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The non-linear finite element method with shell elements is used to assess the 

crashworthiness of ship steel structures through collision simulations. These simulations 

need to reliably and accurately predict the energy absorbed until fracture for different 
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for the change in element size. Furthermore, to increase the crashworthiness of a 

conceptual side structure, an evaluation procedure for different scantlings is needed. The 

following features of this thesis are believed to be original. 

 

1. Non-linear finite element-based benchmarking was carried out to reveal 

inconsistencies and inaccuracies in the results of collision analysis achieved with 

different failure criteria using the same material relation and mesh size. The force and 

penetration predictions for different element sizes using the same material relation 

and failure criterion do not correspond to each other. [Paper 1] 

 

2. To overcome the inconsistency in collision simulations, the steel material’s true 

strain and stress relation is derived in a novel way from tensile experiments until 

failure on the basis of optical measurements. The discrete pixel information from the 

optical measurements serves as the basis on which the strain reference length is 

clearly defined experimentally. It is shown that the material relation can be defined 

on the basis of this strain reference length. Furthermore, the strain reference length 

can be varied. By this means good correspondence in numerical results can be 

achieved for different mesh sizes ranging from 0.88 mm to 4.4 mm, because the 

element length is equal to the strain reference length. [Paper 2] 

 

3. The material relation obtained from tensile experiments in Paper 2 is used to simulate 

a circular plate-punching experiment until fracture. Because of the element length-

dependent material relation until failure, the results are in good agreement with the 

experimental result for different element sizes. [Paper 3] 
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4. It is shown that a constant strain failure criterion suffices as close triaxiality ranges 

exist at failure for different tensile specimens. Furthermore, it is shown that the 

triaxiality at failure is equal for the tensile and plate simulations. The relation 

between the measured failure strain and the element length is presented. [Papers 2, 3, 

and 4] 

 

5. The material relation from Papers 2 and 3 is validated for complex structural 

topologies under indentation loading until fracture on the basis of existing 

experimental results. Furthermore, this material relation including failure is found to 

result in a significantly better correspondence of the predicted force and penetration 

for different element sizes, ranging from 4.4 mm to 140 mm, than present approaches 

found in the literature and in Paper 1. [Paper 4] 

 

6. To improve the crashworthiness of ship structures, a procedure is presented to 

include non-linear finite element-based collision simulations into structural 

optimisation for the conceptual design phase using the novel material relation until 

failure. A parametric finite element model is built that assigns the material relation 

and failure strain according to the element size. A particle swarm optimisation 

algorithm is used to identify the crashworthiness concept. [Paper 4] 
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1 Introduction 

1.1 Background 

A ship collision accident [1, 2] can result in severe environmental damage and 

loss of life. Looking at the IMO data [3 to 7] shows that the share of collision accidents is 

about 20% of all serious and very serious accidents. Therefore numerical simulations of 

such collisions are increasingly being performed to reveal the consequences from a 

structural point of view. These collision simulations are carried out in a quasi-static 

fashion for a collision incident, commonly consisting of a ship model that is subjected to 

a rigid right-angle indenter; see [8]. By this means the deformations of the ship side 

structure are alone in contributing to the crashworthiness. This allows the structural 

collision simulation to be uncoupled from the outer dynamics, as this approach results in 

the maximum energy to be absorbed by a specific structure. 

The finite element method is commonly used to carry out the collision 

simulations, as this numerical method is flexible and widely applicable for complex 

structures. The reduction of oil spill in tanker collisions was studied by Yamada [9], 

Urban [10] studied the crushing and fracture behaviour of high-speed craft, and 

crashworthy ship structures are studied by Törnqvist [11] and Broekhuijsen [12], bulb 

impacts on large-scale structures by Karlsson [13], and the resistance of bottom structures 

during stranding by Alsos [14]. These simulations contain highly non-linear structural 

deformations, including rupture. Therefore, the finite element analyses of ship collision 

incidents require the input of the true strain and stress relation until failure. In other 

words, the material relation and a failure criterion to determine the failure strain are 

needed. Furthermore, the analyses need to be reliable and realistic in order for the 

crashworthiness of the side structure of the ship to be increased in the conceptual design 

phase. 

In this thesis the term ‘failure strain’ denotes the strain value when fracture 

occurs, whereas the term ‘failure criterion’ is used to denote the failure of the elements 

once the failure strain is reached. The term ‘rupture’ is used to describe the existence of 

fractures in ship structures. 
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1.2 State of the Art 

Collision simulations of ship structures are increasingly being performed – see, for 

example, [11, 13, and 15 to 20] – as experimental testing is unfavourable because of the 

high cost, the long preparation time, and the need to control large forces; see [21 to 23]. 

To reduce the computational demand several simplified calculation methods have 

been developed to assess the energy absorbed during a collision incident. The most 

famous simplified calculation method was proposed by Minorsky [24]; he was the first to 

propose splitting the collision process into an external and an internal part. The basic idea 

is that the energy absorbed is a simple linear function of the volume of deformed material. 

Furthermore, several simplified calculation methods have been developed to assess the 

collapse behaviour of predefined structural elements; see, for example, [15, 25 to 32]. 

These special solutions are known to predict the energy absorption quite accurately. 

However, the major drawback of simplified analytical methods is their limited validity, 

which is a consequence of their predefined behaviour. Additionally, their underlying 

deformation mode assumptions are not necessarily valid for various scantlings. 

