

Faculty of Electronics and Computer Engineering

SELF ROUTING TRAFFIC LIGHT FOR TRAFFIC LIGHT CONTROLLER USING PRIORITY METHOD BASED ON VOLUME

OF VEHICLES

Tan Swee Tiang

Master of Science in Electronic Engineering

2015

C Universiti Teknikal Malaysia Melaka

SELF ROUTING TRAFFIC LIGHT FOR TRAFFIC LIGHT CONTROLLER USING PRIORITY METHOD BASED ON VOLUME OF VEHICLES

TAN SWEE TIANG

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Electronic Engineering

Faculty of Electronics and Computer Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2015

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitle "Self Routing Traffic Light for Traffic Light Controller using Priority Method based on Volume of Vehicles" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	South
Name	:	Tan Swee Tiang
Date	:	10 August 2015

APPROVAL

I hereby declare that I have read this dissertation/report and in my opinion this dissertation/report is sufficient in terms of scope and quality as a partial fulfillment of Master of Science in Electronic Engineering.

	Ç,
Signature	
Supervisor Name	. Prof. Dr. Muhammad Ghazie Bin Ismail
Date	. 11 August 2015

DEDICATION

Specially..

To my beloved parents and brother To my dear supervisor and not forgetting to all friends For their

Love, Sacrifice, Encouragements, and Best Wishes

ABSTRACT

Traffic congestion is defined as the volume of vehicles at the traffic junction which is higher than the available road capacity. However, with traffic light system installed, traffic congestion still happens especially during peak hours. This thesis proposes a new joint algorithm for traffic light system to manage and control the traffic flow at the traffic junction in conjunction with a proposed new sensing method. The aim is to improve the efficiency of conventional traffic light system in terms of reduction of the waiting and travelling times of road users. Normally, there are two methods used to control the conventional traffic light system which are sequencing and sensor demand methods. In the sequencing method, the traffic light system is designed to operate based on a preprogrammed sequence without consideration of real time behavior. In the sensor demand method, it is based on real time sensor detection where loop sensors are placed under certain road junctions. In order to increase and enhance the efficiency and accuracy of real time traffic flow, this thesis proposes a novel implementation of sensing method called Self-Routing Traffic Light (SRTL) which incorporates a self-algorithm program as a practical solution to reduce traffic congestion. SRTL is capable of counting the total number of vehicles entering a certain junction and exiting from the same junction on a real time basis. Based on the use of dual sensors at each road junction, the vehicles are detected by triggering the programmable logic controller to manage and control the traffic light indicators according to real traffic demand. This research uses data at a cross traffic junction in Perak between Jalan Taiping and Kuala Sepatang with the primary data provided by Jabatan Kerja Raya, JKR Larut Matang & Selama, Taiping. With the primary data provided, Simulation of Urban Mobility (SUMO) is used to create traffic simulation for different types of situation. The performance of STRL is compared with conventional sequencing and sensor demand methods. Based on the results of the simulation using SUMO, SRTL show better performance in terms of reducing waiting and travelling time of road users at the traffic junction during peak hours by 35.28% (waiting time) and 24.59% (travelling time) compared to the sensor demand method and an improvement compared to the sequencing method of 46.01% (waiting time) and 29.18% (travelling time). For off peak hours, SRTL also show better performance, 55.57% (waiting time) and 30.25% (travelling time) compared to the sensor demand method and an improvement compared to the sequencing method of 59.43% (waiting time) and 32.89% (travelling time). In conclusion, SRTL provides and ensures the smoothness of traffic flow especially during peak hours by reducing significantly the waiting and travelling times of vehicles at the traffic junction.

