399 research outputs found

    Mechatronic development and dynamic control of a 3-DOF parallel manipulator

    Full text link
    This is an Author's Accepted Manuscript of an article published in Mechanics Based Design of Structures and Machines: An International Journal, 40:4, 434-452 [September 2012] [copyright Taylor & Francis], available online at: http://www.tandfonline.com/10.1080/15397734.2012.687292The aim of this article is to develop, from the mechatronic point of view, a low-cost parallel manipulator (PM) with 3-degrees of freedom (DOF). The robot has to be able to generate and control one translational motion (heave) and two rotary motions (rolling and pitching). Applications for this kind of parallel manipulator can be found at least in driving-motion simulation and in the biomechanical field. An open control architecture has been developed for this manipulator, which allows implementing and testing different dynamic control schemes for a PM with 3-DOF. Thus, the robot developed can be used as a test bench where control schemes can be tested. In this article, several control schemes are proposed and the tracking control responses are compared. The schemes considered are based on passivity-based control and inverse dynamic control. The control algorithm considers point-to-point control or tracking control. When the controller considers the system dynamics, an identified model has been used. The control schemes have been tested on a virtual robot and on the actual prototype. © 2012 Taylor & Francis Group, LLC.The authors wish to express their gratitude to the Plan Nacional de I+D, Comision Interministerial de Ciencia y Tecnologia (FEDER-CICYT) for the partial financing of this study under the projects DPI2009-13830-C02-01 and DPI2010-20814-C02-(01, 02). This work was also supported in part by the CDCHT-ULA Grant I-1286-11-02-B.Vallés Miquel, M.; Díaz-Rodríguez, M.; Valera Fernández, Á.; Mata Amela, V.; Page Del Pozo, AF. (2012). Mechatronic development and dynamic control of a 3-DOF parallel manipulator. Mechanics Based Design of Structures and Machines: An International Journal. 40(4):434-452. https://doi.org/10.1080/15397734.2012.687292S434452404Awtar, S., Bernard, C., Boklund, N., Master, A., Ueda, D., & Craig, K. (2002). Mechatronic design of a ball-on-plate balancing system. Mechatronics, 12(2), 217-228. doi:10.1016/s0957-4158(01)00062-9Carretero, J. A., Podhorodeski, R. P., Nahon, M. A., & Gosselin, C. M. (1999). Kinematic Analysis and Optimization of a New Three Degree-of-Freedom Spatial Parallel Manipulator. Journal of Mechanical Design, 122(1), 17-24. doi:10.1115/1.533542Castelli, G., Ottaviano, E., & Ceccarelli, M. (2008). A Fairly General Algorithm to Evaluate Workspace Characteristics of Serial and Parallel Manipulators#. Mechanics Based Design of Structures and Machines, 36(1), 14-33. doi:10.1080/15397730701729478Chablat, D., & Wenger, P. (2003). Architecture optimization of a 3-DOF translational parallel mechanism for machining applications, the orthoglide. IEEE Transactions on Robotics and Automation, 19(3), 403-410. doi:10.1109/tra.2003.810242Clavel , R. ( 1988 ). DELTA, a fast robot with parallel geometry.Proceedings of 18th International Symposium on Industrial Robot.Switzerland: Lausanne, April, pp. 91–100 .Díaz-Rodríguez, M., Mata, V., Farhat, N., & Provenzano, S. (2008). Identifiability of the Dynamic Parameters of a Class of Parallel Robots in the Presence of Measurement Noise and Modeling Discrepancy#. Mechanics Based Design of Structures and Machines, 36(4), 478-498. doi:10.1080/15397730802446501Díaz-Rodríguez, M., Mata, V., Valera, Á., & Page, Á. (2010). A methodology for dynamic parameters identification of 3-DOF parallel robots in terms of relevant parameters. Mechanism and Machine Theory, 45(9), 1337-1356. doi:10.1016/j.mechmachtheory.2010.04.007García de Jalón, J., & Bayo, E. (1994). Kinematic and Dynamic Simulation of Multibody Systems. Mechanical Engineering Series. doi:10.1007/978-1-4612-2600-0Gough , V. E. , Whitehall , S. G. ( 1962 ). Universal tire test machine.Proceedings of 9th International Technical Congress FISITA, London, pp. 117–137 .Sung Kim, H., & Tsai, L.-W. (2003). Kinematic Synthesis of a Spatial 3-RPS Parallel Manipulator. Journal of Mechanical Design, 125(1), 92-97. doi:10.1115/1.1539505Lee, K.-M., & Shah, D. K. (1988). Kinematic analysis of a three-degrees-of-freedom in-parallel actuated manipulator. IEEE Journal on Robotics and Automation, 4(3), 354-360. doi:10.1109/56.796Li, Y., & Xu, Q. (2007). Design and Development of a Medical Parallel Robot for Cardiopulmonary Resuscitation. IEEE/ASME Transactions on Mechatronics, 12(3), 265-273. doi:10.1109/tmech.2007.897257Merlet, J.-P. (2000). Parallel Robots. Solid Mechanics and Its Applications. doi:10.1007/978-94-010-9587-7Merlet , J. P. ( 2002 ). Optimal design for the micro parallel robot MIPS.Proceedings IEEE International Conference on Robotics and Automation, Washington, DC, pp. 1149–1154 .Ortega, R., & Spong, M. W. (1989). Adaptive motion control of rigid robots: A tutorial. Automatica, 25(6), 877-888. doi:10.1016/0005-1098(89)90054-xPaccot, F., Andreff, N., & Martinet, P. (2009). A Review on the Dynamic Control of Parallel Kinematic Machines: Theory and Experiments. The International Journal of Robotics Research, 28(3), 395-416. doi:10.1177/0278364908096236Rosillo, N., Valera, A., Benimeli, F., Mata, V., & Valero, F. (2011). Real‐time solving of dynamic problem in industrial robots. Industrial Robot: An International Journal, 38(2), 119-129. doi:10.1108/01439911111106336Stewart , D. A. ( 1965 ). A platform with 6 degree of freedom.Proceedings of the Institution of Mechanical Engineers.Part 1 15:371–386 .Syrseloudis , C. E. , Emiris , I. Z. ( 2008 ). A parallel robot for ankle rehabilitation-evaluation and its design specifications.Proceeding of 8th IEEE International Conference on BioInformatics and BioEngineering, Athens, October 1–6