Therefore, finite element-based analysis of ship collision simulations has been 

performed in many commercial codes, such as LS-DYNA, ABAQUS, and 

MSC/DYTRAN, by [33 to 35]. These collision simulations are needed in order to reliably 

predict the energy to fracture for the conceptual design alternatives. The material’s true 

strain and stress relation is commonly selected in the form of a power law; see, for 

example, [36 to 42]. The power law parameters can be obtained from standard tensile 

experiments; see [43 to 47]. However, whether or not the chosen finite element length 

corresponds to the true strain and stress relation obtained remains questionable. For one 

selected finite element length, agreement between the numerical simulation and the 

tensile experiment may be achieved by an iterative procedure. Here the true strain and 

stress relation, i.e. the power material law, used as input for the simulation is changed 

until compliance with the corresponding tensile experiment is achieved [37, 38, 41 and 

42]. However, this iterative procedure can lead to wrong structural behaviour if the 

element size is changed, in which case the procedure needs to be repeated for each mesh 

size selected until compliance is reached. Therefore, the proper material relation until 

failure is of considerable importance, as it directly influences the accuracy of non-linear 

finite element simulations until fracture, such as collision simulations. 

 13 

1.2 State of the Art 

Collision simulations of ship structures are increasingly being performed – see, for 

example, [11, 13, and 15 to 20] – as experimental testing is unfavourable because of the 

high cost, the long preparation time, and the need to control large forces; see [21 to 23]. 

To reduce the computational demand several simplified calculation methods have 

been developed to assess the energy absorbed during a collision incident. The most 

famous simplified calculation method was proposed by Minorsky [24]; he was the first to 

propose splitting the collision process into an external and an internal part. The basic idea 

is that the energy absorbed is a simple linear function of the volume of deformed material. 

Furthermore, several simplified calculation methods have been developed to assess the 

collapse behaviour of predefined structural elements; see, for example, [15, 25 to 32]. 

These special solutions are known to predict the energy absorption quite accurately. 

However, the major drawback of simplified analytical methods is their limited validity, 

which is a consequence of their predefined behaviour. Additionally, their underlying 

deformation mode assumptions are not necessarily valid for various scantlings. 

Therefore, finite element-based analysis of ship collision simulations has been 

performed in many commercial codes, such as LS-DYNA, ABAQUS, and 

MSC/DYTRAN, by [33 to 35]. These collision simulations are needed in order to reliably 

predict the energy to fracture for the conceptual design alternatives. The material’s true 

strain and stress relation is commonly selected in the form of a power law; see, for 

example, [36 to 42]. The power law parameters can be obtained from standard tensile 

experiments; see [43 to 47]. However, whether or not the chosen finite element length 

corresponds to the true strain and stress relation obtained remains questionable. For one 

selected finite element length, agreement between the numerical simulation and the 

tensile experiment may be achieved by an iterative procedure. Here the true strain and 

stress relation, i.e. the power material law, used as input for the simulation is changed 

until compliance with the corresponding tensile experiment is achieved [37, 38, 41 and 

42]. However, this iterative procedure can lead to wrong structural behaviour if the 

element size is changed, in which case the procedure needs to be repeated for each mesh 

size selected until compliance is reached. Therefore, the proper material relation until 

failure is of considerable importance, as it directly influences the accuracy of non-linear 

finite element simulations until fracture, such as collision simulations. 



 14 

Furthermore, the determination of the material relation alone does not necessarily 

suffice, as the failure strain, i.e. the end point of the stress versus strain curve, depends in 

turn on the material relation. However, a significant amount of research has been 

conducted to describe criteria to determine the failure strain, for example by [11, 17, 48 to 

50], and to present their applicability; see [22, 36, 51 and 52]. However, all of these 

papers use a standard or modified power law to describe the material behaviour, and none 

of these papers identifies a clear relation between the true strain and stress relation and the 

element length. Relations to obtain an element length-dependent failure strain value are 

given by [11, 12, 17, 48 and 49]. These curve-fitting relations, known as Barba’s 

relations, are obtained on the basis of experimental measurements. However, they define 

only the end point of the standard or modified power law. This inconsistent adjustment of 

the element length with respect to the chosen true strain and stress relation can lead to 

wrong structural behaviour, as no element length dependency of the true strain and stress 

relation including failure is obtained. 

However, qualitative finite element simulations of ship collisions have been used 

to improve ship side structures through novel crashworthy side structures; see [34, 53 to 

55]. So far only Royal Schelde [56] has successfully implemented such novel side 

structures into inland waterway ships and barges. They followed a procedure similar to 

the GL assessment procedure for alternative structures [57, 58]. By this means they 

simulate a collision incident in a quasi-static fashion with a rigid striking bow. A rigid 

bow results in the absorption of the available energy by the struck ship alone, even though 

[59, 60] showed that the deformations of the striking bow absorb up to 42% of the 

available energy. However, with a rigid bow a comparison of different side structures can 

be made, as the energy absorbed until inner hull fracture is of primary interest for the 

conceptual design of the side structure. Conventional side structures, however, are usually 

not optimised for crashworthiness. Klanac et al. [61] presented an optimisation-based 

procedure to improve the crashworthiness of a conventional ship side structure. However, 

they use a power law-based material relation including failure and use solely flat bars 

with a fixed spacing to stiffen the side structure. 

1.3 Scope of Work 

In this thesis, the accuracy of force and penetration predictions from collision 

simulations for different failure criteria will be presented through a benchmark study. It 

 14 

Furthermore, the determination of the material relation alone does not necessarily 

suffice, as the failure strain, i.e. the end point of the stress versus strain curve, depends in 

turn on the material relation. However, a significant amount of research has been 

conducted to describe criteria to determine the failure strain, for example by [11, 17, 48 to 

50], and to present their applicability; see [22, 36, 51 and 52]. However, all of these 

papers use a standard or modified power law to describe the material behaviour, and none 

of these papers identifies a clear relation between the true strain and stress relation and the 

element length. Relations to obtain an element length-dependent failure strain value are 

given by [11, 12, 17, 48 and 49]. These curve-fitting relations, known as Barba’s 

relations, are obtained on the basis of experimental measurements. However, they define 

only the end point of the standard or modified power law. This inconsistent adjustment of 

the element length with respect to the chosen true strain and stress relation can lead to 

wrong structural behaviour, as no element length dependency of the true strain and stress 

relation including failure is obtained. 

