284 research outputs found

    Uav-assisted data collection in wireless sensor networks: A comprehensive survey

    Get PDF
    Wireless sensor networks (WSNs) are usually deployed to different areas of interest to sense phenomena, process sensed data, and take actions accordingly. The networks are integrated with many advanced technologies to be able to fulfill their tasks that is becoming more and more complicated. These networks tend to connect to multimedia networks and to process huge data over long distances. Due to the limited resources of static sensor nodes, WSNs need to cooperate with mobile robots such as unmanned ground vehicles (UGVs), or unmanned aerial vehicles (UAVs) in their developments. The mobile devices show their maneuverability, computational and energystorage abilities to support WSNs in multimedia networks. This paper addresses a comprehensive survey of almost scenarios utilizing UAVs and UGVs with strogly emphasising on UAVs for data collection in WSNs. Either UGVs or UAVs can collect data from static sensor nodes in the monitoring fields. UAVs can either work alone to collect data or can cooperate with other UAVs to increase their coverage in their working fields. Different techniques to support the UAVs are addressed in this survey. Communication links, control algorithms, network structures and different mechanisms are provided and compared. Energy consumption or transportation cost for such scenarios are considered. Opening issues and challenges are provided and suggested for the future developments

    An Energy Efficient Data Collection Using Multiple UAVs in Wireless Sensor Network: A Survey Study

    Get PDF
       اليوم، مع التقدم العلمي والتكنولوجي في الروبوتات، والذكاء الاصطناعي، والسيطرة والحواسيب، المركبات البرية والجوية والبحرية قد تم الاهتمام بها. كما تم تحسين الطائرات بدون طيار (UAVs) بشكل كبير وهي مفيدة جدا للعديد من التطبيقات الهامة في الأعمال التجارية والبيئة الحضرية والعسكرية. أحد أهم استخدامات الطائرات بدون طيار في شبكات الاستشعار اللاسلكية (WSNs)  التي لديها طاقة منخفضة وقد لا تكون قادرة على الاتصال في مناطق واسعة. في هذه الحالة ، يمكن أن توفر الطائرة بدون طيار وسيلة لجمع بيانات WSN من جهاز واحد ونقلها إلى المستلم المقصود تركز هذه المقالة على مجال البحث في التطبيقات العملية للطائرات بدون طيار كجامع متنقل لشبكات الاستشعار اللاسلكية. أولا التحقيقات حول الطائرات بدون طيار المقترحة تم دراستها ومقارنة نقاط ضعفها مع بعضها البعض. وكذلك التحديات التقنية لتطبيقات الطائرات بدون طيار في شبكة الاستشعار اللاسلكية تم استكشافها.Today, with scientific and technological advances in robotics, artificial intelligence, control and computers, land, air, and sea vehicles, they have been considered. Unmanned aerial vehicles (UAVs) have also significantly improved and are very useful for many important applications in the business, urban and military environment. One of the important uses of UAVs in Wireless Sensor Networks (WSNs) is that devices with low energy and may not be able to communicate in large areas. Nevertheless, a UAV can provide a tool for collecting the data of WSN from one device and transmitting it to another device. This article focuses on the field of research on practical applications of UAVs as mobile collectors for wireless sensor networks. First, the investigations of the proposed UAV were studied and compared their weaknesses with each other. Then, the technical challenges of the applications of UAVs in the wireless sensor network were explored

    Three Dimensional UAV Positioning for Dynamic UAV-to-Car Communications

    Full text link
    [EN] In areas with limited infrastructure, Unmanned Aerial Vehicles (UAVs) can come in handy as relays for car-to-car communications. Since UAVs are able to fully explore a three-dimensional environment while flying, communications that involve them can be affected by the irregularity of the terrains, that in turn can cause path loss by acting as obstacles. Accounting for this phenomenon, we propose a UAV positioning technique that relies on optimization algorithms to improve the support for vehicular communications. Simulation results show that the best position of the UAV can be timely determined considering the dynamic movement of the cars. Our technique takes into account the current flight altitude, the position of the cars on the ground, and the existing flight restrictions.This work was partially supported by the Ministerio de Ciencia, Innovación y Universidades, Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad, Proyectos I+D+I 2018 , Spain, under Grant RTI2018-096384-B-I00, and grant BES-2015-075988, Ayudas para contratos predoctorales 2015.Hadiwardoyo, SA.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J.; Krinkin, K.; Klionskiy, D.; Hernández-Orallo, E.; Manzoni, P. (2020). Three Dimensional UAV Positioning for Dynamic UAV-to-Car Communications. Sensors. 20(2):1-18. https://doi.org/10.3390/s20020356S11820

    Formation coordination and network management of UAV networks using particle swarm optimization and software-defined networking

