8 research outputs found

    Clinical utility of a pediatric hand exoskeleton: identifying users, practicability, and acceptance, and recommendations for design improvement

    Full text link
    BACKGROUND Children and adolescents with upper limb impairments can experience limited bimanual performance reducing daily-life independence. We have developed a fully wearable pediatric hand exoskeleton (PEXO) to train or compensate for impaired hand function. In this study, we investigated its appropriateness, practicability, and acceptability. METHODS Children and adolescents aged 6-18 years with functional limitations in at least one hand due to a neurological cause were selected for this cross-sectional evaluation. We characterized participants by various clinical tests and quantified bimanual performance with the Assisting Hand Assessment (AHA). We identified children whose AHA scaled score increased by ≥ 7 points when using the hand exoskeleton and determined clinical predictors to investigate appropriateness. The time needed to don each component and the number of technical issues were recorded to evaluate practicability. For acceptability, the experiences of the patients and the therapist with PEXO were evaluated. We further noted any adverse events. RESULTS Eleven children (median age 11.4 years) agreed to participate, but data was available for nine participants. The median AHA scaled score was higher with PEXO (68; IQR: 59.5-83) than without (55; IQR: 37.5-80.5; p = 0.035). The Box and Block test, the Selective Control of the Upper Extremity Scale, and finger extensor muscle strength could differentiate well between those participants who improved in AHA scaled scores by ≥ 7 points and those who did not (sensitivity and specificity varied between 0.75 and 1.00). The median times needed to don the back module, the glove, and the hand module were 62, 150, and 160 s, respectively, but all participants needed assistance. The most critical failures were the robustness of the transmission system, the electronics, and the attachment system. Acceptance was generally high, particularly in participants who improved bimanual performance with PEXO. Five participants experienced some pressure points. No adverse events occurred. CONCLUSIONS PEXO is a safe exoskeleton that can improve bimanual hand performance in young patients with minimal hand function. PEXO receives high acceptance. We formulated recommendations to improve technical issues and the donning before such exoskeletons can be used under daily-life conditions for therapy or as an assistive device. Trial registration Not appropriate

    Current trends and challenges in pediatric access to sensorless and sensor-based upper limb exoskeletons

    Get PDF
    ABSTRACT: Sensorless and sensor-based upper limb exoskeletons that enhance or support daily motor function are limited for children. This review presents the different needs in pediatrics and the latest trends when developing an upper limb exoskeleton and discusses future prospects to improve accessibility. First, the principal diagnoses in pediatrics and their respective challenge are presented. A total of 14 upper limb exoskeletons aimed for pediatric use were identified in the literature. The exoskeletons were then classified as sensorless or sensor-based, and categorized with respect to the application domain, the motorization solution, the targeted population(s), and the supported movement(s). The relative absence of upper limb exoskeleton in pediatrics is mainly due to the additional complexity required in order to adapt to children’s growth and answer their specific needs and usage. This review highlights that research should focus on sensor-based exoskeletons, which would benefit the majority of children by allowing easier adjustment to the children’s needs. Sensor-based exoskeletons are often the best solution for children to improve their participation in activities of daily living and limit cognitive, social, and motor impairments during their development

    Promoting inclusiveness in exoskeleton robotics: Addressing challenges for pediatric access

    Get PDF
    Pediatric access to exoskeletons lags far behind that of adults. In this article, we promote inclusiveness in exoskeleton robotics by identifying and addressing challenges and barriers to pediatric access to this potentially life-changing technology. We first present available exoskeleton solutions for upper and lower limbs and note the variability in the absence of these. Next, we query the possible reasons for this variability in access, explicitly focusing on children, who constitute a categorically vulnerable population, and also stand to benefit significantly from the use of this technology at this critical point in their physical and emotional growth. We propose the use of a life-based design approach as a way to address some of the design challenges and offer insights toward a resolution regarding market viability and implementation challenges. We conclude that the development of pediatric exoskeletons that allow for and ensure access to health-enhancing technology is a crucial aspect of the responsible provision of health care to all members of society. For children, the stakes are particularly high, given that this technology, when used at a critical phase of a child’s development, not only holds out the possibility of improving the quality of life but also can improve the long-term health prospects

    A Linear Actuator/Spring Steel-Driven Glove for Assisting Individuals with Activities of Daily Living