However, qualitative finite element simulations of ship collisions have been used 

to improve ship side structures through novel crashworthy side structures; see [34, 53 to 

55]. So far only Royal Schelde [56] has successfully implemented such novel side 

structures into inland waterway ships and barges. They followed a procedure similar to 

the GL assessment procedure for alternative structures [57, 58]. By this means they 

simulate a collision incident in a quasi-static fashion with a rigid striking bow. A rigid 

bow results in the absorption of the available energy by the struck ship alone, even though 

[59, 60] showed that the deformations of the striking bow absorb up to 42% of the 

available energy. However, with a rigid bow a comparison of different side structures can 

be made, as the energy absorbed until inner hull fracture is of primary interest for the 

conceptual design of the side structure. Conventional side structures, however, are usually 

not optimised for crashworthiness. Klanac et al. [61] presented an optimisation-based 

procedure to improve the crashworthiness of a conventional ship side structure. However, 

they use a power law-based material relation including failure and use solely flat bars 

with a fixed spacing to stiffen the side structure. 

1.3 Scope of Work 

In this thesis, the accuracy of force and penetration predictions from collision 

simulations for different failure criteria will be presented through a benchmark study. It 



 15

will be shown that the material relation and failure criteria employed predict the force and 

penetration inconsistently for different finite element sizes. Therefore, a procedure for the 

robust crashworthiness assessment of ship structures using the non-linear finite element 

method will be developed for the conceptual design stage. This crashworthiness 

assessment will analyse various scantlings for a given collision incident, whereas a 

collision analysis would simulate a single structural alternative for an incident with one 

striking location only. Furthermore, this procedure will utilise a particle swarm 

optimisation algorithm to identify the crashworthy conceptual design alternative. During 

this optimisation procedure, the energy absorbed until inner plate rupture will be used as 

an objective. By this means a crashworthy conceptual ship side structure will be obtained, 

being a light conceptual design that should perform well during a ship collision. The basic 

requirements of the procedure are: 

1. a properly meshed finite element model of the structure to be analysed; 

2. because of the discrete nature of the meshed model, an appropriate and thus 

element length-dependent true strain and stress relation until failure is needed, 

and 

3. the collision analyses must be detailed enough to capture the local behaviour of 

the structure, yet they have to be fast enough to be implemented into 

optimisation. 

The first requirement means that the meshed finite element model has to be able to 

undergo major structural deformations caused by the indentation of the rigid bow to 

predict the force versus penetration curve until inner plate rupture sufficiently well. 

The second requirement concentrates on the correct definition of the true strain 

and stress relation until failure, i.e. the material behaviour. Therefore the true strain and 

stress relation needs to be sensitive to the chosen element length until failure is reached. 

Furthermore, it will be shown that this procedure uses the novel element length-dependent 

true strain and stress relation including failure. 

The third requirement indicates that the choice of element size and corresponding 

material relation has to allow the results of the analyses to have sufficient accuracy for the 

conceptual design phase. However, the solution time has to remain suitably short in order 

to allow its implementation into optimisation. 

In order to fulfil these criteria, a procedure to determine the true strain and stress 

relation experimentally until failure on the basis of optical measurements will be given in 
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order to improve the accuracy of the numerical collision simulations. This true strain and 

stress relation should be suitable for implementation in finite element models as the strain 

reference length will be clearly defined on the basis of the discrete pixel dimensions from 

the optical measurements. The influence of the strain reference length, indicated by the 

letters A and B, on the finite element size and material relation is given in Figure 1. It will 

be shown that the measured local failure strain serves as a criterion to delete elements to 

simulate rupture or to terminate the simulation at the point of rupture. Furthermore, this 

true strain and stress relation until failure will be used to analyse tensile, plate, and 

complex structural topologies with the finite element method. For validation the results of 

the analysis will be compared to experimental results and to existing material relations 

and failure criteria. 
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Figure 1: Symbolic element length-dependent true strain and stress relation until failure 

for numerical collision simulations 

1.4 Limitations 

Ship collision accidents involve a vast number of parameters influencing the 

consequences of the incident. Therefore, certain limitations are needed to assess the 
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crashworthiness of ship steel structures through collision simulations with the non-linear 

finite element method. Furthermore, the optimisation for crashworthiness requires the 

analysis of several thousand individual collision simulations. 

Therefore, ship dynamics are excluded from the collision simulations to assess 

crashworthiness as the energy absorption of the struck ship structure is of primary 

interest. Therefore, all processes are treated as quasi-static and strain rate effects are not 

considered. 

The striking bow is assumed to be rigid, as only the energy absorption until the 

rupture of the inner hull of the ship structure is of interest. In this way a direct comparison 

of different scantlings is possible through their calculated force versus penetration curve 

until inner hull rupture. 

The deformations of the basic plate and stiffener material are of primary interest. 

Therefore, the material behaviour of the base material is considered by means of the true 

strain and stress relation and the influence of the welding is not considered. This 

assumption suffices as stretch deformations occur primarily during the collision 

simulation. 

The accuracy of the collision analysis is applicable for the conceptual design 

stage. However, a validation with a full-scale collision experiment, performed under 

laboratory conditions with well-controlled boundaries and deformation measurements, is 

not possible, as such an experiment does not exist at present. 

 The optimisation algorithm is used as a tool to improve the conceptual design in 

each new generation; a possible global optimum from an optimisation point of view is not 

part of the scope of this thesis. 
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2 Crashworthiness analysis of ship structures 

2.1 A collision simulation benchmark study [Paper 1] 

Numerical collision simulations for three different large-scale structures are 

carried out with the finite element method with shell elements using LS-DYNA as the 

solver. A comparison of three different failure criteria is presented, as the same structural 

models are meshed equally with three different element sizes. Those failure criteria are 

according to GL [57], Peschmann [49], and Rice-Tracey and Crockcroft-Latham [11, 51]. 