i

ABSTRAK

Kesesakan lalu lintas ditakrifkan sebagai jumlah kenderaan di persimpangan trafik lebih tinggi daripada kapasiti jalan raya yang sedia ada. Walau bagaimanapun, dengan pemasangan sistem kawalan lampu isyarat (SKLI), namun kesesakan tetap berlaku terutamanya pada waktu puncak. Tesis ini mencadangkan algoritma yang baru untuk SKLI bagi mengurus dan mengawal aliran trafik di persimpangan trafik sempena dengan kaedah penderiaan baru yang dicadangkan. Tujuannya adalah untuk meningkatkan kecekapan sistem konvensional lampu isyarat dari segi pengurangan masa menunggu di persimpangan trafik dan masa perjalanan pengguna jalan raya. Biasanya, terdapat dua kaedah yang digunnakan untuk mengawal SKLI konvensional iaitu kaedah aliran berturusan dan permintaan deria. Dalam kaedah aliran beturusan, sistem kawalan lampu isyarat direka bentuk untuk beropesi berdasarkan urutan yang diprogramkan tanpa pertimbangan tingkah laku masa nyata. Dalam kaedah permintaan deria, ia berdasarkan pengesanan deria yang gelung dibawah jalan raya persimpangan trafik dengan pertimbangakn laku masa nyata. Dalam usaha bagi meningkatkan kecekapan dan ketepatan aliran trafik, tesis ini mencadangkan pelaksanaan kaedah baru, bernama "Self-Routing Traffic Light (SRTL)" yang menggabungkan program algoritma-diri sebagai penyelesaian praktikal untuk mengurangkan kesesakan lalu lintas. SRTL mampu mengira jumlah kenderaan memasuki and keluar dari persimpang trafik berdasarkan masa yang nyata. Berdasarkan penggunaan dwi deria pada setiap persimpangan jalan, kenderaan dapat dikesan dengan mencetuskan pengawal logic boleh atur cara untuk mengurus dan mangawal penunjuk lampu isyarat mengikut permintaan trafik sebenar. Kajian ini menggunakan data di suatu persimpangan lampu isyarat yang terletak di Perak andtara Jalan Taiping dan Kuala Sepatang dengan data utama yang disediakan oleh Jabatan Kerja Raya, JKR Larut Matang & Selama, Taiping. Dengan data utama yang diberikan oleh JKR, Simulasi Bandar Mobiliti (SUMO) digunakan untuk membuat simulasi trafik bagi pelbagai jenis keadaan. Prestasi bagi SRTL dapat dibandingkan dengan SKLI konvensional keadah aliran berturusan dan permintaan deria. Berdasarkan keputusan simulasi (SUMO), SRTL menunjukkan prestasi yang lebih baik dari segi pengurangkan masa menunggu di persimpangan jalan dan masa perjalanan pengguna jalan raya pada waktu puncak dengan bertambah baik sebanyak 35.28% (masa menunggu) dan 24.59% (masa perjalanan) berbanding dengan keadah permintaan deria dan peningkatan sebanyak 46.01% (masa menunggu) dan 29.18% (masa perjalanan) berbanding dengan keadah aliran berterusan. Bagi masa bukan waktu puncak, SRTL juga menunjukkan prestasi yang baik iaitu 55.57% (masa menunggu) dan 30.25% (masa perjalanan) berbanding dengan kaedah permintaan deria dan 59.43% (masa menunggu) dan 32.89% (masam perjalanan) berbanding dengan kaedah aliran berterusan. Kesimpulannya, SRTL menyediakan dan memastikan kelancaran aliran trafik terutamanya pada waktu puncak dengan mengurangkan masa menunggu di persimpangan dan masa perjalanan yang diambil oleh pengguna jalan raya.

ACKNOWLEDGEMENTS

First of all, I wish to say my prayers to our God because without His help, I would not been able to complete this thesis.

This thesis would not be completed without the help of many individuals who have contributed in many different ways at different times. They provide their thoughts, ideas, valuable suggestions and constructive criticisms that made this thesis what it is today from inception until successful completion.

I would like to express my greatest gratitude and sincere thanks to my supervisor Prof. Dr. Muhammad Ghazie Bin Ismail who was extremely helpful and providing guidance to ensure that I am very focused on my research. At the same time, he has also provided me with the necessary freedom to partake and to allow me to conduct my research without any constraints. Prof Ghazie has encouraged me to publish papers in various international conferences which have in turn opened many avenues in my professional career. I am very fortunate to have him as a supervisor and he has been more than a mentor to me.

