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Summary

Intelligent Mechatronics through Learning
from Gaussian Processes to Repetitive Control and Adaptive

Feedforward

Intelligent control methods are essential to keep up with the increasing perfor-
mance demands of next-generation high-tech systems, ranging from high-speed
printing, astronomy, and health-care applications to the semiconductor back-
end, while at the same time also pushing for lower costs. Examples include
the positioning of semiconductor packages of several micrometers that is per-
formed with tens of thousands of packages per hour at a sub-micrometer po-
sitioning accuracy, or laser satellite communication where a pointing accuracy
of micro-radians is required with respect to a vibrating satellite at several hun-
dred kilometers distance. To keep on pushing these performance demands in the
future, motion controller design is becoming increasingly challenging and the
field of learning control is particularly promising. Learning control algorithms,
especially in combination with machine learning, enable the development of in-
telligent controllers that learn automatically from the abundance of available
data, enabling an excellent trade-off between accuracy, speed, and cost.

In this thesis the control performance for future systems is improved, i.e., sup-
pression of the influence of both known and unknown exogenous disturbances,
by utilizing the vast amount of data that is available and by employing new
techniques from the field of machine learning and control. Traditional learn-
ing controllers enable a performance improvement up to the reproducible part
of the error. However, these are not directly applicable due to the increasing
complexity for control of future systems. First, the complexity of unknown dis-
turbances increases such that also multi-physical disturbances are encountered,
i.e., disturbances that have multiple generating domains such as the position-,
time-, or rotation-angle domain. The rejection of these disturbances requires
new disturbance models that are preferably constructed from data. Second,
for known disturbances, i.e., reference tracking problems, learning algorithms
require repeatable tasks to learn, whereas the flexibility of motion tasks is be-
coming increasingly important for future systems. Alternatively, adaptive ap-
proaches exist to tune feedforward parameters in real-time while also relaxing the
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requirement of repeatable tasks, but these often suffer from closed-loop identifi-
cation problems hampering performance improvement. These challenges have to
be addressed to enable successful implementation on a wide range of mechatronic
systems.

The main contribution in this thesis aims at the development of systematic
design approaches for control of mechatronic systems by learning from data and
employing new aspects from machine learning. First, the flexibility and design
of internal disturbance models for repetitive control (RC) are significantly im-
proved by employing a Gaussian-process-based buffer, i.e., combining data and
prior knowledge to learn a continuous disturbance model from potentially non-
equidistant data. It is shown that Gaussian process regression can be employed
very efficiently in RC and allows to effortlessly deal with spatially periodic dis-
turbances but also multi-physical disturbances. Second, adaptive feedforward
tuning is presented for on-line learning of feedforward parameters from data.
This is done by employing an optimal instrumental variable estimator such that
unbiased parameter estimates are obtained even during closed-loop operation.
The presented approach allows to learn and update feedforward parameters au-
tomatically within a split second, which is a major performance improvement
compared to manual feedforward parameter tuning and existing task-domain
approaches.

The overall results of this thesis contribute to practically relevant and the-
oretical results that enable the implementation of complex methods originating
from machine learning into current state-of-the-art motion control techniques.
Moreover, several RC approaches are successfully validated on an industrial sub-
strate carrier and a coarse pointing assembly for laser satellite communication.
By employing these recent developments in the field of machine learning to-
gether with well-known learning control techniques, there is a large potential to
be gained.
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Part I

Introduction





Chapter 1
Learning Control for Intelligent Mechatronics

1.1 Impact of future mechatronic systems

The impact of the manufacturing industry on modern society is rapidly increas-
ing. To continue this innovation there is a strong need for intelligent, high-
performance, and low-cost manufacturing systems. This observation is in line
with Industry 4.0, which is the current trend of automation and data exchange
for innovation in manufacturing technologies (Vaidya et al., 2018). Future man-
ufacturing systems have to be built to support this innovation (Almada-Lobo,
2015). Examples include, satellites to enable communication for the Internet of
Things (IoT), cloud computing and the global 5G network (Gregory et al., 2012),
and the semiconductor industry (Mack, 2008; Moore, 1995) to supply chips for
mobile devices, the automotive industry, and medical equipment. These exam-
ples are key motivators to continue the innovation of manufacturing systems,
which in turn contributes to the global economy, trade and creates many em-
ployment opportunities (Lieder and Rashid, 2016; Santacreu and Zhu, 2018).

Maintaining a good market position in the manufacturing industry requires
keeping up with the increasing performance demands, while at the same time
aiming for low-cost and large-scale production. Consider the key innovative ex-
amples in Figure 1.1, ranging from inexpensive high-volume production of IoT
devices in a roll-to-roll print process (a) (Phung et al., 2021), to a vast network of
thousands of interconnected satellites for future optical data communication (b)
(Saathof et al., 2019), to a prototype multi-agent magnetically levitated plat-
form to parallelize qualification of semiconductor components through atomic
force microscopy (AFM) (c) requiring extremely high-accuracy as shown in the
scanned AFM image (d) of a mask for the production of integrated circuits (IC)
(Holz et al., 2019; Kramer et al., 2019; Sadeghian et al., 2017). These examples
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d)

a)

c)

b)
Hair width

Figure 1.1: Examples of innovative (future) industrial applications: a) printed
IoT circuit on the web of a roll-to-roll printing device (source: Phung et al.
(2021)); b) a worldwide network for laser satellite communication empowering
future high-speed data transfer (source: European Space Agency); c) magneti-
cally levitated platform to carry a sample for atomic force microscopy developed
at TNO; and d) an AFM image of a mask for extreme ultra-violet (EUV) lithog-
raphy (source: Holz et al. (2019)).

illustrate the increasing demands for the manufacturing industry in terms of
performance and cost.

To obtain high accuracy and throughput while aiming for inexpensive system
designs for future systems requires developing new intelligent control technolo-
gies that are sufficiently capable. Bridging the gap between research in the field
of control technologies and the current state-of-the-art in the manufacturing in-
dustry is key. More specifically, the development of intelligent and user-friendly
control approaches in combination with low-cost and efficient control specific
hardware (Akesson and Goossens, 2011; Haghi et al., 2020), can have a large
impact on the manufacturing industry, by enabling SMEs to grow, innovate
and improve sustainability while operational costs and the time-to-market will
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decrease and efficiency improves (Čech et al., 2019).

The development of user-friendly control approaches for future manufactur-
ing systems is investigated in this thesis that is a part of the European project
I-MECH (Čech et al., 2019). The goal of I-MECH is the development of build-
ing blocks that are widely applicable in, e.g., the medical industry and the
semiconductor industry. These building blocks are envisioned to embed the lat-
est academic developments, are readily applicable, configurable, and scalable for
rapid development of high-performance manufacturing systems. In the following
section, the expected demands for future systems and the implications for new
control techniques are investigated.

1.2 Increasing demands for future systems

A crucial aspect of future manufacturing systems is the mechatronic positioning
system that facilitates fast and accurate positioning of for example high-speed
printing of small IoT devices in Figure 1.1. It is expected that the increasing per-
formance demands and the desire for cost-effective systems lead to more system
complexity from a control point of view, i.e., achieving high-performance with
‘low-tech’ mechatronic designs requires complex control solutions. This imposes
a challenge for the development of new control techniques for future systems,
which is illustrated next by investigating the key mechatronic innovations that
drive the future applications in Figure 1.1.

1.2.1 Demands for the printing industry

The first example in Figure 1.1 aims at high-speed and low-cost production of
IoT devices through printing but is also relevant for, e.g., 3D printing or ad-
ditive manufacturing (Park et al., 2021). These printing technologies require
fast transportation of media, e.g., paper, foil, or glass, up to several meters per
second, with an accuracy of a few micrometers. Recently, the generic substrate
carrier in Figure 1.2 (a) is developed that attaches media by means of vacuum
to a perforated steel transport belt. The steel belt eliminates elasticity and de-
formations of the substrate that hamper performance in traditional approaches.
For accurate positioning of the belt a new type of roller with actuated seg-
ments is developed (Beltman et al., 2012a), see Figure 1.2 (a). This illustrates
that performance demands lead to additional complexity, i.e., the steel belt and
segmented rollers, which are more complex from a control perspective. As a
result, disturbances appear that are introduced by imperfections in the belt and
rollers which are periodic with one rotation and potentially non-periodic in time
(Blanken et al., 2020a).
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a) b)

c)

Figure 1.2: Industrial examples of mechatronic systems a) Generic substrate
carrier for the printing industry developed at Sioux Technologies, b) coarse
pointing assembly that is part of the optical path for laser satellite commu-
nication developed at TNO, and c) a wafer-stage setup for the semiconductor
industry developed at Nexperia.

1.2.2 Demands for free-space optical communication

The second example in Figure 1.1 illustrates free-space optical communication
(FSO) being a key enabling technology for, e.g., scientific earth observations, 5G
and 6G connectivity, and the IoT, which rely heavily on high-throughput and
secure data communication with worldwide coverage (Saathof et al., 2019). FSO
communication requires a transmitter that points a laser beam towards a receiver
over a very long distance, up to tens of thousands of kilometers, see Figure 1.1
(b). To generate worldwide coverage, many satellites and ground terminals must
be equipped with the coarse pointing assembly in Figure 1.2, which is designed
for tracking of the moving laser beam with up to micro-radians positioning ac-
curacy (Kramer et al., 2020). Due to size, weight, and cost being critical aspects
for space applications the CPA uses a switched reluctance motor concept that
is inexpensive to manufacture but does introduce additional complexity for con-
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ti ti+1ti + Ti ti+2

Figure 1.3: Example of a typical point-to-point reference with a varying step-
size ∆ri and varying time in-between subsequent tasks ∆ti.

troller design, e.g., in the form of a torque ripple (Miller, 2001; Schmidt et al.,
2020). This is yet another example where high-volume and low-cost demands
result in systems that require more complexity from a control aspect.

1.2.3 Demands for semiconductor manufacturing

The final example is related to the IC manufacturing process that consists of
many steps from exposing a silicon wafer with ultra-violet light, to slicing of
the wafer (dicing), and taking ICs from the wafer to a semiconductor package.
This latter step is done with the wafer-stage setup in Figure 1.2 (c), which
performs this step 72.000 times per hour with several micro-meters positioning
accuracy. Control of this setup is challenging; first, the high-throughput and
positioning accuracy requires a lighter and stiffer mechanical design that remains
to be cost-efficient, leading to more pronounced flexible dynamics. Moreover,
the use of inexpensive spindle drives to move the stage introduces additional
disturbances. Second, since the pick-and-place process consists of many steps,
including, picking up, quality inspection, and positioning, high task flexibility
is required, see the typical reference in Figure 1.3, where the step size ∆ri and
the time in-between references ∆ti varies arbitrarily. These complexity and
flexibility requirements impose a challenge for control techniques.

1.2.4 Resulting control demands for future systems

In summary, the general observation is that future control solutions must cope
with cost-effective mechatronic designs while at the same time enabling high
accuracy, throughput, and task flexibility. Due to cost and performance consid-
erations, more intelligent control solutions become a favorable means over more
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expensive system designs or exotic materials. This leads to more complexity
from a control design perspective. More specifically, controllers must cope with,
e.g., periodic disturbances (Blanken et al., 2020b; Steinbuch et al., 2007), mo-
tor commutations disturbances (Huo et al., 2019), thermal deformations (Evers
et al., 2019; Veldman et al., 2019), and manufacturing imperfections that be-
come more pronounced. The next section briefly outlines traditional control
approaches which run into their limitations for future systems.

1.3 Current state-of-the-art in control

The performance of mechatronic systems is for a substantial part determined
by a well-designed control algorithm in combination with an electro-mechanical
design. This section outlines traditional control approaches for mechatronic sys-
tems and their limitations, both fundamental and in view of future mechatronic
systems.

1.3.1 Control in mechatronic systems

Traditional mechatronic systems consist of a mechanical design, sensors, ac-
tuators (Schmidt et al., 2020), and a motion control algorithm that runs on
a dedicated hardware platform (Valencia et al., 2015). The control algorithm
reads sensor data, e.g., a position or temperature, to provide a control signal
to the actuators, e.g., a force or torque, such that a degree of performance is
obtained. This cycle is typically performed several thousand times per second.
In industrial systems, controllers are implemented in discrete time by sampling
the sensor data and providing a command at each sample.

1.3.2 Traditional motion control

The traditional control setting is schematically depicted in Figure 1.4, where
the system P is to be controlled that consists of sensors, actuators, and system
dynamics. The system is assumed approximately linear time-invariant (LTI) by
design, however, due to cost-effective mechatronic designs, there are additional
unknown disturbances d acting on the system P , e.g., repeating disturbances or
a torque ripple, as shown in the examples in Section 1.2. The system output
y contains the sensor measurements, e.g., a position or temperature, and the
input u is the control signal, e.g., a force, voltage, or torque. The signal r is
the reference to be tracked that is assumed to be known and η is assumed to be
random, e.g., sensor noise or quantization errors.

The controller typically consists of a feedback controller Cfb that uses sensor
data y, and the feedforward controller Cff that only uses the reference signal r.
The control goal is to attenuate the influence of the external disturbances d, the
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Cfb P
e

−

r

d

u y

η

Cff f

Figure 1.4: Traditional control setup.

reference r, and measurement noise η on the measured error, which is given by

e = S (1− PCff)︸ ︷︷ ︸
Feedforward

r − SP︸︷︷︸
Feedback

d− S︸︷︷︸
Feedback

η, (1.1)

where S = (1 +PCfb)−1 is the sensitivity function1 (Franklin et al., 2015; Stein-
buch and Norg, 1998; Visioli, 2006). If the feedforward controller is designed as
Cff = P−1 then errors induced by the reference will be compensated. Moreover,
if the feedback controller is designed such that that S = 0 then the total error be-
comes zero. Hence, the main role of the feedforward controller is to compensate
for the known reference and the feedback controller compensates for unknown
disturbances. However, the ideal situation where Cff = P−1 and S = 0 cannot
be achieved due to theoretical and practical constraints as outlined next. The
aim of this thesis is to relax some of these constraints.

1.3.3 Feedback control

A traditional design approach for the feedback control and its limitations in view
of future systems are briefly addressed.

Traditional feedback control: The feedback controller is ideally designed
such that S � 1 in (1.1). Design can be done in the time domain, e.g., with
a proportional-integral-derivative (PID) controller, by performance criteria such
as overshoot, settling time and steady-state error (Visioli, 2006). More “sophis-
ticated” is tuning in the frequency domain by creating a large controller gain
Cfb � 1 such that S � 1 at the frequencies where a disturbance is present. The
basic principle of generating a large controller gain is referred to as high-gain
feedback. An important constraint for all feedback approaches is causality, which

1For the ease of notation in (1.1) there is a slight abuse of notation, i.e., it concerns linear
systems which may contain convolutions or multiplications in the time-domain, frequency-
domain, Laplace-domain or Z-domain that are intentionally not denoted explicitly. In the
remaining chapters, the notation is defined in detail.
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Cfb P
e

−

u y

z−N L df

Repetitive controller

0 N 2N 3N 4N 5N 6N 7N 8N

0

×10−2

Time

0 N 2N 3N 4N 5N 6N 7N 8N

0

Time

Figure 1.5: Add-on type repetitive controller in the traditional feedback loop
for suppression of the unknown periodic disturbance d (top). The disturbance d
( ), that is periodic with N samples, is learned by the RC output, see minus f
in ( ), that converges to the unknown disturbances (bottom left). The periodic
part of the error ( ) asymptotically converges to zero, compared to not using
RC ( ) where the periodic component remains (bottom right).

imposes a restriction on minimizing S known as the waterbed effect2 (Skogestad
and Postlethwaite, 2007), such that S = 0 for all frequencies is not possible. This
implies that rejection of certain disturbances comes at the cost of amplification
of other signals

Repetitive control for repeating disturbances: The unknown disturbance
d and the error e often exhibit structure, e.g., repeating in the time domain.
Repetitive control (RC) is an add-on type controller (Hara et al., 1988; Longman,
2010) that enables learning of an unknown periodic disturbance from data. A
typical RC is schematically depicted in Figure 1.5, it can asymptotically reject
the repeating part of the error. To reject the unknown periodic disturbance, RC
relies on the internal model principle3 (Francis and Wonham, 1976) by learning

2The waterbed effect describes the constraint that reducing the sensitivity function
|S(ejω)| < 1 for some frequencies ω directly implies that |S(ejω)| > 1 for other frequencies.

3According to the internal model principle, a model of the disturbance generating system
must be present in a stable feedback loop for asymptotic rejection.



1

1.3 Current state-of-the-art in control 11

1
N

2
N

3
N

4
N

5
N

6
N

7
N

8
N

9
N

10
N

0

Frequency [Hz]

M
a
g
n
it
u
d
e
o
f
R

Figure 1.6: Example of the magnitude |R(z = e−j2πf )| as a function of the
frequency f Hertz. The RC has infinite gain at the fundamental frequency
f = 1

N
Hertz and its harmonics.

a model of the disturbance d that has time-domain period N ,

d(k +N) = d(k), (1.2)

in a time-domain memory with a learning filter L. The memory is constructed
from an N -sample delay z−N in a positive feedback loop, the resulting feedback
error is given by

e = − PS︸︷︷︸
feedback

(I + PSR)−1

︸ ︷︷ ︸
RC

d, with R =
Lz−N

1− z−N , (1.3)

which shows that R gives an additional tuning knob N for disturbances d with
the periodic property (1.2). Hence, the repetitive controller R is LTI filter that
exploits time-domain periodicity which has the same limitations as the feedback
controller Cfb. Essentially, RC generates high-gain feedback, similar to Cfb at
the fundamental frequency 1/N and all of its harmonics as shown in Figure 1.6.

An illustrative example of RC is shown in Figure 1.5 where during the first
period the RC buffer is filled with error data and the output f remains zero.
In the consequent periods, the buffer content is filtered with L and injected in
the feedback loop to compensate for the disturbance. By appropriate design of
N and L this leads to asymptotic rejection of disturbances with period N , see
Figure 1.5.

A crucial observation is that repetitive control can solely compensate for
time-periodic disturbances. This is rather restrictive for future systems as the
substrate carrier in Figure 1.2, where disturbances are expected that repeat each
roller rotation instead of the time domain. Due to the waterbed effect, RC may
even amplify such time-domain non-periodic disturbances, and it is yet unable
to exploit the underlying periodicity in other domains.
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1.3.4 Feedforward control

Feedforward control for mechatronic systems can yield a substantial performance
improvement, with respect to feedback control, since the reference is known in
advance. A traditional design approach and the limitation of feedforward are
outlined next.

Model-based feedforward: It follows from (1.1) that for attenuation of the
reference, the feedforward controller ideally is a perfect model of the system
inverse Cff = P̂−1. The model P̂−1 can be obtained with either physical mod-
eling or through experimental identification based on data. Typically, both
approaches will yield an approximate model P̂−1 ≈ P−1, which directly limits
the performance (Devasia, 2002). Alternatively, the feedforward controller can
be parameterized as Cff(θ) with feedforward parameters θ that can be tuned
to approximate the system inverse. In practice, mechatronic systems are often
designed to exhibit dominant rigid-body behavior such that y = 1

ms2u and the
ideal feedforward is given by f = mr̈ also known as acceleration feedforward
(Boerlage et al., 2003).

Future system dynamics are becoming more complex, potentially including
position dependence and manufacturing imperfections. In this situation, ob-
taining a good system inverse model or tuning of feedforward parameters has to
be performed on an inefficient machine-specific basis and becomes more time-
consuming.

Learning feedforward: Feedforward control can benefit from learning from
the abundance of data that is available and exploiting repetitive motion tasks.
This can potentially result in extreme performance improvement even if the
case of a non-perfect model (Devasia, 2002; Oomen, 2018). In iterative learning
control (ILC) (Arimoto et al., 1984; Bristow et al., 2006) the repetitiveness of
motion tasks is exploited to learn a compensation signal from error data that
compensates for the exact same tasks. These learning approaches can signifi-
cantly improve feedforward controller design by removing manual tuning. How-
ever, learning approaches require that motion tasks are exactly repeating and
that each task starts from the same initial condition, which is quite restrictive
in view of the applications in Figure 1.2.

To conclude, the traditional approaches for feedforward and feedback control,
including learning extensions that exploit repetitiveness of tasks or disturbances,
are not directly applicable to future mechatronic systems, this is further inves-
tigated in the following section.
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1.4 Towards intelligent mechatronics through
learning

Learning from data can improve performance and the design of intelligent con-
trol algorithms for future systems, examples include, Altın et al. (2017); Blanken
et al. (2020a); Bolder et al. (2017); Reinders et al. (2020). This section in-
vestigates what requirements appear for future intelligent control approaches.
Subsequently, the challenges that are investigated in this thesis are presented.

1.4.1 Challenges for learning control in future systems

Although learning approaches such as RC and ILC are highly promising, the
complexity that appears for control of future mechatronic systems requires new
intelligent control techniques. The aim of this thesis is to exploit learning from
data to improve disturbance attenuation and reference tracking for future sys-
tems while at the same aiming for user-friendly design. The expected require-
ments for control are outlined next, after the following motivating examples
inspired by the systems in Figure 1.2.

First, due to the increasing complexity it is expected that systems will have
disturbances with complex underlying structures. More specifically, these dis-
turbances can be repeating in other domains than the time domain, e.g., as in
the substrate carrier where a disturbance repeats every roller or belt rotation.
Consider the following motivational example.

Motivating example: Spatially periodic disturbance

Spatially periodic disturbances appear in the substrate carrier system in
Figure 1.2 induced by roller imperfections and the segments in the rollers.
This case is simulated in the simplified setting in Figure 1.7 of a roller
with an eccentricity.

excentric rollerpaper web

Figure 1.7: Imperfect roller with an excentricity introducing a distur-
bance that repeats every roller roation.

If the roller position increases linearly ( ) as in Figure 1.8 (top left),
then the disturbance is periodic in the time-domain (top right). If
the velocity of the roller varies ( ) (bottom left), then the resulting
disturbance is non-periodic in the time domain ( ) (bottom right).
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Figure 1.8: Spatial-periodic disturbance d̄(p) ( ) (center) and the
resulting time-domain disturbances d(t) ( ) for a constant (top) and
varying (bottom) roller velocity ( ).

This example shows that a spatially periodic disturbance, such as the seg-
mented roller, leads to a disturbance that is non-periodic in the time-domain
whereas the underlying spatial disturbance is periodic. Moreover, situations
may appear where disturbances originate from multiple underlying causes, e.g.,
the magnetically levitated platform in Figure 1.1 as shown in the second moti-
vating example.

Motivating example: Multi-dimensional disturbance

The magnetically levitated platform in Figure 1.9 is subject to a 2-
dimensional commutation disturbance induced by the permanent magnet
array, this disturbance repeats in the x and y position and the period
is the magnet pitch (Kramer et al., 2019; Van den Braembussche et al.,
1998). A simplified version of this disturbance is shown on the right in
Figure 1.10.

Magnet array
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Figure 1.9: Magnetically levitated platform and an illustration of the
disturbance on the platform in the (x, y) plane due to commutation.

Two example trajectories of the platform are given in ( ) which is a
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straight line and ( ) that varies. The resulting disturbances are given
in the bottom plot as a function of time. It appears that ( ) is periodic
whereas ( ) is non-periodic in time, while the underlying 2-dimensional
spatial disturbance is periodic.
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Figure 1.10: The commutation disturbance for two trajectories ( )
and ( ) of the platform as a function of time.

Hence, the type of disturbances that appear in these examples cannot be at-
tenuated with traditional approaches such as RC, see Section 1.3.3. This imposes
a major opportunity for controller design to exploit the underlying periodicity
by learning from data while the time-domain signal is non-periodic.

Second, the complexity of control for mechatronic systems is rapidly increas-
ing, i.e., more dynamic modes and flexible behavior, slight variations over sys-
tems due to imperfections, and position dependence are encountered. At the
same time, the flexibility of motion tasks is increasing as in the wafer-stage
application in Figure 1.3, where reference tasks are not exactly repeating nor
resetting. This leads to a situation where traditional approaches for tuning of
feedforward controllers are cumbersome, e.g., due to variations between systems
tuning has to be performed on an inefficient machine-specific basis, and the mod-
eling complexity significantly increases for model-based feedforward. Moreover,
learning approaches such as ILC require repeating tasks, which is too restrictive
for future systems.

These challenges for the rejection of unknown disturbances with complex un-
derlying structures as well as feedforward controller tuning for tracking of varying
reference with complex systems dynamics, are translated to generic requirement
for control. The aim is to utilize the vast amount of data that is available and
incorporate structure in multiple domains, e.g., time, position, or commutation
angle domain, to improve control performance and automate tuning for future
systems.

1.4.2 Control requirements for intelligent mechatronics

Inspired by the applications in Figure 1.1 and given the previous motivating ex-
amples, it is expected that intelligent controllers for future mechatronic systems
in general need to comply with the following high-level requirements.
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R1: Rejection of complex disturbances;

R1.1 that are periodic or multi-periodic, i.e., a sum of multiple-periodic
signals, in the time domain;

R1.2 that can be non-periodic in the time-domain but are periodic in, e.g.,
the commutation-angle domain or roller-position domain;

R1.3 can be periodic in multiple uncorrelated domains at the same time;
and

R1.4 with a computationally attractive approach for industrial applications.

R2: Feedforward tuning for flexible motion tasks;

R2.1 for systems with complex dynamics, e.g., pronounced flexible dynamic
behavior, system to system variations;

R2.2 with a user friendly or automatic tuning approach; and

R2.3 to enable fast performance improvement, e.g., learning within a task,
for a wide variety of motion tasks.

1.4.3 Research challenges

The challenges for intelligent control of future mechatronic systems are outlined
in view of the requirements R1 for disturbance rejection and R2 for reference
tracking.

Generic internal models for disturbance rejection: Repetitive control is
a promising approach that incorporates prior disturbance knowledge, i.e., time-
domain periodicity, to estimate the unknown periodic disturbance from error
data (Steinbuch et al., 2007). As a response to the increasing complexity of
these disturbance structures, a variety of extensions have been developed for
RC. Robust RC is developed for uncertain period times or noise (Chen and
Tomizuka, 2013; Pipeleers et al., 2008; Steinbuch et al., 2007), adaptive RC that
can cope with period-time variations (Chen and Tomizuka, 2011; Hillerstrom,
1996; Kurniawan et al., 2014), RC for spatially periodic disturbances (Chen and
Yang, 2007; Huo et al., 2019), and RC for multi-period disturbances (Blanken
et al., 2020a). These approaches make modifications to the traditional RC in-
ternal model tailored towards a specific goal. Despite these extensions, a generic
internal model for RC that can elegantly cope with the type of disturbances in
R1, i.e., periodicity in on or multiple underlying domains, is not yet developed.
This imposes the need for a generic and intelligent internal model for RC which
constitutes the first research challenge in this thesis.
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Research challenge R1: Develop a generic internal model that exploits
underlying periodic structures of disturbances, e.g., in the commutation-
angle domain, position domain or multiple-domain, to compensate for
disturbances that are repeating but not necessarily in time.

Feedforward tuning for flexible motion tasks: High task flexibility and
performance in addition to user-friendly or automatic tuning are required for
feedforward control of future systems (R2). The task flexibility and performance
trade-off among different existing feedforward approaches is visually shown in
Figure 1.11 and outlined next. Model-based feedforward ( ) is applicable to a
wide range of references, and the performance is directly related to the inverse
modeling (Van Zundert and Oomen, 2018) quality. Due to the increasing model
complexity (R2.1) the initial modeling effort or tuning step is becoming increas-
ingly difficult and time-consuming for future complex systems which hampers
performance.

Alternatively, ILC ( ) is a non-parametric approach ( ) that exploits re-
peating tasks to learn a feedforward signal from task-to-task ( ) that compen-
sates for the exact same reference (Altın et al., 2017; Blanken and Oomen, 2019;
Boeren et al., 2016; Bristow et al., 2006; de Rozario et al., 2019). This approach
can yield extreme performance by learning from previous tasks, but has low task
flexibility. To improve task flexibility for ILC the feedforward signal can be pa-
rameterized ( ) as f = Cff(θ)r such that it adapts when the reference changes
( ) (Bolder and Oomen, 2015; Hoelzle et al., 2011; van de Wijdeven and Bosgra,
2010). If tasks are resetting, then ILC can be used to learn the parameters θ for
each subsequent task, i.e., updating from task to task. The same can be done by
directly parameterizing the inverse system model and learning the coefficients
from task to task (Blanken and Oomen, 2020; Boeren et al., 2018).

Batch-wise approaches update feedforward parameters on a task-to-task basis
and rely on the resetting behavior of motion tasks, i.e., it is required that the
system resets to the same initial conditions at the start of each task. In contrast,
manually tuned model-based feedforward can be applied to any reference at the
cost of moderate performance.

The aim is to combine the benefits of model-based feedforward (high task
flexibility) and learning from data (high performance) in view of R2. Also en-
able fast performance improvement (R2.3), e.g., by learning within a task, con-
tinuous updating as in adaptive feedforward control is highly promising ( ) in
Figure 1.11. Adaptive updating is expected to enable learning for a wide range
of non-resetting references and complex system dynamics, which constitutes the
second research challenge of this thesis.
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Figure 1.11: Task flexibility and performance trade-offs in a variety of com-
mon feedforward approaches, ranging from non-parametric ( ) approaches,
to approaches that exploit resetting tasks ( ), and parametric approaches
that allow for a wider range of (resetting) tasks ( ).

Research challenge R2: Develop a framework for automatic on-line
estimation of feedforward controller parameters using data for immediate
performance improvement for a wide variety of potentially non-resetting
and varying references.

1.5 Estimation techniques for learning

In this section, basic fundamentals from the field of parameter estimation and
machine learning that are required for the contributions in this thesis are out-
lined, after which the contributions are stated.

1.5.1 Parametric estimation in control

In view of requirement R2, the feedforward controller is preferably parameterized
for flexibility and it is required to estimate the parameters from data. A simple
way of parametric estimation that is used in control, e.g., for feedforward (Boeren
et al., 2016; Bolder and Oomen, 2015; Fujimoto and Yao, 2005) and identification
(Ljung, 1999) is outlined next.

Consider a given measured signal y that contains observations of an unknown
function or system f(x),

y = f(x) + noise with f(x) =

n∑

i=1

ϕ>i (x)θ0
i = φ(x)>θ0, (1.4)
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parameterized with the basis functions φ(x) =
[
ϕ1(x) ϕ2(x) . . . ϕn(x)

]> ∈
Rn. Then, given a set of N measurement points Y ∈ RN and inputs X ∈ RN
an estimate of the true unknown parameters θ0 ∈ Rn can be obtained with
the following optimization problem that minimizes the difference between the
approximated model and the data

θ̂ = min
θ
‖Y − Φθ‖2, (1.5)

with Φ =
[
φ>(1) . . . φ>(N)

]> ∈ RN×n which is a linear least-squares prob-
lem, with analytic solution

θ̂ = (Φ>Φ)−1Φ>Y, (1.6)

that can also be computed recursively for on-line estimation (Åström and Wit-
tenmark, 2013), and in (Butler, 2012) for on-line parameter estimation for feed-
forward. Moreover, under specific conditions on Φ and Y , the estimator (1.5)
recovers the true unknown parameters θ → θ0 as N → ∞ (Söderström and
Stoica, 1989).

Example: Least squares regression

Suppose a true static function, ( ) in Figure 1.12, given by

f(x) = 5 sin(x) + 4 cos(3x)− 2 sin(6x)− sin(9x),

that is a sum of n = 4 sinusoids with unknown true parameters θ0 =
[5, 4,−2,−1]> from which N = 14 samples are available. An estimate is
computed with a perfect model ( ) and with only two basis functions

Φ =
[
sin(x) cos(3x)

]
,

in ( ) in Figure 1.12. As a result ( ) does not fully recover the
true function due to imperfect model knowledge, whereas ( ) does.
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Figure 1.12: Least squares regression example.
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This illustrative example is a simple case of LS regression to estimate a func-
tion parameters from data, which is also applicable to estimate system parame-
ters, see (Boeren et al., 2014) as further exploited in this thesis. The advantage of
LS is that the problem has an analytic solution, however, the choice of basis func-
tion directly influences the model quality. Next, an alternative non-parametric
estimation technique is presented that does not require explicit knowledge of the
individual basis functions.