All three criteria use the same power law material relation. By this means it is shown that 

the resulting force and penetration predictions do not correspond to each other if different 

element sizes – 25, 50, and 100 mm – are used for the same failure criterion and material 

relation. Furthermore, different failure criteria do not behave equally. Hence the choice of 

an element length-dependent failure strain does not suffice in its present form. 

Additionally, the power material relation is independent of the finite element size, and has 

no correspondence to the choice of failure strain determination, i.e. the failure criterion. 

Therefore, a novel procedure is needed to obtain the material’s strain and stress relation 

including failure with respect to the choice of element size. 

2.2 Procedure to determine the strain and stress relation [Paper 2] 

The common choice of the material’s true strain and stress relation in the form of 

a power law can be obtained from standard tensile experiments; see [43 to 47]. The gauge 

length for standard tensile experiments depends on the specimen’s effective length, or on 

the choice of extensometer. However, an ideal infinitesimally small gauge length to 

capture the strain localisation cannot be achieved. Furthermore, no information on the 

development of the cross-sectional area is obtained during a standard experiment. 

Therefore, Hoffmann and Vogl [62] traced the development of the cross-sectional area 

using optical measurements to obtain the strain and stress for a tensile specimen. 

However, they do not define their gauge length and the corresponding failure strain. 

Furthermore, the true strain and stress until failure are traced using the finite element 

method by [37, 43, 44, 46, 62 and 63], but no prediction of the failure strain or the gauge 

length to capture the localisation is presented. Hogström et al. [64] use optical 

measurements to obtain the true strain and stress relation on the basis of tensile 
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experiments. However, Hogström et al. focus on the determination of the point of failure 

for various strain states. 

Therefore, the determination of the material relation until failure, i.e. the true 

strain and stress relation, is shown on the basis of optical measurements, which measure 

the local displacements on the surface of the specimen. These dog-bone specimens, with 

different length-to-breadth ratios (L/B), consist of 4-mm-thick NVA and 6-mm-thick 

RAEX S275 LASER steels. The three tensile specimen types were tested with three 

specimens each. The displacement-controlled experiments are carried out with a tensile 

test machine at Växjö University, consisting of a MTS 322 Test Frame with Load Unit. 

The MTS Test Frame records the force and the resulting elongation of the specimens, in 

other words the force-elongation curve, which will be used to validate the proposed 

procedure. 

The local strain is calculated from the local displacements obtained by the optical 

measurements on the basis of a discrete amount of pixel recordings, a so-called facet. The 

discrete pixel dimensions will clearly define the strain reference length. To determine the 

stress, the cross-sectional area at any given instant is calculated on the basis of the out-of-

plane displacement measurements of the specimen. Therefore the local stress is 

determined on the basis of the minimum cross-sectional area of the specimen measured as 

a function of the strain reference length. It has been shown that this stress measure 

suffices and that corrections for the stress state as introduced by [41, 65] for standard 

tensile experiments are not needed. The gauge length, i.e. the strain reference length, is 

shown to be a function of a discrete amount of pixel recordings from the optical 

measurements. As a result the true strain and stress relation until failure is obtained in a 

manner that is dependent on the choice of strain reference length. Furthermore, this strain 

reference length is varied from 0.8 mm to 4.4 mm to show its sensitivity to the true strain 

and stress relation until failure. As an example the obtained strain and stress relations are 

shown in Figure 2 for a specimen with a length-to-breadth ratio of 8. 
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Figure 2: Measured strain and stress relation (MTS measures are plotted for comparison) 

2.3 Numerical simulations of tensile specimens [Paper 2] 

The novel true strain and stress relation until failure obtained with optical 

measurements is used to simulate a tensile experiment with the finite element method. In 

this way the proposed material relation is validated, because the numerical results are 

compared to independently measured force and elongation values from Ehlers and 

Enquist [66]. The tensile experiments are simulated using the explicit time integration 

solver LS-DYNA version 971. The structures are modelled using four noded quadrilateral 

Belytschko-Lin-Tsay shell elements. 

The finite element length is equal to the strain reference length. The finite element 

length ranges from 0.88 mm to 4.4 mm and is equal to the strain reference length for the 

tensile simulations. Because the optical measurements utilise square-shaped facets, the 

finite element has to be of a similar square shape. In this way a consistent dependency 

between the finite element size and the material relation until failure is achieved. The 

specimen is modelled between the clamping wedges only. The translational degrees of 

freedom are prohibited at one edge, whereas the other edge is subjected to a constant 

displacement of 100x the experimental speed as no dynamic effects occur. Additionally, 

the simulation time remains desirably short. The averaged experimentally determined 

strain and stress relations are implemented via Material 124 of LS-DYNA. Standard LS-
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DYNA hourglass and time step control is used. For details of the modelling and 

simulation processes see Ehlers et al. [67], Hallquist [68], and Tabri et al. [52]. 

The initiation and propagation of fracture in the specimens is modelled in LS-

DYNA by deleting the failing elements from the model. The element fails once the failure 

strain is reached. The measured local failure strain serves as a criterion to delete elements 

to simulate rupture or to terminate the simulation at the point of rupture. The material is 

assumed to follow the von Mises flow rule, and the element is deleted once the equivalent 

plastic strain reaches the measured local failure strain. It is shown that the choice of a 

constant strain failure criterion used for the tensile simulations is justified as close ranges 

of triaxiality are obtained at the point of failure for specimens with different L/B ratios 

and thicknesses. 

