1,729 research outputs found

    Optimal adaptive control of time-delay dynamical systems with known and uncertain dynamics

    Get PDF
    Delays are found in many industrial pneumatic and hydraulic systems, and as a result, the performance of the overall closed-loop system deteriorates unless they are explicitly accounted. It is also possible that the dynamics of such systems are uncertain. On the other hand, optimal control of time-delay systems in the presence of known and uncertain dynamics by using state and output feedback is of paramount importance. Therefore, in this research, a suite of novel optimal adaptive control (OAC) techniques are undertaken for linear and nonlinear continuous time-delay systems in the presence of uncertain system dynamics using state and/or output feedback. First, the optimal regulation of linear continuous-time systems with state and input delays by utilizing a quadratic cost function over infinite horizon is addressed using state and output feedback. Next, the optimal adaptive regulation is extended to uncertain linear continuous-time systems under a mild assumption that the bounds on system matrices are known. Subsequently, the event-triggered optimal adaptive regulation of partially unknown linear continuous time systems with state-delay is addressed by using integral reinforcement learning (IRL). It is demonstrated that the optimal control policy renders asymptotic stability of the closed-loop system provided the linear time-delayed system is controllable and observable. The proposed event-triggered approach relaxed the need for continuous availability of state vector and proven to be zeno-free. Finally, the OAC using IRL neural network based control of uncertain nonlinear time-delay systems with input and state delays is investigated. An identifier is proposed for nonlinear time-delay systems to approximate the system dynamics and relax the need for the control coefficient matrix in generating the control policy. Lyapunov analysis is utilized to design the optimal adaptive controller, derive parameter/weight tuning law and verify stability of the closed-loop system”--Abstract, page iv

    Optimized state feedback regulation of 3DOF helicopter system via extremum seeking

    Get PDF
    In this paper, an optimized state feedback regulation of a 3 degree of freedom (DOF) helicopter is designed via extremum seeking (ES) technique. Multi-parameter ES is applied to optimize the tracking performance via tuning State Vector Feedback with Integration of the Control Error (SVFBICE). Discrete multivariable version of ES is developed to minimize a cost function that measures the performance of the controller. The cost function is a function of the error between the actual and desired axis positions. The controller parameters are updated online as the optimization takes place. This method significantly decreases the time in obtaining optimal controller parameters. Simulations were conducted for the online optimization under both fixed and varying operating conditions. The results demonstrate the usefulness of using ES for preserving the maximum attainable performance

    A control theoretic approach for security of cyber-physical systems

    Get PDF
    In this dissertation, several novel defense methodologies for cyber-physical systems have been proposed. First, a special type of cyber-physical system, the RFID system, is considered for which a lightweight mutual authentication and ownership management protocol is proposed in order to protect the data confidentiality and integrity. Then considering the fact that the protection of the data confidentiality and integrity is insufficient to guarantee the security in cyber-physical systems, we turn to the development of a general framework for developing security schemes for cyber-physical systems wherein the cyber system states affect the physical system and vice versa. After that, we apply this general framework by selecting the traffic flow as the cyber system state and a novel attack detection scheme that is capable of capturing the abnormality in the traffic flow in those communication links due to a class of attacks has been proposed. On the other hand, an attack detection scheme that is capable of detecting both sensor and actuator attacks is proposed for the physical system in the presence of network induced delays and packet losses. Next, an attack detection scheme is proposed when the network parameters are unknown by using an optimal Q-learning approach. Finally, this attack detection and accommodation scheme has been further extended to the case where the network is modeled as a nonlinear system with unknown system dynamics --Abstract, page iv

    On adaptive control and particle filtering in the automatic administration of medicinal drugs

    Get PDF
    Automatic feedback methodologies for the administration of medicinal drugs offer undisputed potential benefits in terms of cost reduction and improved clinical outcomes. However, despite several decades of research, the ultimate safety of many--it would be fair to say most--closed-loop drug delivery approaches remains under question and manual methods based on clinicians' expertise are still dominant in clinical practice. Key challenges to the design of control systems for these applications include uncertainty in pharmacological models, as well as intra- and interpatient variability in the response to drug administration. Pharmacological systems may feature nonlinearities, time delays, time-varying parameters and non-Gaussian stochastic processes. This dissertation investigates a novel multi-controller adaptive control strategy capable of delivering safe control for closed-loop drug delivery applications without impairing clinicians' ability to make an expert assessment of a clinical situation. Our new feedback control approach, which we have named Robust Adaptive Control with Particle Filtering (RAC-PF), estimates a patient's individual response characteristic in real-time through particle filtering and uses the Bayesian inference result to select the most suitable controller for closed-loop operation from a bank of candidate controllers designed using the robust methodology of mu-synthesis. The work is presented as four distinct pieces of research. We first apply the existing approach of Robust Multiple-Model Adaptive Control (RMMAC), which features robust controllers and Kalman filter estimators, to the case-study of administration of the vasodepressor drug sodium nitroprusside and examine benefits and drawbacks. We then consider particle filtering as an alternative to Kalman filter-based methods for the real-time estimation of pharmacological dose-response, and apply this to the nonlinear pharmacokinetic-pharmacodynamic model of the anaesthetic drug propofol. We ultimately combine particle filters and robust controllers to create RAC-PF, and test our novel approach first in a proof-of-concept design and finally in the case of sodium nitroprusside. The results presented in the dissertation are based on computational studies, including extensive Monte-Carlo simulation campaigns. Our findings of improved parameter estimates from noisy observations support the use of particle filtering as a viable tool for real-time Bayesian inference in pharmacological system identification. The potential of the RAC-PF approach as an extension of RMMAC for closed-loop control of a broader class of systems is also clearly highlighted, with the proposed new approach delivering safe control of acute hypertension through sodium nitroprusside infusion when applied to a very general population response model. All approaches presented are generalisable and may be readily adapted to other drug delivery instances

    Design of Low-Order Controllers using Optimization Techniques

    Get PDF
    In many applications, especially in the process industry, low-level controllers are the workhorses of the automated production lines. The aim of this study has been to provide simple tuning procedures, either optimization-based methods or tuning rules, for design of low-order controllers. The first part of this thesis deals with PID tuning. Design methods or both SISO and MIMO PID controllers based on convex optimization are presented. The methods consist of solving a nonconvex optimization problem by deriving convex approximations of the original problem and solving these iteratively until convergence. The algorithms are fast because of the convex approximations. The controllers obtained minimize low-frequency sensitivity subject to constraints that ensure robustness to process variations and limitations of control signal effort. The second part of this thesis deals with tuning of feedforward controllers. Tuning rules that minimize the integrated-squared-error arising from measurable step disturbances are derived for a controller that can be interpreted as a filtered and possibly time-delayed PD controller. Using a controller structure that decouples the effects of the feedforward and feedback controllers, the controller is optimal both in open and closed loop settings. To improve the high-frequency noise behavior of the feedforward controller, it is proposed that the optimal controller is augmented with a second-order filter. Several aspects on the tuning of this filter are discussed. For systems with PID controllers, the response to step changes in the reference can be improved by introducing set-point weighting. This can be interpreted as feedforward from the reference signal to the control signal. It is shown how these weights can be found by solving a convex optimization problem. Proportional set-point weight that minimizes the integrated-absolute-error was obtained for a batch of over 130 different processes. From these weights, simple tuning rules were derived and the performance was evaluated on all processes in the batch using five different feedback controller tuning methods. The proposed tuning rules could improve the performance by up to 45% with a modest increase in actuation

    Proceedings of the 1st Virtual Control Conference VCC 2010

    Get PDF

    Development of intelligent learning motion control systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore