1,838 research outputs found

    Activation of PPARγ by Rosiglitazone Does Not Negatively Impact Male Sex Steroid Hormones in Diabetic Rats

    Get PDF
    Peroxisome proliferator-activated receptor gamma (PPARγ) activation decreased serum testosterone (T) in women with hyperthecosis and/or polycystic ovary syndrome and reduced the conversion of androgens to estradiol (E2) in female rats. This implies modulation of female sex steroid hormones by PPARγ. It is not clear if PPARγ modulates sex steroid hormones in diabetic males. Because PPARγ activation by thiazolidinedione increased insulin sensitivity in type 2 diabetes, understanding the long term impact of PPARγ activation on steroid sex hormones in males is critical. Our objective was to determine the effect of PPARγ activation on serum and intratesticular T, luteinizing hormone (LH), follicle stimulating hormone (FSH) and E2 concentrations in male Zucker diabetic fatty (ZDF) rats treated with the PPARγ agonist rosiglitazone (a thiazolidinedione). Treatment for eight weeks increased PPARγ mRNA and protein in the testis and elevated serum adiponectin, an adipokine marker for PPARγ activation. PPARγ activation did not alter serum or intratesticular T concentrations. In contrast, serum T level but not intratesticular T was reduced by diabetes. Neither diabetes nor PPARγ activation altered serum E2 or gonadotropins FSH and LH concentrations. The results suggest that activation of PPARγ by rosiglitazone has no negative impact on sex hormones in male ZDF rats

    Cross-Talk between PPARγ and Insulin Signaling and Modulation of Insulin Sensitivity

    Get PDF
    PPARγ activation in type 2 diabetic patients results in a marked improvement in insulin and glucose parameters, resulting from an improvement of whole-body insulin sensitivity. Adipose tissue is the major mediator of PPARγ action on insulin sensitivity. PPARγ activation in mature adipocytes induces the expression of a number of genes involved in the insulin signaling cascade, thereby improving insulin sensitivity. PPARγ is the master regulator of adipogenesis, thereby stimulating the production of small insulin-sensitive adipocytes. In addition to its importance in adipogenesis, PPARγ plays an important role in regulating lipid, metabolism in mature adipocytes by increasing fatty acid trapping. Finally, adipose tissue produces several cytokines that regulate energy homeostasis, lipid and glucose metabolism. Disturbances in the production of these factors may contribute to metabolic abnormalities, and PPARγ activation is also associated with beneficial effects on expression and secretion of a whole range of cytokines

    Lesinurad, a novel, oral compound for gout, acts to decrease serum uric acid through inhibition of urate transporters in the kidney.

    Get PDF
    BackgroundExcess body burden of uric acid promotes gout. Diminished renal clearance of uric acid causes hyperuricemia in most patients with gout, and the renal urate transporter (URAT)1 is important for regulation of serum uric acid (sUA) levels. The URAT1 inhibitors probenecid and benzbromarone are used as gout therapies; however, their use is limited by drug-drug interactions and off-target toxicity, respectively. Here, we define the mechanism of action of lesinurad (Zurampic®; RDEA594), a novel URAT1 inhibitor, recently approved in the USA and Europe for treatment of chronic gout.MethodssUA levels, fractional excretion of uric acid (FEUA), lesinurad plasma levels, and urinary excretion of lesinurad were measured in healthy volunteers treated with lesinurad. In addition, lesinurad, probenecid, and benzbromarone were compared in vitro for effects on urate transporters and the organic anion transporters (OAT)1 and OAT3, changes in mitochondrial membrane potential, and human peroxisome proliferator-activated receptor gamma (PPARγ) activity.ResultsAfter 6 hours, a single 200-mg dose of lesinurad elevated FEUA 3.6-fold (p < 0.001) and reduced sUA levels by 33 % (p < 0.001). At concentrations achieved in the clinic, lesinurad inhibited activity of URAT1 and OAT4 in vitro, did not inhibit GLUT9, and had no effect on ABCG2. Lesinurad also showed a low risk for mitochondrial toxicity and PPARγ induction compared to benzbromarone. Unlike probenecid, lesinurad did not inhibit OAT1 or OAT3 in the clinical setting.ConclusionThe pharmacodynamic effects and in vitro activity of lesinurad are consistent with inhibition of URAT1 and OAT4, major apical transporters for uric acid. Lesinurad also has a favorable selectivity and safety profile, consistent with an important role in sUA-lowering therapy for patients with gout

    PAK1 modulates a PPARγ/NF-κB cascade in intestinal inflammation

    Get PDF
    P21-activated kinases (PAKs) are multifunctional effectors of Rho GTPases with both kinase and scaffolding activity. Here, we investigated the effects of inflammation on PAK1 signaling and its role in colitis-driven carcinogenesis. PAK1 and p-PAK1 (Thr423) were assessed by immunohistochemistry, immunofluorescence, and Western blot. C57BL6/J wildtype mice were treated with a single intraperitoneal TNFα injection. Small intestinal organoids from these mice and from PAK1-KO mice were cultured with TNFα. NF-κB and PPARγ were analyzed upon PAK1 overexpression and silencing for transcriptional/translational regulation. PAK1 expression and activation was increased on the luminal intestinal epithelial surface in inflammatory bowel disease and colitis-associated cancer. PAK1 was phosphorylated upon treatment with IFNγ, IL-1β, and TNFα. In vivo, mice administered with TNFα showed increased p-PAK1 in intestinal villi, which was associated with nuclear p65 and NF-κB activation. p65 nuclear translocation downstream of TNFα was strongly inhibited in PAK1-KO small intestinal organoids. PAK1 overexpression induced a PAK1–p65 interaction as visualized by co-immunoprecipitation, nuclear translocation, and increased NF-κB transactivation, all of which were impeded by kinase-dead PAK1. Moreover, PAK1 overexpression downregulated PPARγ and mesalamine recovered PPARγ through PAK1 inhibition. On the other hand PAK1 silencing inhibited NF-κB, which was recovered using BADGE, a PPARγ antagonist. Altogether these data demonstrate that PAK1 overexpression and activation in inflammation and colitis-associated cancer promote NF-κB activity via suppression of PPARγ in intestinal epithelial cells

