111 research outputs found

    Design and debugging of multi-step analog to digital converters

    Get PDF
    With the fast advancement of CMOS fabrication technology, more and more signal-processing functions are implemented in the digital domain for a lower cost, lower power consumption, higher yield, and higher re-configurability. The trend of increasing integration level for integrated circuits has forced the A/D converter interface to reside on the same silicon in complex mixed-signal ICs containing mostly digital blocks for DSP and control. However, specifications of the converters in various applications emphasize high dynamic range and low spurious spectral performance. It is nontrivial to achieve this level of linearity in a monolithic environment where post-fabrication component trimming or calibration is cumbersome to implement for certain applications or/and for cost and manufacturability reasons. Additionally, as CMOS integrated circuits are accomplishing unprecedented integration levels, potential problems associated with device scaling – the short-channel effects – are also looming large as technology strides into the deep-submicron regime. The A/D conversion process involves sampling the applied analog input signal and quantizing it to its digital representation by comparing it to reference voltages before further signal processing in subsequent digital systems. Depending on how these functions are combined, different A/D converter architectures can be implemented with different requirements on each function. Practical realizations show the trend that to a first order, converter power is directly proportional to sampling rate. However, power dissipation required becomes nonlinear as the speed capabilities of a process technology are pushed to the limit. Pipeline and two-step/multi-step converters tend to be the most efficient at achieving a given resolution and sampling rate specification. This thesis is in a sense unique work as it covers the whole spectrum of design, test, debugging and calibration of multi-step A/D converters; it incorporates development of circuit techniques and algorithms to enhance the resolution and attainable sample rate of an A/D converter and to enhance testing and debugging potential to detect errors dynamically, to isolate and confine faults, and to recover and compensate for the errors continuously. The power proficiency for high resolution of multi-step converter by combining parallelism and calibration and exploiting low-voltage circuit techniques is demonstrated with a 1.8 V, 12-bit, 80 MS/s, 100 mW analog to-digital converter fabricated in five-metal layers 0.18-µm CMOS process. Lower power supply voltages significantly reduce noise margins and increase variations in process, device and design parameters. Consequently, it is steadily more difficult to control the fabrication process precisely enough to maintain uniformity. Microscopic particles present in the manufacturing environment and slight variations in the parameters of manufacturing steps can all lead to the geometrical and electrical properties of an IC to deviate from those generated at the end of the design process. Those defects can cause various types of malfunctioning, depending on the IC topology and the nature of the defect. To relive the burden placed on IC design and manufacturing originated with ever-increasing costs associated with testing and debugging of complex mixed-signal electronic systems, several circuit techniques and algorithms are developed and incorporated in proposed ATPG, DfT and BIST methodologies. Process variation cannot be solved by improving manufacturing tolerances; variability must be reduced by new device technology or managed by design in order for scaling to continue. Similarly, within-die performance variation also imposes new challenges for test methods. With the use of dedicated sensors, which exploit knowledge of the circuit structure and the specific defect mechanisms, the method described in this thesis facilitates early and fast identification of excessive process parameter variation effects. The expectation-maximization algorithm makes the estimation problem more tractable and also yields good estimates of the parameters for small sample sizes. To allow the test guidance with the information obtained through monitoring process variations implemented adjusted support vector machine classifier simultaneously minimize the empirical classification error and maximize the geometric margin. On a positive note, the use of digital enhancing calibration techniques reduces the need for expensive technologies with special fabrication steps. Indeed, the extra cost of digital processing is normally affordable as the use of submicron mixed signal technologies allows for efficient usage of silicon area even for relatively complex algorithms. Employed adaptive filtering algorithm for error estimation offers the small number of operations per iteration and does not require correlation function calculation nor matrix inversions. The presented foreground calibration algorithm does not need any dedicated test signal and does not require a part of the conversion time. It works continuously and with every signal applied to the A/D converter. The feasibility of the method for on-line and off-line debugging and calibration has been verified by experimental measurements from the silicon prototype fabricated in standard single poly, six metal 0.09-µm CMOS process