    Energy-oriented Modeling And Control of Robotic Systems

    Get PDF
    This research focuses on the energy-oriented control of robotic systems using an ultracapacitor as the energy source. The primary objective is to simultaneously achieve the motion task objective and to increase energy efficiency through energy regeneration. To achieve this objective, three aims have been introduced and studied: brushless DC motors (BLDC) control by achieving optimum current in the motor, such that the motion task is achieved, and the energy consumption is minimized. A proof-ofconcept study to design a BLDC motor driver which has superiority compare to an off-the-shelf driver in terms of energy regeneration, and finally, the third aim is to develop a framework to study energy-oriented control in cooperative robots. The first aim is achieved by introducing an analytical solution which finds the optimal currents based on the desired torque generated by a virtual. Furthermore, it is shown that the well-known choice of a zero direct current component in the direct-quadrature frame is sub-optimal relative to our energy optimization objective. The second aim is achieved by introducing a novel BLDC motor driver, composed of three independent regenerative drives. To run the motor, the control law is obtained by specifying an outer-loop torque controller followed by minimization of power consumption via online constrained quadratic optimization. An experiment is conducted to assess the performance of the proposed concept against an off-the-shelf driver. It is shown that, in terms of energy regeneration and consumption, the developed driver has better performance, and a reduction of 15% energy consumption is achieved. v For the third aim, an impedance-based control scheme is introduced for cooperative manipulators grasping a rigid object. The position and orientation of the payload are to be maintained close to a desired trajectory, trading off tracking accuracy by low energy consumption and maintaining stability. To this end, an optimization problem is formulated using energy balance equations. The optimization finds the damping and stiffness gains of the impedance relation such that the energy consumption is minimized. Furthermore, L2 stability techniques are used to allow for time-varying damping and stiffness in the desired impedance. A numerical example is provided to demonstrate the results

    Aerial Manipulators for Contact-based Interaction

    Get PDF

    Design, Modeling, and Control of a Flying-Insect-Inspired Quadrotor with Rotatable Arms

    Get PDF
    Aerial manipulation and delivery using quadrotors are becoming more and more popular in recent years. However, the displacement of the center of gravity (CoG) is a common issue experienced by these applications due to various eccentric payloads carried. Conventional quadrotors with eccentric payloads are usually stabilized by robust control strategies through adjusting rotation speeds of BLDC motors, which has negative effects on stability and energy efficiency of quadrotors. In this thesis, a flying-insect-inspired quadrotor with rotatable arms is proposed. With four rotatable arms, the proposed quadrotor can automatically estimate the displacement of the CoG and drive the four arms to their optimal positions during flight. In this way, the proposed quadrotor can move its symmetric center to the CoG of the quadrotor with the eccentric payload to increase its stability and energy efficiency. The design, dynamics modeling, and control strategy of the proposed quadrotor are presented in this thesis. Both calculation and experiment results show that the proposed quadrotor with rotatable arms has better flight performance of stability and energy efficiency than the conventional quadrotor with fixed arms

    Design and Demonstration of a Two-Dimentional Test Bed for UAV Controller Evaluation