    Get PDF
    Over three million people in the U.S. suffer from forearm and hand disabilities. This can result from aging, neurological disorders (e.g., stroke), chronic disease (e.g., arthritis), and injuries. Injuries to hands comprise one-third of all work-related injuries worldwide. This can lead to difficulties with activities of daily living (ADL), where one needs to grasp, lift, and release objects in the household. There is a rise in demand for assistive orthoses and gloves that can allow many people to regain their grasping/releasing ability and, thereby, their independence. The main contribution of this thesis is developing an assistive glove with the actuating mechanism comprised of linear actuators and strips of spring steel to enable bidirectional motion of users\u27 fingers during ADL. The target group of people to use this proposed actuation system was chosen to those who had only diminished hand grasping capabilities. There are already many different gloves in the market. Each one uses different methods of actuation and force transmission, as well as different control methods. These gloves were analyzed by looking at their actuation mechanisms, control systems, and the benefits and downfalls of each one. Vigorous testing was conducted to choose the most effective components for the actuating mechanism. Then, an assistive glove was fabricated which included a control system box that could be easily worn on the forearm of the user. Tests were conducted on the glove to test its effectiveness when the user’s hand was completely passive using four to six participants. Motion capture, force, and electromyography (EMG) data were collected and from those, range of finger motion, maximum grasping capabilities, maximum force generation, and muscle activity were analyzed. The glove was shown to actuate the fingers enough to grasp objects with different sizes ranging in diameter from 40mm to 80mm, with maximum possible weight able to be picked up being around 1000g for the larger sizes. The glove could generate 4N-5N to the index and middle fingers and 10N to the thumb. EMG analysis showed that using the glove to pick up heavy objects caused a decrease in muscle activity of up to 80%. From this analysis, it was shown that the glove has potential to assist with ADL and would provide greater independence for those with diminished hand grasping abilities

    Einsatz von Robotik zur Spielförderung von Kindern mit schwerer Mehrfachbeeinträchtigung

    Get PDF
    Hintergrund: Spiel ist für Kinder eine essenzielle Betätigung. Kinder mit schwerer Mehrfachbeeinträchtigung haben häufig aufgrund personenbezogenen oder kontextuellen Einschränkungen Schwierigkeiten zu spielen. Durch den Einsatz von Robotern können Kinder mit schwerer Mehrfachbeeinträchtigung zum Spielen befähigt werden. Fragestellung: Welche Evidenz aus der Literatur unterstützt den Einsatz von Robotern für die Spielförderung in der Ergotherapie bei Kindern mit schwerer Mehrfachbeeinträchtigung? Methode: Es wurde eine systematische Literaturrecherche durchgeführt. Anhand von Ein- und Ausschlusskriterien wurden vier Hauptstudien ausgewählt. Die Ergebnisse aus diesen wurden zusammengefasst, gewürdigt und anhand des Human Activity Assistive Technology [HAAT]-Modells diskutiert. Ergebnisse: Studien zu drei Robotern (Legoroboter, IROMEC, SAR) und einem Exoskelett (WREX) wurden gefunden, die das Potential haben, das Spiel bei Kindern mit Beeinträchtigung zu fördern. Die Studien weisen ein geringes Evidenzniveau auf, da es sich grösstenteils um Vorstudien handelt und es noch ein junges Forschungsgebiet ist. Schlussfolgerung: Beim Einsatz von Robotern in der Ergotherapie soll der Mensch, der Kontext, die Aktivität, der Roboter selbst und alle Schnittstellen zwischen diesen Domänen genau erfasst und berücksichtigt werden. Die Fragestellung konnte beantwortet werden. Die Ergebnisse dieser Bachelorarbeit weisen darauf hin, dass der Legoroboter, IRO-MEC, SAR und das WREX zur Spielförderung geeignet sind

    Psychological and care impact of the daily use of a pediatric gait exoskeleton in children with spinal muscular atrophy