    Measurement of small signal variations using one-dimensional chaotic maps

    Get PDF
    A novel electronic signal Measurement System (MS) based on one-dimensional chaotic maps (Logistic Map (LM) and Tent Map (TM)) has been developed, analysed and tested. Firstly, an in-depth theoretical analysis of each map was performed using MATLAB based computation, and the results demonstrated that the high sensitivity, to initial conditions, of each map was suitable for small signal change detection and measurement. A new 3D representation of chaos map output for varying initial input was also developed allowing the suitability of any one-dimensional chaotic map to be determined. An electronic implementation of the chaotic maps, using low noise and low cost components was developed along with a feedback and a series based MS. The implementations were tested and the experimental results demonstrate a matching within ±1 %, between theory and the electronic implementations, both maps exhibiting behaviour identical to the theoretical maps, ranging from fixed point stability, periodicity and chaos. Each map implementation was tested separately and as part of a complete MS and the results reveal that the proposed measurement technique can detect and measure input signals changes as low as 5 over a 10 V input range, which yields a greater resolution than a MS using an 20 bit Analogue to Digital Converter (ADC) over the same input range. The main advantage of the presented MS is that the accuracy of the measurement is independent of the input range which is not the case with classical approach to measurement based on conditioning circuitry followed by an ADC as the minimum detectable change is directly proportional to the input range

    Noise-Shaping SAR ADCs.

    Full text link
    This work investigates hybrid analog-to-digital converters (ADCs) that combine the phenomenal energy efficiency of successive-approximation (SAR) ADCs with the resolution enhancement strategies used by noise-shaping converters. Because charge-redistribution SAR ADCs contain few active components and rely on highly digital controllers, SAR ADCs demonstrate the best energy efficiencies of all low bandwidth, moderate resolution converters (~10 bits). SAR ADCs achieve remarkable power efficiency at low resolution, but as the resolution of the SAR ADC increases, the specifications for input-referred comparator noise become more stringent and total DAC capacitance becomes too large, which degrades both power efficiency and bandwidth. For these reasons, lower resolution, lower bandwidth applications tend to favor traditional SAR ADC architectures, while higher bandwidth, higher resolution applications tend to favor pipeline-SARs. Although the use of amplifiers in pipeline-assisted SARs relaxes the comparator noise requirements and improves bandwidth, amplifier design becomes more of a challenge in highly scaled processes with reduced supply voltages. In this work, we explore the use of feedback and noise-shaping to enhance the resolution of SAR ADCs. Unlike pipeline-SARs, which require high-gain, linear amplifiers, noise-shaping SARs can be constructed using passive FIR filter structures. Furthermore, the use of feedback and noise-shaping reduces the impact of thermal kT/C noise and comparator noise. This work details and explores a new class of noise-shaping SARs.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/113647/1/fredenbu_1.pd