1.5.2 Non-parametric Gaussian process estimation

Estimation of unknown disturbances with underlying periodic structures from
data is required in view of R1. Next, a non-parametric estimator is presented
that enables estimation of a continuous function from data by incorporating
structure with high-level properties such as smoothness and periodicity, instead
of explicit basis functions as in the previous section.

Machine learning and in particular Gaussian process (GP) regression is
suitable to estimate and predict unknown functions or models based on large
amounts of data by introducing prior knowledge. With the available data and the
efficiency of hardware implementations, GPs are gaining more attention in con-
trol (Schölkopf et al., 2002) recently, e.g., for identification of linear (Lataire and
Chen, 2016; Pillonetto and De Nicolao, 2010) and non-linear systems (Mazzoleni
et al., 2020), modeling of non-causal inverses for feedforward control (Blanken
and Oomen, 2020), and for function estimation in iterative learning control (Poot
et al., 2021). In this thesis, Gaussian processes play an important role to learn
unknown disturbances from data and periodic prior knowledge to make RC more
generally applicable.

A Gaussian process (GP) is a distribution over functions denoted by

f(x) ∼ GP(m(x), κ(x, x′), (1.7)

that is completely determined by its mean function and covariance function,
given by

m(x) = E[f(x)] (1.8)

κ(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))], (1.9)

respectively, see, e.g., Murphy (2012); Williams and Rasmussen (2006). The
mean and covariance functions specify prior knowledge about the unknown
stochastic function f(x), e.g., smoothness or periodicity. It can be shown that
some covariance functions, referred to as non-degenerate, require an infinite sum
of basis functions to be exactly recovered, see Mercer’s theorem (Williams and
Rasmussen, 2006, §4.3). GP regression allows to define a potentially infinite set
of basis functions through high-level properties such as periodicity with the prior
distribution (1.7) instead of individual basis functions.
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GP regression is performed with (noisy) data (x, y) of an unknown function
f(x), i.e.,

y = f(x) + ε ε ∼ N (0, σ2
n), (1.10)

and a prior distribution (1.7), to compute a posterior distribution at an arbitrary
test point x∗. This is possible by assuming that the data (x, y) and any test point
x∗ have a joint Gaussian distribution

[
y

f(x∗)

]
∼ N

(
0,

[
Kxx + σ2

nIN Kxx∗

K>xx∗ Kx∗x∗

])
, (1.11)

where Kab is the covariance function κ evaluated at all combinations (a, b) and
referred to as a kernel matrix. The posterior mean and variance are given by

µ(x∗) = K>xx∗(Kxx + σ2
nIN )−1y (1.12)

Σ(x∗) = Kx∗x∗ −K>x∗x(Kxx + σ2
nIN )−1Kxx∗ (1.13)

which is continuous in x∗. GP regression is graphically illustrated by means of
the following example.

Example: Gaussian process regression
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Figure 1.13: Random samples ( ) and ( ) from the prior distri-
bution (left), and the posterior mean ( ) and variance ( ) (right).
Obtained with Gaussian process regression based on the data ( ) and
true function ( ).
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Figure 1.13 shows random samples ( ) and ( ) taken from two different
zero-mean prior distributions, the first one (top left) contains samples
from smooth prior and the second one (bottom left) shows samples from
smooth and periodic prior with period 10 [-]. These samples comply with
the prior, i.e., they are smooth and with periodicity respectively. GP
regression is performed with 8 random samples from the true function
( ) and the prior distributions. The resulting posterior mean ( ) in the
figure on the right is a continuous function that interpolates in-between
the data points, the variance ( ) provides a confidence interval. With
the periodic prior the data is extrapolated periodically beyond the first
period.

The example shows that the posterior mean is a continuous function and the
variance provides a confidence interval. Moreover, the choice of a covariance
function has a large influence on the posterior, i.e., introducing periodicity can
yield a much better posterior estimate compared to only including smoothness,
in the case that the true function is indeed periodic.

In summary, GP regression is a promising approach that enables learning
an unknown function from data if the explicit basis functions are unknown but
high-level properties are known. Moreover, LS regression is suitable for on-line
estimation due to its analytic solution and efficient computation. The use of
these estimators in control is further investigated in this thesis.

1.6 Contributions and approach

In this section, the contributions in this thesis are outlined. These are split
into learning for disturbance rejection and feedforward tuning for flexible motion
tasks in line with the requirements R1 and R2 in Section 1.4.2.

1.6.1 Contribution I: Learning for disturbance rejection

Repetitive control can result in asymptotic rejection of disturbances that are
unknown but periodic in the time-domain with a known period, see Section 1.3.3.
As the complexity of systems is increasing, so is the underlying structure of
disturbances. This could lead to periodicity in position rather than time or in
multiple underlying domains, as shown in previous motivating examples. The
internal models for RC are currently not generic enough to compensate for these
disturbances because they only consider time-domain periodicity, whereas the
principle behind RC is highly suitable for a wider range of disturbances. Hence,
the first main contribution of this thesis is to develop an intelligent internal model
for RC that allows for including more generic structures or prior knowledge.
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Generic GP-based internal model for RC: Applying traditional temporal
RC to the disturbances in requirement R1 can lead to slow learning in the case
that multi-period disturbances appear, or even a deterioration of performance
if the disturbance is non-periodic in time (Blanken et al., 2020a). To address
these limitations in RC, several extensions of RC are developed, however, there
is no generic approach for these situations. Motivated by the lack of a generic
approach, the aim is to introduce a new internal model for RC that can cope
with a wide variety of (non-standard) situations, including, multi-period distur-
bances, disturbances with a period that is not an integer number of samples,
and situations that require noise or period time robustness. This leads to a new,
user-friendly, and systematic design framework for RC that can recover several
existing approaches. The recent developments of GP regression in estimation
and control are very promising to estimate continuous function from data and
prior. The application of GP as an internal model in RC is not yet explored.
This leads to the first contribution in this thesis.

Contribution C1: A generic internal model for temporal RC to atten-
uate a wide range of disturbance, by employing Gaussian processes to
incorporate prior knowledge resulting in a user-friendly and systematic
design approach.

Compensating spatially periodic disturbances: Due to the repetitive na-
ture of systems or system components, e.g., rotating electro motors or belts and
rollers, disturbances appear that are fundamentally repeating in the position-
domain rather than in the time domain. This may lead to a situation where
the disturbance is non-periodic in time whereas it remains periodic in position
as outlined in earlier motivating examples. Compensation of spatially periodic
disturbances through RC that are non-periodic in time requires a new type of
internal model. Moreover, due to equidistant sampling in the time-domain, the
disturbances become non-equidistantly sampled in the position domain due to
velocity variations. This implies that for compensation of spatial disturbances
the traditional RC buffer, which consists of discrete values, must be replaced by
a continuous spatially periodic function based on non-equidistant data.

Existing approaches appeared where either the memory-loop size or the sam-
ple time are adaptively changed, however, there is no systematic approach for
interpolation and extrapolation due to the non-equidistant spatial data. The pre-
sented GP-based internal model for RC in C1 can be extended systematically to
also embed spatially periodic disturbances. The GP-based internal disturbance
model can be constructed in the position-domain by using smooth and periodic
prior knowledge resulting in a continuous function. This constitutes the second
contribution of this thesis.
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Contribution C2: A spatially periodic Gaussian process based internal
model for RC that can learn a continuous spatial disturbance model from
non-equidistant observations for rejection of spatial disturbances that are
potentially non-periodic in time.

This spatial GP-based RC approach is experimentally validated on the sub-
strate carrier system in Figure 1.2.

Compensating multi-dimensional disturbances: Contributions C1 and C2
focus on new internal models for temporal periodic and spatial periodic distur-
bances respectively. In line with requirement R1.3, it may appear that a distur-
bance is repeating in multiple domains such as in the motiving example in Sec-
tion 1.4.2. Compensation of these multi-dimensional disturbances can be done
through RC by exploiting the periodicity in all of the underlying domains in a
multi-dimensional internal model. A useful property of the covariance functions
for GP regression is that new covariance functions can be constructed by combin-
ing multiple covariance functions, e.g., through multiplication or addition. This
allows defining multi-dimensional covariance functions with structures in mul-
tiple domains which can be exploited to reject multi-dimensional disturbances
through RC. This constitutes the third contribution of this thesis.

Contribution C3: A framework for the rejection of multi-dimensional
disturbance through a multi-dimensional GP-based buffer design for RC,
that exploits the underlying periodicities in each of the domains.

Efficient GP-based learning for torque ripple compensation: The coarse
pointing assembly for FSO communication in Figure 1.2 is an example where a
torque ripple disturbance appears due to commutation. The torque ripple distur-
bance is periodic in the commutation-angle domain but is non-periodic in time
if the velocity varies. Hence, compensation with traditional RC is not possible.
Since the torque ripple is caused by imperfect commutation, which is static, a
static compensation function in the commutation-angle domain is sufficient for
compensation at arbitrary velocity. This motivates the fourth contribution of
this thesis, on how to automatically learn a spatially periodic static compen-
sation function from data for torque ripple compensation at arbitrary velocity.
This is possible by using RC (C1) at constant velocity and consequently learning
a spatial GP-based function for compensation at arbitrary velocity. Moreover,
this also allows avoiding the relatively high computational demand of spatial
GP-based RC (C2), which is favorable for space applications. This constitutes
the fourth contribution of this thesis.
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Table 1.1: Overview of contributions in part I.

Requirements R1.1 R1.2 R1.3 R1.4
Contribution 1 3 - - 3
Contribution 2 3 3 - 3
Contribution 3 3 - 3 -
Contribution 4 3 3 - 3

Contribution C4: A framework for torque ripple compensation through
repetitive control and a Gaussian-process-based compensation mechanism
that is computationally efficient.

An overview of the contributions in part I the relation with requirement R1
is given in Table 1.1.

1.6.2 Contribution II: Feedforward tuning for flexible
motion tasks

Increasing task flexibility while maintaining high-performance is key for feedfor-
ward control of future systems, see R2 and the overview in Figure 1.11. On-line
estimation for adaptive feedforward control (Åström and Wittenmark, 2013)
is a promising approach to achieve this. Several adaptive feedforward schemes
have appeared in literature, for an overview see Åström and Wittenmark (2013),
including a direct approach where an estimation algorithm estimates the feed-
forward parameters using data while operating in closed loop. Examples of
adaptive approaches include Åström and Wittenmark (2013); Butler (2012);
Fujimoto (2009). These adaptive approaches are applicable to a wide range of
motion tasks similar to model-based feedforward, see Figure 1.11. However, a
direct estimation can result in a closed-loop estimation problem (Söderström
and Stoica, 1989), or non-convexity (Boeren et al., 2018), potentially resulting
in severe performance degradation or slow learning.

A key motivator for the second contribution of this thesis is the wafer-stage
application in Figure 1.2 that performs varying and non-resetting point-to-point
motion tasks as in Figure 1.3. Here, performance is particularly relevant at
the final position, and the error may be larger during the motion. Moreover,
the tasks are non-resetting such that batch-wise approaches are not applicable.
To track resetting point-to-point tasks a combination of an input-shaper and
feedforward control as depicted in Figure 1.14 is presented in Boeren et al. (2014),
where the parameters are optimized in a batch-wise setting with a convex LS
optimization problem.

The second main contribution of this thesis is the optimal and on-line tuning
of feedforward controller parameters using data to remove flexibility limitations
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Figure 1.14: Input shaper and feedforward controller setup.

in batch-wise approaches. On-line learning has two key advantages. First, there
is a fast performance improvement which can also be within a task, second, it
removes the need for references that are resetting to the same initial condition
every time, i.e., for continuously varying references. Finally, for systems that
exhibit varying dynamics, e.g., due to wear or position-dependencies, the on-line
learning approach can update parameters quickly on the basis of data.

From batch-wise to on-line feedforward tuning and its limitations: It
is shown in Boeren et al. (2014) that the introduction of an input shaper allows
formulating a convex optimization problem with an analytic expression for the
feedforward parameters for batch-wise tuning. In the first contribution of this
part, the limitations of these batch-wise approaches in an on-line setting are
identified, i.e., in an on-line setting, a closed-loop estimation problem can ap-
pear if noise is present (Söderström and Stoica, 1989; van den Hof and Schrama,
1994). Moreover, a solution is provided to mitigate the effect of noise on the feed-
forward parameters to enable both batch-to-batch as well as on-line feedforward
parameter tuning. This constitutes the fifth contribution of this thesis.

Contribution C5: The limitation of existing batch-wise feedforward
approaches in an on-line setting are identified in the presence of noise,
including a practical solution to tune feedforward parameters for tracking
of varying reference tasks.

Optimal on-line feedforward estimation: Estimating feedforward coeffi-
cient from data in an on-line setting in the presence of measurement noise can
yield degraded positioning performance as investigated in Contribution 5. A
known result is that instrumental variable (IV) estimators can remove this bias
that appears in closed-loop identification (Gilson et al., 2011; Söderström and
Stoica, 2002). In Boeren et al. (2018) IV in combination with repeating tasks to
optimize feedforward parameters in a batch-wise setting. The aim of this final
contribution is to develop an optimal on-line parameter estimator for feedfor-
ward to obtain high-performance for a large class of point-to-point references.
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This constitutes the sixth contribution of this thesis.

Contribution C6: An optimal instrumental variable based estimator
for on-line estimation of feedforward parameters to enable tracking of
non-resetting and varying point-to-point references.

1.7 Organization of the thesis

The outline of this thesis is presented in this section. All chapters represent one
contribution, are self-contained, and can be read independently. A schematic
overview of the thesis is given in Figure 1.15 indicating the main contribution
and the experimental setup or motivating application that is used in the chap-
ter. The chapters are based on the following (combinations of) peer-reviewed
publications in the same order as they appear in the thesis.

Learning for disturbance rejection.

Ch.2: Mooren, N., Witvoet, G., and Oomen, T. (2022d). Gaussian process
repetitive control: Beyond periodic internal models through kernels. Au-
tomatica, 140:110273

Ch.3: Mooren, N., Witvoet, G., and Oomen, T. (2022a). Gaussian Process
Repetitive Control with Application to an Industrial Substrate Carrier
Systems with Spatial Disturbances. (Submitted for journal publication)

Ch.4: Mooren, N., Witvoet, G., and Oomen, T. (2022c). A Gaussian Process
Approach to Multiple Internal Models in Repetitive Control. In IEEE
17th International Conference on Advanced Motion Control

Ch.5: Mooren, N., van Meer, M., Witvoet, G., and Oomen, T. (2022b). Com-
pensating Torque Ripples in Coarse Pointing Mechanism for Free-Space
Optical Communication: A Gaussian Process Repetitive Control Ap-
proach. (In preparation for journal submission)

Feedforward tuning for flexible motion tasks.

Ch.6: Mooren, N., Witvoet, G., and Oomen, T. (2019a). Feedforward motion
control: From batch-to-batch learning to online parameter estimation. In
2019 American Control Conference (ACC). IEEE, pages 947–952, and
Mooren, N., Witvoet, G., and Oomen, T. (2019b). From Batch-to-Batch
to online learning control: experimental motion control case study. IFAC-
PapersOnLine, 52(15):406–411



1

28 Chapter 1. Learning Control for Intelligent Mechatronics

Ch.7: Mooren, N., Witvoet, G., and Oomen, T. (2022e). On-line Instrumen-
tal Variable-Based Feedforward Tuning for Non-Resetting Motion Tasks.
(Submitted for journal publication)
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Chapter 2
Gaussian Process Repetitive Control: Beyond
Periodic Internal Models through Kernels1

Abstract: Repetitive control enables the exact compensation of periodic
disturbances if the internal model is appropriately selected. The aim of this
chapter is to develop a novel synthesis technique for repetitive control (RC)
based on a new more general internal model. By employing a Gaussian process
internal model, asymptotic rejection is obtained for a wide range of
disturbances through appropriate selection of a kernel. The implementation is
a simple linear time-invariant (LTI) filter that is automatically synthesized
through this kernel. The result is a user-friendly design approach based on a
limited number of intuitive design variables, such as smoothness and
periodicity. The approach naturally extends to reject multi-period and
non-periodic disturbances, exiting approaches are recovered as special cases,
and a case study shows that it outperforms traditional RC in both convergence
speed and steady-state error.

1The results in this chapter constitute Contribution 1 of this thesis. The chapter is based
on Mooren, N. et al. (2022d). Gaussian process repetitive control: Beyond periodic internal
models through kernels. Automatica, 140:110273.
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2.1 Introduction

Repetitive control (RC) can effectively improve positioning performance for sys-
tems that have dominant repeating errors, examples include Merry et al. (2011);
Shan and Leang (2012). Asymptotic rejection of repeating disturbances in RC
is enabled by the internal model principle (Francis and Wonham, 1976). In par-
ticular, a disturbance model is specified as a time-domain memory loop, such
that an error that is periodic with the same period can be fully compensated
(Goodwin and Sin, 2014; Hara et al., 1988).

Repetitive control is only applicable to periodic signals with a known period
due to the traditional delay-based buffer as an internal disturbance model. A
key assumption to achieve good performance is that the delay size matches the
known period of the disturbance. As a result, RC is very sensitive to small
variations in the disturbance period and non-periodic disturbances are even am-
plified (Steinbuch, 2002). This limits achievable performance in practice, e.g., if
the disturbance period is uncertain, or does not fit into the delay size which is
an integer multiple of the sample time. In addition, many practical applications
have multiple periodic components in the error. If multiple periodic disturbances
occur, then their sum may have a very large common multiple, or can even be
non-periodic if there is no common multiple, i.e., a situation where traditional
RC memory loops are not directly applicable.

Several modifications have been made to the memory loop in RC to improve
robustness and performance. In Steinbuch et al. (2007) robustness for small vari-
ations in the period time is addressed by incorporating multiple memory loops
referred to as higher-order RC (HORC). This results in a trade-off between
period uncertainty and sensitivity to non-periodic disturbances, which can be
tuned optimally as shown in Pipeleers et al. (2008). In Cao and Ledwich (2002)
an approach is presented for disturbance periods that are not an integer multi-
ple of the sample time through interpolation. In Chang et al. (1998) and Zhou
et al. (2007) extensions of RC are presented to learn multi-period disturbances
by connecting multiple RCs, that each address a single period, in different con-
figurations. However, the design of multi-period RC requires a sequential design
procedure to take the interaction between different RCs into account, at the ex-
pense of increased complexity in the design procedure, as shown in Blanken et al.
(2020a). Moreover, the above approaches are extensions or combinations of the
traditional delay-based non-parametric memory loop tailored towards specific
refinements instead of generic approaches.

Parametric internal models for RC enable rejection of a wider class of dis-
turbances, e.g., matched basis functions and adaptive RC approaches in Cuiyan
et al. (2004); Pérez-Arancibia et al. (2010); Shi et al. (2014). In this approach, a
set of basis functions is defined by selecting all relevant frequencies in the error,
subsequently, the corresponding coefficients are learned. This allows to learn
multi-period disturbances and non-periodic disturbances, but it requires each
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specific frequency and its harmonics to be selected a priori.
In view of generic internal models for RC, recent developments in kernel-

based approaches such as Gaussian Process (GP) regression have shown to be
promising, general results include, identification and control of LTI systems
(Pillonetto and De Nicolao, 2010; Scampicchio et al., 2019), non-linear sys-
tems (Berkenkamp et al., 2016; Mazzoleni et al., 2020). GP regression is a
non-parametric approach that allows learning a wide range of functions, more
specifically a distribution over functions is learned, by specifying prior knowl-
edge in the sense of a kernel function through hyperparameters (Murphy, 2012;
Williams and Rasmussen, 2006). Gaussian processes are utilized in RC for the
compensation of spatially periodic disturbances in Chapter 3. Here, GP regres-
sion is employed with a periodic kernel to learn a continuous function from the
non-equidistant observations, which is periodic in the spatial domain and po-
tentially non-periodic in the time domain. In contrast to parametric internal
models for RC, where basis functions have to be selected explicitly, the GP is a
non-parametric approach that only requires a periodic kernel function with a few
intuitive tuning parameters. However, the further use of GPs in time-domain
RC is not yet explored and the computational complexity of GPs hampers the
practical implementation.

Although recently substantial improvements have been made to the robust-
ness and applicability of RC, a unified internal model for RC that covers a wide
range of disturbances is not yet available. The aim of this chapter is to present a
generic internal model for RC that efficiently uses Gaussian Processes to enable
the rejection of a wide variety of disturbances, including, single-period, multi-
period, and non-periodic disturbances, by specifying disturbance properties in
a kernel function. By learning a continuous function, the disturbance period is
not restricted to be an integer multiple of the sample time allowing for rational
disturbance periods, which is different in, e.g., Hara et al. (1988); Nagahara and
Yamamoto (2016). The following contributions are identified:

C1 a generic RC design framework and computationally inexpensive internal
disturbance model using GP is presented, including prior selection, LTI rep-
resentation, stability analysis, and a design procedure (Section 3 and 4);

C2 performance and robustness analysis is performed, providing new insights
for RC synthesis from a kernel-based perspective (Section 5); and

C3 implementation aspects that improve learning within the first period are
presented (Section 6).

Several existing approaches are recovered as special cases of the presented frame-
work, and a generic case study is performed to validate the approach.

The chapter is outlined as follows. In Section 2.2, the disturbance attenua-
tion problem and considered class of disturbances are introduced. In Section 2.3,
the Gaussian-process-based RC (GPRC) is developed, including LTI case and
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C
e(k) y(k)u(k)

−
P

d(k)R

v(k)

d̂µ(k)

Figure 2.1: Control setting with multi-period disturbance d(k) with k ∈ N
and repetitive controller R.

stability conditions (C1). In Section 2.4, design of GPRC and provides design
procedure (C1). In Section 2.5, performance and robustness of GPRC is ana-
lyzed, and existing methods are recovered as special cases (C2). In Section 2.6,
learning in the first period is improved (C3). In Section 2.7, a case study vali-
dates the developed approach and Section 2.8 presents conclusions and ongoing
research.

2.2 Problem formulation

2.2.1 Control setting

The considered problem is depicted in Figure 2.1, where P is a discrete-time
linear time-invariant (LTI) system, C is a stabilizing feedback controller, and R
is an add-on type repetitive controller (RC) that is specified in the forthcom-
ing sections. The goal is to reject the input disturbance d(k) with k ∈ Z≥0,
where d(k) is a sampled version of a continuous disturbance dc(t) with t ∈ R,
i.e., d(k) = dc(kTs). Without loss of generality the sample time is scaled to
Ts = 1. Furthermore, noise v is present that follows an independent, identically
distributed (i.i.d.) Gaussian distribution with zero mean.

Definition 2.1. The control goal is to asymptotically reject the disturbance-
induced error ed(k), given by e(k) in Figure 2.1 for v(k) = 0, i.e.,

lim
k→∞

ed(k) = 0 (2.1)

by designing R. In the case that R is LTI, then

ed = −P (I + PC)−1

︸ ︷︷ ︸
SP

(I + SPR)−1

︸ ︷︷ ︸
SR

d (2.2)

where SR is the modifying sensitivity, that is a measure for the performance
improvement through R, and SP is the process sensitivity when R = 0.
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Asymptotic rejection for a wide range of disturbances is obtained through a
generic internal disturbance model in R which is investigated next.

Remark 2.2. The RC configuration in R is slightly different from the traditional
one, e.g., as in Steinbuch et al. (2007). If R is linear, these are equivalent due
to the commutative property of linear systems. The presented one has particular
advantages in view of the GP prior as the RC output is equal to the disturbance
in an ideal setting.

2.2.2 Internal model control

The internal model principle states that asymptotic disturbance rejection is ob-
tained by including a model of the disturbance generating system in a stable
feedback loop, see, e.g., Francis and Wonham (1976). By the final value theo-
rem (Schiff, 1999), it can be shown that a constant disturbance d(k) = 1 with
Z-transform (1 − z−1)−1, is asymptotically rejected with a factor (1 − z−1)−1

in the open-loop PC. For periodic disturbances with period T ∈ N, a model
of the disturbance generating system consists of a delay-based buffer z−N , with
N = T , in a feedback loop, i.e.,

Rconv(z) =
z−N

1− z−N =
1

zN − 1
, (2.3)

which is the most simple from of conventional RC, that it is often employed with
a learning filter for stability, to asymptotically attenuate any disturbance with
period time T , see, e.g., Goodwin and Sin (2014). However, disturbances with
a rational period time T ∈ R, as illustrated in Figure 2.2, do not fit in these
traditional buffers and require additional interpolation.

The following general class of disturbances is considered in this chapter.

Definition 2.3. The continuous-time disturbance is defined as

dc(t) =

nd∑

i=1

dci (t), (2.4)

which is a multi-period disturbance consisting of nd ∈ N periodic scalar-valued
signals dci (t) ∈ R that are smooth and satisfy

dci (t) = dci (t− βTi), (2.5)

with β ∈ Z, and Ti ∈ R is the period time of the ith component. Moreover,
the frequency content of the disturbance signal is contained below the Nyquist
frequency, i.e., π, to avoid aliasing.
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Figure 2.2: Example: a continuous time disturbance dc(t) ( ) with period
T = 3π from which discrete samples d(k) ( ) with sample frequency 1 Hz are
taken, i.e., the discrete time sequence d(k) is non-periodic for all k while the
continuous time signal dc(t) is periodic with the period time T ∈ R.

R
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e(k) yd(k)`(k)

Γ µGP d̂µ(k)w(k)

MGP
Gd

Figure 2.3: Gaussian process repetitive controller R with Gaussian-process-
based buffer MGP = µGPΓ and internal model of the disturbance generating
system Gd.

The disturbance (2.4) is a single-period disturbance if nd = 1 or a multi-
period disturbance with nd > 1; in the latter case dc(t) is either periodic with a
period equal to the least common multiple (LCM)

T = lcm{T1, T2, . . . , Tnd} ∈ R, (2.6)

or is non-periodic if there is no least common multiple.

Existing extensions of traditional internal models for RC that cover multi-
period disturbances lead to a complicated design procedure due to interaction
between different RCs, see, e.g., Blanken et al. (2020a). Alternatively, the buffer
size N in (2.3) can be chosen equal to the common multiple (2.6) yielding slow
learning performance if T is very large. Yet, a generic internal model for the
class of disturbances in Definition 2.3 is not available.
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2.2.3 Gaussian process RC setup

The RC structure that is presented in this chapter is shown in Figure 2.3, where L
is a learning filter and the proposed GP-based internal model of the disturbance
generating system is given by Gd with MGP = µGPΓ the GP-based memory.
Moreover, Γ ∈ RHN×1

∞ (z) is a delay line that accumulates the past N ∈ N
samples of its input yd ∈ R, i.e.,

Γ :=

{
x(k + 1) = Ax(k) +Byd(k)

w(k) = Cx(k) +Dyd(k),
(2.7)

where x ∈ RN is the state, and

[
A B
C D

]
=




0 0 1
IN−1 0 0

0 0 1
IN−1 0 0


 , (2.8)

which results in the vector valued signal w(k) ∈ RN . Finally, µGP ∈ R1×N

is a vector of, possibly time-varying, coefficient that are designed and formally
introduced in the forthcoming sections.

2.2.4 Problem definition

In this chapter, a systematic design approach for the repetitive controller R is
presented, by developing a generic Gaussian-process-based internal disturbance
model for the disturbances in Definition 2.3, see Figure 2.3. A Gaussian process
(GP) specifies disturbance properties through a kernel function and hyperpa-
rameters, which enables to model a wide range of disturbances as in Definition
2.3. The following requirements are addressed:

R1 asymptotic rejection for a wide range of disturbances, i.e., periodic, multi-
period, and non-periodic disturbances, in the setting in Figure 2.1, and

R2 a user-friendly approach for synthesizing R by specifying disturbance prop-
erties, such as periodicity and smoothness, through a kernel function.

A framework that utilizes GP-based internal models in RC to cover both R1 and
R2 is presented.

2.3 Gaussian process buffer in repetitive
control

In this section, the generalized Gaussian process repetitive control (GPRC)
framework to synthesize the repetitive controller R is introduced. The GPRC
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setup is further outlined in Section 2.3.1, after which the GP internal model
is presented in Section 2.3.2. Conditions under which GPRC is LTI and non-
conservative stability conditions are provided in Section 2.3.3 and 2.3.4 respec-
tively, constituting contribution C1.

2.3.1 Gaussian process repetitive control setup

The GP-based repetitive controller R in Figure 2.3 contains the GP-based dis-
turbance model Gd that is designed using GP-regression to generate a continuous
model of the true disturbance dc. A sample of d̂c is parameterized as

d̂µ(k) = µGPk w(k) (2.9)

where µGPk ∈ R1×N are, in general, time-varying coefficients that follow from
GP regression elaborated in detail in Section 2.3.2. Moreover, in Section 2.3.3
mild conditions are provided under which µGP is time invariant.

The data used for GP-regression is given by the noisy data samples in

w(k) =
[
yd(k) yd(k − 1) . . . yd(k −N + 1)

]>
(2.10)

to estimate a continuous function d̂c of the true disturbances dc for compensa-
tion. To compose the data set for GP regression, define the vector with corre-
sponding time instances

X(k) =
[
t(k) t(k − 1) . . . t(k −N + 1)

]>
, (2.11)

constituting the data set DN (k) = (w(k), X(k)) that contains N pairs (yd, t) of
observations. At each sample k the data DN (k) is used to perform GP regression
resulting in the coefficients µGPk as shown next.

Remark 2.4. Note that all the past data can be used for GP regression, i.e.,
all samples yd(k

′) with k′ ∈ {1, 2, . . . , k} at sample k such that w(k) ∈ Rk.
However, here N is fixed analog to traditional RC approaches, generalization
to larger buffers is conceptually straightforward, for example, using online GP
regression (Bijl et al., 2017; Umlauft et al., 2020).

2.3.2 Gaussian process disturbance model

The compensation signal (2.9) with coefficients µGPk is an estimate of the distur-
bance that is obtained using data and prior knowledge through GP regression.
In this section, it is shown how GP regression is used to model the disturbance
and consequently synthesize these coefficients.

First, consider the prior disturbance model d̂c given by a GP

d̂c(t) ∼ GP(m(t), κ(t, t′)), (2.12)
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that is a distribution over functions which is completely determined by its prior
mean function m(t) and prior covariance function κ(t, t′) : Rn × Rm 7→ Rn×m
with n and m the size of t and t′ respectively. The choice of a covariance function
depends on the disturbance properties, e.g., periodicity, which is investigated in
detail in Section 2.4.2 by taking the additive structure in (2.4) into account.
For presentation purposes, m(t) = 0, the results can easily be extended for non-
zero mean function, see, e.g., Murphy (2012). Next, it is shown how the prior
knowledge (2.12) and the data DN is used to compute µGPk in (2.9).

The data set DN contains noisy observations of the model d̂c(t) in (2.12),
i.e.,

w(k) =




d̂c(t(k))

d̂c(t(k − 1))
...

d̂c(t(k −N + 1))


+ ε, (2.13)

where ε ∼ N (0N , σ
2
nIN ), with 0N a matrix of zeros of size N ×N , that follows

an independent, identically distributed (i.i.d.) Gaussian distribution with zero
mean and variance σ2

n as a result of the noise v.
Predictions of the disturbance model for compensation can be made at arbi-

trary X∗ ∈ R, denoted by d̂c(X∗) = d̂c∗, based on the data DN and prior (2.12).
Moreover, for the application in RC, predictions are made at the current time,
i.e., the test point becomes X∗ = t(k) ∈ Z≥0 since Ts = 1. The joint prior
distribution

[
w

d̂c∗

]
∼ N

([
0
0

]
,

[
K + σ2

nIN K∗
K>∗ K∗∗

])
, (2.14)

defines the correlation between the data w(k) and the test point X∗, where
K = κ(X,X) ∈ RN×N is the covariance function κ evaluated at all pairs of
(X,X), and similarly for K∗ = κ(X,X∗) ∈ RN and K∗∗ = κ(X∗, X∗) ∈ R.
From (2.14) it follows that the predictive posterior distribution at the test point

X∗ becomes p(d̂c∗|DN , X∗) = N (d̂µ,Σ) where

d̂µ(k) = K>∗ (K + σ2
nIN )−1w(k), (2.15a)

Σ(k) = K∗∗ −K>∗ (K + σ2
nIN )−1K∗, (2.15b)

are the mean and variance respectively, see, e.g., (Murphy, 2012, Chapter 4.3).

