustrated in Figure 5-4. The 

vertical translation on the supports is restrained. The concentrated load with the displacement 

method is applied at the shear center of the upright section on the loading plates, while the rotations 

and translation are allowed to simulate the actual test conditions. Details of the test setup about 

each axis is illustrated in Figure 5-4 [9]. 
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Figure 5-4: (a) Minor axis test setup. (b) Major axis test setup [9]. 

5.3.4 Mesh 

In this paper, shell elements are deployed since the thickness of the open CFS members is very 

small in comparison with their width and length; thus, buckling deformations can be explicitly 

modeled. The four-node shell element with reduced integration (S4R) is employed to model the 

frame elements [24]. A convergence study is performed to capture the optimum mesh size for the 

upright and bracing members, and it is observed that quad-dominated meshes with dimensions of 

10 mm are deemed satisfactory for frame elements. Figure 5-5 shows the final mesh used for the 

upright models. 

 
Figure 5-5: Typical FE mesh of an upright section. 

5.3.5 FE Model Verification  

After establishing the FE models, a loading simulation is conducted through the ABAQUS 

program. It should be noted that only specimens with 2400 mm length and 1.6 mm thickness are 
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employed for the verification purpose. In addition, three scenarios of non-reinforcement, 

reinforcement with 200 mm spacing, and reinforcement with 300 mm spacing are considered. In 

this part, linear regression analyses are applied to the FE results to assist in validating the obtained 

results of the numerical models. Additionally, the verified results are exported to a database for 

artificial intelligence applications, which will be discussed in Section 3. 

5.3.5.1 Verification under Minor Axis Loading 

In order to illustrate the accuracy of the FEM results, each curve is compared with the 

corresponding test curve and a linear regression is drawn for each model [25]. Figure 5-6 compares 

the normalized bending moment-deflection curves between the FE and experimental results. In 

addition, Figure 5-7 shows the linear regression of the FEM curve with the experimental curve. 

Table 5-3 demonstrates the evaluation criteria of the accuracy of the FEM predictions. Comparison 

of the experimental and numerical results indicates the outstanding accuracy and compatibility 

between the two methods. 
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Figure 5-6: Comparison of the FE model against the minor-axis test results for (a) non-reinforced model, (b) 

200 mm reinforced model and (c) 300 mm reinforced model. 
 

 
Figure 5-7: . Linear regression diagram for (a) non-reinforced model, (b) 200 mm reinforced model, and (c) 

300 mm reinforced model. 
 
 
 

Table 5-3: FEM vs. experimental results accuracy details in terms of evaluation criteria. 

Non-reinforced model 

Evaluation criteria 
Std * 0.061 
Pearson (r) 0.998 
R2 0.996 

200 mm reinforced model 

Evaluation criteria 
Std 0.080 
Pearson (r) 0.993 
R2 0.998 

300 mm reinforced model 

Evaluation criteria 
Std 0.069 
Pearson (r) 0.998 
R2 0.996 

* Std = standard deviation. 
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5.3.5.2 Verification under Major Axis Loading 

The same technique is also employed for the FE assessment of the upright section under the major 

axis loading. Figure 5-8 compares the normalized bending moment-deflection curve between the 

FEM and experimental results of the upright section under major axis loading. Figure 5-9 also 

indicates the linear regression of the FE results with the experimental curve. The evaluation criteria 

for the accuracy of the FEM predictions are represented in Table 5-4. Based on Figure 5-9 and 

Table 5-4, the FEM results indicate high accuracy and compatibility with the experimental results. 

 
Figure 5-8: Comparison of FE model against major-axis test results for (a) non-reinforced model, (b) 200 mm 

reinforced model and (c) 300 mm reinforced model. 
 

 
Figure 5-9: . Linear regression diagram for; (a) non-reinforced model, (b) 200 mm reinforced model, and (c) 

300 mm reinforced model. 
Table 5-4: FEM vs. experimental results accuracy details in terms of evaluation criteria. 

Non-reinforced model 

Evaluation criteria 
Std * 0.124 
Pearson (r) 0.998 
R2 0.997 

200 mm reinforced model 

Evaluation criteria 
Std 0.135 
Pearson (r) 0.995 
R2 0.991 

300 mm reinforced model 

Evaluation criteria 
Std 0.122 
Pearson (r) 0.999 
R2 0.998 

* Std = standard deviation. 



 

108 
 

5.3.6 Parametric Finite Element Study 

As discussed in the previous section, the FE model is capable of simulating the actual testing 

condition with minimum error. Hence, in this section, the verified FE method is utilized for a 

parametric study to investigate various uprights with different heights and thicknesses as well as 

different reinforcement spacings under flexural loading. The models for the parametric study are 

presented in Table 5-1. The results of the parametric study are classified into two groups of 

loading under major and minor axes, which are presented in the following sections. The 

convention used to name the specimens is shown in Figure 5-10. 

 
Figure 5-10: Designation of models. 

 

5.3.6.1 Parametric Study: Results of Major Axis 

The influence of various reinforcement spacings for the uprights under major axis loading has been 

discussed in this section. The normalized moment-displacement curves of the numerical models 

for each thickness are indicated in Figure 5-11, Figure 5-12, Figure 5-13, and Figure 5-14. As it is 

observed from the figures, using more reinforcement to partially close the section leads to 

improving the specimen’s flexural capacity.  
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Figure 5-11: Normalized moment-deflection curves for 1800 mm models about major axis. 

 

 
Figure 5-12: Normalized moment-deflection curves for 2400 mm models about major axis. 
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Figure 5-13: Normalized moment-deflection curves for 3000 mm models about major axis. 

 
Figure 5-14: Normalized moment-deflection curves for 3600 mm models about major axis. 

 

Figure 5-15 displays the normalized ultimate moment of the sections with various thicknesses at 

different reinforcement spacings. It is deduced that the shorter reinforcement spacing increases the 

ultimate bending capacity of the sections. 
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Figure 5-15: The normalized ultimate moment of 1800, 2400, 3000, and 3600 mm models about major axis 

with respect to reinforcement spacing. 
The increased ultimate moment percentage utilizing various reinforcement spacing for the profiles 

from 1800 mm to 3600 mm length with respect to specimens without reinforcement is presented 

in Figure 5-16. In general, the reinforcement technique influences the ultimate capacity of the open 

sections in a range of about 5% to 40%. As it is seen, reinforcement addition from 300 mm spacing 

to 50 mm spacing can improve the frame’s strength by a significant amount. It is also found that 

reducing reinforcement spacing (up to 50 mm) can considerably increase the ultimate strength of 

the upright section under flexural loading. 
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Figure 5-16: Percentage of increased ultimate load of major axis analysis with different reinforcement 

spacing in length order. 

5.3.6.2 Parametric Study: Results of Minor Axis 

The effect of different reinforcement spacings for the uprights under minor axis loading is 

discussed in this section. Minor axis models are provided with the same spacing and the same 

thickness as the major axis models. Figure 5-17, Figure 5-18, Figure 5-19, and Figure 5-20 indicate 

the normalized load-displacement curves for different models and thicknesses under minor axis 

loading. According to the figures, thickness and length play important roles in flexural strength. 

Additionally, more reinforcement leads to more ultimate strength. These figures show that using 

reinforcement with shorter spacing increases the strength of the sections. Sections with a shorter 

length and thicker cross-sections already have higher flexural strength, but this strength is 

improved noticeably by employing reinforcement. Due to the restrained buckling and better 

distribution of force along the section’s length, specimens with dense reinforcements indicate 

better distortional buckling behavior. Generally, the distortional buckling behavior is enhanced, 
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and section failure is changed from general global buckling to local buckling, mostly due to partial 

closing of the upright section. 

 
Figure 5-17: Normalized moment-deflection curves for 1800 mm models about minor axis. 
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Figure 5-18: Normalized moment-deflection curves for 2400 mm models about minor axis. 

 
Figure 5-19: Normalized moment-deflection curves for 3000 mm models about minor axis. 
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Figure 5-20: Normalized moment-deflection curves for 3600 mm models about minor axis. 

 

Figure 5-21 indicates the normalized ultimate flexural strength with respect to the reinforcement 

spacing for models under minor axis loading. It can be observed that length has an inverse relation 

with flexural strength, where both spacing and thickness have a direct relation with the ultimate 

load. Hence, shorter models with higher thickness and shorter reinforcement spacing indicate 

higher flexural strength. For example, the model with 1800 mm length and 3 mm thickness (1800–

3.0 mm) with 50 mm reinforcement spacing shows the greatest ultimate load. 
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Figure 5-21: The normalized ultimate moment of 1800, 2400, 3000, 3600 mm models about minor axis with 
respect to reinforcement spacing. 

 

Figure 5-22 illustrates a comparison between different increased ultimate loads with respect to 

reinforcement spacing with length order. Spacing and thickness are playing a same role in the case 

of flexural strength where both are enhancing the flexural strength of specimens.  
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Figure 5-22: Percentage of increased ultimate load with different reinforcement. 

 Artificial Intelligence Prediction  

Neural network systems are proved as highly valued approaches for data prediction regarding the 

different numerical research studies [17,20,26]. The strategy for using a specific type of network 

depends on different factors, including data behavior (linear, non-linear), number of inputs, 

number of outputs and the research innovation [15,27,28]. The process of developing the network 

relies on trial and error identification, which the basis algorithm and possible supplementary 

methods detect [29,30]. The combination of the multi-layer perceptron (MLP) neural network with 

the particle swarm optimization (PSO) algorithm, which is based on the random production of the 

initial population, is employed in this study. Based on the hybrid mechanism, in the training phase 

objective values would be identified in MLP algorithm and put in as objective function of PSO 

technique. In order to identify the most effective input for this hybrid neural network, instead of 

traditional methods and manually testing possible scenarios, the feature selection technique, which 

is the best way to identify the features of an issue, is employed in this paper. The main point of 

this study is to use the feature selection technique to identify the most effective parameter on the 
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flexural capacity of the CFS uprights to predict and identify the deflection and ultimate flexural 

load simultaneously.  