    Short-term therapy with rosiglitatzone, a PPAR-¿ agonist improves metabolic profile and vascular function in non-obese lean wistar rats

    Get PDF
    A number of preclinical and clinical studies have reported blood-pressure-lowering benefits of thiazolidinediones in diabetic subjects and animal models of diabetes. This study was designed to further elucidate vascular effects of rosiglitazone, on healthy nonobese, lean animals. Adult male Wistar rats were randomized and assigned to control and rosiglitazone-treated groups and were dosed daily with either vehicle or rosiglitazone (10 mg kg(−1) day(−1)) by oral gavage for 5 days. Compared with control group, rosiglitazone treatment significantly reduced plasma levels of triglycerides (>240%) and nonesterified free fatty acids (>268%) (both, P < 0.001). There were no changes in vascular contractility to KCl or noradrenaline between two groups. However, rosiglitazone therapy improved carbamylcholine-induced vasorelaxation (93 ± 3 % versus control 78 ± 2, P < 0.01) an effect which was abolished by L-NAME. There was no difference in sodium nitroprusside-induced vasorelaxation between the control and rosiglitazone-treated animals. These results indicate that short-term rosiglitazone therapy improves both metabolic profile and vascular function in lean rats. The vascular effect of rosiglitazone appears to be mediated by alteration in NO production possibly by activation of endothelial PPARγ. This increased NO production together with improved lipid profile may explain mechanism(s) of blood-pressure-lowering effects of thiazolidinediones on both human and experimental animals

    Cyclic phosphatidic acid decreases proliferation and survival of colon cancer cells by inhibiting peroxisome proliferator-activated receptor gamma

    Get PDF
    Cyclic phosphatidic acid (CPA) a structural analog of lysophosphatidic acid (LPA) is one of the simplest phospholipids found in every cell type cPA is a specific high-affinity antagonist of peroxisome proliferator-activated receptor gamma (PPAR gamma) however the molecular mechanism by which cPA inhibits cellular proliferation remains to be clarified In this study we found that inhibition of PPAR gamma prevents proliferation of human colon cancer HT-29 cells CPA suppressed cell growth and this effect was reversed by the addition of a PPAR gamma agonist These results indicate that the physiological effects of cPA are partly due to PPAR gamma inhibition Our results identify PPAR gamma as a molecular mediator of CPA activity in HT-29 cells and suggest that cPA and the PPAR gamma pathway might be therapeutic targets in the treatment of colon cancerArticlePROSTAGLANDINS & OTHER LIPID MEDIATORS. 93(3-4):126-133 (2010)journal articl

    THE EFFECT OF PPARγ ACTIVATION BY PIOGLITAZONE ON THE LIPOPOLYSACCHARIDE-INDUCED PGE\u3csub\u3e2\u3c/sub\u3e AND NO PRODUCTION: POTENTIALUNDERLYING ALTERATION OF SIGNALING TRANSDUCTION

    Get PDF
    Microglia-mediated neuroinflammation plays an important role in the pathogenesis of Parkinson\u27s disease (PD). Uncontrolled microglia activation produces major proinflammatory factors including cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS) that may cause dopaminergic neurodegeneration. Peroxisome proliferator-activated receptor γ (PPARγ) agonist pioglitazone has potent antiinflammatory property. We hypothesize pioglitazone protects dopaminergic neuron from lipopolysaccharide (LPS)-induced neurotoxicity by interacting with relevant signal pathways, inhibiting microglial activation and decreasing inflammatory mediators. First, the neuroprotection of pioglitazone was explored. Second, the signaling transductions such as jun N-terminal kinase (JNK) and the interference with these pathways by pioglitazone were investigated. Third, the effect of pioglitazone on these pathways-mediated PGE2 / nitric oxide (NO) generation was investigated. Finally, the effect of PPARγ antagonist on the inhibition of PGE2 / NO by pioglitazone was explored. The results show that LPS neurotoxicity is microglia-dependent, and pioglitazone protects neurons against LPS insult possibly by suppressing LPS-induced microglia activation and proliferation. Second, pioglitazone protects neurons from COX-2 / PGE2 mediated neuronal loss by interfering with the NF-κB and JNK, in PPARγ-independent mechanisms. Third, pioglitazone significantly inhibits LPS-induced iNOS / NO production, and inhibition of LPS-induced iNOS protects neuron. Fourth, inhibition p38 MAPK reduces LPS-induced NO generation but no effect is found upon JNK inhibition, and pioglitazone inhibits p38 MAPK phosphorylation induced by LPS. In addition, pioglitazone increases PPARγ phosphorylation, followed by the increased PI3K/Akt phosphorylation. Nevertheless, inhibition of PI3K increases LPS-induced p38 MAPK phosphorylation. Inhibition of PI3K eliminates the inhibitive effect of pioglitazone on the LPS-induced NO production, suggesting that the inhibitive effect of pioglitazone on the LPS-induced iNOS and NO might be PI3K-dependent
    corecore