I would like to express my thanks to my co-supervisors Engr. Sivakumar A/L Subramaniam, Engr. Vigneswara Rao A/L Gannapathy and Mr. Mazran Bin Esro from FKEKK for their guidance, encouragement and valuable suggestions to enhance the quality of this research. Without their support, I could not have accomplished my study at Universiti Teknikal Malaysia Melaka (UTeM).

Furthermore, I am also thankful to all my fellow post graduate lab mates who were very friendly, supportive and encouraging at all times. In particular, I have enjoyed the companionship of Daphne Tan Hui Zyen, Hazwani Binti Azman and Noraini Haryanti binti Nor Aini with whom I have spent long hours of brainstorming discussions.

Let me take this opportunity to express my gratitude and warm heartfelt thank you to UTeM for offering me a scholarship and financial support to allow me complete this thesis.

Last but not least, I wish to express my endless gratitude to my family in particular my beloved parents Mr. Tan Lim Chye and Mrs. Ho Moh Leh, and my brother Tan Khey Loon for their invaluable guidance, encouragement and their continuous moral support throughout the course of my work. Without their support and love, it would have been impossible for me to complete this research.

TABLE OF CONTENTS

DECLARATION	
APPROVAL	
DEDICATION	
ABSTRAK	i
ABSTRACT	ii
ACKNOWLEDGEMENT	iii
TABLE OF CONTENTS	iv
LIST OF TABLE	vii
LIST OF FIGURE	Х
LIST OF ABBREVIATION	xiv
LIST OF SYMBOLS	xvi
LIST OF PUBLICATIONS	xviii
LIST OF APPENDICES	XX

CHAPTER

1.	INTF	RODUCI	ION		1
	1.1	Introdu	ction and Bacl	ground of Traffic Light System	1
	1.2		m Statement		5
	1.3	Object	ives of the Res	earch	10
	1.4	Scope	of the Research	1	10
	1.5	Contri	outions of the H	Research	10
	1.6	Thesis	Organization		12
2.	LITE	RATUR	E REVIEW		14
	2.1	Traffic	Light System		14
		2.1.1	Types of Traf	fic Junction	15
		2.1.2	Components	of Traffic Light System	17
			2.1.2.1 The	Display Unit	17
				e Control Unit	18
			2.1.2.3 The	e Sensor Unit	19
		2.1.3	Sensing Tech	niques	20
			2.1.3.1 Vid	eo Imaging Processors	21
				uctive Loop Sensors	22
			2.1.3.3 Ma	gnetic Sensors	25
			2.1.3.4 Las	er Sensors	26
			2.1.3.5 Mid	crowave RADAR	27
			2.1.3.6 Ult	rasonic Sensors	28
			2.1.3.7 Con	nparison	28
	2.2	Road 7	Traffic Control	Strategies	31
		2.2.1	Fixed-Time S	trategies	31
		2.2.2	Traffic-Respo	onsive Strategies	32
	2.3	Conve	ntional Traffic	Light System	32
		2.3.1	Sequencing N	ſethod	32
		2.3.2	Sensor Dema	nd Method	37
	2.4	Currer	t Approaches		42
		2.4.1	Video-Based	System	42