    Get PDF
    Introducción: La Atrofia Muscular Espinal Tipo II, es una enfermedad neurodegenerativa de origen genético que cursa con debilidad muscular y provoca deterioro motor e incapacidad para caminar en los niños. Se relaciona con graves problemas respiratorios, musculoesqueléticos, gastrointestinales y otros de salud y cuidado. Los exoesqueletos robóticos de miembros inferiores son dispositivos médicos que ayudan a la marcha de pacientes que no pueden caminar. Nuestro objetivo fue evaluar el impacto en la dimensión psicológica y de autocuidado derivado del uso del exoesqueleto ATLAS en el hogar en niños con Atrofia Muscular Espinal Tipo II. Metodología: tres niños con Atrofia Muscular Espinal Tipo II utilizaron el exoesqueleto en casa cinco días a la semana durante un período de dos meses para caminar y realizar actividades. Se realizó una evaluación del autocuidado de enfermería antes y durante el uso del dispositivo para evaluar los cambios en los resultados del autocuidado y los diagnósticos de enfermería. Se realizaron entrevistas en profundidad y semiestructuradas, además de la observación durante las sesiones, para evaluar el impacto de la experiencia en la dimensión psicológica de los participantes. Resultados: el uso del exoesqueleto produjo cambios en los condicionantes básicos de los niños y una mejora en los organismos de autocuidado. También aparecieron nuevas demandas de autocuidado. Tres de los diez diagnósticos de enfermería fueron resueltos. Asimismo, los niños mostraron una buena tolerancia a la actividad además de una mejora funcional evaluada en el tercer participante. Los niños y los cuidadores principales valoraron la experiencia como positiva y significativa. Los niños tenían una mayoría de emociones positivas, y se incrementó su autonomía y comportamiento social y exploratorio. Conclusiones: la tecnología del exoesqueleto podría considerarse como un nuevo recurso para el cuidado de niños con enfermedades neuromusculares. Su uso tuvo un impacto positivo tanto en las variables de autocuidado como en la dimensión psicológica de tres niños con atrofia muscular espinal tipo II. Aunque este estudio aporta ya evidencia, más estudios sobre el tema aportarían un mayor conocimiento

    PEXO - A Pediatric Whole Hand Exoskeleton for Grasping Assistance in Task-Oriented Training

    No full text
    Children with hand motor impairment due to cerebral palsy, traumatic brain injury, or pediatric stroke are considerably affected in their independence, development, and quality of life. Treatment conventionally includes task-oriented training in occupational therapy. While dose and intensity of hand therapy can be promoted through technology, these approaches are mostly limited to large stationary robotic devices for non-task-oriented training, or passive wearable devices for children with mild impairments. Here we present PEXO, a fully wearable actuated pediatric hand exoskeleton to cover the special needs of children (6 to 12 years of age) with strong impairments in hand function. Through three degrees of freedom, PEXO provides assistance in various grasp types needed for the execution of functional tasks. It is lightweight, water proof, and inherently interacts safely with the user. It meets mechanical requirements such as force, fast closing movement, and battery lifetime derived from literature and discussions with clinicians. Appealing appearance, user-friendly design, and intuitive control with visual feedback of forearm muscle activity should keep the user motivated during training in the clinic or at home. A pilot test with a 6-years old child with stroke showed that PEXO can provide assistance in grasping various objects weighing up to 0.5 kg. These are promising first results on the way to make hand exoskeletons accessible for children with neuromotor disorders

    Exoesqueleto de mano para rehabilitación de ictus

    Get PDF
    Treball final de Màster Universitari en Disseny i Fabricació (Pla de 2015). Codi: SDI413. Curs acadèmic: 2020/2021La mano es uno de los miembros más complejos del cuerpo humano y dota a las personas de la autonomía necesaria para realizar las actividades de la vida diaria. De ahí la gran importancia que supone tener una fisiología de la mano sana. Los problemas que pueden manifestarse en la mano (bien por lesión o por enfermedad) repercutirán directamente en sus labores cotidianas, tales como vestirse, alimentarse, lavarse, agarrar objetos, etc. El ictus es una enfermedad cerebrovascular que afecta a la motricidad de la mano, y por tanto a la autonomía de los pacientes. La rehabilitación de estos pacientes es clave en la recuperación de dicha autonomía. Existen estudios que demuestran la importancia de combinar la rehabilitación tradicional con la rehabilitación utilizando un exoesqueleto, ya que, al combinar estas dos técnicas, la mejora se prolonga durante más tiempo que si solamente se realiza a través del método tradicional. Sin embargo, los exoesqueletos de bajo coste suelen ser voluminosos y aparatosos, difíciles de fijar, por lo que no todos los pacientes se pueden permitir la compra de un exoesqueleto compacto. El presente proyecto tiene como objeto el diseño de un exoesqueleto de mano que permita la rehabilitación de la mano en personas que han sufrido problemas cerebrovasculares, permitiendo la rehabilitación y a la vez facilitándoles realizar tareas de la vida cotidiana. Por este motivo se deberá diseñar un producto de calidad pero que a la vez sea económico y fácil de usar
    corecore