The posterior mean d̂µ is equal to the maximum a posteriori (MAP) estimate,
and is used for compensation, yielding that the coefficients µGPk in (2.9) are given
by

µGPk = K>∗ (K + σ2
nIN )−1. (2.16)
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By performing GP regression (2.15) at each sample, updated coefficients µGPk are
obtained through (2.16) for compensation. In contrast to traditional RC with
internal disturbance model (2.3), GPRC enables compensation within the first
period. Furthermore, by using a GP function estimator a more general setting
is established in which also multi-period and non-periodic disturbances can be
captured with suitable prior, as shown in Section 2.5.

2.3.3 LTI representation of GPRC

In this section, conditions are presented under which the coefficients µGP in
(2.16) are time invariant, rendering the repetitive controller in Figure 2.3 to be
LTI.

Assumption 2.5. Consider the following assumptions on the covariance func-
tion κ and training data set DN ;

A1 the covariance function κ in (2.12) is a stationary function, i.e., a func-
tion of the relative difference τ(k) = t(k) − t′(k), see, e.g., (Williams and
Rasmussen, 2006, p.82);

A2 the vector X(k) ∈ RN in (2.11) contains equidistantly sampled time in-
stances with N fixed; and

A3 the test point X∗(k) = t(k + α) with α ∈ Z constant.

Theorem 2.6. Under Assumption 2.5, the repetitive controller R in Figure 2.3
is LTI and given by

R =
MGPL

1−MGP
, (2.17)

where the GP buffer MGP is a finite impulse response (FIR) filter

MGP(z) = µGPΓ(z) =

N−1∑

i=0

µGPi z−i, (2.18)

with time-invariant coefficients µGP .

Proof. If µGP in (2.16) is time-invariant under Assumption 2.5, then R in Fig-
ure 2.3 is LTI and of the from (2.17). Hence, it is shown that (2.16) is time-
invariant under A1-A3. First, K is obtained by evaluating the kernel function
κ at all combinations of (X(k), X(k)) with X(k) in (2.11), these combinations
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are given by

τ(k) = X(k)1>N − 1NX(k)

=


tk − tk tk − tk−1 . . . tk − tk−N+1

tk−1 − tk tk−1 − tk−1

...
...

. . .

tk−N+1 − tk . . . tk−N+1 − tk−N+1


which is Toeplitz, 1N ∈ RN is a matrix of ones, and tk−i = t(k − i). Second,
from assumption A2 it follows that τ(k) = τ(j) ∀ (k, j) ∈ Z. Similarly for K∗
that is obtained by evaluating κ at all pairs (X(k), X∗) given by

τ̄(k) = X> − 1>NX∗ =
[
X∗ − tk . . . X∗ − tk−N+1

]

which, under assumptions A3, satisfy that τ̄(k) = τ̄(j) ∀ (k, j) ∈ Z. Third,
under assumption A1, the kernel matrices K and K∗ are a function of κ(τ) and
κ(τ̄) respectively. Since, τ and τ̄ are time-invariant, so are K and K∗, as a
result, rendering (2.16) time invariant, such that R is of the form (2.17) which
completes the proof.

Consequently, the RC output (2.9) is given by the following FIR operation

d̂µ(k) =

N−1∑

i=0

µGPi yd(k − i). (2.19)

with fixed coefficient µGP that follow from (2.16). In addition, the internal
disturbance model is now also LTI and given by

Gd =
MGP

1−MGP
. (2.20)

As a result, synthesis of a generalized, possibly multi-period, RC reduces to the
selection of a covariance function κ. By evaluating (2.16), this framework then
facilitates the construction of appropriate FIR coefficients µGP , through which
it enables efficient implementation of GPs in RC, allowing for larger flexibility,
and offers superior performance in the first period due to continuous updating.

2.3.4 Stability analysis

In this section, the stability of GPRC with LTI repetitive controller R in (2.17)
is analyzed in the setting in Figure 2.1, resulting in non-conservative stability
conditions.
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1 ∞

Figure 2.4: Nyquist contour D with inner radius 1, outer radius infinity, and
the parallel lines infinitely close to the real axis.

Theorem 2.7. Consider Figure 2.1 with repetitive controller (2.17) in Theo-
rem 2.6, a specified kernel function κ and a buffer size N . Suppose all poles
of SP and L are in the open unit disk, and the feedback loop in Figure 2.1 is
asymptotically stable, then the closed-loop is stable if and only if the image of
−MGP(z)(1− SP(z)L(z));

• makes no encirclements around the point −1, and

• does not pass through the point −1,

as z traverses the Nyquist contour D in Figure 2.4, see, Skogestad and Postleth-
waite (2007).

Proof. The setting in Figure 2.1 is stable if and only if SP ∈ RH∞ and SR =
(1 + SPR)−1 ∈ RH∞. First, SP is proper and stable by the assumption in
Theorem 2.7. Second, substituting R (2.17) in SR (2.2) gives

SR =
1−MGP

1−MGP(1− SPL)
, (2.21)

the Nyquist theorem, see, e.g., (Skogestad and Postlethwaite, 2007, Theorem
4.14), states that SR is stable if and only if the image of −MGP(z)(1−SP(z)L(z))
i) encircles the point −1 in anti-clockwise direction Pol times, and ii) does not
pass through the point −1 as z traverses the D, where Pol is the number of poles
of −MGP(1− SPL) inside D.
It remains to show that Pol = 0, i.e., there are no unstable poles in −M(1−SPL).
This holds true since MGP is a FIR filter, see Theorem 2.6, with all poles in the
origin, and, SP and L are stable by the assumptions in Theorem 2.7, which
completes the proof.

Theorem 2.7 provides a non-conservative condition to check stability given
MGP in (2.18) that contains the GP buffer. If the resulting closed-loop is un-
stable, e.g., due to modeling errors, the following slightly more conservative
frequency-domain condition is provided to tune R for stability.
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Lc
e(k) d̂µ(k)yd(k)`(k)

MGP

R

z−nl

Figure 2.5: Practical RC implementation with a non-causal learning filter L
with causal equivalent Lc and preview znl .

Corollary 2.8. Theorem 2.7 is satisfied if

MGP(ejω)
(
1− SP(ejω)L(ejω)

)
< 1, (2.22)

for all ω ∈ [0, π].

Corollary 2.8 yields that the closed-loop is stable if i) a perfect model is
available, i.e., LS−1

P = 1, or ii) if model errors appear L 6= S−1
P then MGP in

(2.18) must be designed to act as a robustness filter and stabilize the closed-loop
SR, which is further addressed in Section 2.5.

2.4 Design methodology for Gaussian process
RC

In this section, design guidelines are presented for the learning filter and selection
of suitable prior knowledge through the covariance function κ for the class of
disturbances in Definition 2.3. Finally, a procedure to implement GPRC is
provided.

2.4.1 Learning filter design

The learning filter L in the repetitive controller (2.17) is present for stability,
i.e., from Theorem 2.7 it follows that by designing L as

L = S−1
P , (2.23)

then (1− SPL) renders zero satisfying Theorem 2.7 regardless of MGP .
Direct inversion of SP may lead to an unstable or non-causal inverse, e.g., if P

contains non-minimum phase zeros. By employing finite preview a bounded ap-
proximate inverse of SP can be obtained, e.g., using Zero-Phase-Error-Tracking-
Control (ZPETC) (Tomizuka, 1987; van Zundert and Oomen, 2017) yielding L
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of the form

L = Lcz
nl ≈ S−1

P (2.24)

where Lc is causal and znl with nl ≤ N is a possible finite preview.
A practical implementation for the non-causal L filter (2.24) is presented in

Figure 2.5, where the error is filtered with the causal part Lc yielding

yd(k) = −LcSP (d(k) + d̂µ(k)) + q−nl d̂µ(k), (2.25)

= −d(k − nl), (2.26)

where q is the forward time-shift operator, to be a delayed version of the distur-
bance with nl samples. This delay is compensated by a preview in the memory
MGP , i.e., the test point becomes X∗ = t(k + nl), to implement the non-causal
part of L.

Remark 2.9. Note that X∗ = t(k + nl) is an estimate of d̂c at t(k + nl) being
nl samples in the future. This is possible by introducing smoothness in the GP
prior as shown later.

2.4.2 Prior selection

In this section, a suitable covariance function κ in (2.12) that specifies prior
knowledge for the class of disturbances in Definition 2.3 is presented.

The additive structure in Definition 2.3 is imposed on the disturbance model
(2.12) by parameterizing it as a sum of nd periodic functions with periods Ti,
i.e.,

d̂c(t) =

nd∑

i=1

d̂ci (t), with d̂ci (t) ∼ GP(0, κi(t, t
′)), (2.27)

where d̂ci are samples from nd independent GPs with periodic covariance function

κi. Hence, d̂c(t) in (2.27) is referred to as an additive GP, see, e.g., Durrande
et al. (2011), with an additive covariance function

κ(t, t′) =

nd∑

i=1

κi(t, t
′), (2.28)

that is simply the sum of the individual covariance functions κi. The periodic
covariance function κi is of the form

κi(t, t
′) = σ2

f,i exp

(
−2 sin2(π(t−t′)

Ti
)

l2i

)
, (2.29)

with hyperparameters Θi = {Ti, li, σf,i} where
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Figure 2.6: Example: Top plot shows three examples of periodic covariance
functions κi(t, t

′) as a function of t − t′ with hyperparameters T1 = 50, l1 =
σf,i = 1 in ( ) and with l2 = 0.25 in ( ). This shows that if t − t′ is close
to zero or the period Ti, then t and t′ are highly correlated. Also the sum of
two periodic kernels with periods T1 = 50 and T2 = 10π is shown ( ) yielding
a non-periodic kernel function. The bottom plot shows random samples taken
from the distributions N (0, κi(t, t

′)), these samples both periodic and have more
( ) or less ( ) smoothness, or become non-periodic ( ) with a non-periodic
kernel that is the sum of two periodic kernels.

• Ti ∈ R is the period of the ith component;

• li ∈ R is the smoothness of d̂ci , i.e., choosing l large implies less higher
harmonics and vise versa; and

• σf,i ∈ R is a gain relative to the other components and the noise variance
σ2
n.

The periodic covariance function (2.29) is often encountered in literature, see,
e.g., (Williams and Rasmussen, 2006, Chapter 4.2), (Duvenaud, 2014, Chapter
2.2). Note that κ is non-periodic if there is no least common multiple as in
(2.6) for non-periodic disturbances. An example of the periodic kernel function
κi, and a non-periodic kernel that is a sum of two periodic kernels, including
random samples taken from the prior distributions N (0, κi(t, t

′)) are are shown
in Figure 2.6. This allows to capture both period and non-periodic disturbances
in the GP-based internal disturbance model.
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In GPRC with kernel function (2.28) the disturbance period is included
through the hyperparameter Ti that may be rational, in contrast to traditional
RC, allowing to reject disturbances with a rational period time. The number
of components nd specifies if the disturbance is single-period (nd = 1) or multi-
period (nd ≥ 2) and can be determined with for example a power spectral density
(PSD) estimate of a measured error signal, where nd equals the number of fun-
damental frequencies. Finally, if the periods Ti do not have a common multiple,
then the resulting kernel function is non-periodic. Hence, the prior (2.28) is flex-
ible and can be tuned with only a limited number of intuitive hyperparameters.

2.4.3 Design procedure

The following procedure summarizes the design steps that are required to im-
plement GP-based RC.

Procedure 2.10 (GPRC design).

Given a measured frequency response function (FRF) ŜP(ejω) and a para-
metric model SP, perform;

1. Invert ŜP to obtain Lc and non-causal part znl with nl ≥ 0 in (2.24), e.g.,
using ZPETC.

2. Determine nd in (2.27), e.g., using a PSD estimate of the error. Then,
set i = 1 and repeat the following.

a) Choose the period Ti, smoothness li and gain σf,i for κi in (2.29).

b) until i = nd, set i→ i+ 1 and repeat step 2a.

3. Choose a buffer size N ∈ N, e.g., a good starting point is N ≥ ∑nd
i=1 Ti

which yields sufficient design freedom, although smaller buffer sizes are
possible with appropriate prior, see Remark 2.11.

4. Define

X =
[
N N − 1 . . . 1

]>
, (2.30a)

X∗ = N + nl, (2.30b)

and evaluate κ in (2.28) for κ(X,X) and κ(X,X∗) to obtain K and K∗
respectively.

5. Compute FIR coefficient µGP in (2.16) and verify stability with ŜP using
Theorem 2.7 or Corollary 2.8 (Remark 2.12).
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Remark 2.11. To model a periodic signal with period T at least T independent
parameters are required. By including a correlation through smoothness (l > 0)
or periodicity in the kernel, a smaller buffer size N < T can be used in practice.

Remark 2.12. The FIR filter MGP influences stability if L 6= S−1
P , it is shown

in Section 2.5 that increasing smoothness yield more robustness for modeling
errors.

2.5 Performance and robustness

The generic GPRC framework introduced in the previous sections is further an-
alyzed, i.e., it is shown under which conditions traditional RC and Higher-order
RC (HORC) (Steinbuch et al., 2007) are recovered as a special case of GPRC.
Furthermore, by a suitable kernel choice GPRC improves robustness for period
variations or reduces the sensitivity with respect to noise similar to Steinbuch
et al. (2007). Furthermore, GPRC applied to multi-period disturbances and
disturbances with a rational period time is analyzed.

2.5.1 Recovering traditional RC

GPRC recovers traditional RC for a specific type of prior, i.e., a periodic kernel
without smoothness. In traditional RC the bufferMT = z−(N−nl) is a pure delay,
hence, the output is simply a delayed version of the input. This is recovered in
GP-based RC as follows.

Theorem 2.13. In the setting in Figure 2.5 and under the conditions in The-
orem 2.6, then with N = T ∈ N, a periodic kernel (2.28) where nd = 1 and
T = N , σ2

n = 0, σ2
f = 1, and l→ 0, the memory

MGP = z−(N−nl), (2.31)

recovers traditional RC.

Proof. To show that MGP(z) = z−(N−nl), note that this is equivalent to showing

that d̂µ(k) = yd(k−N +nl). The output d̂µ(k) = µGPw(k) with w(k) in (2.10),
hence by showing that the vector

µGP =
[
0N−nl−1 1 0nl−1

]> ∈ RN (2.32)

implies that M = z−(N−nl). Substitute σ2
n = 0 and σ2

f = 1, then in the limit
case the kernel function (2.29) is of the form

lim
l→0

κ = lim
l→0

exp

(
a(k)

l2

)
=

{
0 if a(k) 6= 0

1 if a(k) = 0
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where a(k) = −2 sin2
(
πτ(k)
Ti

)
= 0 ∀ τ(k) = βTi with τ(k) = X(k) −X ′(k) and

β ∈ Z. With X(k) in (2.11) this leads to K = IN and lim`i→0K
>
∗ K

−1 is of the
form (2.32) which completes the proof.

Hence, by setting smoothness to zero and the kernel period limited to an
integer, the traditional RC memory is recovered. Next, it is shown that GPRC is
not limited to disturbances that have an integer period time through introducing
smoothness.

Remark 2.14. Theorem 2.13 shows that setting l → 0 recovers traditional
RC, which does not take inter-sample behavior into account (Nagahara and Ya-
mamoto, 2016). In the following subsections, the smoothness l > 0 resulting
in a smooth and continuous disturbance estimate, also in-between the discrete
data point, i.e., the inter-sample modeling error is reduced. In Nagahara and
Yamamoto (2016), sampled-data signal reconstruction is employed to generate
a continuous-time disturbance model that explicitly takes inter-sample behavior
into account in RC.

2.5.2 GPRC for discrete-time non-periodic disturbances

Traditional RC is not applicable to rational period times as in Definition 2.3 with
T ∈ R which are non-periodic in discrete time, for these disturbances additional
interpolation is required, see, e.g., Cao and Ledwich (2002). In contrast, it is
shown that GPRC can suppress disturbances that have a rational period time.

In GPRC the disturbance period is specified through the kernel function
(2.29) where Ti ∈ R, and is not necessarily related to the buffer size N ∈ N as
in traditional RC. It is shown in Theorem 2.13 that if l→ 0 and T is an integer,
then MGP is a pure delay such that d̂µ in (2.19) depends solely on yd(k − T ).
In the case that T is rational then y(k − T ) is not directly available, i.e., it is
in-between two samples, but it is estimated from the available inputs using a
smoothness l > 0 also estimating the disturbance in-between samples. Hence,
smoothness enables interpolation for disturbances with a rational period time as
shown in the following example.

Example 2.15. Consider the problem of rejecting a disturbance with a rational
period time Td = 10.5 samples, for which the kernel (2.29) with T = Td, l = 10
and σf = 1 is designed. The resulting modifying sensitivity SR and the FIR
coefficients µGP are shown in Figure 2.7. As a comparison, a traditional RC
with N = 11 is also provided.

The modifying sensitivity SR shows that GPRC ( ) attenuates the distur-
bance at the fundamental frequency 1/Td and its harmonics, through combining
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Figure 2.7: Example 2.15: Modifying sensitivity function SR (top plot) and
impulse response of MGP (bottom plot) for GPRC without smoothness and T =
11 ( ), and with smoothness with T = 10.5 ( ). Including smoothness yield
that many FIR coefficients µGP are non-zero ( ) for automatic interpolation,
which enables suppression at 1/Nd and higher harmonics, whereas traditional
RC performance in much worse ( ).

the available inputs w(k) to estimate d̂c(k−Td) as in (2.19) with coefficients µGP

( ), yielding automatic interpolation. In contrast, it is evident that traditional
RC ( ) attenuates the disturbance at the wrong frequency 1/N which may even
amplify the actual disturbance indicated by ( ).

2.5.3 Recovering HORC

GPRC can improve the robustness of RC with respect to noise or uncertain
period times similar to HORC, where p ∈ N buffers z−N are combined, see, e.g.,
Pipeleers et al. (2008); Steinbuch et al. (2007). Next, it is shown that HORC
is a special case of GPRC, while at the same time the GP framework allows
for substantially larger design freedom for the HORC controller. Considerer the
following Lemma and Theorem that provides conditions under which HORC is
recovered, after which two examples illustrate the extended design freedom.

Lemma 2.16. Consider GPRC under Assumption 2.5, then for all (i, j) ∈
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{1, 2, . . . , N} and i 6= j the kernel matrix K(i, j) = 0 if and only if its inverse
K−1(i, j) = 0.

Proof. Under Assumption 2.5 the matrix K ∈ RN×N is square and symmet-
ric K = K>. Decompose K as UΣU> where Σ ∈ RN×N is a diagonal ma-

trix with singular values and U =
[
u>1 u>2 . . . u>N

]> ∈ RN×N is unitary
such that the row-vectors ui ∈ R1×N are orthogonal, i.e., 〈ui, uj〉 = δij ∀i, j
where δij is the Kronecker delta and 〈·, ·〉 is the inner product defined over
span{u1, u2, . . . , uN}. Furthermore, U−1 = U> yielding that the inverse
K−1 = (U>ΣU)−1 = UΣ−1U>.

To show that K(i, j) = uiΣu
>
j = 0 if and only if K−1(i, j) = uiΣ

−1u>j = 0
the following property must hold

ui ∈ Ker(Σu>j )⇔ ui ∈ Ker(Σ−1u>j ) (2.33)

for all (i, j) ∈ {1, 2, . . . , N} except for i = j, which holds true since U is unitary
and by using that Ker(uj) = Ker(Σuj), see, e.g., Bernstein (2009, p.115), which
completes the proof.

Lemma 2.17. In the setting in Figure 2.5 and under Assumption 2.5, then with
the kernel (2.29) where l → 0, N = pT ∈ N and p ∈ N, the FIR filter MGP in
(2.18) is of the form

MGP =

p∑

i=1

wiz
−(iN−nl) (2.34)

with weights wi ∈ R.

Proof. If l → 0 and N = pT then with the same reasoning as in Theorem 2.13
it can be shown that K = κ(X,X) has non-zero values on the diagonal, all N th

off-diagonals and is zero elsewhere, i.e.,

K =





K(i, i+ kN) 6= 0,

K(i+ kN, i) 6= 0,

0 elsewhere,

(2.35)

with k, i ∈ N which is the same structure as (K + σ2
n)−1 using Lemma 2.16.

Furthermore, the vector K∗(i) 6= 0 for i = N −nl + 1 and zero elsewhere. Then,
µGP in (2.16) is of the form

µGP =
[
0N−nl+1 w1 0N−1 w2 . . . 0N−1 wN

]
, (2.36)

which implies that MGP is a equal to (2.34) which completes the proof.

Lemma 2.17 shows that GPRC recovers the same structure as HORC, with
weights wi for i = 1, 2, . . . , p that depend on the kernel and hyperparameters.
The following Sections 2.5.3.1 and 2.5.3.2 illustrate that noise-robust RC and
period-time robust RC in Steinbuch et al. (2007) are closely recovered with a
suitable kernel function.
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2.5.3.1 GPs for period-time robust RC: A form of HORC improves ro-
bustness for uncertain period times, which is recovered by GPRC through a
locally periodic kernel, that allows for slight variations in the disturbance esti-
mate and is given by

κLP(t, t′) = exp

(
− (t− t′)2

2l2s

)
κ(t, t′), (2.37)

where κ in (2.29) is the periodic kernel and ls the local smoothness. The following
example shows that noise robust HORC is closely recovered by HORC with a
locally periodic kernel.

Example 2.18. A GPRC is designed with a buffer size N = 3T where T = 20
and a locally periodic kernel (2.37) with hyperparameters T = 20, σf = 1, l→ 0,
ls = 225 and σ2

n = 10−6 yielding weights

(w1, w2, w2) = (2.93,−2.92, 0.98) (2.38)

in Lemma 2.17 that closely resemble the weights obtained in Steinbuch et al.
(2007). The modifying sensitivity SR is shown in Figure 2.8 for GPRC ( )
and HORC ( ) which are almost identical and significantly improve disturbance
rejection for a wide range compared to traditional RC ( ).

Hence, GPRC closely recovers period-time robust RC in Steinbuch et al.
(2007) using a suitable kernel function with a specific smoothness.

2.5.3.2 GPs for noise robust RC: GPRC can improve noise robustness
with respect to traditional RC by using smoothness l > 0 in a periodic kernel,
even outperforming noise-robust HORC with a smaller buffer size. Noise robust
RC as in Steinbuch et al. (2007) is recovered using a periodic kernel without
smoothness l→ 0. This is illustrated in the following example.

Example 2.19. A GPRC is designed using the periodic kernel (2.29) without
smoothness l → 0 and T = 20, σf = 1 and σn = 10−7. The buffer Γ contains
N = 3T samples. This results in the weights

(w1, w2, w2) = (0.48, 0.33, 0.19), (2.39)

as in Lemma (2.17), that closely resemble the weights for noise-robust HORC
in Steinbuch et al. (2007). Moreover, with the same periodic kernel where now
smoothness is included l = 100 and the buffer size is reduces to N = T samples,
then noise robust HORC is outperformed ( ).

The resulting modifying sensitivities are shown in Figure 2.8 where noise-
robust GPRC without smoothness ( ) recovers noise-robust HORC ( ). By
employing the extended design freedom in GPRC, i.e., using smoothness, then,
even with a smaller buffer size ( ), it outperforms HORC due to averaging over
potentially all N samples.
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Figure 2.8: Modifying sensitivity SR with traditional RC ( ) as baseline.
HORC in Steinbuch et al. (2007) for noise robustness ( ) with N = 3T is
recovered by GPRC a periodic kernel ( ). Also HORC for period variations
( ) is recovered with a locally periodic kernel ( ). Introducing smoothness
( ) outperforms noise-robust HORC with a smaller buffer size N = T .

Examples 2.19 and 2.18 show that HORC is recovered without smoothness
and an appropriate kernel, furthermore, introducing smoothness yields addi-
tional design freedom to improve noise robustness with a much smaller buffer
size than HORC. However, including smoothness also leads to less disturbance
attenuation at high frequencies as shown in Figure 2.9.

2.5.4 GPs for multi-period RC

The periodic kernel (2.28) in Section 2.4.2 also enables rejection of multi-period
disturbances. Using a multi-period kernel GPRC suppresses the disturbance at
specific frequencies instead of all harmonics of the common multiple, resulting
in less amplification of non-periodic errors similar to Blanken et al. (2020a) or
Griñó and Costa-Castelló (2005) where only odd frequencies are rejected. This
is illustrated in the following example.

Example 2.20. The modifying sensitivity with a multi-period kernel where nd =
2, T1 = 20, T2 = 15, and l → 0 is shown in Figure 2.10 for buffer size N =
T1 + T2 = 35 samples ( ) and for a larger buffer size N = lcm(T1, T2) = 60
( ).

Figure 2.10 shows that only disturbances with fundamental frequencies 1/T1

and 1/T2 are suppressed, compared to traditional RC with N = 60 samples ( )
that yield unnecessary disturbance suppression at 1/T and harmonics. The FIR
coefficients µGP in (2.18) are given in Figure 2.11, which are non-zero at the
multiples of T1 and T2 and the difference between both.
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Figure 2.9: Modifying sensitivity with GPRC for a periodic kernel with three
different levels of smoothness l = 10−6 ( ), l = 10 ( ) and l = 100 ( ),
showing that smoothness improves robustness for noise and reduces disturbance
rejection at higher frequencies.

Example 2.20 illustrates that by only introducing disturbance suppression
where this is required, less amplification of noise at intermediate frequencies is
obtained, due to Bode’s Sensitivity integral.

Remark 2.21. Example 2.20 shows that a buffer size of N = T1 +T2, as in Re-
mark 2.11 is sufficient to suppress the disturbance, with more data the robustness
with respect to noise is improved by averaging out over multiple samples.

Remark 2.22. If uncertain period times, noise and multi-period disturbances
appear at the same time, then a sum of locally periodic kernels KLP in (2.37)
can be used. In this case, ls acts tuning parameter for the trade-off between noise
robustness or period-time uncertainty. Specifically, if ls is large, then κLP has
more emphasis on noise robustness, i.e., limls→∞ κLP = κ, and if ls is small
then period uncertainties are more taken into account.
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Figure 2.10: Modifying sensitivity SR for multi-period GPRC with nd = 2,
T1 = 20 and T2 = 15 samples with buffer size N1 = T1 + T2 = 35 samples ( )
and N2 = lcm(T1, T2) = 60 samples ( ). As a comparison, the traditional RC
with N = 60 is also shown ( ).
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Figure 2.11: FIR coefficients µGP with a multi-period kernel where nd = 2,
T1 = 20, T2 = 15, yielding non-zero FIR coefficients µGP at T1, T2 and the
difference between them for N1 = 35 ( ) and with N2 = 60 ( ).
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Figure 2.12: Magnitude of MGP for a periodic kernel with nd = 1 and T = 360
and three settings of smoothness, i.e., l = 10−3 ( ), l = 0.5 ( ) and l = 1 ( ).
The markers ( ) and ( ) indicate fundamental frequencies f = 1

T
and harmonics

(top plot). This shows that smoothness leads to a low-pass characteristic in
MGP , which in turn increases robustness.

2.5.5 Robustness for model errors

Robustness for model errors in RC is often improved by designing a robustness
filter Q, typically a low-pass filter, that is placed in series with the buffer MGP .
Next, it is shown that robustness is naturally included in GPRC by increasing
smoothness. Theorem 2.7 provides a non-conservative stability condition where
MGP has a similar role as the traditional Q filter in RC, see, e.g., Hara et al.
(1988); Steinbuch (2002).

If smoothness l → 0 and nd = 1, then by Theorem 2.13 MGP = z−(N−nl)

which has magnitude |MGP(ejω)| = 1∀ω, see ( ) in Figure 2.12. To improve
robustness, the buffer MGP(ejω) < 1 for the frequencies where model errors are
present. In Figure 2.12 MGP is given for l = 1 ( ) and l = 0.5 ( ) resulting in
a low-pass characteristic which increases robustness for high-frequency modeling
errors.

From an intuitive point of view, higher smoothness yields a smoother distur-
bances estimate d̂c, and thereby less high-frequency content in the RC output
d̂µ. Hence, learning is limited in the high-frequency range, i.e., where the model
is not reliable, having a similar effect as a Q filter in traditional approaches.
Hence, smoothness also imposes an upper bound on the frequency content of
the disturbance that can be learned.

Remark 2.23. The markers ( ) and ( ) in Figure 2.12 indicate the magnitude
of MGP(ejω) for ω = 2π

T and its harmonics. In between these frequencies the
magnitude of µGPΓ is small, hence disturbances at those frequencies are filtered
out. Note that MGP > 1 for some frequencies, which is allowed as long as
Theorem 2.7 is satisfied.
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Remark 2.24. GPRC can be extended with a robustness filter Q if desired, i.e.,
MGP(z)→ Q(z)MGP(z) to satisfy the stability condition (2.22).

2.6 Implementation aspects: dealing with
initial conditions

The previous sections establish an LTI framework for RC synthesis using GPs.
In this section, performance in the first N samples is improved even further
by taking into account the initial conditions of the buffer Γ, which may limit
performance in the LTI case. Two solutions are provided to avoid this.

2.6.1 Limitations of the LTI case

The problem that arises in the LTI case is that the initial condition of the buffer
Γ, which is zero by default, appears as observations of the disturbance in the
training data set DN during the first N samples. Performing GP regression with
these incorrect observations gives a worse disturbance estimate. After the first
N samples, the initial condition of Γ disappears from the buffer. To improve
GPRC in the first N samples, the following two solutions are provided.

2.6.2 Discarding observations

A simple solution is to discard the first N observations from the data set DN
that correspond with the initial conditions of the memory Γ. This is done by
introducing a time-varying selection matrix Ξk such that w(k) = ΞkΓ ∈ RN̄(t)

where

Ξk =
[
IN̄(t) 0N̄(t)×(N−N̄(t))

]
∈ RN̄(t)×N (2.40)

with N̄(t) ≤ N the time-varying number of samples that are used for GP re-
gression. After N samples N̄(t) = N thus Ξk = IN such that the LTI case in
Theorem 2.6 is recovered.

Note that this approach requires computing (2.16) at each sample during the
first N samples, which is computationally demanding. Therefore, an alternative
solution is introduced next.

2.6.3 Time-varying kernel to improve learning

A second solution is to choose a sufficiently high noise variance σ2
r � σ2

n for the
undesired inputs such that these are reflected less in the RC output. This can
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be done by modifying the matrix (K + σ2
nIN ) in (2.16), by replacing the diago-

nal matrix with noise variances σ2
nIN with the following time-varying diagonal

matrix

Kk
v = Skσ

2
r + (IN − Sk)σ2

n (2.41)

where

Sk =

[
0∆ 0
0 IN̄−∆

]
(2.42)

is a selection matrix in which

∆ =





0 if k ≤ nl,
N if k − nl ≥ N,
k − nl otherwise,

(2.43)

such that after N samples Sk = 0N and the LTI case is recovered.
The time-varying matrix Kk

v is diagonal with noise variance σ2
r for GP inputs

that correspond to the initial condition of Γ, and the variance is σ2
n for the GP

inputs that represent the disturbance. In this way, the observations with a large
variance have negligible influence on the posterior mean (2.15a), resulting in a
significant improvement in convergence during the first N samples if smoothness
is included as shown in Section 2.7.

Remark 2.25. Both solutions lead to a time-varying system in the first N
samples and are equivalent to the LTI repetitive controller in Theorem 2.6 after
N samples.

2.7 Generic case study

In this section, a simulation case study is performed in the most general case,
i.e., a multi-period disturbance with a rational period-time, in presence of noise,
and a very large common multiple such that traditional RC methods are not
directly applicable. In addition, the effect of increasing smoothness and model
uncertainties is illustrated.