		2.4.2	Fuzzy Logics	43
	2.5	Traffic	c Simulation	45
		2.5.1	Traffic Flow Model	45
			2.5.1.1 Macroscopic Model	46
			2.5.1.2 Microscopic Model	46
			2.5.1.3 Mesoscopic Model	47
			2.5.1.4 Traffic Intersection Model	48
			2.5.1.5 Network Flow Model	50
		2.5.2	2	50
			2.5.2.1 Car Following Model	51
			2.5.2.2 Simulation Preparation: SUMO	52
	2.6	Summ	ary of Chapter	55
3.	THE LIGH		SED ALGORITHM: SELF ROUTING TRAFFIC	56
	3 .1		odology	56
		3.1.1	Exploration of Conventional Traffic Light System	58
		212	Method	~ 0
		3.1.2		58
		3.1.3	New Sensor Arrangement Method and Joint Algorithm	59
			3.1.3.1 New Sensor Arrangement	60
			3.1.3.2 New Joint Algorithm	62
		3.1.4	Self Routing Traffic Light	63
			3.1.4.1 Flowchart of Self Routing Traffic Light	64
			3.1.4.2 State Diagram of Self Routing Traffic Light	72
		3.1.5	Result Comparison and Analysis	77
	3.2	Simula	ation Development	77
		3.2.1		78
			Demand Modeling	81
			Additional File	83
		3.2.4	Simulation Configuration	84
		3.2.5	Syntax Error Checking	84
	3.3	Summ	nary of Chapter	85
4.	PRIN	IARY D	ATA PREPARATION AND ANALYSIS	86
	4.1		Collection and Simulation Preparation	86
		4.1.1	Study Area	87
		4.1.2	Primary Data	88
	4.2		c Signal Timing	99
		4.2.1		100
			4.2.1.1 Effect Gradient of Traffic Junction	101
			4.2.1.2 Turning Radium	101
			4.2.1.3 Adjustable Saturation Flow	102
		4.2.2		111
		4.2.3	1 5 /	112
		4.2.4	1 2 7	113
		4.2.5	e e	113
		4.2.6	Determination of Traffic Junction Capacity	116
	4.3	Summ	nary of Chapter	117

5.	RES	ULTS AND DISCUSSION	118
	5.1	Simulation Result	118
		5.1.1 Sequencing Method	119
		5.1.2 Sensor Demand Method	120
		5.1.3 Self Routing Traffic Light	122
	5.2	Analysis and Comparison	123
	5.3	Alternative Scenario	127
	5.4	Summary of Chapter	129
6.	CON	ICLUSION AND FUTURE WORK	130
	6.1	Conclusion	130
	6.2	Limitation of The Research	131
	6.3	Future Work	132
RE	FEREN	NCES	135
AP	PENDI	XA	142
AP	PENDI	143	
AP	PENDI	XC	154
AP	PENDI	X D	159

LIST OF TABLES

NO

TITLE

PAGE

1.1	Motorcycle accidents - Road geometry (Sarani, R., 2011)	5
2.1	Summary of comparison amongst the various sensors technologies	30
	(Romero, 2011)	
2.2	Descriptions of Figure 2.17	33
2.3	Phase of the signal cycles	35
2.4	Descriptions of Figure 2.21	38
2.5	Descriptions of Figure 2.24	41
3.1	Descriptions of Figure 3.3	61
3.2	Descriptions of the flowchart (Figure 3.6 to Figure 3.10)	64
3.3	Phase of signal cycle for Self Routing Traffic Light	73
3.4	Description of the state diagram for Figure 3.12	75
3.5	Syntax of nodes-files (extension: ".nod.xml")	80
3.6	Syntax of edges-files (extension: ".edg.xml")	80
3.7	Syntax of connection-files (extension: ".con.xml")	81
3.8	Vehicle properties	82
3.9	Route possibilities	82
3.10	Flow proportion parameters	82
3.11	Detector parameters (extension: ".det.xml")	83
3.12	Error checking files	85
4.1	Description of data collection place (DCP)	89
4.2	Data collection at DCP 1	89
4.3	Data collection at DCP 2	90
4.4	Data collection at DCP 3	90
4.5	Data collection at DCP 4	91

4.6	Conversion factors to passenger car units (PCU's) (Jabatan Kerja	91
	Raya, 1987)	
4.7	Volume of vehicles at DCP 1 (PCU units) after multiplying with conversion factor	92
4.8	Volume of vehicles at DCP 2 (PCU units) after multiplying with	93
	conversion factor	
4.9	Volume of vehicles at DCP 3 (PCU units) after multiplying with	94
	conversion factor	
4.10	Volume of vehicles at DCP 4 (PCU units) after multiplying with	96
	conversion factor	
4.11	Total and average volume of vehicles at the traffic light junction	98
	(PCU units)	
4.12	Total input data for running the simulation	99
4.13	Average input data for running simulation	99
4.14	Relationship between effective lane width and saturation flow	100
	(Jabatan Kerja Raya, 1987)	
4.15	Correction factor for the effect of gradient (Jabatan Kerja Raya,	101
	1987)	
4.16	Correction factor for the turning radius (Jabatan Kerja Raya, 1987)	102
4.17	Summary of the width of the traffic junction	105
4.18	Summary of correction factor for effect of gradient of the traffic	108
	junction	
4.19	Summary of correction factor for effect of turning radius of the	110
	traffic junction	
4.20	Adjustable saturation flow	110
4.21	Y-value	111
4.22	Effective green time, g_n , for each lane	114
4.23	Actual green time, G_n , for each lane	115
4.24	Controller setting time, K_n , for each lane	115
5.1	Total and average waiting and travelling times for Sequencing	119
	Method	
5.2	Total and average waiting and travelling times for Sensor Demand	120
	Method	