    Receptores de rádio-frequência melhorados e disruptivos

    Get PDF
    This Ph.D. mainly addresses the reception part of a radio front end, focusing on Radio Frequency (RF) sampling architectures. These are considered to be the most promising future candidates to get better performance in terms of bandwidth and agility, following the well-known Software-Defined Radio (SDR) concept. The study considers the usage of an RF receiver in a standalone operation, i.e., used for receiving unknown data at the antenna, and when used as observation path for Power Amplifier (PA) linearization via Digital Predistortion (DPD), since nowadays this represents a mandatory technique to increase overall system’s performance. Firstly, commercial available RF Analog-Digital-Converters (ADCs) are studied and characterized to understand their limitations when used in DPD scenarios. A method for characterization and digital post-compensation to improve performance is proposed and evaluated. Secondly, an innovative FPGA-based RF single-bit pulsed converter based on Pulse Width Modulation (PWM) is addressed targeting frequency agility, high analog input bandwidth, and system integration, taking profit of an FPGA-based implementation. The latter was optimized based on PWM theoretical behavior maximizing Signal-to-Noise-Ratio (SNR) and bandwidth. The optimized receiver, was afterwards evaluated in a 5G C-RAN architecture and as a feedback loop for DPD. Finally, a brief study regarding DPD feedback loops in the scope of multiantenna transmitters is presented. This Ph.D. contributes with several advances to the state-of-the-art of SDR receiver, and to the so-called SDR DPD concept.Este doutoramento endereça principalmente a componente de receção de um transcetor de rádio-frequência (RF), focando-se em arquiteturas de receção de amostragem em RF. Estas são assim consideradas como sendo as mais promissoras para o futuro, em termos de desempenho, largura de banda e agilidade, de acordo com o conhecido conceito de Rádios Definidos por Software (SDR). O estudo considera o uso dos recetores de RF em modo standalone, i.e., recebendo dados desconhecidos provenientes da antena, e também quando usados como caminho de observação para aplicação de linearização de amplificadores de potência (PAs) via pré-distorção digital (DPD), pois atualmente esta é uma técnica fundamental para aumentar o desempenho geral do sistema. Em primeiro lugar, os conversores analógico-digital de RF são estudados e caracterizados para perceber as suas limitações quando usados em cenários de DPD. Um método de caracterização e pós compensação digital é proposto para obter melhorias de desempenho. Em segundo lugar, um novo recetor pulsado de um bit baseado em Modulação de Largura de Pulso (PWM) e implementado em Agregado de Células Lógicas Programáveis (FPGA) é endereçado, visando agilidade em frequência, largura de banda analógica e integração de sistema, tirando proveito da implementação em FPGA. Este recetor foi otimizado com base no modelo comportamental teórico da modulação PWM, maximizando a relação sinalruído (SNR) e a largura de banda. O recetor otimizado foi posteriormente avaliado num cenário 5G de uma arquitetura C-RAN e também num cenário em que serve de caminho de observação para DPD. Finalmente, um breve estudo relativo a caminhos de observação de DPD no contexto de transmissores multi-antena é também apresentado. Este doutoramento contribui com vários avanços no estado da arte de recetores SDR e no conceito de SDR DPD.Programa Doutoral em Engenharia Eletrotécnic

    Nonlinear models and algorithms for RF systems digital calibration

    Get PDF
    Focusing on the receiving side of a communication system, the current trend in pushing the digital domain ever more closer to the antenna sets heavy constraints on the accuracy and linearity of the analog front-end and the conversion devices. Moreover, mixed-signal implementations of Systems-on-Chip using nanoscale CMOS processes result in an overall poorer analog performance and a reduced yield. To cope with the impairments of the low performance analog section in this "dirty RF" scenario, two solutions exist: designing more complex analog processing architectures or to identify the errors and correct them in the digital domain using DSP algorithms. In the latter, constraints in the analog circuits' precision can be offloaded to a digital signal processor. This thesis aims at the development of a methodology for the analysis, the modeling and the compensation of the analog impairments arising in different stages of a receiving chain using digital calibration techniques. Both single and multiple channel architectures are addressed exploiting the capability of the calibration algorithm to homogenize all the channels' responses of a multi-channel system in addition to the compensation of nonlinearities in each response. The systems targeted for the application of digital post compensation are a pipeline ADC, a digital-IF sub-sampling receiver and a 4-channel TI-ADC. The research focuses on post distortion methods using nonlinear dynamic models to approximate the post-inverse of the nonlinear system and to correct the distortions arising from static and dynamic errors. Volterra model is used due to its general approximation capabilities for the compensation of nonlinear systems with memory. Digital calibration is applied to a Sample and Hold and to a pipeline ADC simulated in the 45nm process, demonstrating high linearity improvement even with incomplete settling errors enabling the use of faster clock speeds. An extended model based on the baseband Volterra series is proposed and applied to the compensation of a digital-IF sub-sampling receiver. This architecture envisages frequency selectivity carried out at IF by an active band-pass CMOS filter causing in-band and out-of-band nonlinear distortions. The improved performance of the proposed model is demonstrated with circuital simulations of a 10th-order band pass filter, realized using a five-stage Gm-C Biquad cascade, and validated using out-of-sample sinusoidal and QAM signals. The same technique is extended to an array receiver with mismatched channels' responses showing that digital calibration can compensate the loss of directivity and enhance the overall system SFDR. An iterative backward pruning is applied to the Volterra models showing that complexity can be reduced without impacting linearity, obtaining state-of-the-art accuracy/complexity performance. Calibration of Time-Interleaved ADCs, widely used in RF-to-digital wideband receivers, is carried out developing ad hoc models because the steep discontinuities generated by the imperfect canceling of aliasing would require a huge number of terms in a polynomial approximation. A closed-form solution is derived for a 4-channel TI-ADC affected by gain errors and timing skews solving the perfect reconstruction equations. A background calibration technique is presented based on cyclo-stationary filter banks architecture. Convergence speed and accuracy of the recursive algorithm are discussed and complexity reduction techniques are applied