The force versus elongation curves from the tensile experiment simulation 

correspond to the measurements with good agreement. As an example, the force versus 

elongation curves that were obtained for a specimen with a length-to-breadth ratio of 8 

are shown in Figure 3. The simulation using the element length-dependent true strain and 

stress relation shows better convergence with changing element lengths, i.e. the strain 
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DYNA hourglass and time step control is used. For details of the modelling and 

simulation processes see Ehlers et al. [67], Hallquist [68], and Tabri et al. [52]. 
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2.4 Numerical simulations of plate specimens [Paper 3] 

The novel true strain and stress relation until failure obtained with optical 

measurements is used to simulate a plate-punching experiment with the finite element 

method. The friction coefficient used in the numerical simulation was estimated to be 0.3. 

Furthermore, it is shown that this novel true strain and stress relation is sufficiently equal 

for different specimens, i.e. the L/B ratios. In this way a universal true strain and stress 

relation until failure is obtained. The proposed material relation is validated for plate 

deformations until fracture, as the numerical results are compared to the experimental 

results from [70]. As different strain reference lengths can be used to obtain the novel true 

strain and stress relation from the optical measurements, different finite element lengths 

can be employed in the numerical model, these being 0.88, 2.2, and 4.4 mm, as both 

measurements have to be equal. In this way the same consistent dependency between the 

finite element size and the material relation until failure is achieved as for the tensile 

simulations in Paper 2. It is shown that the choice of a constant strain failure criterion 

used for the plate simulations is justified, as close ranges of triaxiality are obtained at the 

point of failure. Furthermore, it is shown that the triaxiality at failure is equal for the 

tensile and plate simulations. 

The plate-punching experiment consists of circular specimens with a radius of 170 

mm made of the same NVA steel plate as the tensile specimens. The average thickness of 

the specimens, measured with a calliper prior to the destructive experiment, is 4.12 mm. 

The specimens are subjected centrally to a hemispherical punch displacing the plate until 

fracture occurs within the plate field at 2 mm/min. The force and displacement values are 

recorded during the experiment. The force scatter occurring at a maximum of 0.64 kN or 

0.53% is very small. Therefore, the average force-displacement curve is used for 

comparison to the finite element results. The force-displacement curves show a clear 

transition from plate bending towards membrane behaviour at a displacement of 2 mm. 

Prior to fracture the force does not increase as plate thinning, i.e. the necking 

phenomenon, occurs in a circular pattern at the hemispherical punch. The circular necking 

of the plate leads to a similar fracture pattern for all specimens; for an example see Figure 

4. Fracture occurs very profoundly, causing a large crack in the plate and an immediate 

drop in the force. An initial loading and unloading test shows a very small amount of 

plastic deformation during the first cycle, vanishing, however, after the second cycle is 
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applied. Additionally, the bolt holes in the specimens show no signs of deformation for 

any specimen during the destructive test. All tests are performed in atmospheric 

conditions at a room temperature of 19.8 °C. 

The good correspondence between the numerical and experimental results 

indicates that the true strain and stress relation is suitable for plate deformation 

simulations until failure as it describes the non-linear behaviour using different element 

sizes sufficiently well; see Figure 5. Furthermore, the rupture pattern obtained by the 

finite element simulation shows good agreement with the experimental observation, 

especially for the 0.88 mm element length; see Figure 4. This agreement indicates that the 

procedure used to delete failing elements from the model represents an adequate way to 

model the fracture propagation. 

 
Figure 4: Experimental and numerical rupture pattern of the plate specimen 
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Figure 5: Finite element simulation results for the plate-punching experiment using the 

element length-dependent strain and stress relation 
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2.5 Numerical simulations of complex structures [Paper 4] 

The novel experimentally obtained element length-dependent true strain and stress 

relation until failure is used to simulate a stiffened plate indentation experiment and a 

tanker side structure with the finite element method using quadrilateral shell elements. 

The numerical results for the stiffened plate are compared to existing experimental results 

from Alsos et al. [36]. In this way the proposed material relation is verified for complex 

and large-scale structures. Furthermore, the procedure is extended to cover greater 

element lengths than the strain reference length from the optical measurements. The 

failure of individual elements is treated in accordance with the findings of Papers 2 and 3. 

For greater element lengths the true strain and stress relation is found to be independent of 

the element length, as the extent of the localisation becomes smaller than a single 

element. However, the element length-dependent failure strain is obtained according to 

experimental measurements. For small element lengths up to 4.4 mm, the failure strain is 

obtained with optical measurements, whereas the failure strain for greater element lengths 

up to 160 mm follows the natural logarithmic form of the well-known engineering strain 

at failure according to the gauge length of the specimen being 160 mm at a maximum. 

This failure strain and element length relation allows the removal of failing elements at 

the correct strain. Furthermore, it is shown on the basis of finite element simulations 

using shell and solid elements that the failure strain and stress triaxiality do not depend on 

the plate thickness. Therefore, for thin plates, with a failure mechanism primarily caused 

by stretching, the triaxiality and the failure strain do not depend on the plate thicknesses. 

The resulting force versus penetration curves using different element sizes for the 

stiffened plate are in good agreement with the existing experimental results from Alsos et 

al. [36]; see Figure 6. Furthermore, the force versus penetration results from the collision 

simulation of the tanker structure are in good agreement with each other for different 

element sizes using the novel material relation and failure strain determination. 

Additionally, the same collision simulation using an existing power law-based material 

relation and a failure criterion according to GL [57] results in a significant difference in 

results for different element sizes. 
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Figure 6: Finite element simulation of a plate stiffened with one flatbar and experimental 

results by Alsos et al. [36] 

2.6 Optimisation for crashworthiness [Paper 4] 

Optimisation with the objective of increasing the crashworthiness of ship 

structures has only been performed by Klanac et al. [61] using a genetic algorithm. 

However, their primary focus is on the relative accuracy of collision simulations, and they 

do not change the stiffener spacing or type during the collision simulation. Additionally, 

they carry out collision simulations for one striking location only. 