5.3	Total and average waiting and travelling time for Self Routing	122
	Traffic Light	
5.4	Summary of average waiting and travelling time for Sequencing	123
	Method, Sensor Demand Method and Self Routing Traffic Light	
	during off-peak and peak hour	
5.5	Summary of average waiting and travelling time for Sequencing	128
	Method, Sensor Demand Method and Self Routing Traffic Light	

during alternative scenario

LIST OF FIGURES

N	0
N	O

TITLE

PAGE

1.1	Semaphore signal device (Edward, A.M., 1970)	2
1.2	Garrett Morgan's TLS design with 'STOP' and 'GO' sign (Morgan,	3
	G.A., 1923)	
1.3	Three component of traffic light system	5
1.4	Air pollution due to the emitting of carbon dioxide and carbon	7
	monoxide during traffic congestion	
1.5	Traffic congestion due to the number of incoming vehicle in the	8
	junction higher than the capacity of the road	
1.6	Road accident cause the traffic congestion	9
1.7	Traffic officer gives the instruction to road users at the centre of the	9
	road	
2.1	T-junction	15
2.2	Cross junction	16
2.3	Three component of traffic light system	17
2.4	Display of traffic light	18
2.5	PLC controller on certain junction	19
2.6	Inductive loop sensor below the surface of road	20
2.7	Block diagram of vehicle detection system using video imaging	22
	processor	
2.8	Inductive-loop detector system (Lawrence, A.K., 2006)	23
2.9	Illustration how the magnetic field forms (Lawrence, A.K., 2006)	23
2.10	Inductive loop installation example (Lawrence, A.K., 2006)	24
2.11	Sensor placement on certain junction	25
2.12	Resultant of magnetic field (Grueger, H., 2001)	26

2.13	Sensing by using magnetic principle (Grueger, H., 2001)	26
2.14	Example application in a vehicle: a) virtual vehicle and b) 3-D	27
	model (Mecocci, A., 2010)	
2.15	Transponder detection approach using microwave RADAR when	27
	vehicle is closed to the reader (Mirchandani, P., 2005)	
2.16	Timing plan selection procedure (Lawrence, A.K., 2006)	28
2.17	Traffic junction with Sequencing Method	33
2.18	Flowchart of Sequencing Method	34
2.19	Block diagram of Sequencing Method	35
2.20	State diagram of Sequencing Method	36
2.21	Sensor Demand Method Traffic junction with Sensors	37
2.22(a)	Flowchart of Sensor Demand Method	36
2.22(b)	Flowchart of Sensor Demand Method	38
2.23	Block diagram of Sensor Demand Method	40
2.24	State diagram of Sensor Demand Method	41
2.25	Block diagram of video-based system	43
2.26	An isolated intersection with lane and inductive loop sensors (Wu,	44
	W., 2001)	
2.27	Microscopic model	47
2.28	Intersection point in a cross traffic light junction	49
2.29	Traffic intersection model	49
2.30	Network flow model	50
2.31	Car following notation	51
2.32	Building routing network process	53
3.1	Flowchart of methodology	57
3.2	Simulation algorithm and processes (Dowling et al., 2004)	59
3.3	New sensor arrangement	61
3.4	Block diagram of new joint algorithm	62
3.5	Block diagram Self Routing Traffic Light	63
3.6	Flowchart of Self Routing Traffic Light (Overall)	65
3.7	Flowchart of Self Routing Traffic Light (Sensor 1)	67
3.8	Flowchart of Self Routing Traffic Light (Sensor 2)	68
3.9	Flowchart of Self Routing Traffic Light (Sensor 3)	69