5.4.1 Algorithm Methodology  

5.4.1.1 Multi-Layer Perceptron (MLP) Algorithm 

MLP networks can be used as powerful hyper-surface reconstruction tools, which can successfully 

map a set of multi-dimensional input data (xi; i = 1,…, N) onto a set of appropriate 

multidimensional outputs (yi; i = 1,…, N). The MLP configuration is extensively used for static 

regression applications and it consists of one input layer, one or more hidden layer(s) and one 

output layer. The MLP network utilizes a supervised learning technique called backpropagation 

for training the network. The basic element of the modified un-stabilized MLP neural network is 

shown in Figure 5-23, which performs a projection oriented mathematical operation on its inputs. 

 
Figure 5-23: Schematic representation of MLP neuron. 

 
Non-linear activation function (φ) performs a pre-defined mathematical operation over its 

argument and provides the model predictions ( )(xy ). Sigmoid, hyperbolic tangent, threshold and 

piecewise-linear basis functions are the most popular activation functions traditionally used for 

MLP networks. The MLP network is developed by assigning the synaptic weights deriving from 

a PSO algorithm in this study. As shown in Figure 5-24, additional linear weights ( Mαα ,...,1 ) are 

used in our modified MLP network. 
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Figure 5-24: Visualization of a single hidden layer MLP network. 

 
In the present study, the MLP algorithm was developed and trained by several bending test data 

obtained from the experimental tests [9] as well as the FEM results discussed in the previous 

sections. 

5.4.1.2 Particle Swarm Optimization (PSO) 

PSO is a powerful algorithm for optimization in nonlinear, non-convex and discontinuous 

environments. This algorithm is very powerful and efficient while defining many parameters. In 

this algorithm, particles are the building blocks of the population, and with the intelligence that 

they have, a certain amount of intelligence is created that is not comparable to the intelligence of 

each of them. Figure 5-25 indicates the PSO sequential flowchart. 
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Figure 5-25: PSO sequential flowchart. 

 
In this study, the PSO algorithm is employed along with MLP as a unique intelligence algorithm. 

The goal of the PSO algorithm is to find the optimal objective function.  

5.4.1.3 Feature Selection Technique (FS) 

“Feature selection” is a process of selecting a subcategory from a category of features [31]. It is 

preferable in contexts where readability and interpretability are issues of concern because the 

discounted values of the main features are preserved in the reduced space. This method of 

dimension reduction results in a qualitative database, without the removal of useful information. 

It also allows for features with different data models to be combined. The issue is of importance 

because a large number of features are often used in different applications. Therefore, the need to 

select a limited set among them becomes apparent. The feature selection process is divided into 

four parts as shown in Figure 5-26: generation procedure, evaluation function, stopping criteria 

and validation procedure. 
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Figure 5-26: Feature selection technique steps. 

 
In this study, some prominent features of CFS racking uprights are produced through one or more 

conversions on input features. While mapping points from one space with higher dimensions into 

another space with lower dimensions, a large number of points may overlap. Feature extraction 

helps to find a new dimension where a minimum number of points overlap. This approach is 

associated with the problem area and is commonly used in image processing where specific 

features are extracted in accordance with the requirements of the problem. 

5.4.1.4 MLP–PSO–FS Architecture 

The way that the algorithm works is that the MLP neural network starts learning based on the 

initial configuration. For data with relatively high complexity, learning a simple neural network 

without an optimizer may not be enough, hence using an optimizer technique is required. PSO is 

one of these techniques that is based on the collective movement of birds and fish. The optimizer 

runs at a higher level than the neural network, meaning that each MLP neural network calculation 

itself is one of the PSO optimizer particles. If the feature selection technique is needed to find the 

best combination, this technique must be performed before executing the MLP–PSO set. In this 

way, first, FS obtains all possible states from the combination of inputs and then sends the first 

state to the hybrid neural network. After obtaining the final result, FS sends the second state to the 

neural network and the results are compared with each other. The best result is maintained and 

repeated for the third case. This is done until all scenarios are completed, and finally, the best input 

combination is identified. Figure 5-27 presents the diagram of the sequential PSO–FS and MLP 

combination.  
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Figure 5-27: Flowchart of the sequential combination of hybrid MLP–PSO–FS algorithm. 

5.4.2 Performance Evaluation 

In this paper, several performance measures are employed to assess the proposed models. The R, 

NSE, RMSE, MAE and WI [32–36] are employed as the measure of precision in this study, which 

is represented as follows: 

 

 

𝑅𝑅 = ∑ (𝑂𝑂𝑖𝑖−𝑂𝑂𝚤𝚤���).(𝑃𝑃𝑖𝑖−𝑃𝑃𝚤𝚤� )𝑀𝑀
𝑖𝑖=1

�∑ (𝑂𝑂𝑖𝑖−𝑂𝑂𝚤𝚤���)2 ∑ (𝑃𝑃𝑖𝑖−𝑃𝑃𝚤𝚤� )2𝑀𝑀
𝑖𝑖=1

𝑀𝑀
𝑖𝑖=1  

                                                        (5.1)  
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𝑁𝑁𝑁𝑁𝑁𝑁 = 1 − ∑ (𝑃𝑃𝑖𝑖−𝑂𝑂𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

∑ (𝑂𝑂𝑖𝑖−𝑂𝑂𝚤𝚤���)2𝑁𝑁
𝑖𝑖=1

                                                              (5.2)  

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = �1
𝑁𝑁
∑ (𝑃𝑃𝑖𝑖 − 𝑂𝑂𝑖𝑖)2𝑁𝑁
𝑖𝑖=1                                                      (5.3)  

𝑅𝑅𝑀𝑀𝑁𝑁 = ∑ |𝑃𝑃𝑖𝑖−𝑂𝑂𝑖𝑖|𝑀𝑀
𝑖𝑖=1

𝑁𝑁
                                                                      (5.4)  

𝑊𝑊𝑊𝑊 = 1 − ∑ (𝑂𝑂𝑖𝑖−𝑃𝑃𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

∑ (|𝑃𝑃𝑖𝑖−𝑂𝑂𝚤𝚤���|+|𝑂𝑂𝑖𝑖−𝑂𝑂𝚤𝚤���|)2𝑁𝑁
𝑖𝑖=1

                                                  (5.5)  

 

 where 𝑂𝑂𝑖𝑖 and 𝑃𝑃𝑖𝑖 are the observed and predicted values, respectively; 𝑂𝑂𝚤𝚤�  and 𝑃𝑃𝚤𝚤� indicate the average 

of the observed and predicted values, respectively, and the number of data is shown by N. The R 

index [Range = (0–1); ideal value = 1] shows the suitability of the selected predictors applied for 

the prediction of the target variable. NSE [Range = (−∞, 1); ideal value = 1] is demonstrated to 

evaluate the capability of the suggested methods. The highest value of unity reveals an appropriate 

fit between the actual and measured value for which a negative value shows that the performance 

of the model is worse than the arithmetic mean of the developed models. The RMSE and MAE 

[Range = (0, +∞); ideal value = 0] are measures for assessing the accuracy, which are greater or 

equal to zero in value. WI [Range = (0, 1); ideal value = 1] is a standardized indicator for model 

prediction error. The values close to 0 demonstrate poor precision, while the values close to unity 

reveal the goodness of prediction.  

5.4.3 Algorithm Results and Discussion 

The dataset used in this research is the result of several experiments that ultimately formed 5111 

rows of information. This database has six inputs and one target output. In this investigation, 

choosing the combination of the influential input for the prediction matrix of the load MLP, which 

is tuned by PSO, is carried out as the main neural network model. The variables affecting load are 

indicated in the functional relationship as follows: 
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𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑓𝑓(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ, 𝑏𝑏𝐿𝐿𝑙𝑙𝑙𝑙𝑏𝑏, 𝑙𝑙ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑏𝑏𝑏𝑏,𝑅𝑅/𝑍𝑍𝑍𝑍.𝐹𝐹𝐹𝐹 ,𝑈𝑈𝑙𝑙𝑙𝑙 𝑅𝑅𝐿𝐿𝑀𝑀𝑙𝑙𝑙𝑙𝑙𝑙,𝑈𝑈𝑙𝑙𝑙𝑙 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) 

 

 MLPs are useful in research due to their ability to address the problems stochastically, which often 

allows approximate solutions for extremely complicated problems, such as fitness approximation. 

In this part, according to the training datasets, MLP is fitted. Therefore, MATLAB software is 

utilized to predict the load by the use of hybrid PSO with MLP. The best result is given in Table 

5-5 and Table 5-6. 

 

Table 5-5: Best achieved results in deflection estimation. 

Phase 
Network Result 

R NSE RMSE MAE WI 
Test 0.948 0.886 5.415 3.235 0.972 
Train 0.943 0.878 5.702 3.303 0.970 

 

Table 5-6: Best achieved results in normalized load estimation. 

Phase 
Network Result 

R NSE RMSE MAE WI 
Test 1.000 1.000 1.000 0.001 0.000 
Train 1.000 1.000 1.000 0.000 0.000 

 

The parameters of the PSO algorithm are population size, iterations, inertia weight, damping ratio, 

personal and global learning coefficient, which are provided in Table 5-7. The MLP neural 

network parameters are the hidden layers and training function as shown in Table 5-8. The 

parameter characteristics used for FS are also indicated in Table 5-8. 
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Table 5-7: Parameter characteristics used for PSO in this study. 

FIS Clusters Population Size Iterations Inertia Weight Dampin
g Ratio 

Learning 
Coefficient 
Personal Global 

10 150~350 45~100 1 0.99 1 2 

 
Table 5-8: Parameter characteristics used for MLP and FS in this study. 