2.7.1 System and disturbance

The case study is performed in the setting in Figure 2.1, where P is a discrete-
time second order mass-spring-damper system given by

P (z) =
0.05(z + 1)

z2 − 1.99z + 0.99
, (2.44)
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Figure 2.13: Power spectral density of the multi-period disturbance, contain-
ing two fundamental periods T1 = 20 samples and T2 = 31.5 samples.

see Figure 2.16, for which a stabilizing PD controller is designed

C(z) =
5.0047(z + 1)(z − 0.8104)

(z − 0.5171)(z + 0.02961)
, (2.45)

resulting in a 0.1 Hz bandwidth.
A multi-period disturbance dc(t) is present that contains two fundamental

periods T1 = 20 samples and T2 = 31.5 samples such that the common multiple
is very large T = 1260 samples, also i.i.d. Gaussian distributed noise with
σn = 10−3 is added to the disturbance. A PSD of the disturbance is depicted in
Figure 2.13.

Remark 2.26. GPRC is also applicable if there is no common multiple, i.e., to
non-periodic disturbances. In this case study, a large common multiple is chosen
to compare GPRC steady-state performance with traditional RC as a benchmark.

2.7.2 GPRC design

The learning filter L is designed as (2.23) using ZPETC resulting in a causal
filter Lc and a non-causal part with nl = 1 sample preview.

The corresponding hyperparameters with the multi-period kernel (2.28) are
nd = 2, T1 = 20, T2 = 31.5, including two different levels of smoothness l1,2 = 1
and l1,2 = 3, and σf = 1 and σn = 10−3 are kept constant. The buffer Γ is
implemented with two buffer sizes N1 = T1 + T2 = 52 samples and N2 = 2N1 =
104 samples to illustrate the effect of including more data.

Simulations are conducted with PD control only, PD with LTI GPRC in
Theorem 2.6 with the varying prior variance (2.41) in the first N samples where
σr = 103. As a comparison, traditional RC with a buffer size N = 1260 is also
implemented.
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Figure 2.14: Error 2-norm as function of T1 with PD ( ). GPRC with N1 = 52
in ( ) that converges after 3T1, and with buffer size N1 = 104 ( ) GPRC
converges after 5T1. With a time-varying prior noise variance (2.41) the error
( ) convergence is much faster (l = 1), converges to a larger error with a larger
smoothness (l = 3) ( ).

2.7.3 Results

The 2-norm of the error computed over the fundamental period T1 is shown
in Figure 2.14, steady-state performance is analyzed using the power spectral
density (PSD) and cumulative power spectrum (CPS) of the converged error,
see Figure 2.15. The following observations can be made.

• The contribution of the disturbance, i.e., the peaks in the PSD in Fig-
ure 2.15 of the error without RC ( ), is fully rejected by GPRC ( ),
that has a buffer size (N1 = 52) much smaller than the period time of
the disturbance (T = 1260). The GPRC error-norm ( ) in Figure 2.14
significantly drops after 3T1 ≈ 52 samples when sufficient observations are
available (Remark 2.11) and the initial condition of Γ vanished from the
buffer.

• Increasing the buffer size to N2 = 104 � T reduces the amplification
of noise compared with buffer size N1 (Section 2.5.3.2), yielding a lower
cumulative error ( ) than with N1 ( ), see Figure 2.15. As a consequence
of the larger buffer size the initial condition of Γ vanishes after N2 samples
yielding slower convergence as shown by the error-norm ( ) in Figure 2.14
that drops after 5T1 ≈ 104 samples.

• Convergence in the first N2 samples is significantly improved by dealing
with the initial conditions using a time-varying kernel (2.41) ( ) compared
with the LTI case ( ), see Figure 2.14. After N2 samples both methods
have the same error.

• Increasing smoothness from l1,2 = 1 to l1,2 = 3 essentially cuts-off learning
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Figure 2.15: Power spectral density and cumulative power spectrum of the
converged error with PD ( ), GPRC with buffer size N1 = 52 and l1,2 = 1 as
a baseline ( ) that fully rejects the disturbance. In addition, with buffer size
N2 = 104 ( ) noise is amplified less, and with to much smoothness l1,2 = 3 ( )
the higher frequency harmonics are not rejected sufficiently. As a comparison
traditional RC with a very large buffer size N = lcm(T1, T2) = 1260 samples
( ) is outperformed by GPRC and the lower bound is given by the noise
induced error ( ).
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Figure 2.16: Top plot shows the true system P ( ), a perturbed model ( )
that is used for RC as well as the model mismatch ( ) that is significant (up to
> 100%) beyond 0.1 Hz. The bottom plot shows the Nyquist stability test for
smoothness l1 = l2 = 10 ( ) that is unstable, by increasing the smoothness to
l1 = 50 and l2 = 10 the RC is stabilized ( ) since there are no encirclements
of the point −1 + 0i.
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in the high-frequency range. This reduces disturbance attenuation at high-
frequencies as shown by ( ) in Figure 2.15, and by ( ) in Figure 2.14.

• A perturbed model with a significant mismatch in the high-frequency range
is also used to compute the learning filter, see Figure 2.16. Increasing
the smoothness allows to deal with this model mismatch, as discussed in
Section 2.5.5, i.e., satisfy the stability condition in Theorem 2.7 as shown
in the Nyquist plot in Figure 2.16. The effect of increasing smoothness is
discussed in the previous topic. This effect is similar to using a low-pass
robustness filter in traditional RC.

• Finally, GPRC ( ) can outperforms traditional RC ( ) both in conver-
gence as in steady-state error while using a significantly smaller buffer.

These observations confirm that GPRC is applicable to the general case, i.e., a
multi-period disturbance with a rational period time and a very large common
multiple, while using only a small buffer size and a limited number of intuitive
design variables. Note that for this example T1 and T2 are selected such that a
comparison with traditional RC can be made, i.e., a large common multiple ex-
ists. However, in general, the existence of a common multiple is not a restriction
and GPRC is readily applicable to non-periodic disturbances as well. A major
advantage of GPRC is a new way of designing the repetitive controller that, as
shown here, naturally extends to for example multi-period disturbances.

2.8 Conclusions

A generic repetitive control framework for asymptotic rejection of single-period,
and multi-period disturbances, with potentially rational period times, is en-
abled through a Gaussian process (GP) based internal model. The presented
GP-based approach also enables compensation within the first period, in con-
trast to many existing RC approaches. The disturbance is modeled using GP
regression, which is a non-parametric approach that combines data with prior
knowledge. Prior knowledge is included in the form of a kernel function with pe-
riodicity and smoothness, which allows modeling a wide range of disturbances by
specifying intuitive tuning parameters. It appears that under mild assumptions
the GP-based RC approach is LTI and more specifically given by an FIR filter,
such that it is computationally inexpensive, stability conditions can be provided
and several existing approaches are recovered as a special case. Moreover, ap-
plying GP-based RC for non-linear systems is conceptually possible following
the developments in this chapter by reformulating the stability conditions for
the non-linear case which is a part of future research. Ongoing work focuses on
utilizing the posterior variance of the disturbance model to improve robustness
against model errors and incorrect prior.



Chapter 3
Gaussian Process Repetitive Control with
Application to an Industrial Substrate Carrier
System with Spatial Disturbances1

Abstract: Repetitive control (RC) can perfectly attenuate disturbances that
are periodic in the time domain. The aim of this chapter is to develop an RC
approach, that compensates for disturbances that are time-domain non-periodic
but are repeating in the position domain. The developed position-domain
buffer consists of a Gaussian Process (GP) which is learned using appropriate
dynamic filters. This approach estimates position-domain disturbances
resulting in perfect compensation. The method is successfully applied to a
substrate carrier system, demonstrating performance robustness against
time-domain non-periodic disturbances, which are amplified by traditional RC.

1The results in this chapter constitute Contribution 2 of this thesis. The chapter is based
on Mooren, N. et al. (2022a). Gaussian Process Repetitive Control with Application to an
Industrial Substrate Carrier Systems with Spatial Disturbances. (Submitted for journal pub-
lication), and preliminary results appeared in Mooren, N. et al. (2020b). Gaussian process
repetitive control for suppressing spatial disturbances. IFAC-PapersOnLine, 53(2):1487–1492.
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3.1 Introduction

Spatially periodic disturbances, including cogging, imbalances, eccentricity, and
commutation errors, are encountered in many mechatronic applications (Chen
and Chiu, 2008; Huo et al., 2019). These often appear non-periodic in the
time domain, while these are reproducible in the spatial domain, e.g., with the
(angular-)position (Li, 2015; Sun, 2004). In particular, these spatial disturbances
appear non-periodic in the time domain for general tasks. In the case of repeating
tasks, these appear periodic, which is a highly restrictive situation.

Repetitive control (RC) enables perfect attenuation of periodic disturbances
through the internal model principle (IMP). The IMP (Francis and Wonham,
1976) states that a model of the disturbance generating system must be present
in the stable feedback loop to enable asymptotic rejection. In traditional RC,
a disturbance model is generated in a time-based fixed memory loop, allowing
to attenuate disturbances that have a fixed time-domain period, see, e.g., Hara
et al. (1988); Longman (2010); Tomizuka (2008). Only in the case of periodic
tasks, i.e., if the position-domain disturbances appear periodic in time, RC is
effective.

Repetitive control is not effective for disturbances that have a varying period
or appear non-periodic in the temporal domain, due to inadequate temporal
buffer (Hara et al., 1988; Steinbuch et al., 2007). In the case of non-periodic
tasks, the resulting performance can be significantly degraded. Hence, a tra-
ditional time-domain memory loop is not effective for spatially periodic distur-
bances in the case of non-periodic tasks.

High-order RC (Pipeleers et al., 2008; Steinbuch et al., 2007) has been de-
veloped to increase flexibility for disturbances with uncertain period times by
placing multiple delay lines in series. This allows optimizing a trade-off between
variations in the period time on one hand, and robustness against non-repeating
errors on the other hand. In Blanken et al. (2020a), multi-period RC is designed
that allows for multiple disturbances with different periods, where, for time-
domain non-periodic disturbances, a sum of periodic signals is selected a priori.
Furthermore, a variety of adaptive repetitive control schemes, including, Chen
and Tomizuka (2011); Hillerstrom (1996); Kurniawan et al. (2014); Manayathara
et al. (1996) are developed, exploiting the adaptation of RC parameters, such as
the sample time or buffer length, to cope with spatial disturbances. However,
practical applications mainly operate at a fixed sample rate. While the above
approaches also improve the performance for spatial disturbances with small
task variations, they do not generalize to arbitrary task variations.

Spatial disturbances can be modeled efficiently in the position domain, where
they appear periodic, in contrast to existing approaches where a time-based
memory is employed in RC. Spatial disturbance models have been developed for
RC, see, e.g., Chen and Yang (2007); Huo et al. (2019), where the disturbance
is modeled as a non-linear potentially time-varying parametric model. Alterna-
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tively, in Cao and Ledwich (2002); Mooren et al. (2020a); Yao et al. (2013) a
discrete buffer is presented that contains position information to model the spa-
tial disturbance. These discrete buffers require additional interpolation to deal
with the inherently non-equidistant data points in the spatial domain. Hence,
both spatial RC approaches require additional modeling effort or interpolation,
which complicates their practical implementation.

Although improvements have been made to traditional RC to cover wider
ranges of disturbances, including spatial disturbances, a systematic approach to
generate spatial buffers efficiently with the non-equidistant observations in the
spatial domain is not yet available. The aim of this chapter is to present a spatial
RC approach that can compensate for position-domain disturbances by using a
new type of spatial memory.

Beyond typical buffers in RC, i.e., by a discrete-time or continuous-time
delay, recent developments have enabled modeling function from data, e.g., as
a Gaussian Process (GP). The key idea in Gaussian Processes (GP) regression
is to estimate a distribution over functions from data and prior knowledge, see,
e.g., Murphy (2012); Williams and Rasmussen (2006) for a complete overview.
This enables efficient interpolation of continuous disturbance models from finite
measurement points (Bijl et al., 2015; Snelson and Ghahramani, 2007). The aim
is to employ a GP-based disturbance model in a spatial memory loop for RC.

The main contribution in this chapter is a continuous GP-based spatial dis-
turbance model in RC to enable attenuation of spatial disturbance for arbitrary
task variations. This includes the following sub-contributions.

C1 Developing a novel continuous spatial disturbance model, efficiently utilizing
non-equidistant observations in combination with suitable prior knowledge,
based on Gaussian Processes (GP).

C2 Implementation of the GP-based disturbance model in a memory loop for
spatial RC, including stability analysis, learning filter design, and prior se-
lection.

C3 A computationally efficient implementation of the GP-based spatial memory
loop.

C4 A simulation case study, with full GP, sparse GP and traditional RC.

C5 Experimental validation on a substrate carrier system.

This chapter is outlined as follows. In Section 3.2, the problem setting and
spatial disturbance are introduced. In Section 3.3, a continuous function of the
spatial disturbance is identified as a Gaussian Process with suitable prior (C1).
In Section 3.4, the spatial repetitive control framework is presented, including
stability analysis, learning filter design, and integration of the spatial model in
a spatial memory loop (C2). In Section 3.5, a computationally efficient imple-
mentation of GP regression is provided (C3). Finally, in sections 3.6 and 3.7,
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simulations and experimental validation are carried out (C4-C5), and conclusions
are presented in Section 3.8.

3.2 Problem formulation

In this section, an industrial relevant motivational application is presented, and
the considered type of disturbance is defined. Furthermore, the control setting
and spatial disturbance rejection problem is defined.

3.2.1 Application motivation

Disturbances that are repeating in the position domain appear in many industrial
applications, e.g., due to imbalances or imperfections in rotary systems, or non-
perfect commutation leading to position-dependent disturbances in positioning
systems such as a wafer stage. In this chapter, the industrial substrate carrier in
Figure 3.1 with schematic representation in Figure 3.2 is considered, and used
for experimental validation.

The aim of the substrate carrier setup is to accurately position the point-
of-interest on the substrate with respect to a print unit. This is enabled by
fixating the substrate to a steel belt using a vacuum, consequently, the position
of the steel belt is controlled in the three degrees-of-freedom (DoF) rx, ry and
φz, see Beltman et al. (2012b); Beltman et al. (2014) for details. Positioning of
the belt is performed with two actuated rollers for the longitudinal direction ry,
these rollers also contain 3 segments that are actuated in the lateral direction to
control rx and φz, see Figure 3.1 and 3.2. The position of the belt is measured
with an encoder in ry, and two sensors on the side of the belt measure rx and
φz. The focus in the remainder of this chapter is on the positioning performance
in the lateral direction rx.

The rotational nature of this system and slight imperfections in the rollers
and its segments, induce a position-dependent disturbance that repeats every
roller rotation. Depending on the belt velocity, which may vary over time, the
disturbance can appear periodic or non-periodic in the time domain. The aim
of this chapter is to reject the spatial disturbance, independent of roller velocity
variations. Furthermore, the roller position in the experiment setup is measured
very accurate and fast which is also considered in the remainder of the chapter.

3.2.2 Control problem

The control configuration is depicted in Figure 3.3, where the substrate carrier
is denoted by P and assumed to be a Single-Input Single-Output (SISO) stable
Linear Time Invariant (LTI) system, and C is a stabilizing feedback controller.
The reference to be tracked is r(t), which is zero in the industrial setup, and y(t)
is the position output corresponding to φz in the setup. A roller induced input
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Figure 3.1: Industrial substrate carrier setup where to aim is to position the
point-of-interest subject to spatially periodic disturbances. The belt is con-
trolled using actuated rollers.
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Figure 3.2: Schematic representation of the industrial substrate carrier setup.

disturbance d(t) is present, that is generated by an unknown static position-
domain mapping d̄(p) ∈ R, driven by an exogenous and known position signal
p(t), i.e., the roller position in the considered experimental setup. Note that the
position signal p(t), and the system output y(t) are not related in this setting.
Furthermore, η(t) represents measurement noise that is independent and identi-
cally distributed Gaussian zero mean with variance σ2

η. Throughout the chapter,
t ∈ R is continuous-time, k ∈ Z is discrete-time, and the notation ·̄ indicates a
spatial signal. The aim is formulated in the following definition.

Definition 3.1. Define the measured tracking error

em(t) = r(t)− y(t)− η(t), (3.1)

in the presence of a position-domain disturbance d(t), reference r(t) and mea-
surement noise η(t). Assume that, the frequency content of r(t) and d(t) are
significantly different from the frequency content of η(t), such that the aim is to
minimize the disturbance-induced and reference-induced errors.

The disturbance- and reference-induced errors can be written as

e = S(r − Pd) = er + ed, (3.2)
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Figure 3.3: Spatial repetitive control problem with input disturbance d(t).

with S = 1
1+PC the sensitivity function, and ed and er the disturbance induced

error and reference induced error respectively. This chapter focuses on the for-
mer, by making the following assumption.

Assumption 3.2. The reference induced error er(t) is negligibly small after a
certain (transient) time t0, i.e.,

|er(t)| ≤ β ∀t ≥ t0 (3.3)

with β ∈ R a sufficiently small constant. This can be obtained by a suitable design
choice of C, and possible feedforward control, i.e., Cff = P−1 and uff = Cffr that
is added to the input u(t), see, e.g., Oomen (2019).

Hence, when t ≥ t0 we assume that e(t) = ed(t), so that the control goal
reduces to the attenuation of the spatially periodic disturbance, as is outlined
next.

3.2.3 Spatial disturbance

The disturbance d(t) acting on the system may appear periodic or non-periodic
in time. However, it has an equivalent counterpart d̄(p) that is repeating in the
spatial domain. Hence, the roller induced disturbance in the substrate carrier
system is modeled as a static but unknown function of position, defined as
follows.

Definition 3.3. The disturbance d(t) is composed from the exogenous and known
position signal p(t), and the unknown static spatial disturbance function d̄(p),
i.e.,

d(t) = d̄(p(t)) (3.4)

where d̄(p) is periodic in the spatial domain, i.e.,

d̄(p) = d̄(p+ n · pper), for n ∈ N (3.5)
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Figure 3.4: Simulation example of a position-domain disturbance (top plot),
with corresponding velocity of p(t) (bottom plot) as function of time. The
gray area indicates where the velocity changes, which causes the disturbance to
become non-periodic in the time domain.

with pper ∈ R the spatial period.

Remark 3.4. For this specific application in RC, the spatial disturbance func-
tion d̄ is assumed to be periodic. However, this is not required in the general
case.

Remark 3.5. In contrast to other existing approaches (Sun, 2004; Sun et al.,
2009), the exogenous position signal p(t) is not equal to the plant output; also, the
spatial disturbance is a static function of position, i.e., not a dynamical model,
which removes the need to convert the system dynamics to the position domain,
resulting in a time-varying system.

The spatial disturbance leads to two major challenges. First, if p(t) is periodic
then d(t) is periodic. However, if p(t) is non-periodic, then d(t) is in general also
non-periodic. This implies that non-periodicity of p(t) leads to d(t) being non-
periodic in the time domain. For instance, if ṗ(t) is (piecewise) constant, then
d(t) is (piecewise) periodic in time, and, if ṗ(t) varies then d(t) is non-periodic
in time, see Figure 3.4. Second, samples of the position-domain disturbance are
in the general case non-equidistant in the spatial domain. The sampled position
signal is denoted by p(tk) where tk = kTs with Ts the sample time and k ∈ N,
which are equidistant in time. As a consequence, the corresponding spatial



3

72 Chapter 3. GP RC with Application to an Industrial Substrate Carrier

3.8 3.85 3.9 3.95 4 4.05 4.1

0

1

2

Time [s]

d
(t
)

[N
]

7.6 7.8 8 8.2 8.4 8.6 8.8

0

1

2

Position [rad]

d̄
(p
)

[N
]

Figure 3.5: Simulation example: the top plot shows a continuous disturbance
as a function of time d(t) ( ) from which equidistant samples ( ) are taken with
a fixed sampling frequency. The bottom plot shows the same disturbance as a
function of position yielding a different shape, where, due to velocity variations,
the same samples that where equidistant in time are now non-equidistant in
position ( ).

samples are non-equidistant, i.e.,

p(tk)− p(tk+1) 6= p(ti)− p(ti+1) for some i, k ∈ N (3.6)

which implies that observations of d̄(p) are non-equidistant in the spatial domain;
see Figure 3.5 where d(t) and several samples that are equidistant in time are
shown both in the time and position domain where they are non-equidistant.
This leads to major challenges for writing to and reading from the buffer, which
are both essential aspects in RC.

3.2.4 Problem definition

The aim of this chapter is to reject the spatially periodic disturbance invariant
under velocity variations in p(t). This is established in the spatial RC frame-
work in Figure 3.6, where, analog to traditional RC, the internal model principle
is applied by learning a continuous disturbance model through a time-domain
filter. The crucial difference is that a disturbance model is learned in a spa-
tial memory-loop instead of a temporal one in traditional RC. The disturbance
model is learned from non-equidistant observations ȳd, and predicted at other
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Figure 3.6: Spatial repetitive control framework, where ( ) represents a
position-domain signal and ( ) is a time-domain signal.

positions for compensation. To enable learning in the spatial domain, transfor-
mations between time-domain signals and position-domain signals are used, and
a suitable time-domain learning filter L is developed. Next, in Section 3.3 the
spatial disturbance model is derived, and in Section 3.4 the spatial RC framework
is designed and analyzed.

3.3 Gaussian process spatial disturbance model

In this section, a continuous model of the spatial disturbance is identified from
non-equidistant observations by means of Gaussian Process regression, consti-
tuting C1.

3.3.1 Identifying a spatial disturbance model

According to the internal model principle, the spatial buffer in Figure 3.6 must
contain a model of d̄(p), that is learned from N training samples d̄(pi) at non-
equidistant positions pi ∈ R for i = 1, 2, . . . , N . At the same time, the RC
provides a control action by evaluating the disturbance model at another position
pj ∈ R, which is in general not equal to the training samples. This implies that
interpolation or extrapolation is required to estimate d̄(pj) from data d̄(pi).

GP regression enables estimation of d̄(p) as a continuous function from non-
equidistant training data and suitable prior knowledge, essentially automating
the interpolation that is required in other spatial approaches (Yao et al., 2013).
The resulting GP-based disturbance model is a distribution over functions, i.e.,
a collection of random variables in the position domain determined by a mean
and variance, see Figure 3.7 for an illustrative example. Loosely speaking, GP
regression is a projection of data on a set of basis functions, that do not need
to be defined explicitly, which is a major advantage over parametric estimation
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Figure 3.7: GP regression example, with the disturbance ( ) from which
noisy observations ( ) are generated. With these observations the GP posterior
mean ( ), and variance ( ) are generated.

methods. Instead, a class of a potentially infinite set of basis functions is defined
in the form of a kernel function; it will become clear in Section 3.4 how to design
the kernel function for spatial RC. Furthermore, GP regression can be split up
in two key steps, a training step and a prediction step by performing inference,
these are considered in the remainder of this section and used in the spatial RC
framework in Section 3.4.

Remark 3.6. In contrast to existing spatial RC approaches, the non-equidistant
data is used to estimate a distribution over (periodic) function, whereas tradi-
tional approaches either require interpolation in a discrete buffer (Cao and Led-
wich, 2002; Mooren et al., 2020a; Yao et al., 2013) or require to reformulate
the systems in the spatial domain resulting in time-varying dynamics (Chen and
Chiu, 2008; Sun, 2004). This chapter presents a systematic design approach
for continuous buffers while also removing the need for complex time-varying
models.

Next, consider the disturbance function that is assumed to generate the data.
Thereafter, a suitable disturbance estimation for spatial RC is formulated as a
GP regression problem, see Section 3.4.

3.3.2 Spatial disturbance function and training data set

Observations of the spatial disturbance ȳd are subject to independent and iden-
tically distributed zero-mean Gaussian noise with variance σ2

n, i.e.,

ȳd(pk) = f(pk) + ε, with ε ∼ N (0, σ2
n), (3.7)

where pk ∈ R is the position at which observation ȳd(pk) is taken. Note that
ε is the result of measurement noise η, filtered by the closed loop and learning
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filter, which remains normally distributed. It will be shown later in Secion 3.4
that f(pk) approximates the actual disturbance function, i.e., f(pk) = d̄(pk).
The function f is parameterized as a linear combination of a potential infinite
number of basis functions and parameters

f(pk) = φ(pk)>w, with w ∼ N (0,Σp) (3.8)

where φ(pk) is a vector of basis functions and Σp = E(ww>) is the covariance
matrix of the weights w. Finally, the training data set containing noisy obser-
vations and corresponding positions is denoted as D = (X,yd), with

X =
[
p1 p2 . . . pN

]> ∈ RN

yd =
[
ȳd,1 ȳd,2 . . . ȳd,N

]> ∈ RN

consists of N training positions and observations, is used to train the GP.

Next, the training data D is used to identify a continuous function f that
represents the spatial disturbance d̄, and allows to make predictions outside the
training set.

3.3.3 Gaussian Process regression

In this subsection, a GP regression problem is formulated to model the continu-
ous disturbance function from data D and prior knowledge, i.e., training of the
GP, and to make prediction at new position p∗ by performing inference, for fur-
ther details, see Williams and Rasmussen (2006). This separation is used later
in Section 3.4 to establish the spatial memory loop.

First, define a set of N∗ test positions p∗ ∈ RN∗ with corresponding function
values f∗ = f(p∗), and the training points yd. Next, assume that f∗ and yd have
a joint Gaussian distribution p(yd, f∗) given by

[
yd
f∗

]
∼ N

([
0
0

]
,

[
KXX + σ2

nIN KX∗
K>X∗ K∗∗

])
, (3.9)

where KXX ∈ RN×N denotes the matrix of covariances evaluated at all pairs
of training positions in X and similar for KX∗ ∈ RN×N∗ and K∗∗ ∈ RN∗×N∗

which also include test positions with ∗. The covariance matrix K is selected by
the user, see Section 3.4.5, and also known as the kernel matrix that expresses
prior knowledge on the function f to be estimated.

Predictions of f at a test point p∗ from training data D, are given by the
conditional posterior distribution of f∗

p(f∗|p∗,D) = N
(
d̂µ, Ppost

)
, (3.10)
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where

d̂µ = K>X∗(KXX + σ2
nIN )−1yd (3.11a)

Ppost = K∗∗ −K>X∗(KXX + σ2
nIN )−1KX∗ (3.11b)

are the posterior predictive mean and covariance respectively. The GP mean
can be computed efficiently for a single test point p∗ as

d̂µ(p∗) =

N∑

i=1

αiκ(pi, p∗), (3.12)

where κ(pi, p∗) is the kernel function evaluated at training points and test point,
and

α = (KXX + σ2
nIN )−1yd =

[
α1 α2 . . . αN

]>
(3.13)

is essentially the link between the trained GP and the prediction step, as will
become clear later.

The posterior mean, i.e., (3.11a) or (3.12), involves inverting an N×N matrix
that solely depend on the training data D. Due to a lack of structure, the com-
putational complexity of this inversion scales cubically with N . Note that this
inversion, i.e., training of the GP, can be done independently of the prediction
step, such that new predictions are less time-consuming. In addition, in Sec-
tion 3.5 a sparse GP approximation is presented that reduces the computational
effort.

Remark 3.7. Inversion of the matrix (KXX +σ2
nI) ∈ RN×N can be done more

efficiently. Instead of inverting the kernel matrix completely at every training
step, the inverse can be computed using the Sherman-Morrison formula, essen-
tially using rank 1 updates on the previous inverse, e.g., similar to the work in
Bijl et al. (2015). This reduces the computational complexity to O(N2) for each
training update instead of O(N3).

Remark 3.8. If the position signal p(k) in the training data X is not known
sufficiently accurate then input noise can be taken into account for GP regression,
see, e.g., Bijl et al. (2017); McHutchon and Rasmussen (2011).

3.3.4 Prior selection

GP regression relies on data and suitable prior knowledge, the latter is essential
to extrapolate the estimated model beyond the training points, which is key in
the spatial RC framework. The function f̄ in (3.8) is defined by a set of basis
function φ and parameters w. Instead of selecting these basis functions explicitly,
the prior distribution (3.9) contains a covariance function that specifies a class of
basis functions. Consequently, the prior spans a potentially infinite set of basis
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functions, without explicitly defining them, which is a result known as Mercer’s
Theorem, see, e.g., (Williams and Rasmussen, 2006, Section 4.3).

To show this, the covariance of two training observations of the disturbance
is written as

cov(ȳid, ȳ
j
d) = E

[
(ψ(pi)

>w + εi)(ψ(pj)
>w + εj)

>]

= φ>(pi)Σpφ(pj) + δijσ
2
n

(3.14)

such that

cov(yd) = Φ>ΣpΦ + σ2
nIN (3.15)

and the mean of a training observation

µ(ȳd) = E[φ(p)>w + ε] = φ(p)> E[w] (3.16)

is assumed to be zero, i.e., p(f) ∼ N (0,Φ>ΣΦ) with f = f(X).

Remark 3.9. GP regression can easily be extended for non-zero mean in the
case that a prior estimate of the disturbance function is known, see, e.g., Murphy
(2012).

By comparing the covariance of the observations in (3.15) with the joint
prior in (3.9), it follows that the kernel expresses prior on the function f , i.e.,
KXX = Φ>ΣΦ, such that the covariance matrix (3.15) becomes

cov(yd) = KXX + σ2
nIN . (3.17)

Details on how to choose the kernel matrix for the application in RC follow in
Section 3.4.5.

Remark 3.10. It follows from Mercer’s Theorem that any symmetric posi-
tive definite kernel matrix can be mapped into an inner product K(p, p′) =

〈ψ(p), ψ(p′)〉, with φ(p) = Σ
1
2
p ψ(p) a potentially infinite sum of basis functions,

see, e.g., Murphy (2012); Williams and Rasmussen (2006). This enables to per-
form inference with an infinite set of basis functions while the kernel matrix is
of size N ×N .

This completes the GP-based disturbance modeling, in the following section,
the disturbance model is incorporated in the spatial RC framework.

3.4 Spatial Gaussian process repetitive control

In this section, the spatial GP-based RC as briefly introduced in Section 3.2
is further analyzed (contribution C2). This includes stability analysis, suitable
learning filter design, integration of GP-disturbance model in a memory loop,
and prior selection for the GP. Finally, a procedure is provided to implement
spatial GP-based RC.
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3.4.1 Spatial repetitive controller

The spatial repetitive controller indicated in gray in Figure 3.6 is depicted in
detail in Figure 3.8, where the solid lines represent time-domain signals, and
dashed lines are position-domain signals. The GP-based disturbance model is
included in two blocks, i.e., GPy that represents training of the GP by computing
(3.13) from data D, and GP (p) is the prediction step at test point p∗ = p to
generate the RC output fRC. The link between the training and prediction step
is given by (3.13) and indicated by the dotted line. Furthermore, transitions
between time and position domain are indicated by Γt,p and Γp,t respectively,
which are defined as follows.

Definition 3.11. The mappings Γt,p and Γp,t map a time domain signal x(k)
at sample k to the spatial signal x̄(p) and vise versa, i.e.,

Γt,p : x(k) 7→ x̄(p̄), x̄(p̄) = x(k) (3.18a)

Γp,t : x̄(p) 7→ x(k), x(k) = x̄(p) (3.18b)

where p̄ is the position at which the observation x(k) is stored in D, and p is the
current position at sample k.

A stable learning filter L is present that filters the error to obtain the learning
signal ` that is used to update the GP. Since the disturbance will be suppressed
over time, the error e and consequently also ` will converge to zero. Hence, the
learning signal ` cannot be fed directly to the GP. A memory element in the form
of a feedback loop, i.e., similar to traditional RC, see, e.g., Hara et al. (1988), is
present in the spatial RC, such that the identified model remains present in the
loop. This constitutes the update

yd(k) = `(k) + fRC(k), (3.19)

where ` = Le, and fRC is the RC output at sample k. Using Definition 3.11, the
spatial observation is generated by transforming yd to the spatial domain, i.e.,

ȳd(p) = yd(k) (3.20)

essentially including yd(k) at position p(k) in the training data set D. The
spatial RC output fRC is generated by evaluating the GP at test position p(k)
and converting to the time domain as in Definition 3.11, i.e.,

fRC(k) = µ̄(p) (3.21)

with µ̄(p) the mean of the GP at position p, i.e., (3.12) with p∗ = p.

Remark 3.12. Note that in classical RC the learning filter can be placed either
before or after the buffer because of the commutative property of SISO LTI filters.
In spatial RC, the commutative property does no longer holds and the position
of the learning filter L before the buffer determines the interpretation of the GP,
which is of crucial importance.
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Figure 3.8: Spatial RC with GP-based memory loop, where ( ) is a position-
domain signal and ( ) a time-domain signal ( ).