3.10	Flowchart of Self Routing Traffic Light (Traffic junction is empty)	71
3.11	Block diagram of Self Routing Traffic Light in details	73
3.12	State diagram of Self Routing Traffic Light	75
3.13	Layout of traffic junction (nodes and edges)	79
3.14	Summary of simulation development environment	84
4.1	Location of Jalan Taiping to Kuala Sepatang traffic light junction	87
	(Source: Google Maps)	
4.2	Location of data collection	88
4.3	Volume of vehicles at DCP1 (PCU units)	93
4.4	Volume of vehicles at DCP2 (PCU units)	94
4.5	Volume of vehicles at DCP3 (PCU units)	95
4.6	Volume of vehicles at DCP4 (PCU units)	97
4.7	Total and average volume of vehicles at the traffic light junction	98
4.8	Real measurement by standard measurement tape	102
4.9	Measurement of width of lane on East lane (Source: Google Earth)	103
4.10	Measurement of width of lane on South lane (Source: Google Earth)	104
4.11	Measurement of width of lane on West lane (Source: Google Earth)	104
4.12	Measurement of width of lane on North lane (Source: Google Earth)	105
4.13	Measurement of the gradient at East lane (Source: Google Earth)	106
4.14	Measurement of the gradient at South lane (Source: Google Earth)	106
4.15	Measurement of the gradient at West lane (Source: Google Earth)	107
4.16	Measurement of the gradient at North lane (Source: Google Earth)	107
4.17	Measurement of the turning radius on East lane (Source: Google	108
	Earth)	
4.18	Measurement of the turning radius on South lane (Source: Google	109
	Earth)	
4.19	Measurement of the turning radius on West lane (Source: Google	109
	Earth)	
4.20	Measurement of the turning radius on North lane (Source: Google	110
	Earth)	
4.21	Timing scheduling	116
4.22	Traffic signal calculation – reserve capacity diagram	116

5.1	Sequencing Method: Total waiting and travelling times in off peak	119
	and peak hour	
5.2	Sequencing Method: Average waiting and travelling times in off	120
	peak and peak hour	
5.3	Sensor Demand Method: Total waiting and travelling time in off	121
	peak and peak hour	
5.4	Sensor Demand Method: Average waiting and travelling time in off	121
	peak and peak hour	
5.5	Self Routing Traffic Light: Total waiting and travelling time in off	122
	peak and peak hour	
5.6	Self Routing Traffic Light: Average waiting and travelling time in	123
	off peak and peak hour	
5.7	Average waiting and travelling times for Sequencing Method,	124
	Sensor Demand Method and Self Routing Traffic Light	
5.8	Off-peak hour (comparison between Self Routing Traffic Light with	125
	Sequencing Method and Sensor Demand Method in terms of	
	percentages of the average waiting and travelling time)	
5.9	Peak hour (comparison between Self Routing Traffic Light with	126
	Sequencing Method and Sensor Demand Method in terms of	
	percentages of the average waiting and travelling time reduced)	
5.10	Average waiting and travelling time for Sequencing Method, Sensor	128
	Demand Method and Self Routing Traffic Light at alternative	
	scenario (during midnight)	
5.11	Alternative scenario (comparison between Self Routing Traffic	129
	Light with Sequencing Method and Sensor Demand Method in	
	terms of percentages of the average waiting and travelling time	
	reduced)	
6.1	Synchronization of traffic light system	133

LIST OF ABBREVIATIONS

TLS	Traffic Light System
TJS	Traffic Junction Simpang
SUMO	Simulation of Urban Mobility
PLC	Programmable Logic Controller
VIPs	Video Imaging Processors
SM	Sequencing Method
SDM	Sensor Demand Method
RE	Red light at East lane
AE	Amber light at East lane
GE	Green light at East lane
RS	Red light at South lane
AS	Amber light at South lane
GS	Green light at South lane
RW	Red light at West lane
AW	Amber light at West lane
GW	Green light at West lane
RN	Red light at North lane
AN	Amber light at North lane
GN	Green light at North lane
ES1	Sensor 1 at East Lane
ES2	Sensor 2 at East Lane
ES3	Sensor 3 at East Lane
SS1	Sensor 1 at South Lane
SS2	Sensor 2 at South Lane
SS3	Sensor 3 at South Lane
WS1	Sensor 1 at West Lane
WS2	Sensor 2 at West Lane
WS3	Sensor 3 at West Lane