Therefore, this thesis presents a procedure to include non-linear finite element-

based collision simulations so as to assess the crashworthiness in optimisation; see, for 

example, Figure 7. The crashworthiness is assessed for each design alternative on the 

basis of individual collision simulations for each of four striking locations. Furthermore, 

each collision simulation is required to be fast in order for the crashworthiness of 

numerous structural alternatives to be assessed. Therefore, a right-angle collision angle is 

chosen, because it allows a quasi-static simulation approach. Arbitrary collision angles 

other than a right angle require the consideration of the outer dynamics of the ship to 

obtain the energy available for structural deformations and ship motions. However, the 

solving time for a dynamic ship collision simulation is significantly higher and thus not 

suitable for optimisation. Furthermore, an arbitrary collision angle would reduce the 

energy available to deform the conceptual ship structure. Therefore, the optimisation is 
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carried out for this case of maximum available energy for the structural deformations. 

During the optimisation, the energy absorbed in each simulation until inner plate rupture 

is calculated and averaged over the four striking locations according to their estimated 

probability of occurrence. Furthermore, the weight of each design alternative is known. In 

this way, the energy per mass (E/M) ratio is used as an objective during the optimisation 

and maximised. The choice of the E/M ratio as the optimality criterion stems from the 

fact that it combines the structural modifications and the resulting absorbed energy into 

one criterion. Furthermore, these two individual measures are in conflict with one 

another. In other words, an ‘ideal’ conceptual design would have zero mass and 

maximum energy, whereas a minimum mass concept would most probably absorb a small 

amount of energy, and a maximum energy structure most probably would have a high 

mass. Therefore, the combination of both criteria results in a structural concept which is 

the best combination in terms of weight trade-off and absorbed energy, or which is the 

closest to the ‘ideal’ structure. The optimisation algorithm itself serves as a tool to 

improve the objective from generation to generation. A particle swarm optimisation 

(PSO) algorithm – see [71, 72] – is chosen as a tool to identify the crashworthy 

conceptual design under the defined conditions. The PSO algorithm is written in 

MATLAB and is based on [73]. 

 
Figure 6: Rupture of the outer plate of the conceptual tanker 

 



 27 

Collision simulations carried out within optimisation for crashworthiness need to 

predict the energy absorbed until inner plate rupture with sufficient accuracy. Therefore 

the novel true strain and stress relation until failure based on optical measurements is used 

for the simulations and implemented into the modelling procedure in order to assign the 

material relation according to the finite element size. The finite element size ranges from 

40 mm to 140 mm, depending on the dimensions of the structural members. In order to be 

able to improve the calculation process, a parametric finite element model is presented. 

This parametric model is obtained with the ANSYS parametric design language; see 

Ehlers et al. [74]. It allows the plate thicknesses and the spacing and types of the 

stiffeners to be adjusted automatically. The explicit non-linear solver LS-DYNA is used 

for the analysis. MATLAB serves as a control shell to run the optimisation. 

As a result a conceptual tanker side structure is optimised for one right-angle 

collision with four different striking locations. The optimised conceptual design can 

absorb about 500% more energy than the initial rules-based concept, with a weight trade-

off of only 18%. The latter indicates that a simplified approach, such as Minorsky’s [24], 

does not result in a sufficient energy prediction, as the mass distribution between the 

structural elements of the ship side structure influences the energy absorbed significantly. 

However, this indicates a significant qualitative trend only, because a direct comparison 

with the weight increase of the optimised concept does not represent the deformed 

material alone, as used by Minorsky. 
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3 Discussion 

The optimised conceptual design with the highest E/M ratio has a lighter double 

bottom and deck structure, but a significantly stiffer and heavier side structure. The 

thickness of the inner bottom is increased slightly, but at the same time the stiffener size 

is reduced. This increase in thickness is a result of the local strength criteria resulting 

from the altered structural arrangement. Additionally, the webframe thickness is reduced 

slightly. Furthermore, the increased stiffness of the side structure will result in even 

higher energy absorption if the striking bow shape becomes larger, as the contact area 

increases. 

The procedure presented to optimise a ship side structure for crashworthiness 

requires a consistent material relation until failure. Therefore, the novel material relation 

developed in Papers 2 and 3 is utilised to predict the energy absorbed until inner plate 

rupture consistently. Furthermore, it is shown that the power law-based failure criterion 

according to GL – see [57] – does not predict the energy consistently for different mesh 

sizes. The latter is essential for the optimisation procedure to guarantee that the optimised 

structure absorbs more energy than the initial structure. However, the increase in energy 

can also be obtained by a different choice of steel material, such as austenitic or high-

strength steel and aluminium; see, for example, Lehmann and Peschmann [75]. However, 

the strain and stress relation of these alternative materials is not available in the literature 

in the proposed form utilised in this thesis. 

The assumption that the true stress is obtained as a function of the specimen’s cross-

sectional area is not entirely correct after localisation occurs. The specimens encounter a 

stress in the breadth and thickness directions in the necking region, in addition to the 

longitudinal stress. As a result the effective stress deviates in the necking region from the 

longitudinal stress, which is, however, used in the finite element simulations presented in 

this thesis. Additionally, the shell element formulation does not consider stresses in the 

thickness direction. Therefore only the stress over the specimen’s breadth is considered, 

along with the stress in the longitudinal specimen direction. However, the proposed 

procedure to obtain an element length-dependent strain and stress relation results in a 

significantly better force-elongation prediction until the point of failure for the different 

mesh sizes than the conventional power law fit. This indicates that power law-based 

material relations do not represent the non-linear material relation sufficiently. 
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The fracture pattern, i.e. the size of the opening in the side structure of the ship, 

becomes important if the damage stability or progressive flooding [76] assessment is of 

interest. Such investigations are being performed in the HASARD project at Chalmers 

University of Technology [77]. Furthermore, damage assessment after accidental events 

[78] requires the correct prediction of the size of the opening. However, the 

crashworthiness assessment procedure presented in this thesis compares different 

structural arrangements on the basis of the energy absorbed until inner hull rupture. If the 

fracture pattern is of importance, than an appropriate procedure needs to be identified to 

compare different fracture patterns. The procedure presented in this thesis can be 

extended to predict the size of the opening if the energy available for structural 

deformations is known. The latter can be achieved if the resulting ship motions and their 

energy consumption are assessed along with the structural deformations during the 

collision simulation [79]. In other words, the quasi-static optimisation that is presented is 

a very suitable way to compare the maximum energy absorption capacity of different 

conceptual structural arrangements as the indentation is stopped as soon as the inner hull 

ruptures. 