Parameter characteristics used for MLP  
Hidden Layers Training Function 
10 Levenberg–Marquardt Backpropagation (LMBP) 
Parameter characteristics used for FS 
Number of runs Number of functions (nf) 
3 1~6 

 
Before reviewing the results, it is necessary to have a comparison between the feature selection 

technique and other neural networks and algorithms in selecting the best inputs. A database may 

have a large amount of input data but, certainly, not all inputs are suitable for use in the neural 

network, as some of them have virtually no effect on output prediction, and some may cause 

network deviation. Therefore, finding the best combination is very time consuming and tedious if 

there is a large number of work inputs. It should be noted that the implementation of the neural 

network and the study of its results for this number of repetitions is impossible considering the 

different combinations of neural network settings. Therefore, the only way to select different input 

modes and settings is based on previous experiences and initial assumptions. Using the feature 

selection technique, with only six runs, all possible input states are checked and the best 

combination is determined.  

5.4.3.1 Normalized Ultimate Load Prediction  

Following the prediction process, to predict the normalized ultimate load, available inputs are 

tested with different scenarios. As shown in Table 5-9, Table 5-10, and Table 5-11, different 

prediction patterns are presented by accuracy criteria (by adjusting best population and iteration). 

From Figure 5-28 to 5-30, it is noted that the normalized ultimate load estimation is perfectly 
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predicted by the proposed algorithm. Furthermore, as shown in the tables and graphs, the 

prediction accuracy in this study is 100%.  

 
Table 5-9: The calculated accuracy criteria for the performance of the implemented models (Iteration = 150). 

Population 
Network Result 
Training Phase Testing Phase 
R* NSE RMSE MAE WI R NSE RMSE MAE WI 

150 0.996 0.992 7.193 5.041 0.998 0.905 0.780 7.227 5.035 0.948 
250 0.996 0.992 7.244 5.270 0.998 0.907 0.798 7.199 5.246 0.951 
350 0.996 0.991 7.381 5.578 0.998 0.900 0.776 7.534 5.679 0.946 

*= Pearson’s correlation coefficient  
 

Table 5-10: The calculated accuracy criteria for the performance of the implemented models (population = 
250). 

Iteration 
Network Result 
Training Phase Testing Phase 
R NSE RMSE MAE WI R NSE RMSE MAE WI 

100 0.995 0.990 7.837 5.751 0.998 0.882 0.711 8.333 5.953 0.934 
150 0.996 0.992 7.244 5.270 0.998 0.907 0.798 7.199 5.246 0.951 
200 0.995 0.991 7.504 5.339 0.998 0.899 0.762 7.421 5.250 0.944 

 

Table 5-11: The calculated accuracy criteria for the performance of the implemented models for different 
inputs. 

Number 
of Inputs 

Network Result 

Training Phase Testing Phase 

R2 R NSE RMSE MAE WI R2 R NSE RMSE MAE WI 

1 0.885 0.941 0.870 0.035 0.026 0.969 0.991 0.935 0.854 0.038 0.028 0.965 

2 0.971 0.985 0.970 0.018 0.003 0.993 0.997 0.978 0.955 0.022 0.004 0.989 

3 1.000 1.000 1.000 0.002 0.000 1.000 1.000 1.000 0.999 0.003 0.001 1.000 

4 1.000 1.000 1.000 0.001 0.000 1.000 1.000 1.000 1.000 0.001 0.000 1.000 

5 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000 0.001 0.000 1.000 

6 0.822 0.996 0.992 7.244 5.270 0.998 0.823 0.907 0.798 7.199 5.246 0.951 
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After finding the best population, the calculations to find the optimal number of repetitions are 

performed. According to Table 5-12, the optimal number of repetitions in the test phase is obtained 

as 150. 

Table 5-12: Most effective inputs based on feature selection. 

Feature 
Number of Inputs 

1 2 3 4 5 6 

Length     X X 

Bolt distance      X 

Thickness  X X X X X 

Deflection    X X X 

Ult moment X X X X X X 

Ult load   X X X X 

 
According to the results obtained in the test phase, cases with 4 and 5 inputs obtain the same 

results. However, because it is more efficient to obtain the result with less number of inputs, the 

number of optimal inputs is chosen to be four. As shown in Table 5-12, the ultimate moment has 

the greatest impact on finding results.  

Figure 5-28 illustrates the predicted and measured load by the MLP–PSO–FS model in scatter 

diagrams. Figure 5-28a reveals the train and test phase of the model with a single input for which 

the performance parameters are shown in Table 5-11 (R2test = 0.8848, R2train = 0.9914). Figure 

5-28b shows the testing and training phase of the model with two inputs (R2test = 0.9707, R2train 

= 0.997). According to this procedure, it is obvious that the MLP–PSO–FS model shows 

acceptable performance where the number of inputs is increased to five inputs. Nevertheless, the 

MLP–PSO–FS model with six inputs does not perform well enough in comparison with other 

models. Figure 5-28d,e represents the best-achieved predictions amongst other models, although 

there is a little difference between these two models in the prediction capability which is shown in 

Table 5-11. As can be seen, some improvements in the performance of the MLP is captured by 

utilizing the PSO algorithm in such a way that the r and R2 values are increased and the RMSE 

value is decreased. The testing phase is also improved with respect to the MLP–PSO–FS model. 

Figure 5-29 indicates the capability of the models in the testing phase to predict each of the 

measured values of the test samples. As can be observed, both of the MLP–PSO–FS with four 

input models are capable of predicting most of the test samples closely. As shown in Table 5-11 
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and Figure 5-30, the best performance parameters for the PSO-FS neural network are RMSE = 

0.001, r = 1.000, R2 = 1.000, NSE = 1.000, MAE = 0, and WI = 1.000. Considering that the best 

result for RMSE is the lowest result and for r, the best positive correlation coefficient is 1, then 

numbers closer to 1 are considered better results. Additionally, for NSE and MAE, smaller results 

and for WI, larger results, indicate better performance. 

 

 



 

130 
 

 
Figure 5-28: Comparison of the predicted and measured load: (a) One input, (b) two inputs, (c) three inputs, 

(d) four input, (e) five inputs, (f) six inputs through MLP–PSO–FS model. 
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Figure 5-29: MLP–PSO–FS (4 inputs) prediction vs. experimental diagram: (above) train phase, (below) test 

phase. 
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Figure 5-30: MLP–PSO–FS (4 inputs) Error histograms: (above) train phase, (below) test phase. 

 

5.4.3.2 Deflection Prediction 

Firstly, the best number of populations needs to be found by considering a constant number of 

repetitions equal to 45. In Table 5-13, the population of 250 is identified as the best result in the 

test phase. 
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Table 5-13: The calculated accuracy criteria for the performance of the implemented models (iteration = 45). 

Population 

Network Result 

Training Phase Testing Phase 

R NSE RMSE MAE WI R NSE RMSE MAE WI 

150 0.948 0.886 5.434 3.186 0.972 0.933 0.852 6.200 3.567 0.964 

250 0.942 0.874 5.706 3.409 0.970 0.943 0.878 5.702 1.457 0.970 

350 0.944 0.879 5.594 3.354 0.971 0.936 0.856 6.093 3.623 0.966 

 

After finding the best population, the calculations to find the optimal number of repetitions are 

carried out. According to Table 5-14, the optimal number of repetitions in the test phase is 45. 

 
Table 5-14: The calculated accuracy criteria for the performance of the implemented models (population = 

250). 

Iteration 

Network Result 

Training Phase Testing Phase 

R NSE RMSE MAE WI R NSE RMSE MAE WI 

45 0.942 0.874 5.706 3.409 0.970 0.943 0.878 5.702 1.457 0.970 

75 0.948 0.886 5.415 3.235 0.972 0.932 0.848 6.297 3.583 0.964 

100 0.947 0.884 5.492 3.137 0.972 0.938 0.862 5.936 3.310 0.967 

 

Following finding the best parameters for the neural network, the optimal input combination is 

found through the feature selection technique. As mentioned earlier, this technique does not require 

testing all possible combinations, and it is sufficient to test them only once for each set of n 

(number of inputs). For example, if the best combination of inputs with four members is required 

to be determined, the network needs to be run only once and the value of nf needs to be set to six. 

Additionally, the network of six inputs that has the most impact on the answer should be selected. 

In Table 5-15 and Figure 5-31, the best value of n is specified. 
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Table 5-15: The calculated accuracy criteria for the performance of the implemented models for different 

inputs. 

Number 
of Inputs 

Network Result 
Training Phase Testing Phase 
R2 R NSE RMSE MAE WI R2 R NSE RMSE MAE WI 

1 0.493 0.702 0.046 12.000 8.788 0.807 0.496 0.704 0.097 12.504 3.893 0.803 
2 0.783 0.885 0.723 7.993 5.684 0.936 0.782 0.884 0.734 7.889 2.437 0.937 
3 0.853 0.924 0.828 6.511 4.034 0.959 0.805 0.897 0.758 7.626 1.914 0.943 
4 0.892 0.944 0.880 5.608 3.342 0.971 0.857 0.926 0.831 6.512 1.610 0.960 
5 0.897 0.947 0.885 5.441 3.242 0.972 0.870 0.933 0.839 6.279 1.545 0.963 
6 0.888 0.942 0.874 5.706 3.409 0.970 0.890 0.943 0.878 5.702 1.457 0.970 

 

As shown in Table 5-16, the results are almost the same for four or more inputs. As it is clear, the 

ultimate moment has the smallest effect and the effect of the other parameters is almost the same.  

In Figure 5-31, Figure 5-32, and Figure 5-33, the diagrams related to the six compounds are 

presented. 

 
Table 5-16: Most effective inputs based on feature selection. 