    Adaptive Baseband Pro cessing and Configurable Hardware for Wireless Communication

    Get PDF
    The world of information is literally at one’s fingertips, allowing access to previously unimaginable amounts of data, thanks to advances in wireless communication. The growing demand for high speed data has necessitated theuse of wider bandwidths, and wireless technologies such as Multiple-InputMultiple-Output (MIMO) have been adopted to increase spectral efficiency.These advanced communication technologies require sophisticated signal processing, often leading to higher power consumption and reduced battery life.Therefore, increasing energy efficiency of baseband hardware for MIMO signal processing has become extremely vital. High Quality of Service (QoS)requirements invariably lead to a larger number of computations and a higherpower dissipation. However, recognizing the dynamic nature of the wirelesscommunication medium in which only some channel scenarios require complexsignal processing, and that not all situations call for high data rates, allowsthe use of an adaptive channel aware signal processing strategy to provide adesired QoS. Information such as interference conditions, coherence bandwidthand Signal to Noise Ratio (SNR) can be used to reduce algorithmic computations in favorable channels. Hardware circuits which run these algorithmsneed flexibility and easy reconfigurability to switch between multiple designsfor different parameters. These parameters can be used to tune the operations of different components in a receiver based on feedback from the digitalbaseband. This dissertation focuses on the optimization of digital basebandcircuitry of receivers which use feedback to trade power and performance. Aco-optimization approach, where designs are optimized starting from the algorithmic stage through the hardware architectural stage to the final circuitimplementation is adopted to realize energy efficient digital baseband hardwarefor mobile 4G devices. These concepts are also extended to the next generation5G systems where the energy efficiency of the base station is improved.This work includes six papers that examine digital circuits in MIMO wireless receivers. Several key blocks in these receiver include analog circuits thathave residual non-linearities, leading to signal intermodulation and distortion.Paper-I introduces a digital technique to detect such non-linearities and calibrate analog circuits to improve signal quality. The concept of a digital nonlinearity tuning system developed in Paper-I is implemented and demonstratedin hardware. The performance of this implementation is tested with an analogchannel select filter, and results are presented in Paper-II. MIMO systems suchas the ones used in 4G, may employ QR Decomposition (QRD) processors tosimplify the implementation of tree search based signal detectors. However,the small form factor of the mobile device increases spatial correlation, whichis detrimental to signal multiplexing. Consequently, a QRD processor capableof handling high spatial correlation is presented in Paper-III. The algorithm and hardware implementation are optimized for carrier aggregation, which increases requirements on signal processing throughput, leading to higher powerdissipation. Paper-IV presents a method to perform channel-aware processingwith a simple interpolation strategy to adaptively reduce QRD computationcount. Channel properties such as coherence bandwidth and SNR are used toreduce multiplications by 40% to 80%. These concepts are extended to usetime domain correlation properties, and a full QRD processor for 4G systemsfabricated in 28 nm FD-SOI technology is presented in Paper-V. The designis implemented with a configurable architecture and measurements show thatcircuit tuning results in a highly energy efficient processor, requiring 0.2 nJ to1.3 nJ for each QRD. Finally, these adaptive channel-aware signal processingconcepts are examined in the scope of the next generation of communicationsystems. Massive MIMO systems increase spectral efficiency by using a largenumber of antennas at the base station. Consequently, the signal processingat the base station has a high computational count. Paper-VI presents a configurable detection scheme which reduces this complexity by using techniquessuch as selective user detection and interpolation based signal processing. Hardware is optimized for resource sharing, resulting in a highly reconfigurable andenergy efficient uplink signal detector

