888 research outputs found

    Instrumentation for safe vehicular flow in intelligent traffic control systems using wireless networks

    Get PDF
    This paper describes a ZigBee based wireless system to assists traffic flow on arterial urban roads. Real-time simulation in laboratory environment is conducted to determine the traffic throughput to avoid possible congestions or ease existing congestions. Random numbers are generated to mimic approaching traffic, and this information is shared by a ZigBeebased real-time wirelessly network. Wireless nodes are connected to different PLCs representing different traffic lights in a cluster. Once the information is shared the timing and sequencing decisions are taken collectively in a synchronized manner. In this paper, the information is displayed on SCADA connected to each PLC for viewing the characteristics of continuous vehicular flow. It is found that the topology of the network can play an important role in the throughput of data, which may be critical in safety critical operations such as the control of traffic lights. This paper aims to highlight some of the possible effects of dataflow flow and time-delays faced by modern intelligent control of traffic lights

    Traffic Light Control Using Nexys A7

    Get PDF
    A traffic light controller is an electronic device that controls the sequence of traffic signals at an intersection, ensuring smooth and safe traffic flow. In modern traffic light controllers, digital logic circuits are used to control the sequence of traffic signals. The traffic light controller uses a state machine to determine the sequence of traffic signals. The state machine has a set of states, each of which corresponds to a particular sequence of traffic signals. The state machine changes state based on a set of input signals, such as a clock signal or a pedestrian signal. Here we are implementing a 4-way traffic light controller which is designed to manage the flow of vehicular and pedestrian traffic at an intersection with four directions: North, South, West, and East. Each direction is represented by a different label or abbreviation, such as m1 for North, m2 for South, m3 for West, and m4 for East. The purpose of a 4-way traffic light controller is to regulate and optimize the flow of traffic at intersections. It ensures safe and efficient movement of vehicles by assigning right-of-way to different directions in a coordinated manner. By alternating the signal lights, it reduces the chances of accidents and congestion, improving overall traffic managemen

    The area wide real-time traffic control (ARTC) system : the logical structure and computational algorithms

    Get PDF
    With the high development of Chinese economy, the number of automobiles rises sharply. In order to let more vehicles pass the limited roads successfully, The Aerawide Real-Time Traffic Control CARTC) System cornes up. Although ARTC has been studied for many years in foreign countries, its study is still in the embryonic stage in China. After investigating, we discovered that system just recently. Only some simple Intelligent transport control has been realized in quite a few cities However, in many large and middle cities, Intelligent transport control is still in a research period. \ud We had been thinking about this research from juniors. We spent one year doing large quantity of social examination, investigating some roads personally and inquiring a lot of material from Internet and library. On the basis of this, we made the road sate model. Several typical states are represented on this model, so it is definitely representative. We chose the comparatively simple and easily operated green wave control. One computer controls six PLC. Long-range control is realized by dialing online the modulator-demodulator. We adopted some basic vague control thought, meanwhile, combined with actual circumstances, and designed a set of practical control algorithm. We mainly used VB6.0 and PLC programmed software from OMRON Company. In the end, we completed the control program of both the upper and lower bit machine. Of course, there are many immature and imperfect aspects in our design, I hope to get guidance and help from all people. \ud ______________________________________________________________________________ \ud MOTS-CLÉS DE L’AUTEUR : ARTC (Aerawide Real-Time Traffic Control), PLC (Programmable Logic Contrllor), ITS (Intelligent Traffic System

    Introduction of programmable logic controller in industrial engineering curriculum

    Get PDF
    Recent trends in process control and industrial automation scenarios have resulted in the emergence of many pioneering techniques that have revolutionized the manufacturing industry. In order to maintain quality and precision, advances have been associated with the increasing use of microprocessors in process control applications. Most of the industrial process control systems utilize Programmable Logic Controllers (PLC). Also due to the increase in internet usage and recent innovations in PLC software, remote monitoring and PLC control of process through the internet is also a recent trend. This thesis presents course/lab material for integration in the Industrial Engineering curriculum. The course/lab content was designed to improve the student\u27s knowledge and to broaden the industrial engineering curriculum at West Virginia University (WVU). This thesis proposes the use of inexpensive T100MD+ PLCs. A traffic light control system was developed to introduce the fundamental concepts of Boolean algebra and real-time control. A series of control exercises can be carried on the traffic light system. A temperature sensitive system was also developed. Students can test various PID control strategies on this hardware/software platform. Students will also have the ability to control the process via the internet

    Validation of trajectory planning strategies for automated driving under cooperative, urban, and interurban scenarios.