Feature 
Number of Inputs 
1 2 3 4 5 6 

Length   X X X X 
Bolt   X X X X 
Thickness    X X X 
(M/ZY.Fy)   X X X X 
Ult moment  X    X 
Ult load X X   X X 

 
Figure 5-31, Figure 5-32, and Figure 5-33 demonstrate the results of the MLP–PSO–FS models in 

the prediction of the deflection. It is obvious that predicting the deflection is faced with more 

challenges than flexural load prediction. Figure 5-31 illustrates the training and testing phase of 

the MLP–PSO–FS model with 100 iterations. Performance indices of the model in Figure 5-31a 

with 150 show that the population is noticeably better than the other two populations (R2test = 

0.8804, R2train = 0.89). Figure 5-32 illustrates optimal regression against two other population 
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with 75 iterations (R2test = 0.8772, R2train = 0.8946). Figure 5-33 illustrates that the case with 250 

population represents an enhanced model in comparison with other population models with 45 

iterations (R2test = 0.8896, R2train = 0.888). As can be realized, the MLP–PSO–FS model 

performs better with 100 iterations in the training phase. The testing phase is also improved in the 

45-iteration model. Most importantly, the close values of performance indices in the training and 

testing phases confirm the high reliability of the models.  

 
Figure 5-31: MLP–PSO–FS regression charts (iteration = 100): (a) P150, (b) P250, (c)P350. 
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Figure 5-32: MLP–PSO–FS regression charts (iteration = 75): (a) P150, (b) P250, (c)P350. 

 

 
Figure 5-33: MLP–PSO–FS regression charts (iteration = 45): (a) P150, (b) P250, (c)P350. 
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The capability of the models in the prediction of each test sample is indicated in Figure 5-34. A 

significantly close prediction of the models and the better performance of the MLP–PSO model 

can be seen in this figure. As shown in Table 5-13 and Figure 5-35, the best performance 

parameters for the PSO–FS neural network are RMSE = 5.702, r = 0.943, R2 = 0.890, NSE = 0.878, 

MAE = 1.457, and WI = 0.970. The best result for RMSE is the minor value, and for r, the best 

positive correlation coefficient is 1. The numbers closer to 1 are considered better results. For NSE 

and MAE, smaller results and for WI, larger results indicate better performance. 
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Figure 5-34: MLP–PSO–FS (6 inputs) prediction vs. experimental diagram: (above) train phase, (below) test 

phase. 
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Figure 5-35: PSO–FS (6 inputs) error histograms: (above) train phase, (below) test phase. 

 Conclusions 

In this study, in order to investigate the flexural performance of the CFS upright frames 

strengthened by an innovative reinforcement method, FEM models were developed in ABAQUS 

and verified by experimental test data. Then, in a parametric study, uprights with different 

thicknesses and lengths and reinforcement spacing were modeled and analyzed under flexural 

loading, and the results were obtained. Using ABAQUS, FEM results indicated that with closer 

reinforcements, the models show a stiffened behavior. According to the literature, FEM is capable 
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of simulating CFS section structural behavior. Additionally, in this study, the MLP–PSO hybrid 

neural network by combining the evolutionary feature selection technique was used to predict 

some major characteristics of CFS upright frames, such as “flexural strength” and “deflection”. 

The feature selection technique was used to avoid trying all possible input modes and wasting 

time. It provided the best possible input combination that may be overlooked in other methods. 

The neural network results illustrated noticeable accuracy and a fascinating prediction ability of 

the MLP algorithm along with the feature selection technique, which has compatibility with the 

literature.  

According to the FEM results, both in major and minor axis simulations, all models indicated a 

unique behavior with respect to length/thickness variation. The thicker models showed higher 

flexural capacity, especially those with shorter lengths. Moreover, taller uprights faced capacity 

loss due to buckling. This deficiency was somehow addressed by the proposed reinforcements. 

The proposed fasteners played a noticeable role as reinforcement not only in longer uprights, but 

also in thinner ones. By reducing the fastener spacing, the ultimate load of the models was 

increased.  

According to the analytical study, the FEM results were verified and proved to be authenticated 

through the training phase of the analytical analysis. The predictions were performed for both the 

deflection value and ultimate flexural load, and the accuracy of the prediction was evaluated. 

Employing a hybrid neural network based on the feature-selection technique successfully predicted 

the normalized ultimate load and the deflection. 
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 Abstract 

This study has evaluated the axial capacity of cold-formed racking upright sections strengthened 

with an innovative reinforcement method through finite element modelling and artificial 

intelligence techniques. At the first stage, several specimens with different lengths, thicknesses 

and reinforcement spacings have been modelled in ABAQUS. The finite element method (FEM) 

was employed to increase the available datasets and evaluate the proposed reinforcement method 

in different geometrical types of sections. In order to detect the most influential factors on axial 

strength, at the second stage, a feature-selection method has been carried out, employing FEM 

results, using both multi-layer perceptron and particle swarm optimisation for normalised ultimate 

load capacity prediction. In the case of accuracy evaluation, some of the rolling criteria including 

the correlation coefficient (R2), Pearson’s correlation coefficient (PR), Nash-Sutcliffe Efficiency 

(NS), Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Wilmot Index (WI) 

were used. Results showed that geometrical parameters have almost the same contribution in 

compression capacity and displacement of the specimens. According to the performance 

evaluation indexes, the best model was detected and specified in the paper and optimised by tuning 

other algorithm parameters. As a result, the normalised ultimate load and displacement were 

predicted successfully. 

Keywords: Artificial Intelligence; Finite Element Method; Cold-Formed; Rack Upright; Feature-

Selection Method; Multi-Layer Perceptron; Particle Swarm Optimization; Prediction 

 

 Introduction 

Warehousing systems are widely used to manage industrial production. Since cold-formed steel 

(CFS) sections have been developed in racking systems, steel storage systems are extensively 

employed in various industries [1-4]. Uprights are critical components of the racking systems, 

which play the same role as a column in other structures. The stability of the racking systems 

directly depends on uprights where a combination of different failure modes is probable under 

service loads [5-10]. Since racking systems typically experience extreme loading scenarios, the 

design of the uprights has become a vital task [11-16]. 
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The structural performance of the upright raking systems has been widely studied under different 

axial load scenarios. Koen [17] evaluated stub uprights to identify the effective length of the 

racking uprights under service loads by obtaining a set of reduction coefficients. Davies et al. [18] 

experimentally and numerically investigated failure modes of the stub uprights under compression. 

According to their study, limited tests are promising for designing racking uprights. According to 

the Trouncer and Rasmussen study [19], the prediction of the capacity of uprights is more decisive 

by EN 15512 [20] specifications compared to Rack Manufacturers Institute (RMI) ones. Gilbert 

and Rasmussen [21] performed general tests on racking systems to enhance EN 15512 

specifications and presented some clarifications to determine in-plane stiffness. 

The combination of different buckling modes in upright frame elements has been studied in the 

form of research programs. Dinis et al. [22] evaluated the local-distortional buckling combination 

in fixed-end CFS uprights. Based on the concept of reduced thickness, the interaction of buckling 

along with short stiffened columns was examined by Roure et al. [23]. According to their reports, 

the typical design codes were inadequate, which means the interaction of different failures and 

buckling should be calculated. Distortional buckling of upright columns was studied along 

different lengths and thicknesses by Casafont et al. [24] who finally derived a set of design 

configurations and equations for failure modes. The finite element method is a reliable approach 

for the process of data prediction and validation and is commonly conducted by FE programs such 

as ANSYS and ABAQUS. Using the relevant programs to evaluate the structural performances 

has been widely developed out in recent years. Johns Hopkins University and Griffith University 

have performed a series of optimisation tests on CFS cross-sections to achieve ‘global optimum’ 

solutions. Numerical evaluation of racking systems currently is a typical approach to derive the 

optimum values of CFS sections and upright characteristics. Two famous numerical approaches 

including finite strip method and direct strength method were conducted along the Genetic 

Algorithm (GA) to obtain the best possible upright columns [25-28]. In this study, various lengths 

and thicknesses of cold-formed uprights have been modelled by ABAQUS with different 

reinforcement distances.   

Generally, artificial intelligence (AI) techniques are able to address some of the previous 

engineering issues due to their advantages compared to classic methods [29-34]. Learning and 

mocking are two significant points of AI, which make these algorithms favourable for researchers 



 

146 
 

[35-39]. Employing optimisation techniques such as back-propagation algorithms [40], a raw 

model of Artificial neural networks (ANNs) is generally developed. ANN can solve three types of 

problems including (1) classification, (2) function-approximation and (3) time series prediction 

[41-45]. However, local extremums and difficulty in crossing plateaus of error function landscape 

are common defects of classic approaches [46-50]. In this regard, Metaheuristic (MT) optimisation 

algorithms such as GA [51], particle swarm optimisation (PSO) [52] and imperialist competitive 

algorithm (ICA) [53] can be used to address mentioned drawbacks. 

In some cases, the ANN performance can be improved by the global search feature of these 

methods. ANNs and some optimisation techniques have been recently applied for solving 

nonlinear and sophisticated engineering shortcomings. One of the ANN developments is adaptive 

neuro-fuzzy inference system (ANFIS) which has become a trending algorithm for prediction [54]. 

In medical researches, ANFIS also has been conducted for predicting a number of verified patient 

cases [55,56]. A novel combination set of ANFIS was developed in China to predict the number 

of contaminated cases from covid-19 [57]. In addition, hybrid algorithms are typically employed 

to solve multiobjective problems [58,59]. Therefore, different types of optimisation methods can 

be integrated with ANFIS to increase the accuracy and improve the performance of the employed 

algorithm. The multi-verse optimiser (MVO) approach has been combined with ANFIS to 

calculate the consumption of materials. This hybrid algorithm is utilised to solve the consumption 

rate of material and predict that from a dataset which has been derived from different areas [58]. 