    Characterization of systems for software defined radio

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesEsta dissertação insere-se na área de electrónica de rádio frequência, mais precisamente na caracterização de sistemas para rádios definidos por software (SDR). Um SDR é aquele que possui a flexibilidade para sintonizar, filtrar, ajustar a taxa de transmissão e controlar o tipo de modulação através de software. O aparecimento de novas tecnologias no mercado obriga à utilização de uma quantidade considerável de hardware nos dispositivos de transmissão/recepção, assim uma solução consiste no uso de arquitecturas de SDR onde a conversão do sinal analógico para digital é executada o mais próximo possível da antena e, sendo depois todo o processamento efectuado digitalmente. Assim, nesta tese, é apresentado um modelo comportamental para receptores de SDR, que leva em conta os elementos chave da distorção não linear. Além disso, são apresentadas algumas comparações entre simulações e medidas usando sinais multi-seno e WiMax usando um receptor ideal de SDR. Finalmente, é proposto um novo sistema de caracterização para dispositivos de SDR. ABSTRACT: This dissertation is related to the radio frequency area, more specifically to the characterization of systems for software-defined radio. A software-defined radio is one that has the flexibility to tune, filter, set the transmission rate and control the modulation type only by software. The emergence of new technologies in the market forces the use of a considerable quantity of hardware in the transceivers systems, so a viable solution for this is to use SDR solutions where the analogue to digital conversion is made closest possible of the antenna and then make all the processing digitally. So, in this dissertation, a behavioral model for SDR front end receiver evaluation, that captures the key elements of the nonlinear distortion, is proposed. Moreover, some comparisons between measured and simulated results under multisine and WiMax excitations are presented using the ideal SDR receiver. Finally, a new instrumentation system for characterization of SDR front ends is proposed

    A FEASIBILITY STUDY OF HIGH-VOLTAGE COMPARATORS USING SILICON METAL-OXIDE-SEMICONDUCTOR FIELD-EFFECT TRANSISTORS

    Get PDF
    The overall trend of transistor scaling has resulted in distinct, application-specific manufacturing processes. Two of these specialized devices scaled complementary metal-oxide-semiconductor field-effect transistors (CMOS) and power transistors, typically have inversely related performance in speed, power handling, and size. This work develops a novel comparator circuit to explore the potential benefits of integrating these two technology schemes to achieve improved power handling capabilities for signal processing and communication systems through the development of a Silicon-based high-voltage comparator. The study produced a final circuit with a flat-band gain of 20dB across the high frequency (HF) range with a projected input voltage tolerance above 10V. The development process indicates that the physical characteristics of the power transistor, a laterally-diffused MOSFET (LDMOS), constrains frequency response and therefore, ultimately, comparator performance. Although the demonstrated device does not achieve the target performance, the investigation suggests that integrating the power transistors at the integrated circuit (IC) level is a promising approach to producing a competitive high-voltage Silicon-based comparator.M.S
    corecore