The influence of the weld material is not analysed within this thesis. However, the 

good correspondence of the numerical results – see Paper 3 – and experimental results 

presented by Alsos et al. [36] indicates that the behaviour of the weld material is 

sufficiently described by the proposed material relation. Alsos et al. [36] apply a scaling 

measure for the weld failure to obtain adequate results, but the properties of the weld 

material are not measured. However, in a large ship structure the majority of the energy 

will be absorbed by the plate and stiffener deformation, and whether a failing weld results 

in an increase or decrease in energy will depend on the particular structure. 

The influence of the strain rate effect is not considered in the procedure presented in 

this paper, which is in line with the assumptions presented by [14, 78 and 80]. 

Furthermore, Alsos et al. [36] present the effect of the strain rate influence on the load 

increase compared to the fully static scenario as being within a few percentage points. 

However, they base their findings on the change in global response from two different 

loading rates of their test structure and they do not study the influence of the strain rate on 

the material response alone. Therefore, with the target of obtaining a conceptual ship 

structure which performs well in a collision scenario, this influence can be neglected. 

Furthermore, a higher strain rate increases the peak load at fracture, so that the structure is 

 29 

The fracture pattern, i.e. the size of the opening in the side structure of the ship, 

becomes important if the damage stability or progressive flooding [76] assessment is of 

interest. Such investigations are being performed in the HASARD project at Chalmers 

University of Technology [77]. Furthermore, damage assessment after accidental events 

[78] requires the correct prediction of the size of the opening. However, the 

crashworthiness assessment procedure presented in this thesis compares different 

structural arrangements on the basis of the energy absorbed until inner hull rupture. If the 

fracture pattern is of importance, than an appropriate procedure needs to be identified to 

compare different fracture patterns. The procedure presented in this thesis can be 

extended to predict the size of the opening if the energy available for structural 

deformations is known. The latter can be achieved if the resulting ship motions and their 

energy consumption are assessed along with the structural deformations during the 

collision simulation [79]. In other words, the quasi-static optimisation that is presented is 

a very suitable way to compare the maximum energy absorption capacity of different 

conceptual structural arrangements as the indentation is stopped as soon as the inner hull 

ruptures. 

The influence of the weld material is not analysed within this thesis. However, the 

good correspondence of the numerical results – see Paper 3 – and experimental results 

presented by Alsos et al. [36] indicates that the behaviour of the weld material is 

sufficiently described by the proposed material relation. Alsos et al. [36] apply a scaling 

measure for the weld failure to obtain adequate results, but the properties of the weld 

material are not measured. However, in a large ship structure the majority of the energy 

will be absorbed by the plate and stiffener deformation, and whether a failing weld results 

in an increase or decrease in energy will depend on the particular structure. 

The influence of the strain rate effect is not considered in the procedure presented in 

this paper, which is in line with the assumptions presented by [14, 78 and 80]. 

Furthermore, Alsos et al. [36] present the effect of the strain rate influence on the load 

increase compared to the fully static scenario as being within a few percentage points. 

However, they base their findings on the change in global response from two different 

loading rates of their test structure and they do not study the influence of the strain rate on 

the material response alone. Therefore, with the target of obtaining a conceptual ship 

structure which performs well in a collision scenario, this influence can be neglected. 

Furthermore, a higher strain rate increases the peak load at fracture, so that the structure is 



 30 

able to absorb more energy. Therefore, the quasi-static approach presented in this thesis is 

on the conservative side, which is, however, beneficial for the conceptual stage of design. 

Several studies indicate good correspondence between large-scale collision 

experiments and numerical simulations using calibrated failure strain values; see, for 

example, [13, 81 and 82]. Furthermore, good correspondence between experimental and 

numerical simulations using existing curve fit relations to determine the failure strain has 

been reported; see, for example, [46, 83 to 85]. However, none of the papers mentioned 

uses an element length-dependent material relation until failure. Therefore, it remains in 

question how accurate the given results are, as the vital link between the material relation 

and the failure strain presented in this thesis is missing. 

The decrease in failure strain with increasing element sizes as experimentally 

confirmed in this thesis is in line with the numerical and experimental findings of [46, 65 

and 86]. Furthermore, comparative analysis performed with an arbitrary and a prior 

chosen failure strain value does not result in reliable conceptual designs as no dependency 

between the material relation, element size, and failure strain value exists; see, for 

example, [58, 87 and 88]. 
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4 Conclusions 

Collision simulations with the non-linear finite element method are presented to 

assess the crashworthiness of steel ship structures. The accuracy of the force and 

penetration predictions from collision simulations for different failure criteria existing in 

the literature is presented through a benchmark study. Insufficient correspondence exists 

between the force and penetration predictions for different finite element lengths using 

the current material relations and failure criteria. Therefore a novel finite element length-

dependent material relation including failure is presented. A procedure to determine the 

true strain and stress relation experimentally until failure on the basis of optical 

measurements is given. The local strain is identified on the basis of the strain reference 

length. The stress is determined independently of the strain on the basis of the cross-

sectional area of the specimen at any given instant as a function of the facet size. The 

decrease in the reduction of the cross-sectional area with increasing facet size accounts 

for the averaging of the specimen’s cross-section over the extent of the facet size and 

captures the overall physical behaviour. The finite element simulations are carried out 

with the finite element length equal to the strain reference lengths. These comparative 

finite element simulations show very good agreement with the independently recorded 

force-elongation curve from the MTS Test Frame. 