    Get PDF
    In recent years, with the growth in the use of Unmanned Aerial Vehicles (UAVs), UAV-based systems have become popular in both military and civil applications. The lack of reliable communication infrastructure in these scenarios has motivated the use of UAVs to establish a network as flying nodes, also known as UAV networks. However, the high mobility degree of flying and terrestrial users may be responsible for constant changes in nodes’ positioning, which makes it more challenging to guarantee their communication during the operational time. In this context, this work presents a framework solution for formation coordination and network management of UAVs, which aims to establish and maintain a set of relays units in order to provide a constant, reliable and efficient communication link among user nodes - which are performing individual or collaborative missions on its turn. Such a framework relies on a set of formation coordination algorithms - including the Particle Swarm Optimization (PSO) evolutionary algorithm -, and also considers the use of Software-defined Networking-based (SDN) communication protocol for network management. For coordination proposes, a novel particle selection criteria is proposed, which aims to guarantee network manageability of UAV formations, therefore being able to guarantee service persistence in case of nodes’ failure occurrence, as well as to provide required network performance, as a consequence. Simulations performed in OMNeT++ show the efficiency of the proposed solution and prove a promising direction of the solution for accomplishing its purposes.Em regiões de confrontos militares, em cenários pós-catástrofes naturais e, inclusive, em grandes áreas de cultivo agrícola, é comum a ausência de uma infra-estrutura préestabelecida de comunicação entre usuários durante a execução de uma ou mais operações eventuais. Nestes casos, Veículos Aéreos Não Tripulados (VANTs) podem ser vistos como uma alternativa para o estabelecimento de uma rede temporária durante essas missões. Para algumas aplicações, a alta mobilidade destes usuários podem trazem grandes desafios para o gerenciamento autônomo de uma estrutura de comunicação aérea, como a organização espacial dos nós roteadores e as políticas de encaminhamento de pacotes adotadas durante a operação. Tendo isso em vista, esse trabalho apresenta o estudo de uma solução que visa o estabelecimento e manutenção das conexões entre os usuários - nos quais executam tarefas individuais ou colaborativas -, através do uso de algoritmos de coordenação de formação - no qual inclui o algoritmo evolucionário Otimização por Enxame de Partículas -, e, também, de conceitos relacionados a Rede Definidas por Software para o gerenciamento da rede. Ainda, é proposto um novo critério de seleção das partículas do algoritmo evolucionário, visando garantir gerenciabilidade das topologias formadas e, consequentemente, a persistência do serviço em caso de falha dos nós roteadores, assim como o cumprimento de especificações desejadas para o desempenho da rede. Simulações em OMNeT++ mostraram a eficácia da proposta e sustentam o modelo proposto a fim de atingir seus objetivos

    Assessing the Performance of a Particle Swarm Optimization Mobility Algorithm in a Hybrid Wi-Fi/LoRa Flying Ad Hoc Network

    Get PDF
    Research on Flying Ad-Hoc Networks (FANETs) has increased due to the availability of Unmanned Aerial Vehicles (UAVs) and the electronic components that control and connect them. Many applications, such as 3D mapping, construction inspection, or emergency response operations could benefit from an application and adaptation of swarm intelligence-based deployments of multiple UAVs. Such groups of cooperating UAVs, through the use of local rules, could be seen as network nodes establishing an ad-hoc network for communication purposes. One FANET application is to provide communication coverage over an area where communication infrastructure is unavailable. A crucial part of a FANET implementation is computing the optimal position of UAVs to provide connectivity with ground nodes while maximizing geographic span. To achieve optimal positioning of FANET nodes, an adaptation of the Particle Swarm Optimization (PSO) algorithm is proposed. A 3D mobility model is defined by adapting the original PSO algorithm and combining it with a fixed-trajectory initial flight. A Long Range (LoRa) mesh network is used for air-to-air communication, while a Wi-Fi network provides air-to-ground communication to several ground nodes with unknown positions. The optimization problem has two objectives: maximizing coverage to ground nodes and maintaining an end-to-end communication path to a control station, through the UAV mesh. The results show that the hybrid mobility approach performs similarly to the fixed trajectory flight regarding coverage, and outperforms fixed trajectory and PSO-only algorithms in both path maintenance and overall network efficiency, while using fewer UAVs

    A Survey on UAV-Aided Maritime Communications: Deployment Considerations, Applications, and Future Challenges

    Full text link
    Maritime activities represent a major domain of economic growth with several emerging maritime Internet of Things use cases, such as smart ports, autonomous navigation, and ocean monitoring systems. The major enabler for this exciting ecosystem is the provision of broadband, low-delay, and reliable wireless coverage to the ever-increasing number of vessels, buoys, platforms, sensors, and actuators. Towards this end, the integration of unmanned aerial vehicles (UAVs) in maritime communications introduces an aerial dimension to wireless connectivity going above and beyond current deployments, which are mainly relying on shore-based base stations with limited coverage and satellite links with high latency. Considering the potential of UAV-aided wireless communications, this survey presents the state-of-the-art in UAV-aided maritime communications, which, in general, are based on both conventional optimization and machine-learning-aided approaches. More specifically, relevant UAV-based network architectures are discussed together with the role of their building blocks. Then, physical-layer, resource management, and cloud/edge computing and caching UAV-aided solutions in maritime environments are discussed and grouped based on their performance targets. Moreover, as UAVs are characterized by flexible deployment with high re-positioning capabilities, studies on UAV trajectory optimization for maritime applications are thoroughly discussed. In addition, aiming at shedding light on the current status of real-world deployments, experimental studies on UAV-aided maritime communications are presented and implementation details are given. Finally, several important open issues in the area of UAV-aided maritime communications are given, related to the integration of sixth generation (6G) advancements

    Convergence of Intelligent Data Acquisition and Advanced Computing Systems

    Get PDF
    This book is a collection of published articles from the Sensors Special Issue on "Convergence of Intelligent Data Acquisition and Advanced Computing Systems". It includes extended versions of the conference contributions from the 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS’2019), Metz, France, as well as external contributions
    corecore