    Get PDF
    149 p.En esta Tesis se estudia, diseña e implementa una arquitectura de control para vehículos automatizados de forma dual, que permite realizar pruebas en simulación y en vehículos reales con los mínimos cambios posibles. La arquitectura descansa sobre seis módulos: adquisición de información de sensores, percepción del entorno, comunicaciones e interacción con otros agentes, decisión de maniobras, control y actuación, además de la generación de mapas en el módulo de decisión, que utiliza puntos simples para la descripción de las estructuras de la ruta (rotondas, intersecciones, tramos rectos y cambios de carril)Tecnali

    Self Routing Traffic Light For Traffic Light Controller Using Priority Method Based On Volume Of Vehicles

    Get PDF
    Traffic congestion is defined as the volume of vehicles at the traffic junction which is higher than the available road capacity. However, with traffic light system installed, traffic congestion still happens especially during peak hours. This thesis proposes a new joint algorithm for traffic light system to manage and control the traffic flow at the traffic junction in conjunction with a proposed new sensing method. The aim is to improve the efficiency of conventional traffic light system in terms of reduction of the waiting and travelling times of road users. Normally, there are two methods used to control the conventional traffic light system which are sequencing and sensor demand methods. In the sequencing method, the traffic light system is designed to operate based on a preprogrammed sequence without consideration of real time behavior. In the sensor demand method, it is based on real time sensor detection where loop sensors are placed under certain road junctions. In order to increase and enhance the efficiency and accuracy of real time traffic flow, this thesis proposes a novel implementation of sensing method called Self-Routing Traffic Light (SRTL) which incorporates a self-algorithm program as a practical solution to reduce traffic congestion. SRTL is capable of counting the total number of vehicles entering a certain junction and exiting from the same junction on a real time basis. Based on the use of dual sensors at each road junction, the vehicles are detected by triggering the programmable logic controller to manage and control the traffic light indicators according to real traffic demand. This research uses data at a cross traffic junction in Perak between Jalan Taiping and Kuala Sepatang with the primary data provided by Jabatan Kerja Raya, JKR Larut Matang & Selama, Taiping. With the primary data provided, Simulation of Urban Mobility (SUMO) is used to create traffic simulation for different types of situation. The performance of STRL is compared with conventional sequencing and sensor demand methods. Based on the results of the simulation using SUMO, SRTL show better performance in terms of reducing waiting and travelling time of road users at the traffic junction during peak hours by 35.28% (waiting time) and 24.59% (travelling time) compared to the sensor demand method and an improvement compared to the sequencing method of 46.01% (waiting time) and 29.18% (travelling time). For off peak hours, SRTL also show better performance, 55.57% (waiting time) and 30.25% (travelling time) compared to the sensor demand method and an improvement compared to the sequencing method of 59.43% (waiting time) and 32.89% (travelling time). In conclusion, SRTL provides and ensures the smoothness of traffic flow especially during peak hours by reducing significantly the waiting and travelling times of vehicles at the traffic junction

    Wireless Sensor Networks

    Get PDF
    The aim of this book is to present few important issues of WSNs, from the application, design and technology points of view. The book highlights power efficient design issues related to wireless sensor networks, the existing WSN applications, and discusses the research efforts being undertaken in this field which put the reader in good pace to be able to understand more advanced research and make a contribution in this field for themselves. It is believed that this book serves as a comprehensive reference for graduate and undergraduate senior students who seek to learn latest development in wireless sensor networks
    corecore