    Get PDF
    A three degree-of-freedom (DOF) planar test bed for Unmanned Aerial Vehicle (UAV) controller evaluation was built. The test-bed consists of an instrumented tether and an experimental twin-rotor, planar UAV mounted with a one DOF manipulator mounted below the UAV body. The tether was constructed to constrain the UAV under test to motion on the surface of a sphere. Experiments can be conducted through the tether, approximating motion in a vertical plane by a UAV under test. The tether provides the means to measure the position and attitude of the UAV under test. The experimental twin-rotor UAV and one-link on-board manipulator, were designed and built to explore a unified control strategy for Manipulator on VTOL Aircraft (MOVA), in which the interaction of UAV body dynamics with the manipulator motion is of primary interest. The dynamics of the propulsion unit was characterized through experiments, based on which a phase lead compensator was designed to improve the UAV frequency response. A \u27separate\u27 controller based on independent nonlinear control of the VTOL aircraft and PD linear control of the on-board manipulator was designed as a reference for comparison to the unified MOVA controller. Tests with the separate controller show the negative effect that a coupled manipulator can have on the UAV body motion, while the tests on MOVA show the potential benefit of explicit compensation of the UAV and manipulator interaction

    Adaptive P Control and Adaptive Fuzzy Logic Controller with Expert System Implementation for Robotic Manipulator Application

    Get PDF
    This study aims to develop an expert system implementation of P controller and fuzzy logic controller to address issues related to improper control input estimation, which can arise from incorrect gain values or unsuitable rule-based designs. The research focuses on improving the control input adaptation by using an expert system to resolve the adjustment issues of the P controller and fuzzy logic controller. The methodology involves designing an expert system that captures error signals within the system and adjusts the gain to enhance the control input estimation from the main controller. In this study, the P controller and fuzzy logic controller were regulated, and the system was tested using step input signals with small values and larger than the saturation limit defined in the design. The PID controller used CHR tuning to least overshoot, determining the system's gain. The tests were conducted using different step input values and saturation limits, providing a comprehensive analysis of the controller's performance. The results demonstrated that the adaptive fuzzy logic controller performed well in terms of %OS and settling time values in system control, followed by the fuzzy logic controller, adaptive P controller, and P controller. The adaptive P controller showed similar control capabilities during input saturation, as long as it did not exceed 100% of the designed rule base. The study emphasizes the importance of incorporating expert systems into control input estimation in the main controller to enhance the system efficiency compared to the original system, and further improvements can be achieved if the main processing system already possesses adequate control ability. This research contributes to the development of more intelligent control systems by integrating expert systems with P controllers and fuzzy logic controllers, addressing the limitations of traditional control systems and improving their overall performance

    Design, Manufacturing and Control of an Advanced High-Precision Robotic System for Microsurgery

    Get PDF
    Microsurgeries like ophthalmic surgery confront many challenges like limited workspace and hand motion, steady hand movements, manipulating delicate thin tissues, and holding the instrument in place for a long time. New developments in robotically-assisted surgery can highly benefits this field and facilitate those complicated surgeries. Robotic eye surgery can save time, reduce surgical complications and inspire more delicate surgical procedures that cannot be done currently by surgeon’s hands. In this thesis work, the requirements for ophthalmic surgeries were studied and based on that a robotic system with 6 DOF is proposed and designed. This robotic system is capable of handling the position and orientation of the surgical instrument with theoretical accuracy of 10 μm. The design features a remote center of motion that defines the point of entry into the eye or patient’s body. The forward and inverse kinematics equations and workspace analysis of the robot is also discussed and presented. Six miniature DC motors with their PID controllers were installed on robot arms in order to run 6 DOF systems. Therefore, the dynamic behavior of a DC motor was studied and modeled and then the position and velocity transfer functions were derived and used to study the behavior of the system and also to manually tune the PID controller. The function of different elements of the control system including encoder, controller modules, Controller Area Network (CAN) and the controller software were discussed as well. The graphical user interface called EPOS Studio and performs as the motion controller is introduced and the way it organizes communications among the elements of the control system was described

    Review on auto-depth control system for an unmanned underwater remotely operated vehicle (ROV) using intelligent controller

    Get PDF
    This paper presents a review of auto-depth control system for an Unmanned Underwater Remotely operated Vehicle (ROV), focusing on the Artificial Intelligent Controller Techniques. Specifically, Fuzzy Logic Controller (FLC) is utilized in auto-depth control system for the ROV. This review covered recently published documents for auto-depth control of an Unmanned Underwater Vehicle (UUV). This paper also describes the control issues in UUV especially for the ROV, which has inspired the authors to develop a new technique for auto-depth control of the ROV, called the SIFLC. This technique was the outcome of an investigation and tuning of two parameters, namely the break point and slope for the piecewise linear or slope for the linear approximation. Hardware comparison of the same concepts of ROV design was also discussed. The ROV design is for smallscale, open frame and lower speed. The review on auto-depth control system for ROV, provides insights for readers to design new techniques and algorithms for auto-depth control
    corecore