828 research outputs found

    PERICLES Deliverable 4.3:Content Semantics and Use Context Analysis Techniques

    Get PDF
    The current deliverable summarises the work conducted within task T4.3 of WP4, focusing on the extraction and the subsequent analysis of semantic information from digital content, which is imperative for its preservability. More specifically, the deliverable defines content semantic information from a visual and textual perspective, explains how this information can be exploited in long-term digital preservation and proposes novel approaches for extracting this information in a scalable manner. Additionally, the deliverable discusses novel techniques for retrieving and analysing the context of use of digital objects. Although this topic has not been extensively studied by existing literature, we believe use context is vital in augmenting the semantic information and maintaining the usability and preservability of the digital objects, as well as their ability to be accurately interpreted as initially intended.PERICLE

    e-LION: Data integration semantic model to enhance predictive analytics in e-Learning

    Get PDF
    In the last years, Learning Management systems (LMSs) are acquiring great importance in online education, since they offer flexible integration platforms for organising a vast amount of learning resources, as well as for establishing effective communication channels between teachers and learners, at any direction. These online platforms are then attracting an increasing number of users that continuously access, download/upload resources and interact each other during their teaching/learning processes, which is even accelerating by the breakout of COVID-19. In this context, academic institutions are generating large volumes of learning-related data that can be analysed for supporting teachers in lesson, course or faculty degree planning, as well as administrations in university strategic level. However, managing such amount of data, usually coming from multiple heterogeneous sources and with attributes sometimes reflecting semantic inconsistencies, constitutes an emerging challenge, so they require common definition and integration schemes to easily fuse them, with the aim of efficiently feeding machine learning models. In this regard, semantic web technologies arise as a useful framework for the semantic integration of multi-source e-learning data, allowing the consolidation, linkage and advanced querying in a systematic way. With this motivation, the e-LION (e-Learning Integration ONtology) semantic model is proposed for the first time in this work to operate as data consolidation approach of different e-learning knowledge-bases hence leading to enrich on-top analysis. For demonstration purposes, the proposed ontological model is populated with real-world private and public data sources from different LMSs referring university courses of the Software Engineering degree of the University of Malaga (Spain) and the Open University Learning. [...]This work has been partially funded by the Spanish Ministry of Science and Innovation, Spain via Grant PID2020-112540RB-C41 (AEI/FEDER, UE) and Andalusian PAIDI program, Spain with grant P18-RT-2799. It has been developed in the context of PIE-17-166: Advanced Analysis of Students in Virtual Campus, and we specially thank to Carlos Romero and Rafael Gutierrez from the Virtual Campus Service of the University of Malaga for their technical support and data availability. Funding for open access charge: Universidad de Málaga /CBUA

    DARIAH and the Benelux

    Get PDF

    Magic, Miracles, and the Cultural Evolution of Pauline Christianity

    Get PDF
    Peer reviewe

    Hybrid fuzzy multi-objective particle swarm optimization for taxonomy extraction

    Get PDF
    Ontology learning refers to an automatic extraction of ontology to produce the ontology learning layer cake which consists of five kinds of output: terms, concepts, taxonomy relations, non-taxonomy relations and axioms. Term extraction is a prerequisite for all aspects of ontology learning. It is the automatic mining of complete terms from the input document. Another important part of ontology is taxonomy, or the hierarchy of concepts. It presents a tree view of the ontology and shows the inheritance between subconcepts and superconcepts. In this research, two methods were proposed for improving the performance of the extraction result. The first method uses particle swarm optimization in order to optimize the weights of features. The advantage of particle swarm optimization is that it can calculate and adjust the weight of each feature according to the appropriate value, and here it is used to improve the performance of term and taxonomy extraction. The second method uses a hybrid technique that uses multi-objective particle swarm optimization and fuzzy systems that ensures that the membership functions and fuzzy system rule sets are optimized. The advantage of using a fuzzy system is that the imprecise and uncertain values of feature weights can be tolerated during the extraction process. This method is used to improve the performance of taxonomy extraction. In the term extraction experiment, five extracted features were used for each term from the document. These features were represented by feature vectors consisting of domain relevance, domain consensus, term cohesion, first occurrence and length of noun phrase. For taxonomy extraction, matching Hearst lexico-syntactic patterns in documents and the web, and hypernym information form WordNet were used as the features that represent each pair of terms from the texts. These two proposed methods are evaluated using a dataset that contains documents about tourism. For term extraction, the proposed method is compared with benchmark algorithms such as Term Frequency Inverse Document Frequency, Weirdness, Glossary Extraction and Term Extractor, using the precision performance evaluation measurement. For taxonomy extraction, the proposed methods are compared with benchmark methods of Feature-based and weighting by Support Vector Machine using the f-measure, precision and recall performance evaluation measurements. For the first method, the experiment results concluded that implementing particle swarm optimization in order to optimize the feature weights in terms and taxonomy extraction leads to improved accuracy of extraction result compared to the benchmark algorithms. For the second method, the results concluded that the hybrid technique that uses multi-objective particle swarm optimization and fuzzy systems leads to improved performance of taxonomy extraction results when compared to the benchmark methods, while adjusting the fuzzy membership function and keeping the number of fuzzy rules to a minimum number with a high degree of accuracy