Plate-punching experiments are carried out to verify the applicability of the strain 

and stress relation obtained from the tensile experiments. This verification is achieved by 

finite element simulations. These simulations using the strain reference length-dependent 

and averaged strain and stress relation comply with very good agreement with the average 

plate-punching experiment. The strain and stress relation that is presented predicts the 

plate failure sufficiently well. Furthermore, non-linear finite element-based simulations 

including plate rupture, such as collision simulations, are significantly more accurate if 

the novel material relation until failure is used. The accuracy and good correspondence of 

the numerical and experimental results is maintained for different element sizes. Close 

ranges of triaxiality at failure exist for tensile and plate simulations and the triaxiality at 

failure is equal for the tensile and plate simulations. Therefore the choice of a constant 

strain failure criterion suffices for thin steel ship structures, as the deformation is 

primarily due to stretching. 
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dependent material relation including failure is presented. A procedure to determine the 

true strain and stress relation experimentally until failure on the basis of optical 

measurements is given. The local strain is identified on the basis of the strain reference 

length. The stress is determined independently of the strain on the basis of the cross-

sectional area of the specimen at any given instant as a function of the facet size. The 

decrease in the reduction of the cross-sectional area with increasing facet size accounts 

for the averaging of the specimen’s cross-section over the extent of the facet size and 

captures the overall physical behaviour. The finite element simulations are carried out 

with the finite element length equal to the strain reference lengths. These comparative 

finite element simulations show very good agreement with the independently recorded 

force-elongation curve from the MTS Test Frame. 

Plate-punching experiments are carried out to verify the applicability of the strain 

and stress relation obtained from the tensile experiments. This verification is achieved by 

finite element simulations. These simulations using the strain reference length-dependent 

and averaged strain and stress relation comply with very good agreement with the average 

plate-punching experiment. The strain and stress relation that is presented predicts the 

plate failure sufficiently well. Furthermore, non-linear finite element-based simulations 

including plate rupture, such as collision simulations, are significantly more accurate if 

the novel material relation until failure is used. The accuracy and good correspondence of 

the numerical and experimental results is maintained for different element sizes. Close 

ranges of triaxiality at failure exist for tensile and plate simulations and the triaxiality at 

failure is equal for the tensile and plate simulations. Therefore the choice of a constant 

strain failure criterion suffices for thin steel ship structures, as the deformation is 

primarily due to stretching. 
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The results of the visual failure propagation comparison presented in Paper 1 for the 

failure criteria that were applied show diverse paths, specifically the size of the opening. 

The latter is important when the damage stability or flooding simulations are of interest. 

However, the procedure presented in Papers 2 and 3 shows a good correspondence 

between the experimental fracture pattern and the numerical simulation. This indicates 

that the future application of the novel material relation can predict the size of the opening 

sufficiently. 

Furthermore, a procedure to optimise a conventional ship side structure for 

crashworthiness in the conceptual design stage is presented. This is achieved as the 

energy absorbed until inner plate rupture during a collision is used as an objective during 

the optimisation procedure. This procedure uses the novel element length-dependent true 

strain and stress relation including failure. A particle swarm algorithm is used as a tool to 

increase the crashworthiness of the conceptual design for each new generation. In this 

way a crashworthy conceptual ship side structure is obtained which can absorb 500% 

more energy than the initial rules-based concept with a structural mass increase of 18%. 
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5 Future work 

The detailed numerical and experimental analysis using the novel element length-

dependent material relation until failure and the findings presented in this thesis can 

improve the accuracy of the non-linear finite element simulations of steel structures. 

Therefore, this procedure can replace the traditional tensile experiment to determine a 

strain and stress relation until failure that is suitable for finite element simulations. 

The size of the opening after a collision event is becoming more and more 

important in the context of damage stability analysis. Therefore, the procedure presented 

here can be combined with the assessment of the motions of the ships during collision 

simulations. The energy contributing to the structural deformations will be reduced by the 

energy of the motions of the ships, and thus a realistic opening size remains for the 

simulated scenario. However, this coupled simulation and determination of the size of the 

opening requires further validation and analysis to become reliable. 

A detailed sensitivity study utilising different material models, including a scatter in 

material properties or failure criteria would be beneficial in order to further improve the 

optimisation procedure. Furthermore, this sensitivity study would present convergence to 

a single optimum conceptual design if the different material models and failure criteria 

were consistent. 

A brief discussion of the strain rate sensitivity is given in this thesis; however, the 

strain rate is not considered by the proposed procedure to obtain the material relation. A 

series of additional tensile and plate deformation experiments with different loading rates 

would outline the sensitivity of the strain rate. 

In the future this optimisation procedure can be used to find a minimum weight 

concept for a certain collision energy if the real scenario and ship types are known. This 

crashworthy conceptual design can become more realistic if the total cost is assessed 

during the optimisation and the limits of the production or shipyard technology are 

considered. Furthermore, the material relation as proposed in this thesis can be obtained 

for austenitic or high-strength steels and for aluminium. In this way the optimal 

crashworthy conceptual design can be further improved utilising various materials. 

Additionally, the proposed procedure can be used to obtain the strain and stress relation of 

the weld material. Therefore a detailed study of the topic of weld failure could be 

undertaken in order to improve the understanding of the failure of welded ship structures. 
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Additionally, if the real operational conditions and stakeholder preferences are known, 

then this procedure can easily be adjusted to account for various service loads, accident 

loads, or structural dynamics. 
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