26 research outputs found

    Water Pumping System Supplied by a PV Generator and with a Switched Reluctance Motor Using a Drive Based on a Multilevel Converter with Reduced Switches

    Get PDF
    Funding Information: This work was supported by national funds through the FCT—Fundação para a Ciência e a Tecnologia with reference UID/CEC/50021/2020 and UID/EEA/00066/2020. Publisher Copyright: © 2023 by the authors.Pumping systems play a fundamental role in many applications. One of the applications in which these systems are very important is to pump water. However, in the real world context, the use of renewable energies to supply this kind of system becomes essential. Thus, this paper proposes a water pumping system powered by a photovoltaic (PV) generator. In addition, due to its interesting characteristics, such low manufacturing cost, free of rare-earth elements, simple design and robustness for pumping systems, a switched reluctance motor (SRM) is used. The power electronic system to be used in the PV generator and to control the SRM consists of a DC/DC converter with a bipolar output and a multilevel converter. The adopted DC/DC converter uses only one switch, so its topology can be considered as a derivation of the combination of a Zeta converter with a buck–boost converter. Another important aspect is that this converter allows continuous input current, which is desirable for PV panels. The topology selected to control the SRM is a multilevel converter. This proposed topology was adopted with the purpose of reducing the number of power semiconductors. A maximum power point algorithm (MPPT) associated with the DC/DC converter to obtain the maximum power of the PV panels is also proposed. This MPPT will be developed based on the concept of the time derivative of the power and voltage. It will be verified that with the increase in solar irradiance, the generated power will also increase. From this particular case study, it will be verified that changes in the irradiance from 1000 W/m2 to 400 W/m2 will correspond to a change in the motor speed from 1220 rpm to 170 rpm. The characteristics and operation of the proposed system will be verified through several simulation and experimental studies.publishersversionpublishe

    Novel Design and Simulation of Fuzzy Controller for Turn-On & Turn-Off Angle in Coordination with SRM Speed Control for Electric Vehicles

    Get PDF
    In current scenario the Switch Reluctance Motor (SRM) are powerful alternative for Electric vehicles applications, due to its simple and rugged structure, high speed, its fault tolerance ability and Magnet free design these attributes make SRM superior to other conventional machines. This motor is a reluctance torque-driven stepper motor that can be used for bi-directional control and self-starting applications. In This paper novel control strategy proposed is to minimizing the Multiobjective function for accurate speed control of SRM by using Mamdani based two input two output fuzzy controller for optimal evaluation of α and β angle by designing closed loop system for accurate speed control of SRM and the corresponding error indices ITAE, IAE, ISE for with and without controller is analysed and compared modelling and simulation is done using MATLAB 2020a

    Design of Solar System by Implementing ALO Optimized PID Based MPPT Controller

    Get PDF
    This paper is a strive approach to design offgrid solar system in association with DC-DC boost converter and MPPT. The tuned PID based MPPT technique is adopted to extract maximum power from the solar system under certain circumstances (temperature and irradiance). The design parameters of PID controller play an imperative aspect to enhance the performance of the system. Ant lion Optimizer (ALO) algorithm is adopted to optimize PID parameters to contribute relevant duty cycle for DC-DC boost converter to maximize output power and voltage. P and O based MPPT technique is implemented to validate the supremacy of PID based MPPT to enhance the response of the system. In this paper, the proposed ALO optimized PID controller based MPPT technique is performed better over conventional P & O technique by conceding the oscillation, time response, settling time and maximum values of voltage, current and power of the solar system.Citation: SAHU, R. K., and Shaw, B. (2018). Design of Solar System by Implementing ALO Optimized PID Based MPPT Controller. Trends in Renewable Energy, 4, 44-55. DOI: 10.17737/tre.2018.4.3.004

    A photovoltaic system using supercapacitor energy storage for power equilibrium and voltage stability

    Get PDF
    In a photovoltaic system, a stable voltage and of tolerable power equilibrium is needed. Hence, a dedicated analog charge controller for a storage system which controls energy flow to impose power equilibrium, and therefore, voltage stability on the load is required. We demonstrate here our successful design considerations employing supercapacitors as main energy storage as well as a buffer in a standalone photovoltaic system, incorporating a dedicated supercapacitor charge controller for the first time. Firstly, we demonstrated a photovoltaic system employing supercapacitors as main energy storage as well as a buffer in a standalone photovoltaic system. Secondly, we design a constant voltage maximum power point tracker (MPPT) for peak power extraction from the photovoltaic generator. Thirdly, we incorporated a supercapacitor charge controller for power equilibrium and voltage stability through a dedicated analog charge controller in our design, the first of its kind. Fourthly, we analyzed the use of supercapacitor storage to mitigate disequilibrium between power supply and demands, which, in turn, causes overvoltage or under voltage across the load. Lastly, we then went ahead to demonstrate the control of the energy flow in the system so as to maintain rated voltage across a variant demand load

    Power Electronic Converter Configuration and Control for DC Microgrid Systems

    Get PDF

    Design, Modeling and Analysis of Low Voltage DC Microgrid

    Get PDF

    DC & Hybrid Micro-Grids

    Get PDF
    This book is a printed version of the papers published in the Special Issue “DC & Hybrid Microgrids” of Applied Sciences. This Special Issue, co-organized by the University of Pisa, Italy and Østfold University College in Norway, has collected nine papers and the editorial, from 28 submitted, with authors from Asia, North America and Europe. The published articles provide an overview of the most recent research advances in direct current (DC) and hybrid microgrids, exploiting the opportunities offered by the use of renewable energy sources, battery energy storage systems, power converters, innovative control and energy management strategies

    Power Electronics in Renewable Energy Systems

    Get PDF

    Advanced Signal Processing Techniques Applied to Power Systems Control and Analysis

    Get PDF
    The work published in this book is related to the application of advanced signal processing in smart grids, including power quality, data management, stability and economic management in presence of renewable energy sources, energy storage systems, and electric vehicles. The distinct architecture of smart grids has prompted investigations into the use of advanced algorithms combined with signal processing methods to provide optimal results. The presented applications are focused on data management with cloud computing, power quality assessment, photovoltaic power plant control, and electrical vehicle charge stations, all supported by modern AI-based optimization methods
    corecore