According to literature few studies has investigated the CFS upright sections by AI and almost 

none has employed feature-selection method. First, FE models with different configurations were 

successfully produced and comprehensively discussed, and their noticeable specifications have 

been mentioned. Secondly, an AI approach is utilised for predicting the compression capacity of 

the upright frames and verifying the FE models. Since the neural network has a successful 

background in predicting upright section properties, a multi-layer perceptron (MLP) technique has 

been selected as the central core of the AI method. In this paper, a feature-selection based algorithm 

has also been used to find the most governing property of compressive strength and employed 

another numerical approach for verification, optimisation and prediction. Operating a hybrid 

neural network based on the feature-selection technique has successfully led to predicting the 

ultimate normalised load and the displacement. The validity of the FE results was successfully 
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proven as well. Moreover, a new developed multi-layer perceptron algorithm in combination with 

particle swarm optimisation was deployed, and obtained results have been discussed 

comprehensively.  

 Finite Element (FE) Modelling  

FE models were employed to study the effect of reinforcement spacings, including 50 mm, 100 

mm, 150 mm, 200mm, 250 mm, 300 mm, 350 mm and 400 mm, on the strength of the upright 

frames. All perforations are modeled for frames with 1800 mm, 2400 mm, 3000 mm and 3600 mm 

heights using the Abaqus package. At the first stage, the FE specifications are described and then, 

the results are checked against the tests. Finally, the effects of different reinforcement spacings are 

derived through the final FE model. 

Upright profiles are typically perforated along the length, which provides a suitable opportunity to 

install the reinforcements through their flanges or webs to strengthen racking frames. This paper 

simulated the novel fastening system, which has already been proposed in [60]. The reinforcement 

consists of bolts, nuts and spacers to connect the flanges of the open section to partially closing it. 

Figure 6-1 indicates the reinforcement system and the mechanism of its installation.  

 

 

 
Figure 6-1: The reinforcement system and the constituent elements. 
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6.3.1 Material Properties 

Material specifications have been obtained from the coupon test and deployed to accurately 

simulate the upright column material. The stress (σtrue) and strain (εtrue) could be derived using the 

following relations: 

𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  𝜎𝜎(1 + 𝜀𝜀)                              (1) (6.1) 

𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑙𝑙𝑙𝑙(1 + 𝜀𝜀) − 𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝐸𝐸

                        (2) (6.2) 

 

Where; 

 σ & ε are = stresses and strains derived from the coupon tests. 

Poisson ratio = 0.3 

E (Module of elasticity) = 200 GPa 

 

6.3.2 Connections and Interactions 

In order to specify the compression load capacity for upright frames, three kinds of interactions 

are required in the models, including upright to bracing, bracing to bracing, and bolt to upright 

interaction. Therefore, the penalty method has been utilised with 0.3 as the friction coefficient to 

simulate the tangential behaviour. Also, the surface to surface interaction with hard contact has 

been selected for the simulation. Figure 6-2 represents the quality of described interactions 

between elements and the bolt modeling in the upright frame. 
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Figure 6-2: Interaction and connection properties of a typical model 

 

6.3.3 Boundary Conditions, Loading and Mesh 

The applied load was simulated by a displacement of the reference point on the top of the upright, 

while at another end of the upright, BCs were set to simulate pined-end by fixing translation and 

allowing rotation. 

Meshes were selected from shell elements due to the small aspect ratio of the profile sections, 

which leads to accurate simulation of deformation. Figure 6-3 depicts the employed meshing 

system of the typical FE model.  
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Figure 6-3: A typical model with a Mesh matrix view on the polygon and circular perforations 
 

6.3.4 FE Model Verification 

Data were derived from test results of uprights with 1800 mm, 2400 mm, 3000 mm and 3600 mm 

height for both 1.6 mm and 2.5 mm thicknesses. Because of confidentiality reasons, the normalised 

ultimate load capacity of the sections to their gross cross-section and the mean yielding strength 

( 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
Ag × σy 

) is presented in this paper. The employed load data is derived from the normalised load 

in all figures in the article. Figure 6-4, Figure 6-5, Figure 6-6, and Figure 6-7 indicate a comparison 

between the numerical and experimental data based on normalized load-displacement curves for 

sections with 1.6 mm and 2.5 mm thicknesses, respectively. According to the diagrams, FE curves 

cover well enough the test curves, which could prove the reasonable accuracy of the FE results. 

The slight differences can be attributed to specific FE conservative solutions and possible errors 

in experimental tests. Therefore, it can be perceived that FE modelling can simulate the accurately 

performance of upright CFS sections under compression load. 
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Figure 6-4: Comparison of test and numerical results of normalised load for (a) 3600L-1.6T, (b)3600L-2.5T 

 

 
Figure 6-5: Comparison of test and numerical results of normalised load for (a) 3000L-1.6T, (b) 3000L-2.5T 
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Figure 6-6: Comparison of test and numerical results of normalised load for (a) 2400L-1.6T, (b) 2400L-2.5T 

 

 
Figure 6-7: Comparison of test and numerical results of normalised load for (a) 1800L-1.6T, (b) 1800L-2.5T 

 

6.3.5 Result and discussion  

The numerical model was successfully able to simulate the actual condition with minimum error. 

Hence, in this section, the verified FE method is utilised for a parametric study to investigate 

various uprights with different heights and thicknesses as well as different reinforcement spacings 

under axial loading. In general, eight reinforcement spacings including no-reinforcement, 50 mm, 

100 mm, 150 mm, 200 mm, 250 mm, 300 mm, 350 mm and 400 mm were considered for the 

parametric study. The numerical evaluation was conducted on four various thicknesses of 1.6 mm, 

2.0 mm, 2.5 mm and 3.0 mm of profiles as well as four different upright lengths, including 
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1800mm, 2400mm, 3000mm and 3600mm. For the sake of brevity, the models have been named 

according to Figure 6-8 in which the values are in mm. 

 

 
Figure 6-8: Designation of models. 

 

Generally, four lengths (1800 mm, 2400 mm, 3000 mm and 3600 mm) with different 

reinforcement spacings (50 mm, 100 mm, 150 mm, 200 mm, 250 mm, 300 mm, 350 mm and 400 

mm) and web thicknesses (1.6 mm, 2.0 mm, 2.5 mm and 3.0 mm) were considered for modelling 

of the upright frames. 

Figures 6-9(a)-(d) illustrate the axial behaviour of 3600 mm length upright frames with 1.6 mm, 

2.0 mm, 2.5 mm and 3.0 mm thickness, respectively. According to Figure 6-9, using shorer 

reinforcement spacing have increased ultimate load capacity among all of the models, especially 

in model with 3.0 mm thickness. It can also be understood from Figure 6-9 that increasing 

thickness could control the mode of distortional buckling. 
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Figure 6-9: Normalised load-displacement diagrams of the FE results for: (a) 3600L-1.6T, (b) 3600L-2.0T, (c) 

3600L-2.5T, and (d) 3600L-3.0T models. 
 

Figure 6-10 (a)-(d) depict the FE results of the 3000mm long models based on the normalized 

load-displacement diagram. In models with 3000 mm length, upright frames are more strengthened 

as the reinforcement spacing decreases. The models with 50 mm reinforcement spacing achieved 

the maximum ultimate capacity in all categories.  
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Figure 6-10: Normalised load-displacement diagrams of the FE results for: (a) 3000L-1.6T, (b) 3000L-2.0T, 

(c) 3000L-2.5T, and (d) 3000L-3.0T models. 
 

Figure 6-11 (a)-(d) represent the diagrams of the 2400 mm models simulation. It is clearly shown 

that using 50 mm spacing for reinforcement is the optimum choice to enhance compressive 

capacity for 2400 mm uprights. By comparing the thicknesses, the models with 2.5 mm thickness 

presented the highest normalized load capacity among other thicknesses in this case.  
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Figure 6-11: Normalised load-displacement diagrams of the FE results for: (a) 2400L-1.6T, (b) 2400L-2.0T, 

(c) 2400L-2.5T, and (d) 2400L-3.0T models. 
 

According to Figure 6-12 (a)-(d), simulations have proved that models with 1800 mm length 

follow the previous trend in the spacing pattern, where 50 mm spacing is the optimum spacing to 

increase the loading capacity of the frames with 1800 mm length.  
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Figure 6-12: Normalised load-displacement diagrams of the FE results for: (a) 1800L-1.6T, (b) 1800L-2.0T, 

(c) 1800L-2.5T, and (d) 1800L-3.0T models. 
 

In general, in all four lengths, 50 mm spacing stood in the first rank among other spacing values 

for increasing the ultimate load capacity. Figure 6-13 (a)-(d) consist of models categorised 

according to 50 mm reinforcement spacing. According to this figure, models with 1800 mm length 

and 50 mm spacing represented the highest capacity among other models. 
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Figure 6-13: Normalised load-displacement diagrams of the FE results for: (a) 3600L-50B, (b) 3000L-50B, (c) 

2400L-50B, and (d) 1800L-50B models. 
 

       According to the FE results, uprights followed almost the same trend of increasing the ultimate 

load capacities with reinforcement spacing. However, the results did not indicate the same pattern 

for different thicknesses and lengths. Figure 6-14 and Figure 6-15 represent the normalized 

ultimate load capacities of each model based on the length and thickness. 2.5 mm thickness is the 

optimum value for uprights 1800 mm and 2400 mm long. However, 3000mm and 3600mm models 

presented a different pattern, where models with 1.6 mm thickness showed the highest normalized 

ultimate capacities among other models and thicknesses, as indicated in Figure 6-15.   