    Data Spaces

    Get PDF
    This open access book aims to educate data space designers to understand what is required to create a successful data space. It explores cutting-edge theory, technologies, methodologies, and best practices for data spaces for both industrial and personal data and provides the reader with a basis for understanding the design, deployment, and future directions of data spaces. The book captures the early lessons and experience in creating data spaces. It arranges these contributions into three parts covering design, deployment, and future directions respectively. The first part explores the design space of data spaces. The single chapters detail the organisational design for data spaces, data platforms, data governance federated learning, personal data sharing, data marketplaces, and hybrid artificial intelligence for data spaces. The second part describes the use of data spaces within real-world deployments. Its chapters are co-authored with industry experts and include case studies of data spaces in sectors including industry 4.0, food safety, FinTech, health care, and energy. The third and final part details future directions for data spaces, including challenges and opportunities for common European data spaces and privacy-preserving techniques for trustworthy data sharing. The book is of interest to two primary audiences: first, researchers interested in data management and data sharing, and second, practitioners and industry experts engaged in data-driven systems where the sharing and exchange of data within an ecosystem are critical

    Dublin Smart City Data Integration, Analysis and Visualisation

    Get PDF
    Data is an important resource for any organisation, to understand the in-depth working and identifying the unseen trends with in the data. When this data is efficiently processed and analysed it helps the authorities to take appropriate decisions based on the derived insights and knowledge, through these decisions the service quality can be improved and enhance the customer experience. A massive growth in the data generation has been observed since two decades. The significant part of this generated data is generated from the dumb and smart sensors. If this raw data is processed in an efficient manner it could uplift the quality levels towards areas such as data mining, data analytics, business intelligence and data visualisation

    Data Spaces

    Get PDF
    This open access book aims to educate data space designers to understand what is required to create a successful data space. It explores cutting-edge theory, technologies, methodologies, and best practices for data spaces for both industrial and personal data and provides the reader with a basis for understanding the design, deployment, and future directions of data spaces. The book captures the early lessons and experience in creating data spaces. It arranges these contributions into three parts covering design, deployment, and future directions respectively. The first part explores the design space of data spaces. The single chapters detail the organisational design for data spaces, data platforms, data governance federated learning, personal data sharing, data marketplaces, and hybrid artificial intelligence for data spaces. The second part describes the use of data spaces within real-world deployments. Its chapters are co-authored with industry experts and include case studies of data spaces in sectors including industry 4.0, food safety, FinTech, health care, and energy. The third and final part details future directions for data spaces, including challenges and opportunities for common European data spaces and privacy-preserving techniques for trustworthy data sharing. The book is of interest to two primary audiences: first, researchers interested in data management and data sharing, and second, practitioners and industry experts engaged in data-driven systems where the sharing and exchange of data within an ecosystem are critical

    Big Data and Artificial Intelligence in Digital Finance

    Get PDF
    This open access book presents how cutting-edge digital technologies like Big Data, Machine Learning, Artificial Intelligence (AI), and Blockchain are set to disrupt the financial sector. The book illustrates how recent advances in these technologies facilitate banks, FinTech, and financial institutions to collect, process, analyze, and fully leverage the very large amounts of data that are nowadays produced and exchanged in the sector. To this end, the book also describes some more the most popular Big Data, AI and Blockchain applications in the sector, including novel applications in the areas of Know Your Customer (KYC), Personalized Wealth Management and Asset Management, Portfolio Risk Assessment, as well as variety of novel Usage-based Insurance applications based on Internet-of-Things data. Most of the presented applications have been developed, deployed and validated in real-life digital finance settings in the context of the European Commission funded INFINITECH project, which is a flagship innovation initiative for Big Data and AI in digital finance. This book is ideal for researchers and practitioners in Big Data, AI, banking and digital finance
    corecore