In the remainder of this section, it is shown how to design L to ensure closed-
loop stability, and such that ȳd represents an estimate of the disturbance, i.e.,
ȳd(p) = d̂(p).

3.4.2 Stability analysis

To analyze closed-loop stability with spatial RC, the input-output gain of the
GP buffer is upper-bounded. This is a reasonable assumption since the GP will
mainly take care of the interpolation/extrapolation of the data given a certain
prior. Hence, if a perfect model is obtained, then the gain of the GP-buffer, i.e.,
from yd to fRC, is one. The mean of the GP is initialized as zero, hence if no
data is available then the gain tends to zero.

Assumption 3.13. The `2-induced gain of the spatial GP-buffer is upper
bounded as

‖fRC‖`2 ≤ γ‖yd‖`2 . (3.22)

Assumption 3.13 implies that the output energy of the GP-buffer is less than
or equal to γ times input energy, which is required to provide stability results
for GP-based RC. In contrast to traditional RC where the is a delay z−N that
has a gain of one, the GP buffer depends on many variables, including the
hyperparameters and the position p, and often γ 6= 1. Assumption 3.13 provides
a condition to be tested on given a set of hyperparameters, rather than providing
direct design guidelines for the hyperparameters, as there is not a direct relation
between γ and the hyperparameters.

The following lemma is introduced before the main stability result is stated.

Lemma 3.14. For the system interconnection in Figure 3.9, with

‖y1‖`2 ≤ γ1‖e1‖`2 (3.23)

‖y2‖`2 ≤ γ2‖e2‖`2 (3.24)
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Figure 3.9: Standard feedback interconnection (left) and GP-based RC casted
in the standard feedback interconnection (right).

and the inputs ‖d1‖`2 , ‖d2‖`2 <∞, i.e., have finite `2-induced norm. Then, for
γ1γ2 < 1, the signals e1, e1, y1 and y2 have bounded `2-induced norms, i.e., the
interconnection is internally stable.

For a proof, see, e.g., Desoer and Vidyasagar (2009, Chapter 2).
Stability of the closed-loop is given by the following theorem.

Theorem 3.15. The GP-based spatial RC is closed-loop stable under Assump-
tion 3.13 if

|1− L(ejω)S(ejω)P (ejω)| < 1

γ
∀ ω ∈ [0, 2π]. (3.25)

Proof. First, i) spatial RC framework is casted in the standard feedback inter-
connection as in Lemma 3.14, then ii) it is shown that if Theorem 3.15 is satisfied
under Assumption 3.13, such that Lemma 3.14 is satisfied and the system is in-
ternally stable.
i) Set H1 as the non-linear mapping from yd(k) to fRC(k), then H2 is a linear
system

yd = H2fRC − LSPd, (3.26)

with H2 = 1 − LSP , where LSP is stable since L is stable by design, and C
stabilizes the feedback loop, i.e., SP is also stable.
ii) It remains to show that (3.25) satisfies Lemma 3.14 for some γ1γ2 < 1. Note
that H2 corresponds to the mapping yd 7→ fRC which is linear, thus the signal
norm bound (3.24) is satisfied if

‖1− LSP‖∞ ≤ γ2 (3.27)
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for some γ2 < 1 which is equivalent to (3.25) for SISO systems. From Assumption
3.13, it follows that γ1 ≤ 1, i.e., γ1γ2 < 1 and hence Lemma 3.14 is satisfied
which completes the proof.

Condition (3.25) in Theorem 3.15 and additional robustness filter Q can be
introduced at the output of the GP-based buffer, similar to traditional RC, see,
e.g., Blanken et al. (2017b) for detailed design guidelines.

Remark 3.16. Note that the stability condition in Theorem 3.15 can be tested
on the basis of an identified frequency response function of the system, see, e.g.,
Blanken et al. (2020a).

3.4.3 Learning filter design

From Theorem 3.15 it follows that if L is designed as the inverse of SP , then
(3.25) is satisfied and closed-loop stability is obtained. In addition, recall from
(3.2) that d = −(SP )−1ed, i.e., this learning filter design is also a sensible choice
since the learning signal ` = Le = d generates an estimate of d to train the GP.
Next, a procedure is outlined to design the learning filter.

Procedure 3.17 (Learning filter design).

1. Identify a parametric model P̂ of the system.

2. Compute an estimate of the process sensitivity

ŜP = P̂ (I + CfbP̂ )−1. (3.28)

3. Invert the process sensitivity estimate to obtain L

L = ŜP
−1
. (3.29)

Direct inversion of ŜP may lead to a non-causal or unstable inverse, i.e.,
if the plant contains non-minimum phase zeros or delays. By employing finite
preview, a bounded inverse can be obtained, see, e.g., Van Zundert and Oomen
(2018) and (Tomizuka, 1987), leading to

L = qnlLc (3.30)

where q is the forward time shift operator, Lc is the causal part of L, and nl is
the number of samples of preview in L.

In the following section, the RC scheme in Figure 3.8 is extended to imple-
ment the non-causal part of the learning filter.
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Figure 3.10: Spatial RC with GP-based memory loop including preview.

3.4.4 Incorporating spatial preview

In traditional RC, preview is incorporated in the time-domain buffer. This
principle is extended towards spatial preview. A non-causal L filter can be
implemented in spatial RC by filtering the error with the causal part of L, and
implementing the non-causal part as a preview in the spatial memory.

To show this, define `d as the error filtered with the causal part of L

`d(k) = Lc(q)ed(k) = d̂(k − nl) (3.31)

which corresponds to the disturbance estimate with nl samples of delay. Substi-
tuting (3.31) in the update (3.19) gives

yd(k) = qnl`d(k) + fRC(k), (3.32)

which requires future values of `d. Multiplying both sides with q−nl gives the
following causal update,

ỹd(k) = `d(k) + q−nlfRC(k), (3.33)

where ỹd(k) = q−nlyd(k), this is schematically presented in the RC memory loop
in Figure 3.10. Next, from (3.31), and by using that q−nlfRC(k) = µ̄(p(k−nl)),
the observation ỹd corresponds to the position p(k − nl). Hence, the spatial
observation is ȳd is included in D at position p(k − nl), i.e.,

ȳd(p̄) = ỹd(k) (3.34)

with p̄ = p− δp and δp(k) = p(k)− p(k − nl) is a spatial shift.

Definition 3.18. The spatial forward shift operator is defined as

wδp x̄(p) = x̄(p+ δp), (3.35)

To generate fRC(k), the GP is evaluated at the current position p by em-
ploying a spatial preview of δp to µ̄(p̄) resulting in

d̂µ(p) = wδp µ̄(p̄) (3.36)
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as shown in Figure 3.10. Finally, the RC output becomes

fRC(k) = d̂µ(p). (3.37)

The spatial forward shift allows to compensate for non-causal part of L, essen-
tially, observations at sample k are stored in the GP at position p(k − nl) and
used to perform inference at the test point p(k). In contrast to traditional RC,
the spatial preview δp is not limited by the buffer size N . The GP model can
be evaluated at arbitrary position in the future, potentially resulting in a poste-
rior mean equal to the prior mean (zero by default) if there is little correlation
between the test point and the training data.

Finally, the spatial RC with and without spatial preview are identical, there-
fore the stability condition in Theorem 3.15 remains valid under Assumption
3.13 where now the preview is included.

3.4.5 Periodic Kernel Design

What remains is to select a suitable kernel function that represents the spatial
disturbance prior knowledge for GP regression. The kernel function imposes
prior knowledge on the disturbance function d̄, as shown in (3.17) and (3.15).

According to Definition 3.3, the underlying spatial disturbance is smooth
and periodic with period pper. Hence, a periodic kernel, that reflects the class of
smooth and periodic functions is suitable. Note that traditional kernels as often
used in system identification approaches, see, e.g., Chen et al. (2012); Frigola
et al. (2013); Jidling et al. (2018); Pillonetto et al. (2014), do not impose these
type of priors.

The periodic kernel function is given by,

κ(p, p′) = σ2
f exp

(
−2 sin2(π(p−p′)

λ )

l2

)
(3.38)

with hyperparameters σf being a scaling, l the length-scale and λ is the period,
see Figure 3.11 for an example. The hyperparameter λ is known in RC and equal
to the period pper, the additional parameters σf and l have to be tuned. Tuning
can be done based on measurement data, i.e., increasing the smoothness l yields
more correlation between data points resulting in a smoother estimate and σf is
used to express prior on the amplitude of the disturbance. From an engineering
point of view, choosing l large may be desired to take high-frequency modeling
errors into account, see Remark 3.19.

Including periodicity and smoothness as prior helps to extrapolate beyond
the currently known training data for fast learning. Moreover, note that the
period λ may be a real number, in contrast to traditional time-domain memory
loops where the periodicity is always an integer multiple of the sample time.
This is an advantage of the GP-based approach, i.e., also allowing to suppress
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Figure 3.11: Example of a periodic kernel with hyperparameters λ = 2π,
l = 0.2 and σf = 1.

disturbances with non-integer period times which is not possible with traditional
RC (Hara et al., 1988), or requires interpolation in other spatial approaches (Yao
et al., 2013).

Remark 3.19. The high-frequency content in the GP-RC output fRC is limited
due to the smoothness, i.e., fulfilling a similar role as a robustness filter in
traditional RC.

3.4.6 GP-RC Procedure

Based on the above, a procedure to implement GP-RC is outlined below.

Procedure 3.20 (Position-domain RC using full GP).

(A) Initialization and prior

1. Design the learning filter, i.e., Procedure 3.17.

2. Select hyperparameters σf , λ, l and noise variance σn.

3. Set counters k = i = 1.

(B) At every sample k

• Obtain `d(k) by filtering e(k) with Lc.

1. if k > nl
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• Add the ith training observation to D(X,yd)

X(i) = p̄ (3.39)

ȳd(i) = `d(k) + q−nlfRC(k) (3.40)

increase counter i = i+ 1.

• Train the GP with data D, i.e., compute α in (3.13).

• Prediction at test position p∗ by computing (3.45b) with precomputed
α.

• Set fRC(k) = d̂µ(p).

2. else

• No training data available yet, i.e., fRC(k) = 0.

3. end set k = k + 1.

An interesting observation is that the GP-RC output is non-zero from the
nth
l sample onwards, in contrast to classical RC, where a delay of one period

is required before the disturbance can be compensated. This is caused by the
extrapolation capabilities of the GP, which allows predicting the disturbance
model nl samples in the future based on the current observations, leading to
much faster learning in the first period, in contrast to existing spatial approaches.

Remark 3.21. In this procedure, all samples are included in the GP training
data set D, furthermore, at every sample the GP is trained with the available
data. Due to high sample-rates in combination with smoothness and periodicity
in the kernel, there may be a significant amount of redundant data available.
Hence, the above procedure can significantly speed up by only including a subset
of the samples to the training set, in addition, training of the GP can be done
at a lower rate than the predictions.

3.5 Computationally efficient GP-based RC

The computational complexity of GP regression hampers its practical imple-
mentation in RC, i.e., the computation time of a full GP scales cubically with
the number of data points O(N3). In this section, a sparse GP approxima-
tion based on inducing points is presented that, in combination with a periodic
kernel, is highly suitable for the implementation in spatial GP-based RC. Also,
optimization of hyperparameters and inducing points for sparse GP regression
is presented (Snelson and Ghahramani, 2006).
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3.5.1 Efficient GP for RC

The cubic complexity is caused by the inversion of the N ×N matrix (KXX +
σ2
nIN ), that appears in the posterior distribution (3.10). Several methods have

been investigated to address the complexity requirement, including discarding
data (Quiñonero-Candela and Rasmussen, 2005), full GP approximations (Liu
et al., 2020), and prior approximations such as the fully independent training
conditional (FITC) (Snelson and Ghahramani, 2006). In view of RC, the FITC
approximation is particularly suitable, since it relies on a set of M � N inducing
points Xm. Due to the periodic kernel, the inducing point positions can be
concentrated within one spatial period, i.e., a small number of inducing points
is sufficient. This reducing the computation complexity to O(M2N).

3.5.2 Sparse GP regression for RC

To outline the sparse GP approximation, first define a sparse training set
D̄(Xm, fm) consisting of M pre-defined inducing points Xm with function values
fm = f(Xm). This set is used to support the full training data set D.

Next, the joint prior (3.9) is written explicitly as function of the inducing
points function values fm, i.e.,

p(ȳd, f∗) =

∫
p(ȳd, f∗|fm)p(fm) dfm, (3.41)

where fm is marginalized out, see, e.g., Snelson and Ghahramani (2007). Next, a
key assumption in many GP approximations is that yd and f∗ are conditionally
independent and only connected through the inducing points fm, i.e., f⊥f∗|fm.
As a result, the joint probability distribution of two function values is equal
to the product of the individual probabilities, i.e., the joint prior (3.41) now
becomes

q(yd, f∗) =

∫
q(yd|fm)q(f∗|fm)p(fm)dfm, (3.42)

where q(yd|fm) and q(f∗|fm) are referred to as the training and test condi-
tionals respectively, and the prior on the inducing points remains exact, i.e.,
p(fm) = N (0,KUU ), see, e.g., Liu et al. (2020); Quiñonero-Candela and Ras-
mussen (2005); Snelson and Ghahramani (2006) for a derivation. Here, the
matrix KUU ∈ RM×M is the covariance function κ evaluated at all combina-
tions of inducing points Xm. The FITC algorithm approximates specifically the
training conditional as follows

q(ȳd|fm) = N (KXUK
−1
UUfm,Λ + σ2

nIN ) (3.43)

with Λ = diag[KXX − QXX ] a diagonal approximation of the kernel matrix
KXX , and QAB = KAUK

−1
UUKUB , whereas the test conditional remains exact.
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The posterior distribution for a new test point p∗ is given by

p(f∗|p∗, Xm,D) = N (µFITC , P
FITC
post ), (3.44)

where the mean and covariance are

µFITC = K∗UΣ−1KUX(Λ + σ2
nIN )−1yd (3.45a)

PFITC
post = K∗∗ −K>U∗(K−1

UU − Σ−1)KU∗ (3.45b)

Σ = KUU +KUX(Λ + σ2
nIN )−1KXU . (3.45c)

In line with the full GP, a single test point the FITC algorithm is also of the
form (3.12) with

αFITC = Σ−1KUX(Λ + σ2
nIN )−1yd. (3.46)

In the posterior distribution (3.45), the inversion of the matrix Σ is now
M×M instead of N×N . In addition, the inversion of Λ ∈ RN×N is inexpensive
since it is a diagonal matrix. This reduces the computational effort to O(M2N).

Remark 3.22. The sparse GP scales linearly with the number of data points
N , instead of cubically for the full GP, significantly reducing the computational
complexity. In a practical application N should be limited, e.g., by using a subset
of the data containing the most recent N observations.

The sparse FITC GP is implemented in Procedure 3.20 by additionally se-
lecting the number of inducing points M , and their positions Xm in step (A).
Then, in step (B) replace α with αFITC to compute the sparse mean with (3.45b).

3.5.3 Hyper parameters and inducing points optimization

The location of the inducing points, as well as the hyperparameters, can be
chosen manually. Alternatively, these can be optimize by maximizing the log
marginal likelihood

log p(yd|Xm) = −1

2
log |Q| − 1

2
y>d (Q)−1yd (3.47)

where Q = KUU + Λ, with respect to the inducing points Xm and optionally
hyperparameters. This can be performed off-line to initialize the inducing point
locations and hyperparameters in one step (Snelson and Ghahramani, 2006).

3.6 Simulation case study

In this section, a simulation case study is carried out to show that spatial RC,
with full and sparse GP, can effectively compensate for spatially periodic dis-
turbances that are non-periodic in the time domain. To evaluate the obtainable
performance, a comparison is made with traditional RC, which can obviously
not deal with the velocity variations.
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3.6.1 System and disturbance

The setting in Figure 3.3 is considered, where P replicates the dominant dy-
namics in the φz direction of the industrial substrate carrier. It is modeled as a
second order mass-spring-damper system

P (s) =
1

Js2 + ds+ k
, (3.48)

with inertia J = 1 kg·m2, damping d = 1 Nm/s, and stiffness k = 104 N/m,
and discretized by zero-order-hold with sampling frequency fs = 1000 Hz. A
stabilizing feedback controller is designed, given by

C(z) =
67539(z + 1)(z − 0.9196)

(z − 0.4524)(z + 0.1137)
. (3.49)

Furthermore, a spatially periodic disturbance d(t) acts on the system, collo-
cated with the control input torque T . The torque T in the substrate carrier
corresponds to the sum of the lateral forces generated by the roller segments,
multiplied by the length from the roller to the PoI on the belt, i.e., the effective
torque at the PoI in rz. The spatial disturbance is given by

d̄(p) =1.5 sin(p) + 0.8 sin(3p) + 0.6 sin(9p) + 0.4 sin(18p) + 0.2 sin(27p),

where the velocity of p(t) is 2π rad/s at the start of the simulation, resulting in
a time-domain disturbance period of exactly 1 second. In the second phase, the
velocity varies over time, resulting in a non-periodic time-domain disturbance.
Finally, the velocity is constant at 10.9 rad/s, such that the time-domain dis-
turbance is periodic and the period is not an integer multiple of 1 second. The
time-domain disturbance is shown in Figure 3.4. The reference signal is set to
zero, i.e., a pure disturbance attenuation problem is considered.

3.6.2 Design of GP-RC, sparse GP-RC and temporal RC

Spatial GP RC: The learning filter is designed according to Procedure 3.17,
resulting in nl = 1 samples preview. The marginal likelihood (3.47) is optimized
with respect to the hyperparameters to obtain σf = 2.7, l = 0.13, and pper =
2π. The noise variance used throughout the simulation is σn = 10−4, which
is additive white noise on the disturbance. To reduce the computational load,
every 10th sample is added to D and subsequently the GP is trained.

Sparse spatial GP RC: For the sparse GP RC, the number of inducing points
M is set to 100, which are equidistantly distributed in the range [0, pper). The
same hyperparameters are used as in the full GP case, also every 10th sample is
used to train the sparse GP.
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Temporal RC: For traditional RC, the learning filter is designed as the inverse
of the complementary sensitivity function T = 1−S, see, e.g., Longman (2010).
The memory loop size is equal to the disturbance period at the start of the
simulation, i.e., NRC = 1000 samples. Traditional RC is used as a measure for
the obtainable performance in the first constant velocity phase.

3.6.3 Results: GP-based disturbance model

First, the obtained GP-based disturbance model that is captured in the spatial
memory loop is further investigated. In Figure 3.12, a snapshot of the GP-based
memory loop is shown. The actual disturbance and GP posterior are given for
two training cases, i) where N = 1600 observations ranging in the interval [0, π2 ]
are used, and ii) where only the training value on [0, 2π] are used to train the GP.
A good estimate of the disturbance is obtained over the entire range. Due to the
periodicity and smoothness in the kernel, i.e., a sample at the current position p
is connected to its neighboring samples and samples at p−n ·pper, the identified
disturbance model clearly extends beyond the training points. Furthermore,
where no data is present yet, the GP mean tends to zero and the confidence
bound grows.

To investigate the model quality of the sparse GP, Figure 3.13 shows the root
mean squared estimation error for the full GP and the sparse GP as function
of the number of inducing points M . The inducing points are equidistantly
distributed in on (0, 2π]. This shows that from M = 80 onwards the sparse GP
obtains an equivalently good estimate of the disturbance compared to the full
GP with 1600 training points. This indicates that a small number of inducing
points, in combination with the periodicity of the kernel, is sufficient to support
the full data set.

3.6.4 Results: performance comparison

The spatial RC and traditional RC error responses are shown in Figure 3.14,
where the gray area indicates where the disturbance is non-periodic in time. In
addition, the 2-norm of the error for each spatial period j normalized by its
length Nj , is given in Figure 3.15. The following observations are made.

• The time response shows that spatial RC ( ) significantly reduces the
error from sample nl = 1 onwards, i.e., suppression is obtained in the first
period, after which the error reduces even more when more training data
is gathered. Note that traditional RC does require one full period before
compensation.

• The error norm shows that spatial RC ( ) and sparse spatial RC ( ) are
not influenced by the change in velocity and maintain to have good per-
formance. Off-course, traditional RC performance ( ) decreases due to the
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Figure 3.12: The true spatial disturbance ( ), and the estimated GP pos-
terior distribution evaluated on position [0, 4π] depicted for two training sets.
First, training points ( ) in the interval [0, π

2
] resulting in the mean ( ) and the

standard deviation ( ), which shows that the estimate extrapolates beyond
the data due to periodicity, and the mean becomes zero where no information
is available. Second, the full training set with N = 1600 points ( ) on [0, 2π]
resulting in the mean ( ) and variance ( ), showing that a good estimate of
the disturbance is obtained in the entire range [0, 4π] based on data in the first
spatial period.

20 40 60 80 100 120 140

10−3

10−1

Number of inducing points M

‖d
−

µ
‖ 2

/
√
N

Figure 3.13: Root mean squared (RMS) estimation error of the full GP ( )
with N = 1600 training points, and the sparse GP RMS estimation error ( ) as
function of the number of inducing points M , indicating that a small number
(M ≈ 80� N) of equidistantly distributed inducing points in [0, 2π] sufficiently
supports the full data set.
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Figure 3.14: Simulated positioning error for traditional RC ( ), and the
spatial RC ( ). Spatial RC is invariant under the velocity change, as indicated
by ( ), whereas traditional RC leads to performance degradation in case of
velocity change.

inadequate buffer size. The temporal buffer size can be adapted for each
velocity change, however, this introduces additional transients, it requires
interpolation to use the learned compensation signal at the other veloc-
ity, and cannot cope with non-integer buffer sizes and continuous velocity
changes.

• The performance of spatial RC, utilizing only 10 % of the data, is equal to
the traditional RC performance in the first constant velocity part. Hence,
it uses the data very efficiently due to the suitable prior knowledge.

Indeed, it follows that spatial RC is not influenced by the changing disturbance.
The sparse GP approaches the full GP performance relatively well, while at the
same time reducing the computational load.

3.6.5 Results: computation time

To show the benefit of the FITC GP in contrast to a full GP in terms of com-
putation time, the computation time is measured as a function of the number
of training data points, see Figure 3.16. The number of inducing points for
the FITC GP is M = 50 points. It can be seen that indeed the full GP com-
putational complexity grows with O(N3), as indicated by the fit. The sparse
GP with computational complexity O(M2N) scales linearly with N , as shown
by the linear fit. Furthermore, it can be observed that the computation gain
starts to become significant for N > 500 data points, which is easily reached
in mechatronic applications. Note that these results are obtained on a regular
PC for illustration purposes, efficient employment on dedicated hardware can
significantly reduce the computation time.
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Figure 3.15: Simulated error 2-norm normalized with the period length Nj as
function of the repetition number j, for traditional RC ( ), spatial RC with full
GP ( ), and with sparse GP for M = 100 inducing points ( ). This indicates
that spatial GP-RC obtains highly similar performance compared to traditional
RC, while being able to maintain performance during velocity changes, indicated
by ( ) as in Figure 3.4, where traditional RC degrades significantly.
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Figure 3.16: Computation time of the full GP with a cubic fit O(N3) ( ),
and a sparse FITC GP for M = 50 inducing points with a linear fit O(M2N)
( ), as function of the training data N . The implementation for this example
is not yet optimized, therefore, a large buffer size is chosen to avoid the overhead
of the implementation yielding relatively large computation times.
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3.7 Application to a substrate carrier system

In this section, spatial GP-RC is applied to the industrial substrate carrier in
Figure 3.1 introduced in Section 3.2.1, that is subject to spatially periodic dis-
turbances induced by the rollers. The aim is to validate that indeed spatial RC
can reject the spatial disturbance invariant under variations in the roller velocity.

3.7.1 Substrate carrier setup

As mentioned in Section 3.2.1, the control goal of the substrate carrier is to
accurately position a medium, e.g., paper or plastic, that is fixated to the steel
belt by means of a vacuum. The steel belt is steered using two segmented
rollers, that control the rx, ry and φz directions of the point-of-interest (PoI),
see Figure 3.2. In this experiment, the aim is to keep φz equal to zero, hence
this is a pure disturbance rejection problem.

3.7.2 Spatial disturbances in the substrate carrier

Due to imperfections in the rollers and segments, a spatially periodic disturbance
appears in the error that repeats every roller rotation. To show this, a single
experiment is performed that consists of 3 parts,

• constant roller velocity of 9 rad/s,

• deceleration of 5 [rad/s2] for 0.8 second which is approximately two roller
rotations, and

• constant roller velocity of 5 rad/s.

The error is measured with a baseline PD controller, see ( ) in Figure 3.17,
where a periodic component is visible that changes frequency during the different
parts. The power spectral density (PSD) and cumulative power spectrum (CPS)
of the error without offset with velocity 9 rad/s ( ) and velocity 5 rad/s ( )
is given in Figure 3.18 as function of the spatial frequency [1/rotation], i.e., the
frequency [Hz] scaled by the rotational velocity of the rollers [rotation/s]. This
shows that especially at 1 1/rotation and 3 1/rotation the error contains clear
contributions that are repeating in the roller-position domain invariant under
velocity variations. The first part corresponds to one roller revolution and the
3rd harmonic is most likely induced by having 3 segments in each roller that do
not perfectly align.

During normal operation, the belt runs at several operating velocities, this
leads to a situation where the disturbance becomes non-periodic in time. Tradi-
tional RC can only attenuate this disturbance for constant velocities, and may
even amplify the disturbance when the velocity changes. In the remainder of this
section, it is shown that spatial GP-based RC attenuates the spatial disturbance
invariant under velocity variations.
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Figure 3.17: Error response as function of scaled time, for the PD controller
( ), traditional RC ( ) and spatial RC ( ). The gray area ( ) indicates
where the roller velocity is changing. This shows that the periodic components
and the DC offset is removed by the spatial RC controller independent of velocity
changes. Here, AU is arbitrary unit.

3.7.3 Spatial GP-RC design

To implement spatial RC, a parametric model of the substrate carrier has been
identified and the learning filter is constructed according to Procedure 3.17. The
ZPETC algorithm is used to obtain a non-causal but stable learning filter, with
nl = 2 samples preview.

The periodic kernel hyperparameters are tuned such that the prior represents
the actual spatial disturbance function. Tuning is performed with the measured
error that is filtered by the learning filter, this results in an estimate of the
spatial disturbance shown in Figure 3.19. Representing the filtered error as a
function of position enables to tune the hyperparameters as follows;

• the spatial disturbance period is known and equal to one roller rotation,
i.e., λ = 2π,

• the gain σf = 27 is an estimate of the deviation around the mean of the
disturbance estimate,

• the GP estimate given the data is shown with l = 0.05 ( ) and l = 0.2
( ) in Figure 3.19, this shows that a shorter length scale yields more
high-frequency content in the estimate. To be more robust to noise and
high-frequency modeling errors, a length scale l = 0.2 is preferred, and

• σn = 1.7 represents an estimate of the standard deviation of the noise
yielding the confidence bound ( ) in Figure 3.19.
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Figure 3.18: Power Spectral Density (PSD) (top plot) and Cumulative Power
Spectrum (CPS) (bottom plot) as a function of the spatial frequency, for the
error with PD controller at two different velocities ( ) (9 [rad/s]) and ( )
(5 [rad/s]). The disturbance is most prominent at the fundamental frequency
[1/rev] and its second harmonic [3/rev] where the CPS shows significant in-
creases in power independent of the velocity change. The error with spatial RC
( ) and classical RC ( ) after deceleration is also shown, indicating that spa-
tial RC is not affected by the velocity change, whereas classical RC performance
is severely degraded. Here, AU is arbitrary unit.

Note that a very short length scale l allows for more high-frequency compo-
nents in the GP-RC output, i.e., the length-scale acts as a low-pass filter similar
to a robustness filter in traditional RC. Because the smoothness l influences the
GP input-output behavior, there is a direct connection between smoothness and
stability through Assumption 3.13 and Theorem 3.15. Finally, to further reduce
computational load, the data used to train a full GP is limited to 50 samples that
are distributed equidistant over the last spatial period. The Sherman-Morrison
update is used for GP regression to further improve the computational load for
practical implementation, see Remark 3.7. The experimental setup runs at a
sampling frequency of 4000 Hz.

3.7.4 Implementation aspects

In the general case for motion systems, the gain of (PS)−1 is large for high
frequencies, leading to amplification of high-frequency noise by the learning filter.
Therefore, as a pragmatic solution, an additional zero-phase low-pass filter is
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Figure 3.19: Experimental error data filtered with the learning filter L to
obtain an estimate of the disturbance ( ), given as function of the roller position.
The GP standard deviation 6σ ( ) and mean ( ) with hyperparameters
σf = 27, σn = 1.7, λ = 2π and l = 0.2. To illustrate the effect of varying the
length scale, the GP posterior mean is also computed for l = 0.05 ( ) resulting
in a much more erratic function.

placed in series with the learning filter that mitigates the effect of noise in `. This
does result in high-frequent modeling errors, but it improves the convergence
of the disturbance model in the relevant frequency range, i.e., where a good
disturbance model is most relevant. Note that the low-pass filter is designed
such that the stability condition in Theorem 3.15 is still satisfied.

In addition, traditional RC is implemented as a comparison, with a buffer
size that is equal to the disturbance period in the first constant velocity part of
the experiment.

3.7.5 Results

The experiment outlined in Section 3.7.2 is carried out to analyze the perfor-
mance of spatial RC in comparison to the baseline PD controller and traditional
RC. The error responses are also shown in Figure 3.17. The converged error
after deceleration is analyzed in the spatial frequency domain, i.e., Figure 3.18
shows in addition to the baseline PD error ( ) also the spatial RC error ( )
and the traditional RC error ( ), the corresponding cumulative power spectra
(CPS) are also given. Note that a significant offset is present in the PD con-
trolled error, this is removed from the data before computing the PSD and CPS
such that the harmonics are better visible.

To analyze performance during velocity change, i.e., where the disturbance
is non-periodic, the 2-norm of the error for each rotation j, normalized by the
period length Nj , is given in Figure 3.20. Note that all experimental results
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have been normalized for confidentially, and the unit is denoted by arbitrary
unit (AU). The following observations can be made.

• The dominant components in the error CPS, indicated by the increases
in power at 1 and 3 [1/rotation] in the CPS in ( ) in Figure 3.18, are
completely suppressed by the spatial RC ( ). In addition, Figure 3.17
shows that an offset is present in the PD controlled error ( ) due to the
lack of an integrator, which is learned and compensated for by the spatial
RC ( ). The overall performance improvement, including the offset, is
a factor 12 on the RMS error, where a factor 3.5 is attributed to the
suppression of the harmonic components.

• The PSD in Figure 3.18 shows that the error mainly at the fundamental
frequency 1 [1/rotation] and the second harmonic 3 [1/rotation] are sig-
nificantly reduced by the spatial RC ( ) compared to the baseline error
( ) that shows significant increases in the CPS. Note that only the 1th

and 3rd contribute significantly to the CPS.

• The error-norm in Figure 3.20 shows that spatial RC ( ) and traditional
RC ( ) have similar performance in the first constant velocity part, i.e.,
where the traditional RC buffer size (N = 2787) is compatible with the
disturbance period, both resulting in an overall performance improvement
of approximately a factor 12. This shows that spatial GP RC, with a
low number of training points (N = 50), obtains equal performance for
constant velocities.

• During deceleration, indicated by the gray area in Figure 3.20 and 3.21,
the spatial RC error ( ) is unaffected. This implies that the approach is
robust with respect to velocity variations due to the spatial disturbance
model. As a comparison, traditional RC ( ) shows a performance degrada-
tion if the disturbance frequency changes. Due to inadequate buffer size,
the traditional RC is not able to converge to a small error in the second
constant velocity part.

• The PSD in Figure 3.18 shows that a periodic component at spatial fre-
quency 0.3 [1/rev] is present, that most likely originates from a belt distur-
bance, which is amplified by the GP-RC ( ). This can be explained since
in general non-periodic components will be amplified by any RC as they
do not align with the (spatial) buffer size, see, e.g., Chen and Tomizuka
(2013).

From these observations it follows that indeed the spatial GP-RC approach sup-
presses the spatial disturbance and is not affected by changes in velocity, result-
ing in a major performance increase of a factor 12 of the RMS error.