 

 
Figure 6-14: Ultimate load capacities based on thickness and reinforcement spacing for (a) 1800mm models 

and (b) 2400mm models 
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Figure 6-15: Ultimate load capacities based on thickness and reinforcement spacing for (a) 3000mm models 

and (b) 3600mm models 
 

Ultimate normalised values are given in Table 6-1, Table 6-2, Table 6-3, and Table 6-4 where each 

table represents the ultimate values in order of thickness and reinforcement spacing. Table 6-1 

represented 3600mm model values, where 50 mm spacing is the optimum value for reinforcing 

pitch along the upright length. According to Table 6-1, 50 mm spacing has increased the ultimate 

compressive capacity by 9.1%, 9.55%, 19.2% and 25.94% for 1.6mm, 2.0mm, 2.5mm and 3.0mm 

thicknesses, respectively. Table 6-2 demonstrated the ultimate normalized compressive capacities 

for 3000 mm models enhanced by 11.24%, 12.21%, 19.8% ,and 27.64% for 1.6mm, 2.0mm, 

2.5mm and 3.0mm thicknesses, respectively. However, these values for 2400 mm models are 

17.6%, 22.53%, 22.25%, and 42.19%, respectively (Table 6-3). Finally, according to Table 6-4, 

models with 1800 mm length have represented the best compressive performance with 50 mm 

spacing. In this case, the increased values are 40%, 45%, 49.1% and 49.9% for 1.6 mm, 2.0 mm, 

2.5 mm and 3.0 mm thicknesses. 

Table 6-1: Ultimate normalized compressive capacities for 3600 mm models based on reinforcement spacing 
3600 
mm NoB 400B 350B 300B 250B 200B 150B 100B 50B 

1.6T 0.320 0.324 0.329 0.334 0.338 0.345 0.345 0.347 0.349 

2.0T 0.267 0.274 0.283 0.286 0.288 0.291 0.291 0.292 0.293 

2.5T 0.266 0.290 0.297 0.302 0.305 0.311 0.314 0.315 0.317 

3.0T 0.244 0.266 0.273 0.284 0.292 0.299 0.304 0.305 0.307 



 

160 
 

 

 

Table 6-2: Ultimate normalized compressive capacities for 3000 mm models based on reinforcement spacing 
3000mm NoB 400B 350B 300B 250B 200B 150B 100B 50B 

1.6T 0.466 0.476 0.488 0.496 0.503 0.511 0.511 0.514 0.518 

2.0T 0.397 0.410 0.423 0.429 0.434 0.438 0.441 0.443 0.445 

2.5T 0.367 0.404 0.411 0.419 0.424 0.429 0.435 0.438 0.440 

3.0T 0.364 0.407 0.416 0.431 0.442 0.450 0.457 0.461 0.464 

 

Table 6-3: Ultimate normalized compressive capacities for 2400 mm models based on reinforcement spacing 
2400mm NoB 400B 350B 300B 250B 200B 150B 100B 50B 

1.6T 0.448 0.471 0.484 0.491 0.498 0.505 0.512 0.520 0.527 

2.0T 0.394 0.426 0.434 0.447 0.458 0.468 0.473 0.480 0.483 

2.5T 0.452 0.498 0.508 0.519 0.529 0.537 0.545 0.550 0.552 

3.0T 0.382 0.454 0.472 0.487 0.502 0.516 0.529 0.538 0.543 

 

Table 6-4: Ultimate normalized compressive capacities for 1800 mm models based on reinforcement spacing 
1800mm NoB 400B 350B 300B 250B 200B 150B 100B 50B 

1.6T 0.446 0.498 0.531 0.557 0.580 0.594 0.607 0.615 0.624 

2.0T 0.469 0.533 0.555 0.589 0.619 0.645 0.657 0.675 0.682 

2.5T 0.457 0.549 0.585 0.599 0.608 0.624 0.656 0.671 0.682 

3.0T 0.428 0.523 0.547 0.566 0.587 0.606 0.623 0.635 0.642 

  

Overall, investigation of FE results for uprights under compression loading proves that partially 

reinforced sections have considerable higher capacities under applied loads, which reveals the 

outstanding effectiveness of the proposed reinforcement method. 
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 Artificial Intelligence Prediction  

In this paper, a combination of MLP with PSO algorithm based on the random production of the 

initial population is utilised. PSO is a universal method of minimisation that can be employed to 

deal with problems whose answer is a point or surface in n-dimensional space. In this case, a 

random population is assumed, and an initial velocity is assigned to them as well as channels of 

communication between the particles. These particles then move in the response space, and 

findings are calculated according to the "competency criterion" after each time interval. Over time, 

particles accelerate toward the particles with a higher competency standard and are in the same 

communication group. Although each technique performs well in many problems, it has shown 

great success in solving ongoing optimisation problems. In order to identify the most influential 

input, the feature selection technique is employed instead of traditional methods, which is the best 

way to identify the features of an issue. In other words, the main purpose of this study is to utilise 

the feature selection technique to determine the most influential parameter on the prediction of 

compression capacity of the CFS upright columns and verify the displacement and ultimate axial 

load simultaneously.  

6.4.1 Algorithm methodology  

6.4.1.1 Multi-layer perceptron (MLP) 

Feed-forward multi-layer perceptron (MLP) networks can be used as powerful hyper-surface 

reconstruction tools which are able to successfully map a set of multi-dimensional input data 
( )Nixi ,...,1; =  onto a set of appropriate multi-dimensional outputs ( )Niy

i
,...,1; = . The MLP 

configuration has been extensively utilised for static regression applications, and it consists of one 

input layer, one or more hidden layer(s) and one output layer. In addition, the MLP network 

employs a supervised learning technique called backpropagation for training the network. 

The fundamental element of the modified un-stabilized MLP neural network is shown in Figure 

6-16, which performs a projection oriented mathematical operation on its inputs (Figure 6-17). 
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Figure 6-16: Schematic representation of MLP neuron. 

 

 
Figure 6-17: Flowchart of typical single line hidden layer MLP for identifying a problem. 

 

In the present study, a particular kind of ANN called multi-layer perceptron (MLP) was developed 

and trained by data obtained from several experimental tests and FEM models. 

6.4.1.2 Particle swarm optimisation (PSO) 

PSO is a robust algorithm for optimisation in nonlinear, non-convex and discontinuous 

environments. Using the PSO algorithm, all kinds of optimisation problems, both continuous and 

discrete, can be solved. This algorithm has major capabilities and efficiently optimise while 

defining many parameters. In this algorithm, particles (inputs) are the building blocks of the 

population and work together. With the intelligence they have, a certain amount of intelligence is 
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created that is not comparable to the intelligence of each of them. For this reason, it is called swarm 

intelligence. The most important feature of any particle is its position, and the critical issue is what 

indicator or target the particle offers and how fast it moves (Figure 6-18). 

 
Figure 6-18: PSO sequential flowchart 

 

In this study, the PSO algorithm has been employed along with MLP as a unique intelligence 

algorithm. The goal of the PSO algorithm is to find the optimal objective function. 

6.4.1.3 Feature selection (FS) technique 

Feature selection (FS) in various machine learning and data mining fields is a subset of feature 

extraction. This technique is preferred in cases where the readability and interpretation of the 

subjects are important because the discounted values are preserved as the main features in the 

reduced space. This method of dimensionality leads to the creation of a quality database without 

deleting helpful information. It also allows combining features with different data models. This 

task is essential because a large number of features are often used in different applications. 

Therefore, the need to choose a limited set from them becomes apparent. Furthermore, limitations 

and considerations such as avoiding the problems of dimensionality, memory limitations, reducing 
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computations required and running time require selecting the minimum number of features that 

can be used to predict future data. The feature selection process is divided into four parts: 

production method, performance evaluation, stop criteria, and validation method (Figure 6-19). 

 
Figure 6-19: Feature selection technique steps 

 

In this study, some of the noticeable features of CFS frames including bolt distance, section 

thickness, upright length and ultimate load capacity are generated through one or more conversions 

on the input features. While mapping points from one ample space to another in a smaller space, 

many points may overlap. Feature extraction helps to find new dimensions that have the minimum 

overlapping. This approach is related to the problem area and is commonly used in image 

processing, where specific features are extracted according to the requirements of the problem.  

6.4.1.4 MLP-PSO-FS architecture 

Figure 6-20 shows a sequential combination diagram of PSO-FS and MLP. In PSO, congestion 

generally begins with a set of random solutions, and each one is called a particle. Likewise, the 

particle swarm moves in complex space. A function (f) is evaluated at each step by input. In the 

global version of the PSO, pi represents the most appropriate point in the entire population. A new 

velocity is obtained for each i particle in each iteration according to the best individual 

neighbourhood positions (pi (t) ⇀ and pi⇀ig (t)). The new speed can be obtained as follows: 
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𝑣𝑣𝑖𝑖 ⇀ (𝑙𝑙 + 1) = 𝑤𝑤𝑣𝑣𝑖𝑖 ⇀ (𝑙𝑙) + 𝑖𝑖1∅1 ⇀. �𝑝𝑝𝑖𝑖 ⇀ (𝑙𝑙) − 𝑥𝑥𝑖𝑖 ⇀ (t)� + 𝑖𝑖2∅2 ⇀. �𝑝𝑝𝑖𝑖 ⇀ (𝑙𝑙) − 𝑥𝑥𝑖𝑖 ⇀ (t)�      (6.3) 

 

As long as the speed exceeds the specified limit, it will be reset to its proper range in some cases. 

Depending on the speed, each particle changes its position according to the following equation: 

𝑏𝑏𝑖𝑖 ⇀ (𝑙𝑙 + 1) = 𝑏𝑏𝑖𝑖 ⇀ (𝑙𝑙) + 𝑣𝑣𝑖𝑖 ⇀ (𝑙𝑙 + 1)                                          (6.4) 

Where:  

si⇀ = particle’s position 

vi⇀ = particle’s velocity 

pi⇀ = most appropriate position 

w = inertia weight 

c1 and c2 = acceleration coefficients  

∅1⇀ and ∅2⇀ = uniformly-distributed random vectors in [0,1] 
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Figure 6-20: flowchart of the sequential combination of hybrid MLP-PSO-FS algorithm. 

 

6.4.1.5 Performance Evaluation 

In this paper, five objective criteria, including R, NS, RMSE, MAE and WI, have been used to 

evaluate the accuracy of the results and the reliability of the proposed neural network [27-30,43]. 

Nash-Sutcliffe (NS) efficiency is a normalised statistic that determines the relative amount of 

residual variance compared to the variance of calculation (Nash and Sutcliffe [61]). The Nash-

Sutcliffe performance shows how well the observed data graph versus the simulated one 

corresponds to a 1: 1 line. NS = 1 corresponds to the model of full compliance with the observed 

data. NS = 0, indicating that the model predictions are as accurate as the average of the observed 

data, Inf <NS <0, indicates that the observed average is a better prediction of the model. Mean 

absolute error (MAE) and mean square error (RMSE) are two of the most common criteria used 

to measure the accuracy of continuous variables. MAE measures the average size of errors in a set 
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of predictions regardless of their direction. This average test is the absolute difference between 

prediction and actual observation that all individual differences have equal weight. RMSE is a 

quadratic scoring rule that also measures the average error rate. This square root is the average 

square difference between prediction and actual observation. From an interpretation point of view, 

MAE is superior among other criteria . RMSE does not describe moderate error alone and has 

other implications that are more difficult to understand. On the other hand, one of the distinct 

advantages of RMSE over MAE is that RMSE avoids the use of absolute values, which is 

undesirable in many mathematical calculations. 

 

𝑅𝑅 =
∑ (𝑂𝑂𝑖𝑖 − 𝑂𝑂𝚤𝚤� ). (𝑃𝑃𝑖𝑖 − 𝑃𝑃𝚤𝚤�)𝑀𝑀
𝑖𝑖=1

�∑ (𝑂𝑂𝑖𝑖 − 𝑂𝑂𝚤𝚤� )2 ∑ (𝑃𝑃𝑖𝑖 − 𝑃𝑃𝚤𝚤�)2𝑀𝑀
𝑖𝑖=1

𝑀𝑀
𝑖𝑖=1  

          [Range =  (0– 1);  superior value = 1] 

 

(6.5) 

𝑁𝑁𝑁𝑁 = 1 −
∑ (𝑃𝑃𝑖𝑖 − 𝑂𝑂𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

∑ (𝑂𝑂𝑖𝑖 − 𝑂𝑂𝚤𝚤� )2𝑁𝑁
𝑖𝑖=1

                              [Range =  (−∞, 1);  superior  value = 1] 

 

(6.6) 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁 = �
1
𝑁𝑁
�(𝑃𝑃𝑖𝑖 − 𝑂𝑂𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

                          [Range =  (0, +∞);  superior  value =  0]  

 

(6.7) 

𝑅𝑅𝑀𝑀𝑁𝑁 =
∑ |𝑃𝑃𝑖𝑖 − 𝑂𝑂𝑖𝑖|𝑀𝑀
𝑖𝑖=1

𝑁𝑁
                                    [Range =  (0, +∞);  superior  value =  0] 

 

(6.8) 

𝑊𝑊𝑊𝑊 = 1 −
∑ (𝑂𝑂𝑖𝑖 − 𝑃𝑃𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

∑ (|𝑃𝑃𝑖𝑖 − 𝑂𝑂𝚤𝚤� | + |𝑂𝑂𝑖𝑖 − 𝑂𝑂𝚤𝚤� |)2𝑁𝑁
𝑖𝑖=1

    [Range =  (0,1);  outstanding value =  1]  

 

(6.9) 

 

Where: 

 𝑂𝑂𝑖𝑖 and 𝑃𝑃𝑖𝑖 = measured and estimated values, respectively; 

 𝑂𝑂𝚤𝚤�  and 𝑃𝑃𝚤𝚤� = mean of the measured and estimated values, respectively; 
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According to equations 6.5 to 6.9, in the case of R and NS value, a higher value up to 1 represents 

a suitable fit between measured and predicted values, which negative value shows that the model's 

performance is worse than the average of the developed models. WI is a stabiliser criterion for 

prediction error, and as well as the NS criteria, the values close to 0 represents low  accuracy while 

the values close to 1 reveal the decisive estimation.  

6.4.1.6 Algorithm results and discussion 

According to several running and processes of the developed MPF (combination of MLP, PSO, 

and Feature-selection techniques), a neural network dataset has been derived and ultimately 

formed from 10511 rows of data and five-column of values. Regarding the database, this prediction 

consists of six inputs and one target output. In order to select the most suitable combination of the 

inputs for the evaluation matrix of the displacement and load, the multi-layer perceptron (MLP) 

was tuned by particle swarm optimisation (PSO) and carried out as the neural network model. The 

variables affecting load are indicated in the functional relationship as follows: 

𝑈𝑈𝑙𝑙𝑙𝑙𝑖𝑖𝑀𝑀𝐿𝐿𝑙𝑙𝑙𝑙 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑓𝑓(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ, 𝑏𝑏𝐿𝐿𝑙𝑙𝑙𝑙𝑏𝑏 𝑏𝑏𝑝𝑝𝐿𝐿𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙, 𝑙𝑙ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑏𝑏𝑏𝑏, A𝑔𝑔 × σ𝑦𝑦, 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) 

The MLP neural network is suitable for prediction, especially in problems with stochastic 

irregularities [62]. In the first stage, regarding the selected training data, MLP was fitted for the 

best possible prediction of the displacement and load separately. MATLAB (version 2019) 

software was utilised to predict the load using the MPF network. The best result is given in Table 

6-5 and Table 6-6 and for both displacement and normalized load.  

 

Table 6-5: Best achieved results for displacement estimation 

Phase 
 Network Result 

R2  R NS RMSE MAE WI 

Test 0.999 1.000 1.000 0.001 0.000 1.000 

Train 1.000 1.000 1.000 0.000 0.000 1.000 
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Table 6-6: Best achieved results for normalised load estimation 

Phase 
 Network Result 

  R2 R NS RMSE MAE WI 

Test  0.907 0.800 0.435 1.678 1.203 0.882 

Train  0.847 0.820 0.511 1.590 1.137 0.895 

 

The parameters of the PSO algorithm are population size, iterations, inertia weight, damping ratio, 

personal and global learning coefficient, which are provided in Table 6-7. MLP neural network 

parameters are hidden layers and training functions, as shown in Table 6-8. The parameter 

characteristics used for FS are also indicated in Table 6-8.  

 
Table 6-7: Parameter characteristics were used for PSO in this study. 

FIS Clusters Population Size Iterations Inertia Weight Damping Ratio Learning coefficient 

 Personal Global 

10 150~350 45~100 1 0.98 2 3 

 

 

Table 6-8: Parameter characteristics used for MLP and FS. 

Parameter characteristics used for the MLP  

Hidden Layers Training Function 

10 Levenberg-Marquardt back-propagation (LMBP) 

Parameter characteristics used for FS 

Number of runs Number of functions(nf) 

3 1~5 

 

The main reason for employing the feature-selection method along the neural network was 

eliminating the residual inputs to achieve the most precise estimation. A database may have a large 
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amount of input data, but certainly, not all inputs are suitable for use in the neural network, some 

of them have virtually no effect on output prediction, and some may cause network deviation. 

Therefore, finding the best combination is very time consuming and tedious if it has a large number 

of work inputs. Implementing the neural network and studying its results for this number of 

repetitions is impossible considering the different combinations of neural network settings. We 

may lose the best combination, but using the feature selection technique, with only five runs, all 

possible input states will be checked, and the best combination will be determined.  

 Displacement prediction 

Following the prediction process, available inputs were tested with five different scenarios to 

predict the displacement of the upright frames under the axial compressive load. Table 6-9 presents 

the five combinations of the MPF and the quality of input selection. According to this Table, the 

load itself was the most significant input on the displacement prediction, and Thickness stands in 

second place. In order to avoid ambiguity, Table 6-10 shows the best-predicted results by MPF 

network by tabulating the value of evaluation criteria for 45 and 250 as iteration and population, 

respectively.   

Table 6-9: Selected input composition based on feature-selection method for deflection case. 

Feature Number of inputs 

1 2 3 4 5 

Length    X X 

Bolt spacing   X X X 

Thickness  X X X X 

Shape factor (A𝑔𝑔  ×  σ𝑦𝑦)     X 

Axial load X X X X X 

Table 6-10: Calculated accuracy criteria for the performance of the implemented models (Iteration = 45). 
Train 

The MPF network 
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(d) and Figure 6-21(e) represent the best-achieved predictions amongst other models; also, there 

is a slight difference between these two models in the prediction capability mentioned in Table 

6-10. As can be seen, some improvement in the performance of the MLP has been resulted in this 

phase by using the PSO algorithm such that the r and R2 values have increased and the RMSE 

value has decreased.  
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Figure 6-21: Regression of the train (above charts) and test (below charts) phase results with measured values 

of displacement for (a) One input, (b) Two inputs, (c) Three inputs, (d) Four input, (e) Five inputs 
 

Considering Table 6-9 and Figure 6-21, the shape factor had an insignificant role in the prediction, 

while Figure 6-21(c) represented that the shape factor effect as an additional parameter is able to 

make a distraction in the prediction process. On the contrary, Length has a good effect on the 

precision of the displacement prediction that is shown in Figure 6-21(d) and (e). In the case of 

horizontal dots in 6-21(a) and (b) it could be related to the accidental selecting of MLP algorithm 

or some minor overtraining during the prediction phase that is insignificant and does not affect the 

prediction. Figure 6-22 shows the tolerance diagram based on the prediction and measured results 

of the models in the testing and training phase. As can be realised, both of the MPF with five input 

model have been capable of closely predicting most of the test samples.  
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Figure 6-22: The MPF (five inputs) prediction vs experimental diagram: (above) train phase, (bellow) test 

phase 
 

As shown in Table 6-10 and Figure 6-22, the best performance parameters for the MPF neural 

network are RMSE = 0.001, r = 1.000, R2 = 0.999, NS = 1.000, MAE = 0.0, WI = 1.000. 