NS1	Sensor 1 at North Lane
NS2	Sensor 2 at North Lane
NS3	Sensor 3 at North Lane
P1	Phase 1
P2	Phase 2
P3	Phase 3
P4	Phase 4
P5	Phase 5
ZAIK	Centre for Applied Informatics
IDM	Intelligent Driver Model
OSM	Open Street Map
XML	Extensible Markup Language
O-D	Origin - Destination
SRTL	Self Routing Traffic Light
JKR	Jabatan Kerja Raya
DCP1	Traffic volume from Kuala Sepatang to Traffic Light Junction
DCP2	Traffic volume from Jalan Persekutuan 1 to Traffic Light Junction
DCP3	Traffic volume from Jalan Taiping to Traffic Light Junction
DCP4	Traffic volume from Changkat Jering to Traffic Light Junction
PCU	Passenger car units
adj S	Adjustable saturation flow

LIST OF SYMBOLS

Т	Time (second)
L_n	Distance between the first and the last traffic light junction
п	Number of vehicle
x_n	Position of n^{th} vehicle
<i>x</i> _(<i>n</i>-1)	Position of $(n-1)^{th}$ vehicle
L(n-1)	Length of $(n-1)^{th}$ vehicle
v_n	Speed of n^{th} vehicle
v_{n-1}	speed of $(n-1)^{th}$ vehicle
τ	driver's reaction time (s)
S	Saturation flow
q	Actual flow
p.c.u./hr	passenger car units per hour
W	Width (meter)
S_{adj}	Adjustable saturation flow
Fg	Correction factor (effect gradient of traffic junction)
Ft	Correction factor (turning radius of traffic junction)
Y	Y-value
L	Total lost time per cycle (second)
а	Amber time (second)
A	Acceleration of vehicle (m/s^2)
V	Speed of vehicle (m/s)
Со	Optimum cycle time
С	Total effective green time
g_n	Effective green time
G_n	Actual green time
K_n	Controller setting time
Ι	Inter-green time

- *R* Driver action time
- *RC* Reserve capacity

LIST OF PUBLICATIONS

TITLE

- S.T. Tan, N.H. Noraini and K.L. Tan, 2014. Improvement of Conventional Traffic Signaling Device – Self Routing Traffic Light System, WSEAS Transactions on Systems and Control, vol. 9, pp. 309-317.
- 2 S.T. Tan, Muhammad Ghazie Ismail, S.K. Subramaniam, and V.R. Gannapathy, 2014. New Sensing Method for Vehicle Mobility at Traffic Light Junction, Australian Journal of Basic and Applied Sciences (AJBAS), February 2014, pp. 445-452.
- 3 **S.T. Tan**, S.K. Subramaniam, and S.S.S. Ranjit, 2013. Adopting Novel Joint Algorithm in Traffic Light System for Urban Intersection Junction, Australian Journal of Basic and Applied Sciences (AJBAS), September 2013, pp. 435-442.
- 4 S.T. Tan, S.K. Subramaniam & M.Esro, 2012. Factors of Heavily Congested on Urban Route, National Research & Innovation Conference for Graduate Students in Social Sciences, pp. 621-628.
- S.K. Subramaniam, S.T. Tan, Ranjit S.S.S, V.R. Gannapathy & Fayeez A.T.I.,
 2012. Routing Solutions with Vehicle Sensing System, Prosiding Seminar Hasil
 Penyelidikan Kementerian Pengajian Tinggi, pp. 322-328.

 S.K. Subramaniam, M.Esro, Ranjit S.S.S, V.R. Gannapathy & S.T. Tan, 2012.
 New Sensor Placement for Vehicle Mobility in Multiple Traffic Light Intersection, 3rd International Conference on Engineering and ICT (ICEI 2012), pp. 104-109.