3

98 Chapter 3. GP RC with Application to an Industrial Substrate Carrier

20 40 60 80 100

10−1

100

Spatial period repetition j

‖e
j
‖ 2

/
√

N
j
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√
N for the PD controller ( ),

Spatial RC ( ) and traditional RC ( ). The gray area ( ) indicates where the
velocity changes, showing the benefit of spatial RC where the performance is
unaffected, whereas the traditional RC performance degrades due to inadequate
buffer size after the velocity change.
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Figure 3.21: A zoom of the error as a function of time with PD only ( ),
traditional RC ( ) and GP-based spatial RC ( ) during the velocity change
phase. This shows that indeed GP-based RC maintains good performance dur-
ing and after the velocity change. Traditional RC obviously degrades perfor-
mance due to the changing disturbance frequency that does not comply with
the buffer size.



3

3.8 Conclusions 99

3.8 Conclusions

Position-domain disturbances that appear non-periodic in the time domain, but
are repeating in the position domain, can be completely rejected by spatial repet-
itive control, where a key enabler is the introduction of a Gaussian Process (GP)
based spatial memory loop, as presented in this chapter. The approach uses a
memory loop in the position-domain together with a suitable learning filter to
learn a spatial disturbance model. In contrast to existing repetitive control ap-
proaches, a spatial memory-loop is established by means of a Gaussian Processes
with a suitable periodic kernel, thereby, efficiently dealing with non-equidistant
observations. The disturbance is modeled as a stochastic process, i.e., a collec-
tion of random variables in space, that is estimated from data and suitable prior
knowledge. The resulting distribution, in particular its mean, is a continuous
function that is utilized in a spatial memory loop. The approach is validated in
simulation, and on an industrial substrate carrier. Experimental results show
a performance improvement of a factor 12 compared to currently implemented
PD control, i.e., automatically learning and suppressing roller disturbances for
arbitrary operating velocity in the industrial substrate carrier.

Ongoing work focuses on utilizing the full GP posterior distribution, i.e., also
including the GP variance as a confidence measure on the disturbance model,
see, e.g., Devasia (2017), that can act as a learning gain similar to traditional RC.
In addition, extending the approach to cover multi-period spatial disturbances
with different spatial periods (Blanken et al., 2020a; Chen and Tomizuka, 2011),
e.g., to suppress roller and belt disturbances that have different (spatial) periods
in the considered example, or to automatically learn commutation functions for
brushless motors that minimize torque ripples.





Chapter 4
A Gaussian Process Approach to Multiple
Internal Models in Repetitive Control1

Abstract: Disturbances that come from multiple originating domains, e.g.,
time, position, or commutation-angle domain, are often encountered in practice
due to the increasing complexity of mechatronic systems. The aim of this
chapter is to present a generalized approach that enables asymptotic rejection
of multi-dimensional disturbances which are periodic in the different
originating domains, e.g., if speed changes, then spatially-periodic disturbances
manifest themselves differently in the time domain. A multi-dimensional
Gaussian process (GP) based internal model is employed in conjunction with a
traditional repetitive control (RC) setting using non-equidistant observations,
allowing to learn a multidimensional buffer for RC. A case study with a
spatio-temporal disturbance confirms the benefit of this method.

1The results in this chapter constitute Contribution 3 of this thesis. The chapter is based
on Mooren, N. et al. (2022c). A Gaussian Process Approach to Multiple Internal Models in
Repetitive Control. In IEEE 17th International Conference on Advanced Motion Control.
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4.1 Introduction

Asymptotic rejection of unknown disturbances plays an important role to im-
prove the performance of high-precision mechatronic systems. A key enabler for
asymptotic disturbance rejection is the internal model principle (IMP), which
states that a model of the unknown disturbance must be incorporated in a sta-
ble feedback loop (Francis and Wonham, 1976). Commonly used examples of
IMP include a Proportional Integral (PI) controller, where a model of a con-
stant disturbance, i.e., an integrator, is included in the feedback loop (Rivera
et al., 1986), and an inverse notch filter to reject an oscillatory disturbance at
a single known frequency. However, traditional feedback control performance
is often not satisfactory in presence of varying disturbances. Several add-on
type controllers for active disturbance rejection have been developed, including
disturbance-observer-based control (DOBC) where a good model of the system
is essential to estimate the exogenous unknown disturbance and consequently
compensate for it, see, e.g., Li et al. (2014).

Engineered systems become increasingly complex, leading to disturbances
that originate from different domains, e.g., time, position, or commutation an-
gle (Hoelzle and Barton, 2016; Strijbosch et al., 2019), referred to as multi-
dimensional disturbances. Examples include an industrial printer where a ro-
tating belt generates a disturbance that is periodic in the belt-position domain
(Mooren et al., 2020a), where at the same time the print head generates a dis-
turbance that is periodic in time due to its repeating motion (Blanken et al.,
2017b). Thermo-mechanical problems also appear, e.g., in wafer-stages with
non-perfect commutations functions that induce spatial disturbances, while at
the same time illumination of the wafer induces a thermal deformation (Evers
et al., 2019; Veldman et al., 2019). In view of these multi-dimensional dis-
turbances, traditional internal models are not applicable as they contain only
a single domain, whereas systematic integration of multiple internal models in
different domains is required.

Disturbances that are periodic in the time domain can be asymptotically
rejected using repetitive control (RC), where an internal disturbance model is
learned in a time-domain memory loop where the memory size is equal to the
disturbance period time (Goodwin and Sin, 2014; Hara et al., 1988). RC is
successfully applied to many industrial applications, including DC motors (Huo
et al., 2019), printing systems (Blanken et al., 2017b) and hard-disk drives (Fu-
jimoto, 2009; Steinbuch et al., 2007). To improve the flexibility of RC several
extensions have been developed recently, e.g., multi-period disturbances in the
time domain are compensated by using multiple RCs (Blanken et al., 2020a;
Chang et al., 1998; Zhou et al., 2007), and robustness for slight variations in
the period-time is improved using multiple buffers in higher-order RC (HORC)
(Pipeleers et al., 2008; Steinbuch et al., 2007). To cope with disturbances that
are periodic in the position domain, where observations become non-equidistant,
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Figure 4.1: Disturbance rejection problem with the n-dimensional disturbance
d(k) and the conventional repetitive controller structure R.

spatial RC is developed by exploiting spatial internal models (Huo et al., 2019).
Despite these recent improvements, existing RC approaches are not applicable
when disturbances are periodic in multiple domains.

Although recent progress is made to enable asymptotic rejection of repeating
disturbances, a unified framework that systematically integrates multiple do-
mains is not yet available. Recent developments in RC utilize a Gaussian process
(GP) based internal model for spatial models as in Chapter 3, and for temporal
models in Chapter 2. These developments and the flexibility of GPs enables
to systematically design multi-dimensional GP-based internal models for sup-
pression of multi-dimensional disturbances in RC which is the aim of this chap-
ter. The main contribution of this chapter is (C1) repetitive controller design
for systematic integration of multi-dimensional periodic disturbances through a
Gaussian-process-based buffer with a multi-dimensional additive periodic kernel,
and (C2) a case study with a spatio-temporal disturbance.

In the remainder of this chapter, the multi-dimensional disturbance rejec-
tion problem is outlined in Section 4.2. In Section 4.3 the GP-based multi-
dimensional internal model for RC is presented (C1), and in Section 4.4 a case
study with a spatio-temporal disturbance is presented (C2). Conclusions are
given in Section 4.5.

4.2 Problem formulation

4.2.1 Control setting

The control problem is depicted in Figure 4.1, where P is a linear time-invariant
(LTI) single-input single-output (SISO) discrete-time (DT) system, C is a stabi-
lizing feedback controller, and R is a repetitive controller (RC) that is designed
in the forthcoming sections. The aim of this chapter is to design R such that
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the disturbance induced error given by

ed(k) = −(1 + P (q)C(q))−1P (q)d(k), (4.1)

where q is the unit time shift operator, i.e., u(k− 1) = q−1u(k), is minimized in
the presence of a multi-dimensional disturbance signal d(k) that is in general non-
periodic in time k ∈ N. The multi-dimensional disturbance is further defined
in the following section. Moreover, the sample time Ts = 1 throughout this
chapter.

4.2.2 Multi-dimensional disturbances in RC

The n-dimensional disturbance signal d(k) in Figure 4.1 is the summation of n
signals di(k) that are periodic in their respective domain xi, e.g., position, time,
or commutation angle, with i ∈ {1, 2, . . . n}. This is formally presented in the
following definition, where the notation (̄·) distinguishes functions from signals.

Definition 4.1. The discrete disturbance signal d(k) ∈ R at sample k is obtained
by evaluating the continuous n-dimensional function d̄(x(k)) : Rn → R for any

x(k) =
[
x1(k) x2(k) . . . xn(k)

]> ∈ Rn, i.e.,

d(k) = d̄(x(k)) =

n∑

i=1

d̄i(xi(k)), (4.2)

where the additive function d̄ is a sum of n functions d̄i(xi) : R → R that are
periodic in the domain xi, i.e.,

d̄i(xi) = d̄i(xi + Ti) ∀i (4.3)

where Ti ∈ R is the period that is known in advance. Furthermore, the signals
xi(k) for i = 1, 2, . . . n are known or can be measured noise-free, are possibly
uncorrelated in the general case and can be non-equidistantly sampled.

The signal di(k) = d̄i(xi(k)) is periodic in time if xi(k) increases linearly,
but in the general case it is assumed that di is non-periodic in time. The overall
disturbance d(k) is periodic in time if all di are periodic with time-domain periods
ti and there exists a least common multiple t = lcm(t1, t2, . . . , tn), otherwise d(k)
is non-periodic in time. This is further illustrated in the following motivating
example.

Example 4.2 (2-dimensional disturbance in a maglev-stage). Consider the pro-
totype magnetically levitated platform to carry a sample for atomic force mi-
croscopy in Figure 4.2. Here, a 2-dimensional disturbance d(x1(k), x2(k)) acts
on the platform if the commutation is non-perfect, where the position signals
x1(k) and x2(k) are not correlated, see Kramer et al. (2019) for details. To
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Magnet array

Coils

p1
p2

Figure 4.2: Picture of a prototype magnetically levitated platform (maglev)
on an array of permanent magnets used to carry a sample for Atomic Force
Microscopy (AFM). If commutation is non-perfect then the magnets induce a
disturbance as function of the positions x1 and x2.

replicate this setting, set n = 2 in (4.2) where x1 and x2 are the positions on
the magnet array. The 2-dimensional disturbance function d̄(x1, x2) is repli-
cated with d̄1 = 1

2 sin(2π x1

T1
) and d̄2 = 1

2 sin(2π x2

T2
) where T1 = 75 and T2 = 50

represent for example the magnet pitch, the resulting d̄(x1, x2) is depicted in
Figure 4.3. Consider the following cases.

i) If x1(k) = 2x2(k) such that the platform moves diagonally and
there is a static relation between x1 and x2, i.e., the matrix X̄ =[
x̄(1) x̄(2) . . . x̄(k)

]
∈ Rn×k is it not full row rank, then d(k) manifests

periodic in time. The signal d1(x1(k)) has time-domain period 1
2T1 = 37.5

samples and d2(x2(k)) has T2 = 50 samples, hence lcm(50, 37.5) = 150
samples, see Figure 4.3 in ( ).

ii) If x1 and x2 vary continuously as shown in the top right in Figure 4.3 in
( ), then X̄ is full row rank and there is no static relation. This renders
d(k) non-periodic in time, see Figure 4.3 in ( ).

Hence, if all signals xi are uncorrelated the disturbance is non-periodic in
time. Next, the limitations of traditional temporal buffers for the disturbances
in Definition 4.1 are outlined.

4.2.3 Limitations of traditional RC

In traditional RC, a time-domain memory z−N in a feedback loop is used to
model the time-domain periodic disturbance. In the case of multi-dimensional
disturbances, the main challenge that arises for RC is twofold, first, the memory
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Figure 4.3: Example 4.2: top plot show the 2-dimensional disturbance map-
ping d̄(x1, x2) as function of x1 and x2, with periods T1 = 50 and T2 = 75
and a top view. Bottom plot shows the resulting disturbance d(k) if x1 = 2x2

when d(k) is periodic in time ( ) and for varying x1 and x2 rendering d(k) is
non-periodic in time ( ).
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loop must combine multiple domains, second, due to variations in x(k) the error
data is non-equidistant in x(k). To compensate for the disturbance, the buffer
must be a continuous function that is constructed from non-equidistant data
and can be evaluated at any x(k) ∈ Rn. This implies that traditional memory
loops, which rely on time-domain periodicity, cannot be used. The alternative
RC approach in Chapter 3 uses non-equidistant data in the position-domain by
employing a Gaussian process (GP) to learn a continuous periodic function in
the position domain. However, combining multiple uncorrelated domains in RC
is not yet available.

4.2.4 Problem definition

The aim of this chapter is to learn the multi-dimensional disturbance using an
additive GP with suitable prior through a kernel function that is periodic in the
underlying domains. This is done by using the structure and periodicity of d̄,
i.e., the functions d̄i are learned jointly to compose the continuous n-dimensional
mapping d̄(x) from non-equidistant and non-periodic data.

4.3 Multi-dimensional repetitive control

4.3.1 Multi-dimensional buffer for RC

The multi-dimensional GP-based RC R is depicted in Figure 4.4, where GPB is
the multi-dimensional GP-based buffer that replaces the time-domain memory
z−N from traditional RC, and L is a stable learning filter. GP regression is
performed at every sample k to learn a model of the multi-dimensional distur-
bance function d̄(x), based on N data points that are non-equidistant in the
domains x. For compensation in RC, the GP-based model can be evaluated at
any x(k) ∈ Rn.

The data for GP regression consists of the past N values of yd(k) ∈ R and
the corresponding x(k). These are collected in Y (k) ∈ RN and X(k) ∈ Rn×N
respectively given by

Y (k) =
[
yd(k) yd(k − 1) . . . yd(k −N + 1)

]>
, (4.4a)

X(k) =
[
x(k)> x(k − 1)> . . . x(k −N + 1)>

]>
. (4.4b)

Define the n-dimensional training data set DN (k) = (X,Y ) containing N pairs
(yd(k), x(k)).

The number of data points N may vary over time and is not correlated with
the periodicity, which is the case in traditional memory loops. The periodicity
in each of the underlying domains is embedded in the multi-dimensional prior
as will be shown in the remainder of this section.
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L

R

GPB
`(k) yd(k) fRC(k)

+

e(k)

x(k)

Figure 4.4: Multi-dimensional repetitive controller R with learning filter L
Gaussian-process-based buffer GPB .

4.3.2 GP regression for multi-dimensional disturbances

In this section, the multi-dimensional internal disturbance model of d̄ is learned
from the data DN through Gaussian process regression. In GP regression is a
distribution over functions is inferred from data and a suitable prior distribution
(Murphy, 2012; Williams and Rasmussen, 2006). The n-dimensional and poten-
tially non-equidistant data DN is used to learn the posterior distribution over
functions, that can be evaluated at any x̄ ∈ Rn for compensation in RC. Next,
the prior knowledge and posterior distribution are defined to give an expression
for the GP-RC output fRC(k).

To define prior knowledge assuming that d̄(x) can be represented as a GP,
i.e.,

d̄(x) ∼ GP(0, κ(x, x′)), (4.5)

where κ(x, x′) is an n-dimensional covariance function that describes the prior
covariance between x and x′, and the prior mean function is assumed to be zero
a priori. Moreover, DN contains noisy observations of the true disturbance, i.e.,

Y (X) = d̄(X) + ε where ε ∼ N (0, σ2
nIN ) (4.6)

where ε is zero-mean and follows an independent, identically distributed Gaus-
sian distribution. To determine the posterior distribution at x∗(k) ∈ Rn using
DN and prior knowledge (4.5) for compensation, assume a joint normal distri-
bution between the test points x∗(k) ∈ Rn and the training points DN (X,Y )

[
Y
d̄∗

]
∼ N

([
0
0

]
,

[
K + σ2

nIN K∗
K>∗ K∗∗

])
, (4.7)

where K ∈ RN×N is the covariance function κ(X,X) evaluated at (X,X), and
similar for K∗ = κ(X,X∗) ∈ RN×1 and K∗∗ = κ(X∗, X∗) ∈ R. Consequently,
the posterior distribution at the test points x∗ is given by p(d̄∗|D, X∗) = N (d̄,Σ)
with

d̄(X∗) = K>∗ (K + σ2
nIN )−1Y, (4.8a)

Σ(k) = K∗∗ −K>∗ (K + σ2
nIN )−1K∗ (4.8b)
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the posterior mean and covariance respectively (Williams and Rasmussen, 2006).
For compensation in RC, the most likely sample from the posterior distri-

bution (4.8), i.e., the posterior mean d̄(X∗), is used. The RC output is given
by

fRC(k) = K>∗ (K + σ2
nIN )−1Y (k), (4.9)

for a test point x∗(k).
The choice of prior knowledge is essential to obtain an accurate model and

be able to extrapolate beyond the given data points. How to choose the prior
covariance function in (4.5) is outlined next.

4.3.3 Multi-dimensional kernel selection

A suitable prior covariance function κ in (4.5) where periodicity in each of func-
tions d̄i is incorporated together with the additive structure in Definition 4.1
allows combine multiple domains in a single GP-based buffer for RC.

Assume that the functions d̄i for i = 1, 2, . . . , n can be modeled as a GP,
i.e., d̄i(xi) ∼ GP(0, κi(xi, x

′
i)), where κi(xi, x

′
i) is the covariance function that

specifies prior knowledge regarding d̄i. Since, each d̄i is periodic and smooth, a
periodic covariance function of the form

κi(xi, x
′
i) = σ2

f,i exp



−2 sin2

(
π|xi−x′i|

Ti

)

l2i


 , (4.10)

is used where li is the smoothness, Ti the period and σf,i a gain, see,
e.g., (Williams and Rasmussen, 2006, Chapter 4). Consequently, the multi-
dimensional covariance function κ for d̄(x) in (4.5) is

κ(x, x′) =

n∑

i=1

κi(xi, x
′
i) (4.11)

which is an additive n-dimensional covariance function (Durrande et al., 2011).
As a result, a sample taken from the prior distribution N (0, κ(X,X ′)) with

covariance function (4.11) is smooth and can be decomposed in a sum of func-
tions that are periodic and smooth in each of the underlying domains xi, this is
illustrated in the following example.

Example 4.3 (Spatio-temporal kernel). Consider n = 2 in (4.11) with hy-
perparameters T1 = 100, T2 = 150, l1 = l2 = 1 and σ2

f,1 = σ2
f,2 = 1. The

signal x1(k) is a position signal that varies over time and x2 = k, i.e., a
spatio-temporal setting. The kernel matrices K1(x1, x

′
1), K2(k, k′) and the sum

K(x, x′) = K1(x1, x
′
1) + K2(k, k′) and samples drawn from the corresponding

prior distributions N (0,Ki) are shown in Figure 4.5. The following observa-
tions are made.
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Figure 4.5: Example 4.3 with a 2-dimensional spatio-temporal kernel
K(x1, x2) = K1(x1) + K2(x2) (bottom right), that is the sum of two peri-
odic kernels K1(x1, x

′
1) (top left) and K2(x2, x

′
2) (bottom left) with periods

T1 = 100 and T2 = 150. Samples are taken from their corresponding prior
distributions N (0, κi(X,X)) that are periodic with T1 and T2 respectively. The
kernel K1(x1(k), x′1(k)) is also shown as function of k (top right) where both
the kernel and a random sample is non-periodic. Finally, the sum of K1 and
K2 yields K(x̄(k)) (bottom right) that is non-periodic.
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• The kernel matrix K1(x1, x
′
1) with period T1 = 100 is large for any pair

(x1, x
′
1) where |x1 − x′1| ≈ 100 and is small elsewhere. This implies that

x1 and x′1 are correlated if i) they are close together (smoothness) or they
are Ti samples apart (periodicity). A random sample from N (0, κ(X,X ′))
is shown below, which is indeed periodic and smooth similar to K2 with
period 150.

• The kernel K1(x1(k), x′1(k)) and its samples are non-periodic as a function
of time k. The second plot in Figure 4.5 shows K1 and its sample directly
as a function of time k instead of x1(k), this yields a non-periodic kernel
and non-periodic sample that depends on the specific variation of x1(k)
over time.

• The 2-dimensional additive kernel K(x, x′) with x =
[
x1 x2

]>
is non-

periodic as a function of k in the general case. Samples taken from the
corresponding prior distribution N (0, κ(X,X ′)) are the sum of a sample
from the individual prior distributions in the time domain due to the ad-
ditive kernel structure.

Remark 4.4. A limitation of the presented approach, with a periodic kernel, is
that individual differences between the coils are averaged out. These differences
can be taken into account with a locally periodic kernel, see, e.g., Duvenaud
(2014), where periodicities are local instead of over the entire range.

Example 4.3 shows that the n-dimensional kernel K(x̄(k)) is non-periodic
while the underlying kernels K1(x1, x

′
1) and K2(x1, x

′
1) are periodic in x1 and

x2 respectively. This allows to integrate multiple domain with their periodicity,
while perform GP regression with time-domain data.

4.3.4 Design procedure for GP-based RC

The following procedure outlines the design of GP-based RC for multi-
dimensional disturbances.

Procedure 4.5 (Multi-dimensional RC design).

Given a model of the process sensitivity SP perform;

1. Design L ≈ (SP )−1 with S = (1+SP )−1 as a stable inverse as in Goodwin
and Sin (2014); Hara et al. (1988), e.g., using ZPETC (Tomizuka, 1987).

2. Select N ∈ N, determine n in Definition 4.1 by identifying the sources
of the disturbance, and select the kernel hyperparameters in (4.11). As
a guideline one can select N as the sum of the underlying periods, i.e,
N =

∑n
i=1 Ti.

3. At each time step k:
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a) add the new sample (xi(k), yd(k)) to DN and compute the RC output
using (4.9).

b) if DN exceeds N then remove (x(k −N), yd(k −N)) from DN .

There is a trade-off in the number of data points N used for GP regression,
i.e., a better model can be obtained at the cost of increased computational com-
plexity. Several approaches are available to reduce the computational complexity
of GP regression, see, e.g., Snelson and Ghahramani (2006) and in Chapter 3.

Remark 4.6. The inverse of SP can be non-causal with nl samples preview,
then implement the causal part Lc as learning filter and replace x(k) by x(k−nl)
in (4.4b) to include the preview in the buffer.

Remark 4.7. Conditions for closed-loop stability are equivalent to the results
in Chapter 3 and omitted here.

Remark 4.8. If smoothness in the covariance function is large, then it is in
practice often redundant to use all data points for GP regression, since two
neighboring samples are highly correlated. If the singular values of the matrix
(K +σ2

nIN ) become small for a newly added data point, then the new data point
can be considered redundant and discarded from DN .

4.4 Rejecting 2D spatio-temporal disturbances

The rejection of spatio-temporal disturbances that are non-periodic in the time-
domain through GPRC is shown in the following case study. These disturbances
are encountered in, e.g., printing systems where the periodic motion of the print
head induced a time-domain periodic disturbance while a the same time a roller
that rotates with a varying angular velocity for paper transportation induces a
disturbance that is periodic in the roller position domain and non-periodic in
time (Blanken et al., 2020b; Mooren et al., 2020a). A similar setting is considered
in the following case study.
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Figure 4.6: Top plot: spatio-temporal disturbance d̄(p, k) = d̄1(k)+ d̄2(p) that
is non-periodic in time ( ) from which observations ( ) are used for GP regres-
sion yielding the posterior mean ( ) and variance ( ). The position signal
p is given in ( ). Center plot: underlying temporally periodic disturbance
component d̄k ( ) with period T1 = 150 and the GP estimate ( ). Bottom
plot: underlying spatially periodic disturbance component d̄p ( ) with period
T2 = 100 and the GP estimate ( ) as function of position. This shows that
the estimate extrapolates well outside of the data points.

4.4.1 System and spatio-temporal disturbance

Consider the control setting in Figure 4.1 with

P (z) =
0.05(z + 1)

z2 − 1.98z + 1
, (4.12)



4

114 Chapter 4. A GP Approach to Multiple Internal Models in RC

and the stabilizing feedback controller is given by

C(z) =
5.005(z + 1)(z − 0.81)

(z + 0.52)(z − 0.03)
. (4.13)

A spatio-temporal disturbance as in Definition 4.1 is present for n = 2, where
the spatial and temporal functions are

d̄1(k) =
1

2
sin

(
2π

T1
k

)
+

1

10
sin

(
4

2π

T1
k

)
(4.14a)

d̄2(p) =
1

2
sin

(
2π

T2
p

)
+

3

10
sin

(
3

2π

T2
p

)
(4.14b)

respectively, with periods T1 = 150 and T2 = 100 as show in the second and
third plot in Figure 4.6 in ( ). The (roller) velocity of p(k) varies over time,
see ( ) in Figure 4.6, rendering d(k) non-periodic in time, see ( ) in Figure 4.6
(top plot) as in Example 4.2. Moreover, the disturbance is subject to additive
zero-mean normally distributed white noise with variance σ2

n = 10−6.

4.4.2 Multi-dimensional GPRC design

The L filter is designed using ZPETC as in Procedure 4.5. All available data is
used for GP regression such that N increases over time. Note that N is a design
parameter, i.e., there is a trade-off between small N to reduce computation
time and large N for estimation performance. The hyperparameters are chosen
as T1 = 150, T2 = 100, l1 = l2 = 1, σf,1 = σf,2 = 0.5 and σ2

n = 10−6.
By increasing l a lower-frequency RC output is obtained which can be used to
improve robustness against model errors, see Chapter 2.

4.4.3 Estimation performance

First, the estimation performance of the GP without RC is investigated with
a small number of noisy observations N = 220 for training. Consequently,
predictions are made outside of the training data and compared with the true
disturbance. The result is shown in Figure 4.6, where ( ) are the observations,
( ) the posterior mean, and 99.7% the confidence bound ( ).

An accurate estimate of the true disturbance, that is non-periodic in time, is
obtained by estimating the underlying periodic functions (second an third plot)
which extrapolates well using the periodic priors. Where the estimate deviates
from the true disturbance the variance increases indicating that the estimate is
less reliable. Next, the performance with GP RC is presented.

4.4.4 GP-based RC results

Control performance is analyzed with the error as shown in Figure 4.7 without
GP-RC ( ) and with GP-RC ( ). As a measure for convergence the 2-norm
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Figure 4.7: Error with feedback control ( ) and with GP-based RC ( ) as
function of time (top plot) and the absolute value of the error on a logarithmic
scale (bottom plot). As a comparison the contribution of the noise to the error
is given in ( ) (bottom plot) forming the best achievable performance.
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Figure 4.8: The 2-norm of the estimation errors for d̄1 ( ) and d̄2 ( ) computed
over the periods T1 and T2 respectively, normalized by the period length Ni in
samples. An accurate estimate is obtained after i = 2 periods.



4

116 Chapter 4. A GP Approach to Multiple Internal Models in RC

of the estimation error for d1(p) and d2(k) is computed for i = 1, 2 during the
periods T1 and T2 respectively, see Figure 4.8. The following observations are
made:

• The non-periodic multi-dimensional disturbance is completely suppressed
with GP-based RC in the first few samples, see Figure 4.7. The bottom
plot in Figure 4.7 shows the moving mean of e on a log-scale confirming
that GPRC reduces the error up to the contribution of the noise ( ).

• The non-periodic disturbance is learned through the periodic functions in
the time and position domain. The 2-norm of the estimation error for d̄i
is shown in Figure 4.8 indicating that after i = 2 periods the estimation
errors are converges. This implies that also with fewer data sufficient
control performance can be obtained.

To conclude, the considered GP-based multi-dimensional buffer for RC enables
the rejection of multi-dimensional disturbances for arbitrary variations in x(k)
over time.

4.5 Conclusion

The rejection of a multi-dimensional disturbance that is potentially non-periodic
in time and periodic in multiple uncorrelated underlying domains, e.g., position,
time, or commutation angle, is enabled through a multi-dimensional GP-based
buffer in the traditional RC setting. Traditional disturbance models in RC can-
not cope with the non-periodicity in the time-domain and integrating multiple
domains requires new internal models for RC. In this approach, a new GP-based
multi-dimensional internal disturbance model is generated by taking into ac-
count the underlying structure and periodicity in each of the domains through
a multi-dimensional covariance function. Consequently, the GP-buffer is used
for compensation. The approach is validated by means of a case study where a
spatio-temporal disturbance is rejected for arbitrary position variations. More-
over, GP regression estimates confidence bounds that can be exploited in RC as
a varying learning gain in ongoing work.



Chapter 5
Compensating Torque Ripples in a Coarse
Pointing Mechanism for Free-Space Optical
Communication: A Gaussian Process Repetitive
Control Approach1

Abstract: Actuators that require commutation algorithms, such as the
coarse pointing assembly (CPA) for free-space optical communication used in
this paper, often have torque-ripple disturbances that are periodic in the
commutation-angle domain that deteriorate the positioning performance. The
aim of this paper is to model the torque ripple as a Gaussian Process (GP) in
the commutation-angle domain and consequently compensate for it at
arbitrary velocity. The approach employs repetitive control (RC) at a constant
velocity. A spatial GP with a periodic kernel is trained using data that is
obtained from the RC step resulting in a static non-linear function for
compensation at arbitrary velocity. Stability conditions are provided for both
steps. The approach is successfully applied to a CPA prototype to improve the
tracking performance for laser satellite communication, where the torque ripple
is compensated at arbitrary velocity.

1The results in this chapter constitute Contribution 4 of this thesis. The chapter is based
on Mooren, N. et al. (2022b). Compensating Torque Ripples in Coarse Pointing Mechanism
for Free-Space Optical Communication: A Gaussian Process Repetitive Control Approach. (In
preparation for journal submission).
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Figure 5.1: Picture of the coarse pointing assembly (CPA) prototype, devel-
oped and tested at the Netherlands Organisation of Applied Scientific Research
(TNO).

5.1 Introduction

Many future technological advances, including scientific earth observations, 5G
and 6G connectivity, and the Internet-of-Things, rely heavily on high-throughput
and secure data communication with worldwide coverage. This calls for new
advances in communication technology between satellites and from satellites to
ground stations, well beyond the possibilities of the current radio-frequency (RF)
standard. Recent developments in (inter-)satellite communication exploit free-
space optical (FSO) communication, where a transmitter points a laser beam
towards a receiver over a very long distance. Distances range from several hun-
dreds of kilometers from lower-earth orbit (LEO) to ground, to thousands of kilo-
meters between LEO satellites, up to tens-of-thousands of kilometers for links
between ground stations and satellites in a geostationary orbit (GEO). FSO ter-
minals can be much faster and lighter than their RF counterparts, partly because
all the transmitted power can be condensed in a single beam with very small
divergence, which on the other hand requires pointing accuracies in the order
of micro-radians or even sub-micro-radians to cover such large distances. At
the same time, FSO terminals need to point their lasers over very large angular
ranges due to the relative motion between transmitter and receiver.

To enable a large-stroke rotation for tracking moving objects, a so-called
coarse pointing assembly (CPA) is commonly used where size, weight, and cost
are critical aspects for commercial (large series) space applications. Traditional
CPAs are quite often relatively large, heavy, and expensive compared to the rest
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of the FSO terminal, therefore, in (Kramer et al., 2020) a novel CPA actuation
concept has been developed, see Figure 5.1, which offers a low-cost, low-power
alternative for accurate long-stroke laser pointing for satellite-based FSO com-
munication. This CPA concept, developed by the Netherlands Organisation of
Applied Scientific Research (TNO), uses a switched reluctance motor concept
(Miller, 2001) consisting of three motor phases and a commutation strategy to
rotate a toothed disk and is relatively cost-effective to manufacture.

The positioning performance of the CPA depends on the interplay between
the commutation functions and the mechanical tolerances; imperfect commu-
tation easily leads to a torque ripple, e.g., due to misalignment of the three
motor phases. Compensating this torque ripple disturbance can thus signifi-
cantly improve the CPA performance. The commutation strategy is typically
a trade-off between minimizing the torque ripple on one hand, and improving
the power efficiency on the other hand (Miller, 2001; Vujičić, 2011), which are
both key aspects for commercial space-based FSO communication. Moreover,
the torque ripple that appears is repeating in the commutation-angle domain.
In particular, if the CPA operates with a constant velocity, then this disturbance
is periodic in the time domain, and it is non-periodic otherwise. The optimal
torque-ripple compensation will also differ from CPA to CPA, due to manufac-
turing and assembly tolerances, which calls for automated routines to keep this
CPA a cost-effective alternative.