Considering that the best result for RMSE is the lowest result and for r, the best positive correlation 

coefficient is 1, then numbers closer to 1 are considered better results. Also, for higher numbers, 

higher R2 shows a more suitable regression diagram. Also, for NS and MAE, smaller results and 

WI, larger results indicate better performance. Figure 6-23 has revealed the error histogram of the 

MPF model in the best prediction with 45 iterations and 250 populations utilising five inputs, 

where the convergence of the error in both test and train phases have shown the same pattern with 

an acceptable range.   
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Figure 6-23: The MPF (five inputs) Error histograms: (above) train phase, (bellow) test phase 

 

 Ultimate Load Prediction 

In order to find the best scenario of populations and iterations by considering an endless number 

of repetitions, and following the adjusting process, according to the feature-selection results, bolt 

spacing plays the most critical role in predicting ultimate load. Table 6-11 indicated the order of 

each input and their effect based on the combination participation. After the mentioned process, 

the model with 150 iterations and 250 populations has been selected, and the results of the 

prediction were tabulated in Table 6-12. As mentioned earlier, this technique does not require 







 

178 
 

 



 

179 
 

 
Figure 6-24: Regression of the train (above charts) and test (below charts) phase results with measured values 

of normalized load for (a) One input, (b) Two inputs, (c) Three inputs, (d) Four input, (e) Five inputs 
 

Based on Figure 6-24 and Table 6-11, shape factor has the most effect on the normalised load 

prediction. The capability of the models in the prediction of each test sample is shown in Figure 

6-25. A highly close prediction of the models and better performance of the MPF model is evident 

in this figure.  
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Figure 6-25: The MPF (five inputs) prediction vs experimental diagram: (above) train phase, (bellow) test 

phase 
 

As shown in Table 6-11 and Figure 6-25, the best performance parameters for the MPF neural 

network are RMSE = 1.678, r = 0.800, R2= 0.861, NS = 0. 435, MAE = 1.203, WI = 0.882. 

Considering that the best result for RMSE is the nominal value and for r the best positive 

correlation coefficient is 1, then numbers closer to 1 are considered better results. Also, for higher 

numbers, R2 shows a suitable regression diagram. In addition, for NS and MAE, smaller results 

and WI, larger results indicate better performance. Figure 6-26 represented the error histogram for 

the best load estimation by the developed neural network and proven the acceptable error range in 

both train and test phase with a similar convergence pattern.  
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Figure 6-26: The MPF (five inputs) Error histograms: (above) train phase, (bellow) test phase 

 

 Conclusion 

Uprights in racking systems typically deal with axial load or compressive forces, which may 

become a problem for the stability of the these structures. On the other hand, strengthening the 
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upright frames is a controversial subject for researchers to choose an optimum approach for 

reinforcing them and finding the cost-effective and low time-consuming way. In this study, a new 

reinforcement system in the CFS upright frames has been investigated by numerical approaches. 

In this study for the first time feature-selection technique has used to select the best possible input 

composition and identify the most effective parameter in the prediction of load-displacement 

results. First, FE models in ABAQUS software were created and verified by the test results. 

Therefore, models with different thicknesses, lengths, and reinforcement spacing were finally 

compared to define the system's performance. secondly, in order to predict the FE results a new 

combination of intelligence methods has been developed by integrating the evolutionary feature-

selection technique with neural network and particle swarm optimisation. The MPF network has 

been used to predict significant characteristics, including ultimate axial load and displacement. 

The feature selection technique is applied to avoid trying all possible input modes and wasting 

time. On the other hand, it provides the best possible input combination that may be overlooked in 

other methods. The dataset used contains 10511 rows of experimental data, which included 

different inputs. FE results have been successfully validated by linear regression and MPF results. 

• According to the FE results, using reinforcement more closely has increased ultimate load 

capacity among all models, especially in models with 1.6 mm thickness. By comparing the 

thicknesses, the model with 2.5 mm thickness presented the most load capacity increase 

among other thicknesses. The model with 1800 mm length and 50 mm spacing represented 

the most capacity among other models. Models with 3600 mm length were preformed more 

ductile behaviour in comparison with other models.  

• Neural network prediction revealed a harmonious relation between load and displacement. 

Results of the MPF algorithms in the displacement prediction phase represented that the 

model's prediction with 45 iterations and 250 population is better than others. Five inputs 

combination represented the best prediction of the upright displacement with the best 

performance parameters including RMSE = 0.001, r = 1.000, R2 = 0.999, NS = 1.000, MAE 

= 0, WI = 1.000. In the case of load prediction, the model with 150 iterations, 250 

population and five input combination predicted the most accurate values along best 

precision values including RMSE = 1.678, r = 0.800, R2= 0.907, NS = 0. 435, MAE = 

1.203, WI = 0.882. 
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Finally, the new reinforcing system has been successfully investigated throughout the present 

study. The models with 1800 and 2400 mm length and 2.5 mm thickness performed more 

efficiently than others; however, all simulated lengths and thicknesses represented relevant results. 

As a suggestion for further studies, other types of Intelligence approaches could be investigated to 

predict and optimise other specifications of cold-formed structures. 
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 Conclusion and Future Works 

In this research, the influence of a novel reinforcement technique was investigated on the axial and 

flexural behaviour of upright frames. Extensive axial tests were performed on 72 upright frames 

and nine single uprights with various heights and thicknesses, and then the obtained results were 

examined. In the suggested reinforcement system, bolts and spacers were attached along the 

upright height. Laboratory results indicated that once the distortional buckling failure mode 

governs, the reinforcement system is considerably influential in improving the load-bearing 

capacity. However, the applicability of this approach is not as effective for taller frames as for the 

shorter ones. This demonstrates that the proposed reinforcing technique has less influence on other 

buckling modes (flexural, torsional, flexural-torsional, and local) and mainly influences 

distortional buckling mode. Besides, thicker uprights had higher axial capacity enhancement when 

strengthened with bolts and spacers in comparison with thinner uprights. It was also found that as 

well as improving ultimate load capacity, the reinforcement had a substantial effect on the buckling 

failure mode of upright frames with low lengths (1200 mm, 1800 mm, and 2400 mm). 

In order to examine the influence of the reinforcement approach on the flexural strength of CFS 

upright sections, several empirical tests were carried out. Eighteen samples were made, and 

experimental tests of standard monotonic four-point bending tests were conducted to assess their 

bending capacity. All the samples were built with perforated CFS uprights with 2400 mm length 

and 1.6 mm thickness. Samples without reinforcement and samples with reinforcement at 200 mm 

and 300 mm pitches were examined along both their minor and major axes direction, respectively. 

For the minor axis experiment, the samples comprised single uprights. However, for the major axis 

tests, the samples were made by combining two uprights as a frame using conventional diagonal 

bracing to retain the set-up stability for precise evaluation of the flexural strength of reinforced 

and unreinforced uprights. According to the obtained results, along both the minor axis and the 

major axis experiments, the governing failure modes were local, distortional and a combination of 

them. The bending moment capacity of samples increases using the proposed reinforcement as the 

half wavelength of sections changes. Compared with unreinforced samples, the ultimate flexural 

capacity using reinforcement at 200 mm pitches is improved by about 13.8% and 17% along major 

axis and minor axis experiments, respectively.  At pitches of 300 mm, the bending moment 

capacity of reinforced samples, compared with unreinforced ones for the major axis and minor 
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axis tests increase by about 6.97% and 5.5%, respectively. It was deduced that the flexural 

performance of all open CFS sections could be improved using the considered reinforcement as a 

highly beneficial and economical method. 

In addition, in this study, FEM models were developed in ABAQUS platform and validated by 

experimental results to examine the performance of CFS upright frames strengthened by the 

reinforcement technique under axial and flexural loads. Later, in a parametric study, the axial and 

flexural behaviour of uprights with various thicknesses, lengths and reinforcement spacings were 

modelled and assessed. The results of FEM utilising ABAQUS showed that with closer 

reinforcements, the models demonstrate a stiffened behaviour as expected. It was also shown that 

FEM could simulate the structural performance of the CFS section. 

 Moreover, a feature-selection method was employed for determining the best input composition 

and identifying the most influential factor in predicting the results of load-displacement. Also, the 

evolutionary feature-selection technique was integrated with neural network and particle swarm 

optimisation to develop the new hybrid intelligent models, which were used for data prediction. In 

order to predict the important characteristics, such as ultimate axial and flexural load and 

displacement, the MPF network was employed. The feature selection method was deployed to 

reduce the processing time and avoid trying all possible input modes. On the other hand, this 

technique is able to provide the best combination of input that might be ignored in other 

approaches. The considered database includes series of laboratory and FEM data with various 

inputs. The results of FEM modellings were verified successfully by linear regression and MPF 

results. 

In the end, the new reinforcing technique was successfully investigated in the current research. 

The performance of models with 1800 and 2400 mm lengths was better than other ones, but all 

lengths and thicknesses presented improved outcomes. Besides, by using the developed neural 

network, the FEM results were verified, and considerable precision in predicting the load and 

displacement was observed. 

In future investigations, other type of CFS sections could be considered for experimental and 

numerical evaluations. Developing other types of AI algorithms is also suggested to predict and 

estimate other characteristics of CFS systems. In order to have a better understanding of the 
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performance of open perforated profiles strengthened with bolts and spacers, and other 

reinforcements methods, more experimental and numerical studies should be performed. Also, the 

FEM is required for a parametric evaluation of various types of reinforcement techniques.  
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