Data-driven learning of a torque ripple compensation function can signifi-
cantly improve control performance, see, e.g., Rohrig and Jochheim (2001), al-
ternative model-based approaches require more modeling effort (Ai et al., 2021).
Repetitive control (RC) enables asymptotic rejection of time-domain periodic
disturbances with a known period, by learning an internal model from data
(Francis and Wonham, 1976; Hara et al., 1988; Longman, 2010). In (Mooren
et al., 2022d), a Gaussian process (GP)-based internal model is developed to
incorporate prior knowledge for RC, which can be used to enable torque rip-
ple compensation at constant velocity. Moreover, a spatial GP RC approach is
presented in (Mooren et al., 2022a; Mooren et al., 2020b) for spatially-periodic
disturbances that can be non-periodic in the time domain such as the torque
ripple disturbance at varying velocity. However, this latter spatial approach up-
dates continuously, requiring a substantial computational load, whereas an au-
tomated routine to compensate for the commutation-induced torque ripple does
not necessarily require continuous updating, since it principally does not change
over time. To avoid computational complexity in a low-power space-based en-
vironment, it is therefore preferred to learn a static compensation function that
compensates for the torque ripple for arbitrary velocities.

Although recent developments in temporal RC can improve the positioning
performance of the CPA for constant velocities, an approach that is computation-
ally attractive and that allows compensating for the torque ripple at arbitrary
velocity is not yet developed. The aim of this chapter is to compensate for the
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torque ripple at arbitrary velocities by learning a static GP-based function in
the position domain. The approach consists of two steps; first, time-domain
GP-based RC (Mooren et al., 2022d) is applied for compensation at a constant
velocity, and second, a spatial GP with a periodic kernel and data from step
one is trained, resulting in a continuous compensation function that is periodic
in the commutation-angle domain for compensation at arbitrary velocities. As
such, the following contributions are identified:

C1 analysis of the torque-ripple disturbance in the CPA to show that it is peri-
odic in the commutation-angle domain, and modeling of the CPA as a linear
system with a static non-linearity that represents the torque ripple (Section
5.2 and 5.3),

C2 a two-step approach for learning of a static GP for torque ripple compensa-
tion at arbitrary velocity, including stability analysis for both steps (Section
5.4); and

C3 experimental validation of the two-step approach for arbitrary velocity, in-
cluding experimental validation of GP-based RC in (Mooren et al., 2022d)
for constant velocity, on the CPA (Section 5.5).

The application of this method enables over 300% performance improvement
in the CPA by suppressing a substantial part of the torque ripple at arbitrary
velocity. Finally, conclusions are presented in Section 5.6.

5.2 Problem definition

The CPA depicted in Figure 5.1 is the main motivation for this work and is used
for experimental validation. In this section, the setup is further introduced and
the formal control problem is outlined.

5.2.1 Application motivation

The CPA in Figure 5.1 is part of the optical path for FSO communication, i.e.,
the control goal is to track a reference (laser beam) that depends on the relative
position, orientation, and velocity between two moving objects. This implies that
the rotational velocity of the rotating axle varies over time in the general case.
The CPA uses a switched reluctance actuator containing three motor phases to
drive a toothed disk with 131 teeth (Kramer et al., 2020). A cross-section of the
coils and the toothed disk is schematically shown in Figure 5.2; by alternating the
current between the three coils (through commutation functions) a continuous
rotating motion can be generated. Important benefits of this actuator concept
are the absence of physical contact between the coils and the rotating disk to
reduce wear, and the absence of cogging disturbances. However, due to imperfect
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Coils
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Figure 5.2: CPA actuation principle with three coils to drive the toothed disk.
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Figure 5.3: Torque ripple compensation strategy where the aim is to learn
the compensation function f̄d(φ) from data. The CPA is modeled as P̃ with
non-linearity d̄(φ) that is spatially periodic such that d(k) represents a torque
ripple or commutation-induced disturbance, and additional non-repeating dis-
turbances d̃.

commutation between the different coil currents, there is a torque ripple present
that could hamper performance.

5.2.2 Control setting

The relevant control setting for the CPA is depicted in Figure 5.3, where the goal
is to design the static function f̄d(φ) to compensate for the torque ripple distur-
bance d̄(φ), with φ the rotor position. The non-linear system P̃ represents the
CPA including commutation strategy and Cfb is a stabilizing feedback controller.
It is assumed that the non-linear system P̃ is composed of a linear time-invariant
(LTI) part P in conjunction with the static non-linearity d̄(φ) : R 7→ R that is a
function of the rotor position. The resulting signal that acts on the input to P

d(k) = d̄(φ(k)), (5.1)
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represents the torque ripple or commutation-induced disturbance to be compen-
sated. Additional non-repeating disturbances, denoted by d̃, may appear in the
CPA. Since these do not correlate with the position, they have very little influ-
ence on the presented approach and are therefore considered out of the scope of
this chapter. The notation ·̄ refers to spatial functions.

Ideally, the compensation function to be designed f̄d(φ) is an exact model of
d̄(φ), i.e., if

f̄d(φ) = d̄(φ), (5.2)

then the commutation-induced disturbance d(k) is perfectly compensated. To
show this, assume that the reference is suppressed, e.g., with an additive feed-
forward Tff ≈ P−1r on Tu, then the commutation-induced error is given by

e = −PS(d− dt), (5.3)

where S = (I + PCfb)−1 is the sensitivity function. If f̄d satisfies (5.2), then
d(k) = dt(k) and the error (5.3) is zero for arbitrary velocity variations.

Consider the following properties of the non-linear function d̄.

Definition 5.1. The unknown static commutation-induced non-linearity d̄(φ) is
periodic, i.e.,

d̄(φ) = d̄(φ+ β), (5.4)

with spatial period β that is equal to the tooth pitch in the CPA.

Assumption 5.2. The unknown static non-linearity d̄(φ) is sector bounded,
i.e.,

γ1|φ| ≤ d̄(φ)− ξ ≤ γ2|φ| (5.5)

for some γ1, γ2 ∈ R with γ1 < 0 < γ2 and ξ ∈ R.

Assumption 5.2 is required to provide stability conditions in the remainder of
this chapter and is experimentally validated in Section 5.3. Definition 5.1 implies
that d(k) is periodic in the time-domain if the angular position φ(k) increases
linearly, i.e., with constant rotational velocity, and d(k) is non-periodic other-
wise. This is similar to a torque ripple disturbance that also appears periodic in
time with a constant rotational velocity, and non-periodic otherwise.

5.2.3 Two step control approach

A two-step design method is developed to learn the spatially periodic function
f̄d from data. In the first step, data is collected to learn f̄d(φ) in the second step.
To collect data for learning, recap that d(k) is periodic in the time-domain with
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Figure 5.4: Step 1 of the developed approach: the repetitive controller R is
employed to learn the time-domain model dct of the torque ripple d with constant
velocity. The data dct is consequently used to learn f̄d(φ) for compensation at
arbitrary velocity in Figure 5.3.

a known period if the rotational velocity is constant. However, due to imperfect
commutation, the velocity might vary slightly in practice. In this situation,
asymptotic rejection of d(k) can be obtained through a robust repetitive control
(RC) approach (Hara et al., 1988; Mooren et al., 2022d; Steinbuch et al., 2007)
in the setting in Figure 5.4, i.e., R enables to asymptotically learn a model dct(k)
of the periodic disturbance d(k) in a time-domain buffer, even in the presence
of a non-perfect model.

Compensation at an arbitrary velocity is done in the second step in the
setting in Figure 5.3. It requires that the function f̄d(φ) is defined for all φ ∈
R, i.e., as a continuous function. Hence, the aim is to learn the continuous
and periodic function f̄d(φ) in the commutation domain φ based on the time-
domain data from step one, containing discrete points at various positions φ(k).
Hence, interpolation and extrapolation of the data are required which is done by
Gaussian process (GP) regression with a smooth and periodic prior as outlined
in the remainder of this chapter.

5.3 CPA disturbance analysis

In this section, the commutation strategy that is designed for the CPA is briefly
discussed. Moreover, it is shown that the CPA can indeed be modeled as in
Figure 5.3, i.e., that a disturbance is present that is periodic in the commutation-
angle domain.

5.3.1 CPA commutation strategy

The CPA setup with the commutation strategy for the three motor phases is
schematically depicted in Figure 5.5. A brief explanation of the commuta-
tion strategy is shortly summarized below for background, details can be found
in (Kramer et al., 2020). The system P̃ in Figure 5.3 contains the commutation
strategy and CPA dynamics, the physical CPA setup without commutation, i.e.,
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f̂−1
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Figure 5.5: Commutation strategy and the CPA setup.

from the squared current of each of the coils i2c to the rotor position φ is given
by PMfT (φ) with fT(φ) = diag(fT,1, fT,2, fT,3) an unknown position dependent
function from coil current to torque output, and PM ∈ RH∞ the mechanical
part that is proper and stable. Moreover, fT,c(φ) : R 7→ R for c = 1, 2, 3 is an
unknown non-linear function of φ that maps i2c to the torque generated by coil c

Tc =
1

2

∂`

∂φ
i2c = fT,c(φ)i2c , (5.6)

where ` ∈ R is the inductance and while neglecting magnetic saturation, see,
e.g., (Kramer et al., 2020; Schmidt et al., 2020, Chapter 5). The commutation

strategy contains an approximate inverse of fT denoted by f̂−1
T such that ideally

fT(φ)
(
f̂−1

T (φ)
)

= I for all φ ∈ [0, β) with β the tooth pitch, and fC(φ) : R 7→ R3

are the commutation functions that distribute the required torque T ∈ R over
the three individual motor phases. The functions fC and f̂−1

T for this specific
setup are developed in (Kramer et al., 2020) and used throughout the chapter.

Remark 5.3. The functions fC(φ) and f̂−1
T (φ) are periodic with a single tooth

and defined for φ ∈ [0, β) with β = 2π
131 the tooth pitch, and extend periodically

outside this interval, i.e., fi(φ) = fi(φ+ β).

Due to imperfections in the CPA setup and the commutation strategy, e.g.,
the requested torque per coil Ti is not equal to the actual torque Tc, there is a
torque ripple disturbance present that depends on the position output φ as in
Figure 5.3. Moreover, it is assumed that this torque ripple is repeating in the
commutation-angle domain with a single tooth as in Definition 5.1.

5.3.2 Analysis of the disturbance

In this section, Definition 5.1 and Assumption 5.2 are experimentally validated
to show that the torque ripple disturbance indeed repeats with a single tooth.
Experiments are performed with a feedback controller at several constant ro-
tational velocities ranging from 0.08 rad/s up to 0.14 rad/s with 0.02 rad/s
increments. The resulting error is shown in Figure 5.6 as a function of time.
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Figure 5.6: Measurement of the error as a function of time for different ve-
locities 0.08 rad/s ( ), 0.1 rad/s ( ), 1.2 rad/s ( ) and 1.4 rad/s ( ) all
increasing with 0.02 rad/s increments, which are all periodic but with different
period.
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Figure 5.7: Measured frequency response function (FRF) ( ) of the CPA
setup with a model fit ( ). At frequencies f < 4 Hz the friction in the CPA
bearings leads to a measurement error.
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Figure 5.9: Estimates of d̄(φ) obtained from measured error data at different
velocities, 0.08 rad/s ( ), 0.1 rad/s ( ), 1.2 rad/s ( ) and 1.4 rad/s ( ), to
validate the sector bound ( ) condition in Assumption 5.2 for −γ1 = γ2 = 1
rad/N.
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Under the assumption that the CPA can be modeled as in Figure 5.3 with
error (5.3), an estimate of the disturbance d̂ can be obtained from the measured
error as

d̂ = P̂S
−1
e, (5.7)

where P̂S
−1

is an approximate inverse model of the process sensitivity PS. The
first transient part of the measurement data is omitted. A model P̂S of PS is ob-
tained with the measured frequency response function of the CPA in Figure 5.7.

Consequently, a stable inverse P̂S
−1

is computed with zero-phase-error-tracking-
control (ZPETC) (Tomizuka, 1987; van Zundert and Oomen, 2018). The result-
ing disturbance estimate is shown in Figure 5.8 as a function of φ. The following
observations can be made.

• The dominant part of the error in Figure 5.6 is periodic in time for each
velocity but the time-domain periods vary as the velocity changes.

• The disturbance estimates, i.e., filtered errors, as a function of the po-
sition in Figure 5.8 are all periodic with a single tooth 2π

131 = 0.048 rad
independent of the velocity. Moreover, the disturbance estimates are sim-
ilar for each velocity which motivates that the CPA can be modeled as
in Figure 5.3 and validates Definition 5.1. There are however additional
disturbances visible in Figure 5.8 that are not repeating; this chapter ad-
dresses the to compensation of the common commutation-induced or tooth
periodic disturbance.

• Based on the measurement data in Figure 5.9, it can be concluded that
the sector bound condition in Assumption 5.2 is valid for γ2 = −γ1 = 1.

Moreover, the zoom in Figure 5.8 shows that the data points are sampled dif-
ferently for each velocity, i.e., non-equidistant in the rotor-position domain for
a varying velocity. This yields that indeed the function f̄d(φ) for compensation
must be defined for all φ to compensate for arbitrary velocity. The design of
f̄d(φ) as a GP is outlined in the remainder of this chapter.

Remark 5.4. The measured error can be used directly to approximate d̄ using
a model P̂S, however, the equality of this estimate can be poor depending on the
model quality. For this reason, in the developed two-step approach, RC (Mooren
et al., 2022d) is used that is robust for modeling errors up to 100% and for slight
velocity variations (Steinbuch et al., 2007).
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5.4 Gaussian process torque ripple
compensation

In this section, the two design steps to learn the compensation function f̄d(φ)
in Figure 5.3 are presented. It is shown first, how the continuous compensation
function f̄d(φ) is learned given a data set with discrete observations of the dis-
turbance through GP regression and suitable kernel design, which is the main
contribution. This allows to evaluate f̄d(φi) at arbitrary φi ∈ R, i.e., also out-
side of the discrete training points. Thereafter, an RC approach is presented to
generate the data set at constant velocity in the setting in Figure 5.4, i.e., with
the non-linearity. Stability conditions are provided for both design steps.

5.4.1 Torque ripple compensation through GP regression

For compensation at arbitrary velocity, the compensation function d̄(φ) must
be a continuous function, i.e., known for all φ. This section outlines how a
continuous function is generated based on a set of discrete observations of the
disturbance through GP regression.

Suppose that a data set DN (φN , d̂N ) is available where φN ∈ RN and d̂N ∈
RN contain N ∈ N noisy data points (d̂(φ(k)), φ(k)) that give information about
the true spatial disturbance d̄(φ), i.e.,

d̂N (φN ) = d̄(φN ) + εN , (5.8)

and assume that εN ∼ N (0N , σ
2
nIN ) is additive independent identically dis-

tributed (i.i.d.) Gaussian noise. The data set DN is generated in a separate RC
experiment at constant velocity as outlined in Section 5.4.4. The aim is to learn
a continuous and periodic function based on DN that is also defined in-between
the positions φN .

Many approaches exist to interpolate between discrete data points by as-
suming an underlying structure or basis functions, e.g., linear interpolation or
least-squares regression. In this chapter, f̄d is obtained using GP regression,
which does not require to specifically define basis functions. GP regression com-
bines the data DN with prior knowledge, e.g., smoothness and periodicity, to
determine a posterior distribution over functions (Murphy, 2012; Williams and
Rasmussen, 2006). The mean of the posterior distribution, i.e., the most likely
sample, is the continuous function f̄d(φ) that is used for compensation.

Suppose that the spatial disturbance function is a Gaussian process

d̄(φ) ∼ GP(µ(φ), κ(φ, φ′)), (5.9)

which is completely characterized by the mean function µ(φ) that is assumed to
be zero, and the covariance function κ(φ, φ′). The design of κ(φ, φ′) is outlined
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in Section 5.4.2. By conditioning the GP, i.e., performing inference on the basis
of DN and the prior (5.9), posterior distribution is obtained. The posterior
distribution at any position φ∗ ∈ R can be computed by defining correlation
between the φ∗ and the data DN which is generated in a separate experiment,
i.e.,

[
d̂N
d̄(φ∗)

]
∼ N

([
0
0

]
,

[
K + σ2

nIN K∗
K>∗ K∗∗

])
, (5.10)

where K ∈ RN×N is the covariance function κ(φN , φN ) evaluated at all com-
binations of (φN , φN ), and similar for K∗ = κ(φN , φ∗) ∈ RN×1 and K∗∗ =
κ(φ∗, φ∗) ∈ R (Williams and Rasmussen, 2006). As a result, the spatial distur-
bance model f̄d(φ∗) is given by the mean of the posterior distribution

f̄d(φ∗) = κ(φ∗, φN )α (5.11)

α = (K(φN , φN ) + σ2
nIN )−1d̂N ∈ RN , (5.12)

for the full posterior distribution, see, e.g., Mooren et al. (2022a); Williams and
Rasmussen (2006). Note that the vector α is completely determined by the data

DN (φN , d̂N ), thus the implementation of (5.11) can be done efficiently in step 2
since the inversion in (5.12) can be computed a priori in step 1.

The compensation signal dt(k) is obtained by evaluated the GP-based spatial
disturbance model (5.11) at the current position, i.e., φ∗ = φ(k),

dt(k) = f̄d(φ(k)) = κ(φ(k), φN )α. (5.13)

The following section presents the design of a suitable covariance function κ.

5.4.2 GP prior design for torque ripple disturbances

Since the spatial non-linearity is periodic as in Definition 5.1 the prior on d̄(φ)
must reflect this periodicity. Therefore, the covariance function in (5.9) is a
periodic covariance function

κ(φ, φ′) = σ2
f exp

(
−2 sin2(π(φ−φ′)

T )

l2

)
, (5.14)

with hyperparameters Θi = {T, l, σf}. The hyperparameters can be interpreted
as follows,

• T ∈ R is the spatial period of d̄(φ) equal to the tooth pitch β;

• l ∈ R is the smoothness; and

• σf ∈ R is a gain relative to the noise variance σ2
n.
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Figure 5.10: Example 5.5: Gaussian process regression is performed with 10
random samples ( ) denoted by (f(φ), φ) taken from the true periodic function
d̄(φ) ( ). The resulting GP f(φ) has posterior mean ( ) and posterior vari-
ance ( ), which is a good estimate of d̄(φ) also in-between training points by
selecting appropriate smooth and periodic prior knowledge.

Now consider the following example.

Example 5.5. A periodic function d̄(φ) = sin(2πφ) + 1
2 sin(6πφ + 1

2π) with
period 1 is used as true function, from which 10 random samples (d̄(φi), φi)) for
i = 1, 2, . . . , 10 are taken, see Figure 5.10. A periodic covariance function is used
for GP regression, with the hyperparameters: T = 1 equal to the period, σf = 1
and l = 1 as in Figure 5.11. This shows that the covariance κ(φ, φ′) is large when
φ − φ′ is either small (smoothness) or approximately equal to T (periodicity).
GP regression is performed with the 10 data samples and periodic prior. The
posterior mean and variance are shown in Figure 5.10 together with the true
function. The posterior mean, i.e., the most likely sample from the posterior,
is a continuous function that corresponds well with the true function also in-
between the data points. Moreover, the variance increases where the estimate is
less reliable.

Example 5.5 shows that with smooth and periodic prior in GP regression, an
accurate estimate of the true periodic function can be obtained based on a limited
number of discrete data points. This is used to interpolate and extrapolate the
time-domain disturbance model for compensation at other velocities.

Remark 5.6. The periodic kernel (5.14) is also used in GP-based RC to learn
a time-domain periodic function (Mooren et al., 2022d), or spatially periodic
function (Mooren et al., 2020b).

5.4.3 Stability

To analyze stability of the interconnection in Figure 5.3 with compensation func-
tion f̄d, it is reformulated in the standard feedback interconnection of a linear
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Figure 5.11: Example 5.5: periodic kernel function with period T = 1,
smoothness l = 1 and σ2

f = 1.
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Figure 5.12: Standard feedback interconnection with the linear system H and
a non-linear memoryless function f(φ).

system in feedback with a static non-linearity as in Figure 5.12. Consequently,
a passivity-based stability analysis is used to provide stability conditions.

Lemma 5.7 (Circle criterion). Consider the standard feedback interconnection
in Figure 5.12 with the linear system H ∈ RHp×p∞ and the memoryless function
f(φ) as in (Khalil, 2002, Theorem 7.2) and (Desoer and Vidyasagar, 2009,
p.140). If H is asymptotically stable and f(φ) satisfies the sector bound condition

γ1|φ| ≤ f(|φ|) ≤ γ2|φ| (5.15)

for some γ1, γ2 ∈ R with γ1 < 0 < γ2, then the interconnection is uniformly
asymptotically stable, i.e., the output converges asymptotically to a stable steady-
state trajectory, for all f(φ) that satisfy (5.15) if the Nyquist plot of H lies in
the interior of the circular disk D(γ1, γ2), with 1/γ1 and 1/γ2 the intersections
of D(γ1, γ2) with the real axis.

The proof of Lemma 5.7 can be found in (Khalil, 2002, Theorem 7.2, Defini-
tion 6.2), and (Desoer and Vidyasagar, 2009, p.141).

Theorem 5.8. Consider the setting in Figure 5.3 with linear system P , static
unknown non-linearity d̄(φ), non-linear function f̄d(φ) in (5.11), and suppose
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that Assumption 5.2 is satisfied. If

‖PS(ejω)‖∞ <
1

α
. (5.16)

with α ∈ R, and f̄d(φ) is sector bounded,

−ρ|φ| ≤ f̄d(φ) ≤ ρ|φ| ∀ φ ∈ [− 1
2β,

1
2β), (5.17)

where φ can be shifted by nβ where n ∈ Z, and for ρ ≥ 0, such that

ρ+ γ ≤ α (5.18)

with γ = −γ1 = γ2 ≥ 0 in Assumption 5.2, then the interconnection is asymp-
totically stable.

The proof of Theorem 5.8 is given in Section 5.7.

Remark 5.9. In Lemma 5.7 with λ1 = −λ2, the condition (5.17) in Theorem 5.8
is similar to a small gain condition (Khalil, 2002, Theorem 5.6). For λ1 6=
−λ2 more general results can be obtained by following the same reasoning as in
Theorem 5.8.

Remark 5.10. The sector-bound condition (5.26) in Theorem 5.8 requires that
f̄d(0) = 0. If f̄d(0) 6= 0 then it is of the form f̄d(φ) = f̄0

d (φ)+c for some constant
c ∈ R such that f̄0

d (0) = 0. In this case replace f̄d(φ) by f̄0
d (φ) in (5.26) and

the results in Theorem 5.8 remain valid, as c can be interpreted as a constant
disturbance.

Theorem 5.8 implies that the reciprocal of the H∞-norm of PS imposes the
sector bound condition (5.26) and thereby an upper bound on the slope of f̄d(φ)
around the origin. Moreover, the conditions in Theorem 5.8 can be checked on
the basis of measurement data and the pre-designed function f̄d(φ) as shown in
the following example for the CPA.

5.4.4 Repetitive control for constant velocity

The data set DN that is used to train the GP in Section 5.4.1 contains observa-
tions of the disturbance which are obtained through an a priori performed RC
experiment at constant velocity. The RC approach in (Mooren et al., 2022d)
with GP-based buffer is used, as it can be tuned to be robust for small period
variations, moreover, even in the presence of modeling errors, RC can asymp-
totically learn the periodic part of the error.

The repetitive controller R in the setting in Figure 5.4 is shown in Figure 5.13
and given by

R =
LMGP

1−MGP
, (5.19)



5

5.4 Gaussian process torque ripple compensation 133

L
e dctyd
R

MGP

Figure 5.13: Repetitive controller R with Gaussian-process buffer MGP and
learning filter L.

where MGP = µGPΓ is a GP-based buffer that is a FIR filter, Γ is a delay line
of size N , and µGP ∈ R1×N are coefficients that are computed as follows

µGP = κ(X∗, X)(κ(X,X ′) + σ2
nIN )−1, (5.20)

with X = Ts · [N N − 1 . . . 1]> ∈ RN , X∗ = N · Ts ∈ R and Ts is the sample
time. The same periodic kernel function (5.14) is used, where T is the expected
time-domain period.

To incorporate period-time robustness, e.g., if the velocity varies slightly, a
larger buffer size N can be used in combination with a locally-periodic kernel,
for details, see (Mooren et al., 2022d). Moreover, L is a stable learning filter to
ensure stability.

Remark 5.11. Conceptually, alternative RC approaches such as (Steinbuch et
al., 2007) that are robust to period-time variations can also be used for this step,
however, the presented GP-based approach yields more design freedom. More-
over, the buffer size N in the presented approach does not have to be exactly
equal to the number of samples in a single period, as the period is provided in
the kernel function and can be any real number.

Theorem 5.12. The system in Figure 5.4 with repetitive controller R in Fig-
ure 5.13 and unknown non-linearity d̄(φ) that is sector bounded as in Assumption
5.2 is asymptotically stable if the following conditions hold,

|µGPΓ(ejω)(1− S(ejω)P (ejω)L(ejω))| < 1 (5.21)

|P (ejω)S(ejω)SR(ejω)| < 1

γ
, (5.22)

for all ω ∈ [0, π], with SR = (I + PSR)−1 the modifying sensitivity.

The proof of Theorem 5.12 is given in Section 5.7.
The condition in Theorem 5.12 can also be checked a priori on the basis of a

measured frequency response function of P . Moreover, by designing the learning
filter L in (5.19) as

L ≈ (PS)−1, (5.23)
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Figure 5.14: Modifying sensitivity function SR with R designed for the CPA
with rotational velocity 0.14 rad/s, such that the disturbance fundamental pe-
riod equals T = 2π

0.14·131
= 0.343 seconds. The periodic kernel has equal period,

such that R suppresses disturbances at 1
0.343

≈ 2.9 Hz and its harmonics.

the stability condition in (5.21) is satisfied. Many approaches exist to invert the
process sensitivity PS, e.g., using stable inversion or zero-phase-error-tracking-
control (ZPETC).

Remark 5.13. If PS contains non-minimum phase zeros or delays, then the
inverse can be non-causal, i.e., in the case of ZPETC L = z−nlLc with nl ∈ N
the number of samples preview and Lc the causal part of L. If L is non-causal
then GP-based RC is also applicable, for implementation details see (Mooren et
al., 2022d).

To show the attenuation properties of R in the setting in Figure 5.13, the
disturbance induced error ed can be written as

ed = −PSSRd, (5.24)

where SR represents the closed-loop suppression of R in addition to the feedback
controller. Consider the following example where SR is shown for the CPA.

Example 5.14. A repetitive controller R is designed for the CPA that rotates
with a constant velocity. The periodic kernel (5.14) is used with the period T
seconds that corresponds with the time-domain period of the error, e.g., for 0.14
[rad/s] the period equals T = 2π

0.14·131 = 0.343.
The resulting modifying sensitivity is shown in Figure 5.14. This shows that

R has high disturbance attenuation properties at 1
T ≈ 2.9 Hz and its harmon-

ics corresponding with the period of the torque ripple at this specific velocity,
in-between these frequencies the repetitive controller can slightly amplify distur-
bances.

Example 5.14 shows that indeed SR is small at frequencies where the dis-
turbance is expected and corresponds with the kernel period T . This is used to
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asymptotically reject the disturbance d for constant rotational velocity, even if
the model P̂S is non-perfect, resulting in the signal dct that equals d, i.e., a time-
domain model of the disturbance. Together with φ during the same experiment,
this gives the data set DN for GP regression.

5.4.5 Procedure

The following procedure summarizes implementation of the two-step approach
that is introduced in this chapter.

Procedure 5.15.

Step 1) Constant velocity learning:

(a) Identify a model P̂S of PS and obtain L in (5.23).

(b) Compute µGP with (5.20), with the period in κ equal to T = 2π
ν·131

for the CPA, where ν is the velocity in rad/s.

(c) Verify stability with Theorem 5.12.

(d) Perform an RC experiment at constant velocity v and collect data
DN .

Step 2) GP regression and compensation with f̄d:

(a) Compute α with (5.12) and data DN (φN , d̂N ) obtained with step
1d, and a set of hyperparameters where T is the spatial period, l a
given smoothness and σf the variation around the mean.

(b) Verify stability with Theorem 5.8.

(c) Apply online, i.e., at each sample k, (5.13) for compensation given
φ(k).

Remark 5.16. Multiple RC experiments at different velocities can be combined
in DN to compute α in (5.12). This allows to average over non-repeating dis-
turbances that are present in DN , i.e., similar to employing a learning gain in
traditional RC (Tomizuka, 2008).

5.5 Application to the CPA

In this section, the experimental results on the CPA are presented. First, the
results of applying GP-based RC to the CPA with constant velocity are shown.
Second, the GP-based spatial compensation function f̄d that is computed on the
basis of the time-domain RC model is shown. Third, the resulting performance
for other constant and varying velocities are presented.
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Figure 5.15: Cumulative amplitude spectrum (CAS) of the error with three
velocities 0.08 rad/s ( ), 0.1 rad/s ( ), and 0.12 rad/s( ), for feedback
(dotted), GP RC (solid) and the spatial GP compensation (dashed).

5.5.1 RC results at constant velocity

The GP-based repetitive controller R is designed for 3 velocities to, i) experi-
mentally validate that it rejects the disturbance for constant velocities, and ii)
generate training data for GP regression. Each RC is designed with the peri-
odic kernel function (5.14) where the period T is modified correspondingly as in
Step 2 of Procedure 5.15, and the buffer size N is such that one period fits in
the buffer.

The resulting cumulative amplitude spectra (CAS) are shown in Figure 5.15
as a function of the spatial frequency in 1/tooth. The dashed lines show the cur-
rent state-of-the-art performance with only a feedback controller, the solid lines
show the obtained performance after convergence of the repetitive controllers.
This shows that the repetitive controller R removes the repeating parts of the
error that correspond with 1 1/tooth and its harmonics for constant velocity.

5.5.2 Learned GP compensation and stability

From the GP-based RC experiment at a velocity of 0.1 rad/s the data set DN is

generated, where d̂ = dtc contains 279 data points. A fit is made based on these
data points with the hyperparameters; smoothness l = 0.4, the period equal to
the tooth pitch T = 2π

131 , σ2
f = 0.001 the approximate amplitude around the

mean, and the estimated noise variance σ2
v = 6 · 10−4 such that the confidence

bound corresponds with the variance on the data points. The resulting GP-based
compensation function that is periodic with a single tooth pitch β is shown in
Figure 5.17 including the 99.7% confidence bound.

Stability is assessed with condition (5.18) in Theorem 5.8. First, α in (5.16) is
determined in Figure 5.16 yielding that 1/α = 0.07 and hence α ≈ 14.3. Second,
Figure 5.9 shows that −γ1 = γ2 = γ = 1 in Assumption 5.2 is a valid assumption
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Figure 5.16: Nyquist plot of the process sensitivity PS that is enclosed in a
circle D(−α, α) around the origin with radius 1/α = 0.07.
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Figure 5.17: Learned GP-based compensation function f̄d ( ) with 99.7 %
confidence bound ( ), which is trained with data that is obtained with the
RC experiment at 0.1 rad/s. The sector bound condition (5.17) with ρ = 0.5 is
shown in ( ).

for the unknown non-linear function d̄(φ). Third, the GP-based compensation
function f̄d shown in Figure 5.17 satisfies the sector bound condition in (5.17) for
ρ = 0.5. As a result, ρ+ γ = 1.5� α which implies that (5.18) in Theorem 5.8
is satisfied and the system is closed-loop stable.

Remark 5.17. The RC output dct contains noise that is potentially amplified by
the learning filter L at high frequencies. Therefore, the signal dct is first filtered
with a zero-phase low-pass filter with a cut-off frequency of 1000 Hz to remove
the main contribution of noise before GP regression.



5

138 Chapter 5. Compensating Torque Ripples for FSO Communication

2 4 6 8 10
−1

−0.5

0

0.5

1
×10−4

Time [s]

E
rr
o
r
[r
a
d
]

Figure 5.18: Experiment with a varying velocity in ( ) (scaled), for the state-
of-the-art feedback controller ( ) and with the learned GP-based compensation
function in ( ).

5.5.3 Results

The learned spatial compensation function is employed at different velocities to
compensate for the repeating part of the error. The dashed lines in Figure 5.15
show the performance with the GP-based compensation. This clearly shows that
the periodic component is almost completely suppressed as desired, although the
performance is slightly worse compared to RC for a specific rotational velocity.
The RMS errors for each velocity and control strategy are summarized in Ta-
ble 5.1, yielding performance improvement up to a factor 2.4 with f̄d.

In addition, a measurement is carried out where the CPA rotates with a vary-
ing velocity for which RC is not applicable. The result is shown in Figure 5.18,
where ( ) show the error with feedback control and ( ) is the error with the
learned spatial compensation. This shows that independent of the velocity, the
periodic component in the error that repeats with each tooth is significantly
attenuated. The overall RMS value of the error is improved by 60 %. Moreover,
a substantial part of the remaining error can be attributed to reference-induced
errors during acceleration and deceleration which is not compensated for by the
present approach.

5.6 Conclusion

Automatic learning of a static compensation function for torque ripple distur-
bances at arbitrary rotational velocity is enabled in this chapter. By employing
a single repetitive control experiment at constant velocity a time-domain model
of the disturbance is obtained. Consequently, a Gaussian process is used to
learn, on the basis of discrete time-domain data, a spatially periodic and contin-
uous function. The learned function can be used for compensation at arbitrary
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Table 5.1: Root Mean Squared (RMS) error in micro-radians and the fac-
tor performance improvement with respect to feedback control for the three
constant velocities.

Velocity [rad/s] Feedback [µrad] GP RC [µrad] GP FB [µrad]

0.08 29.387 12.412 (2.4) 15.864 (1.9)
0.10 30.628 10.568 (2.9) 14.629 (2.1)
0.12 31.852 9.455 (3.4) 13.547 (2.4)

varying 32.633 n/a 20.021 (1.6)

rotational velocities where the torque ripple is not periodic. Moreover, stabil-
ity checks are provided using the circle criterion taking into account the non-
linearity induced by the obtained commutation update function. The method
is experimentally validated on the coarse point assembly (CPA) resulting in a
user-friendly automated routine for an average performance improvement of a
factor 2 on the CPA at varying velocity, which is a key enabler for FSO commu-
nication. This approach can thus successfully be employed during integration of
future CPA production series, saving labor-intense testing and calibration steps,
and thereby contributing to the cost-effectiveness of the CPA and its applica-
bility in commercial space applications, such as FSO communication. Future
research focuses on direct learning or updating of the individual commutation
functions on the basis of data.

5.7 Proofs

Proof of Theorem 5.8

The interconnection in Figure 5.3 is reformulated in the standard feedback in-
terconnection in Figure 5.12 with

f(φ) = f̄d(φ)− d̄(φ)

and H = PS. Subsequently, Lemma 5.7 is used to provide stability conditions.
First, the process sensitivity PS is stable by design of Cfb. Second, condition
(5.16) implies that the Nyquist plot of PS resides in a disk with radius 1/α
around the origin, denoted by D(−α, α). It remains to show, using the sector
bound condition (5.15) in Lemma 5.7, that the interconnection is stable if ρ+γ ≤
α. From the triangular inequality is follows that |f̄d(φ)− d̄(φ)| ≤ |f̄d(φ)|+ |d̄(φ)|.
Using Lemma 5.7, the interconnection is globally asymptotically stable if

|f̄d(φ)|+ |d̄(φ)| ≤ α|φ|. (5.25)
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Now use Assumption 5.2, i.e., |d̄(φ)| < γ|φ|, to rewrite (5.25) into

|f̄d(φ)| ≤ (α− γ)|φ| = ρ|φ|, (5.26)

or equivalently −ρ|φ| ≤ f̄d(φ) ≤ ρ|φ| for ρ ≤ α−γ which corresponds with (5.18).
Finally, as f̄d(φ) is periodic with period β, see Definition 5.1, it is sufficient to
check the sector bound condition (5.26) on the interval φ ∈ [− 1

2β,
1
2β) which

completes the proof.

Proof of Theorem 5.12

The proof consists of two part, first, (5.21) is derived in (Mooren et al., 2022d,
Theorem 2) for stability of the linear part in Figure 5.4, i.e., for d̄(φ) = 0,
second, it remains to show that (5.22) implies stability with d̄(φ) 6= 0 under
Assumption 5.2 with Lemma 5.7. The setting in Figure 5.4 is reformulated in
the standard feedback interconnection in Figure 5.12, yielding that

H = P (1 + P (C +R))−1 = PSSR,

and f(φ) = d̄(φ). Using Lemma 5.7 and the sector bound condition in Assump-
tion 5.2 the interconnection is stable if the Nyquist plot of H resides inside the
disk D(γ,−γ). This is equivalent to (5.22) which completes the proof.
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Feedforward tuning for
flexible motion tasks





Chapter 6
Feedforward Motion Control: From
Batch-to-Batch Learning to On-line Parameter
Estimation1

Abstract: Feedforward control can significantly improve tracking
performance for high-precision motion systems. The aim of this paper is to
develop a unified framework for both batch-wise and for on-line learning of
feedforward parameters using least squares estimation. A statistical analysis is
employed to analyze the effect of noise in a closed-loop setting. This provides
new insights, both potential advantages as well as possible hazards of on-line
estimation are considered, i.e., biased estimates can be obtained that hamper
feedforward performance. Finally, a practical implementation is presented to
mitigate the effect of noise, and theoretical results are validated through
simulation and experiments on a benchmark motion system.

1The results in this chapter constitute Contribution 5 of this thesis. The chapter is based on
Mooren, N. et al. (2019a). Feedforward motion control: From batch-to-batch learning to online
parameter estimation. In 2019 American Control Conference (ACC). IEEE, pages 947–952
and Mooren, N. et al. (2019b). From Batch-to-Batch to online learning control: experimental
motion control case study. IFAC-PapersOnLine, 52(15):406–411.
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6.1 Introduction

Feedforward control, ranging from manual tuning to learning control, is essential
for enhancing positioning performance of motion systems. Manual feedforward
tuning enables performance improvement by anticipating for known exogenous
disturbances, where typically the to be applied reference is used (Lambrechts
et al., 2005). For systems with repeating motion tasks, learning feedforward
algorithms such as iterative learning control (ILC) are able to automatically
learn from previous tasks, to compensate for the repeating contributions in the
error (Bristow et al., 2006; van der Meulen et al., 2008). These methods benefit
from preview, allowing non-causal feedforward controllers to compensate for
disturbances before these affect the system, resulting in a major performance
improvement compared to causal controllers (Van Zundert and Oomen, 2017).

Despite potential performance improvement of learning control, standard
approaches may actually lead to a performance degradation in typical motion
systems, where varying tasks are commonly performed. Standard learning algo-
rithms generate a feedforward signal that exactly compensates for trial-invariant
disturbances during a specific task (Gao and Mishra, 2014; van de Wijdeven
and Bosgra, 2010). However, many motion systems perform non-repeating mo-
tion tasks, e.g., semiconductor wire-bonding (Boeren et al., 2016), lithography
(Blanken et al., 2017a) and printing (Bolder et al., 2017). Hence, flexibility
towards trial-varying references is essential, whereas current learning feedfor-
ward algorithms are generally highly sensitive to trial-varying exogenous signals
(Hoelzle et al., 2011).

ILC algorithms that are flexible against varying tasks have been developed
(Bolder et al., 2017; Hoelzle et al., 2011; van de Wijdeven and Bosgra, 2010).
These methods combine model-based feedforward and ILC, resulting in flexible
learning feedforward. The central idea in this method is to postulate a controller
parameterization and learn the parameters using common principles from ILC
(Bristow et al., 2006). From the perspective of system identification, flexible
feedforward tuning techniques have been developed which essentially replaces
the learning filter design in ILC by an estimation step. In Boeren et al. (2015),
extended parameterizations are explored, encompassing joint input shaping and
feedforward control. For both learning and identification methods batch-wise
approaches are exploited, i.e., controller parameters are updated after each ex-
periment, where a key aspect is to obtain unbiased estimates. In Blanken et
al. (2017a), these learning and identification approaches are compared, directly
connection iterative feedforward tuning to inverse system identification.

Although important progress has been made in learning and identification
for feedforward control for a class of tasks, these approaches typically consider a
batch-wise operation. Consequently, performance improvement takes place after
each task is completed. The aim of this chapter is to develop a framework for
current-iteration feedforward tuning, i.e., updating the feedforward controller
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during a motion task for immediate performance improvement, for general con-
troller structures as in Boeren et al. (2014). The main contribution in the present
chapter is to propose a unified framework for learning feedforward control, cover-
ing both batch-wise approaches as the development of current-iteration learning.
The following sub-contributions are addressed in this work;

C1 a detailed statistical analysis of the proposed framework is provided to show
that biased estimates are obtained in earlier approaches,

C2 a practical implementation for on-line feedforward tuning using RLS that
reduces the effect of noise leading to biased estimates,

C3 a simulation case study is performed to confirm the theoretical conclusions,
including the immediate benefit of direct learning, and

C4 experimental validation on a benchmark motion system.

Indeed, theoretical conclusions in this chapter may provide relevant new perspec-
tives on earlier related approaches, including Butler (2012), which are further
exploited.

This chapter is organized as follows. In Section 6.2, the general framework
for feedforward control is covered and a parameter optimization problem is pro-
posed. In Section 6.3, a theoretical analysis of the proposed parameter opti-
mization in the presence of noise is provided. In Section 6.4, a practical solution
is presented to improve the estimation in presence of noise. In Section 6.5, a
simulation study is conducted in which the proposed framework is applied to a
benchmark system, where the cases with and without noise are compared. In
Section 6.6 experimental validation is provided. Finally, conclusions and ongoing
research are provided in Section 6.7.

6.2 Towards parameter optimization for
feedforward control

In this section, a generic framework is developed for both batch-to-batch and
for on-line learning of feedforward parameters. First, a feedforward controller
parameterization is presented for which the estimation problem has an analytic
solution, i.e., through linear least squares optimization. Second, the connection
is established between feedforward controller tuning and parameter estimation
from a system identification point of view. Finally, solutions are provided both
for a batch-wise setting as in an on-line setting to compute the feedforward
parameters.
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6.2.1 Problem definition in a unified framework

Consider the general control configuration in Figure 6.1 consisting of an input
shaper Cr, feedforward controller Cff , feedback controller Cfb, and true system
P0 that is linear time-invariant (LTI). The system, mapping the input u to the
noise-free output y0, is given by

P0(q−1, θ0) =
B(q−1, θ0

b )

A(q−1, θ0
a)

(6.1)

with A(q−1) and B(q−1) polynomials in the backwards shift operator q−1, and
θ0
a and θ0

b are the true system parameters. Furthermore, it is assumed that
A(q−1) and B(q−1) are given by

A(q−1, θa) =

na∑

i=1

ψi(q
−1)θa,i

B(q−1, θb) =

nb+na∑

i=na+1

ψi(q
−1)θb,i

(6.2)

in which ψ(q) ∈ R[q−1] are referred to as basis functions. Finally, the output
ym = y0 + v that is used for parameter estimation contains additive noise v ∼
N (0, σ2

v) that is zero-mean independent and identically distributed (i.i.d) with
variance σ2

v .
The scheme in Figure 6.1 includes both feedback and feedforward control.

The goal of the feedforward controller is to anticipate for known or repeating
exogenous disturbances that act on the system, whereas the feedback controller
attenuates unknown disturbances and model errors. In the remainder of this
work, the focus is on feedforward control, i.e., optimization of Cff(θ), since this is
the main contribution to the tracking performance. The goal of the feedforward
controller is defined as follows.

Definition 6.1 (Feedforward control goal). Determine a feedforward controller
such that the reference induced error given by

e = S(Cr − PCff)r, (6.3)

with S = (I + PCfb)−1 is minimized.

A well known result from classical feedforward control is that the plant inverse
must be reflected in the feedforward controller (Lambrechts et al., 2005), which is
also the case for the proposed combined input shaper and feedforward controller.
By satisfying

Cff(q, θa)C−1
r (q, θb) = P−1(q, θ0) =⇒ e(t) = 0∀t (6.4)
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Figure 6.1: General control scheme with feedback controller Cfb, feedforward
controller Cff , input shaper Cr and plant P0.

it follows that the reference induced positioning error is eliminated. This can
also be obtained by setting Cr = I and directly parameterizing Cff as P−1, i.e.,
as a rational filter. However, identifying Cff directly as rational filter yields a
non-convex optimization problem, see, e.g., Blanken et al. (2017a). Moreover,
direct inversion for system with non-minimum phase zeros might lead to internal
stability issues and non-causal feedforward control, see, e.g., Van Zundert and
Oomen (2017).

6.2.2 Feedforward controller parameterization

Consider the following feedforward controller parameterization, directly estab-
lishing the connection between the system parameters and the ideal feedforward
parameters.

Definition 6.2 (Feedforward controller parameterization). The input shaper
and feedforward controller are parameterized as follows.

C =

{
(Cr, Cff(θ))

∣∣∣ Cff(θ) = A(q−1, θ)
Cr = B(q−1)

, θ ∈ Rna
}

(6.5)

Where Cff(θ) is parameterized as function of the to be optimized parameters θ.
Next,

Ψ =
[
ψ1 ψ2 . . . ψna

]>
, (6.6)

and to be estimated parameters

θ =
[
θ1 θ2 . . . θna

]> ∈ Rna (6.7)

such that Cff(q−1, θ) = Ψ>θ.
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Moreover, consider the following condition in the input shaper to avoid scal-
ing of the reference, see, e.g., Boeren et al. (2014).

Assumption 6.3. The input shaper satisfies that

Cr(q
−1)
∣∣
q−1=1

= 1. (6.8)

Remark 6.4. In this chapter, the focus is on optimization of Cff(θ) and Cr is
assumed to be fixed as in Figure 6.1, to avoid cumbersome notation. Concep-
tually, the following approach and analysis is similar for the general case, i.e.,
with Cr(θ). In the remainder of this work the notation θ refers to θa, similar
for θ0 referring to θ0

a and, B(q−1, θb) is referred to as B(q−1) assuming that θb
is known.

Using the parameterization (6.5) the reference induced error becomes

e = S(q−1)

(
B(q−1)− B(q−1)

A(q−1, θ0)
A(q−1, θ)

)
r, (6.9)

hence, if θ → θ0, then the positioning error e→ 0, such that (6.4) is satisfied.

6.2.3 Parameter optimization for feedforward control

In the remainder of this section, an optimization problem is formulated to opti-
mize Cff(θ). The optimization is based on linear least squares, for which analytic
solutions are provided for both the batch-wise case and a recursive solution for
the on-line case.

Definition 6.5 (Parameter optimization problem). Given measurement data
sequences {u} and {ym}, determine θ∗ such that the feedforward controller (6.5)
minimizes the reference induced tracking error.

Consider the following optimization problem for computation of θ∗

θ̂(k) = min
θ
V (Cff(θ)), (6.10)

where the objective function is of the form

V (θ, k) =
1

2

k∑

i=1

ε2(i) (6.11)

ε(k) := ū(k)− φ(k)θ (6.12)

and the residual function ε(k) ∈ R is linear in the parameter θ. Moreover, the
regressor φ(k) ∈ R1×na is a filtered version of the measured output data with
the basis functions,

φ(k) = Ψ>(q)ym(k) (6.13)
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and similar for ū(k) ∈ R that is the filtered input

ū(k) = B(q)u(k), (6.14)

as depicted in Figure 6.2.
To show that θ converges to θ0 if v = 0, note that the objective function

(6.11) is quadratic and ε is linear in θ. Hence, a sufficient condition for the
optimum is that the gradient of (6.10), given by

∇V (θ, k)
∣∣
θ=θ0

=

k∑

i=1

ε(i, θ)
∂ε(i, θ)

∂θ

∣∣∣∣
θ=θ0

= 0 (6.15)

is zero. To show that this is the case for θ → θ0, substitute φ(k) and ū(k) in
(6.12) to obtain

ε(k) = B(q)u(k)−Ψ>θym(k) (6.16)

= B(q)u(k)−A(q, θ)y(k), (6.17)

combining this with (6.1) results in,

ε(k, θ)
∣∣
θ=θ0

= 0. (6.18)

This also render the gradient in (6.15) to zero for v = 0, which implies that θ0 is
the optimum of the cost function as desired. The case where v 6= 0 is analyzed
in detail in the following section.

In the following two subsection, an analytic solution to the optimization
problem (6.10) is derived for both a batch-wise setting as for the on-line setting.

B.1) Batch-to-batch parameter optimization
In a batch-wise optimization setting, an experiment or task is performed from

which a batch of data is collected (Blanken et al., 2017a). The data collected
during task nr j, denoted with {uj} and {yjm} is used to optimize Cff(θ) for the
next task, i.e., determine θj+1 and update the controller.

Next, it is shown that for batch-wise optimization, the optimization problem
(6.10) is equivalent to a linear least squares problem. To this extend, the pro-
posed residual function (6.12) is rewritten in matrix form using data from task
j resulting in the following notation,

E = Ū − Φθ (6.19)

with E ∈ Rk, Ū ∈ Rk, Φ ∈ Rk×na given by

E =




ε(1)
ε(2)
...

ε(k)


 ,Φ =




φ(1)
φ(2)
...

φ(k)


 , Ū =




ū(1)
ū(2)
...

ū(k)



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Figure 6.2: Combined framework for feedforward control and parameter op-
timization.

such that the objective function is alternatively written as V (θ) = 1
2E>E , then

the optimization problem (6.10) is equivalent to the least squares problem

Ū = Φθ (6.20)

with analytic solution

θ̂ = (Φ>Φ)−1Φ>Ū . (6.21)

Assumption 6.6. Assume that either u(k), in the open-loop setting, or r(k)
in the closed-loop setting, is persistently exciting such that the matrix Φ>Φ is
non-singular.

Consider the following procedure to optimize the feedforward parameters in
a batch-to-batch setting.

Procedure 6.7 (Batch-to-batch parameter optimization).

1. Collect input-output data {uj} and {yjm} from the current task.

2. Determine Ū j and Φj.

3. Compute θ̂j+1 =
(
(Φj)>Φj

)−1
(Φj)>Ū j.

4. Update the controller parameters, i.e., determine Cj+1
ff (θ̂j+1), and continue

with step 1 for task j + 1.

B.2) Current-iteration parameter optimization
In the previous section, a batch-wise solution for the optimization problem

(6.10) is outlined. A disadvantage of this method is that the controller can only
be updated in-between tasks, i.e., performance improvement after each task. In
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this section, an on-line optimization is proposed based on recursive least squares
(RLS), which allows to optimize the parameters efficiently during each iteration,
enabling performance improvement during a task.

The recursive equivalent of the solution to (6.10) is given by

θ(k) = θ(k − 1) +K(k)
(
ū(k)− φ>θ(k − 1)

)
(6.22)

in which the time dependent learning gain K is given by

K(k) = P (k)φ(k) (6.23)

and P (k) is recursively computed as follows

P (k) = P (k − 1)
[
I − φ(k)Σφ(k)>P (k − 1)

]
(6.24)

where

Σ =
(
I + φ(k)>P (k − 1)φ(k)

)−1
. (6.25)

with initial conditions P (t0) =
(
Φ(t0)>Φ(t0)

)−1
and θ(t0). A detailed derivation

of the RLS algorithm can be found in (Åström and Wittenmark, 2013, Chapter
2), (Goodwin and Sin, 2014). Next, the following procedure is proposed for
on-line optimization of the parameter using the RLS algorithm in (6.22) - (6.25)

Procedure 6.8 (On-line parameter optimization).

1. Define an initial parameter estimate θ(t0) and initial condition P (t0).

2. At time k compute the learning gain K(k) using (6.23) - (6.25).

3. Compute the parameters θ(k) using (6.22).

4. Update the controller Cff(θ(k)) using θ(k) and start at step 2 for the next
iteration.

To conclude this section, an optimization problem is proposed for feedforward
controller tuning and solutions for both batch-to-batch and on-line settings have
been provided. The main advantage of on-line optimization is that performance
can directly be improved instead of improvement after each iteration as in a
batch-wise setting. However, both methods rely on obtaining an unbiased es-
timate of the optimal tuning parameters in order to minimize the positioning
error (Bitmead and Anderson, 1980), as given in Definition 6.2. Therefore, in
the next section a statistical analysis of the proposed optimization problem is
provided in the presence of measurement noise.
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6.3 Bias analysis in presence of noise

In this section, the estimator proposed in section 6.2 is further analyzed in the
setting in Figure 6.1, i.e., when measurement noise is present and in a closed-loop
setting.

Remark 6.9. The considered problem related to the errors-in-variables setting
(Söderström and Stoica, 1989), where noise is present in both the measured
signals as in the regressor signal. In the considered setting only y0 is subject to
additive noise.

The optimization problem (6.10) is equivalent to the least squares problem
(6.20) and is further analyzed in the presence of noise. Therefore, the optimal
estimate θ∗ that minimizes the cost function, i.e.,

∂V (θ)

∂θ

∣∣∣∣∣
θ=θ∗

= 0 (6.26)

is further analyzed to provide insight in which cases a biased estimate is obtained.
Computing the gradient of V (θ) and equating this to zero

∂V (θ)

∂θ
= −Φ>

(
Ū − Φθ

)
= 0 (6.27)

gives the optimal parameter estimate (6.21).
Before stating the main result in this work consider the following parameter-

ization of the basis functions ψ(q). The nth basis function is of the form

ψn(q) =

nψ∑

j=0

ajnq
−j (6.28)

where nψ is the highest order of all na basis functions and ajn ∈ R is the jth

coefficient corresponding to the nth basis function.

Theorem 6.10 (Bias of the estimator). The expected value of the optimal esti-

mate θ̂ as function of y0 and v is given by

E θ̂ =
[
Γ>a (Ryy + 2Ryv + Rvv) Γa

]−1 ·
Γ>a (Ryy + Ryv) Γaθ0

(6.29)

where Γa is a matrix consisting of all coefficients corresponding to the na basis
functions.

Γa =



a0

1 . . . a0
na

...
...

a
nψ
1 . . . a

nψ
na


 ∈ Rnψ×na (6.30)
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Furthermore, the matrices Ryy ∈ Rnψ×nψ and Rvy ∈ Rnψ×nψ are the auto-
correlation matrix and cross-correlation matrix on the basis of k → ∞ data
samples respectively. Also note that the autocorrelation matrix of the noise
Rvv = σ2

vInψ .

Proof. The proof is given in Section 6.8.

Theorem 6.10 allows to further analyze the setting where input-output data
is collected in a closed-loop fashion, and on-line estimation is used to determine
the feedforward parameter as in Figure 6.2, which is also exploited in Butler
(2012). First, note that

y0 = SPCfb(r − v) (6.31)

implying that correlation is present between y0 and v due to feedback. Next using
Theorem 6.10 it becomes evident that the obtained estimates will be biased due
to measurement noise, since both Rvy 6= 0 and Rvv 6= 0 resulting in E θ̂ 6= θ0.
This leads to severe performance degradation of not accounted for as will be
shown in section 6.5.

In the following Corollaries, the ideal setting without noise and the case
where input-output data is collected in open-loop with noise are considered.

Corollary 6.11 (Noise free optimization). Consider the situation where mea-
surement noise is not present, hence the noise related terms in (6.29) vanish
resulting in

E θ̂ =
[
Γ>a RyyΓa

]−1
Γ>a RyyΓaθ0 = θ0. (6.32)

From which it follows that the estimate θ̂ is an unbiased estimate of θ0 if noise
is not present.

Corollary 6.12 (Noisy optimization in open-loop). Consider the situation
where noise is present and the input output data is collected in open-loop, i.e.,
without a feedback controller being present. This implies that v and y0 are un-
correlated using (6.31), i.e., Rvy = 0, therefore the estimate (6.29) simplifies
to

E θ̂ =
[
Γ>a
(
Ryy + σ2

vInψ
)

Γa
]−1

Γ>a RyyΓaθ0. (6.33)

This shows that the estimate becomes biased E θ̂ 6= θ0 in open-loop due to the
effect of measurement noise.

From this analysis it follows that noise does influence the estimate in both
the open-loop case as in a closed-loop case. In the following section, a practical
approach is presented to mitigate the effect of noise and reduce the bias. Finally,
a case-study and experimental validation is provided to illustrate the necessity
of appropriately dealing with measurement noise in estimation problems to be
able to successfully implement feedforward control.
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6.4 Towards unbiased estimates for feedforward

In this section, a practical approach is presented for the implementation of Pro-
cedure 6.8 in an on-line setting and in presence of noise to reduce the bias.

6.4.1 Reducing estimation bias

Because noise is mainly dominating in the high-frequency range and performance
is usually required up till a certain bandwidth, the effect of noise can be reduced
by filtering both the input u and the output ym with a low-pass filter before
using it for the least squares estimation. To this extend, replace ū(k) and φ(k)
in (6.12) by

ũ(k) = F (z)ū(k) (6.34)

φ̃ = F (z)φ(k) (6.35)

with F (z) ∈ RH∞ a stable and causal filter of the form

F (z) =

(
1− e2πfcTs

z − e2πfcTs

)n
, (6.36)

with n the largest order of the basis functions Ψ in Cff and fc the cut-off filter.
Using this addition filter F yields that

ε̄(k, θ) = Fε(k, θ)− FΨ>θv(k) (6.37)

with ε in (6.12). Hence, the low-pass filter F is ideally small in the high-frequency
range where noise is present. However, note that F modifies the cost function
that is solved, i.e., it reduces the effect of noise and thereby reduces the noise-
bias, at the cost of introducing a bias through F which is in general assumed to be
less than the noise bias. It is shown next, through simulations and experiments,
that this approach significantly improves the estimation performance.

6.5 Illustrative case study

Typical motion systems including; wafer stages, printers and pick-and-
place robot, are described by rigid-body behavior in addition to flexible
modes (Gawronski, 2004)

P (s) = M−1 1

s2
+

∞∑

i=1

(cmqi + scmvi)bmi
s2 + 2ζiωis+ ω2

i

. (6.38)

An example of a typical frequency response function of such a motion system
is depicted in Figure 6.3, where clear rigid body dynamics are present until the
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Figure 6.3: Frequency response function of a typical motion system.

first flexible mode. For controller design, the bandwidth is usually a factor 3
below the first flexible mode, i.e., where the rigid-body behavior is dominant.
Hence, rigid-body dynamics are leading for performance, whereas flexible modes
are taken into account for stability reasons.

6.5.1 Plant and feedback controller

In the remainder of this section, simulations are performed to confirm theoret-
ical conclusions, i.e., illustrate the effect of measurement noise on the tracking
performance. For the sake of illustration a single mass system P (s) = 1/ms2 is
used. First, consider the following discretized transfer function of P

P (z−1) =
T 2
s

2

(z−1 + z−2)

m0(1− 2z−1 + z−2)
, (6.39)

where Ts = 0.001 is the sample time and m0 = 2 the mass. Second, a feedback
controller is designed

Cfb(s) = 1.9 · 108 × s+ 15.71

s2 + 1.3 · 104s+ 3.2 · 106
(6.40)

realizing a bandwidth of 10 Hz. Where the bandwidth is defined as the cross-
over frequency of the open-loop transfer function, denoted with L = PCfb. Next,
consider the feedforward parameterization for this example to obtain the setting
in Figure 6.2.
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Figure 6.4: Positioning error for the case; on-line learning with noise (–),
online learning without noise (–) and batch-wise learning with noise (–). Fur-
thermore, a scaled version of the reference (- -) is given.

6.5.2 Feedforward controller

According to Definition 6.2, the input shaper is given by the plant nominator
polynomial, i.e.,

Cr(q) =
1

2
(q−1 + q−2) (6.41)

and Cff(q, θ) = ψ(q)θ with basis function

ψ(q) =
1− 2q−1 + q−2

T 2
s

, (6.42)

that depends on the plant denominator polynomial. The goal is to optimize
the feedforward controller parameter θ using the optimization problem (6.10),
in which φ(k) = Ψ>y(k) where Ψ consists of the single basis function (6.42) in
this example, i.e., φ(k) = ψ(q)ym(k).

6.5.3 Results and conclusions

The feedforward controller is optimized on-line using Procedure 6.7, and simu-
lations are conducted with and without noise to shown the influence. Further-
more, batch-wise optimization is included to show the benefit of direct learning.
The reference is taken as a sequence of fourth-order point-to-point tasks, see
Figure 6.4, and white noise is used with variance σv = 10−13. The resulting
parameter estimates are depicted in Figure 6.5, and the obtained positioning
error in Figure 6.4.

From these results the following observations can be made.
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Figure 6.5: On-line parameter estimates, i.e., θnoise with noise (–) with 99.7
% confidence interval (–), without noise θnoise-free (–) and the true parameter
θ0 (- -). Batch-wise estimate is also provided (–). A zoom for t ∈ [0.04, 0.2]
shows the convergence of θnoise-free.

• In the noise-free case, the feedforward parameter converges to the true mass
of the system, i.e., θnoise-free → θ0. This confirms that an unbiased estimate
is obtained if measurement noise is not present, as shown in Corollary 6.11.
Note that after a small time interval, (6.4) is satisfied since the positioning
error converges to zero.

• In case that measurement noise is present, although the variance decreases,
the parameter estimate does not converge to the true system parameter
θnoise 6→ θ0, i.e., the obtained estimate is biased confirming the theoretical
conclusions in Section 6.3. It can be seen that due to the biased estimate
the positioning error remains non-zero, i.e., (6.4) is not satisfied.

• The immediate benefit of direct learning is observed. For the batch-wise
implementation a large error is present during the first task, whereas, for
the on-line approach the estimate converges within a fraction of a task, see
zoom in Figure 6.5. Hence, the on-line approach is more robust towards
variations in system parameters.

Finally, it can be concluded that the simulations confirm the theoretical conclu-
sions in this chapter. Next, an experimental case study is performed for valida-
tion and to show that with the practical solution in Section 6.4 the performance
is significantly improved.
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Figure 6.6: Experimental setup.

6.6 Experimental validation

In this section, the feedforward optimization method is applied to a benchmark
motion system. In the previous section, the method is validated in a controlled
situation, however, during the experiments many undesired effects are present
including; sensor quantization, measurement noise, delays and model mismatches
P0 6∈ C. The aim of this experimental case study is to show the potential of this
method in a practical situation.

6.6.1 Experimental setup

The experimental setup is depicted in Figure 6.6, it consists of two rotating
inertias J1 and J2 connected with a flexible shaft. The combined inertia is
approximately given by 3.68 · 10−4 kg m2. The rotation of both inertias is
measured using incremental encoders with a resolution of 2π/2000 radians. The
control goal is to minimize the reference induced positioning error (6.3) of the
non-collocated inertia J2. The following feedback controller is used

Cfb =
0.83(z + 1)(z − 0.9898)

z − 0.8575)(z − 0.8314)
, (6.43)

resulting in an open-loop bandwidth of approximately 15 Hz.
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Figure 6.7: Two mass-spring-damper system.

6.6.2 Feedforward controller optimization

A simplified representation of the setup is given in Figure 6.7, where the transfer
from u to the position x2 is given by

Pncol(s) =
1

s2

ds+ k

J1J2s2 + (J1 + J2)ds+ (J1 + J2)k
. (6.44)

By assuming that damping is small this becomes

Pncol(s) ≈
1

J1J2
k s4 + (J1 + J2)s2

. (6.45)

Hence, to minimize the positioning error, the feedforward controller Cff should
approximate the plant denominator. Therefore, the following two basis functions
are considered dominant and used in Cff ,

ψ1(q−1) =

(
1− q−1

Ts

)2

, ψ2(q−1) =

(
1− q−1

Ts

)4

(6.46)

which can be seen as an acceleration and snap feedforward term. Furthermore,
the input shaper is given by

Cr(z) =
1

4

z2 + 2z + 1

z3
(6.47)

which is a scaled version of a fit of the system numerator, that satisfies (6.8),
and contains 3 samples delay. The cut-off frequency for the low-pass filter F (z)
is set to fc = 25 Hz, which is slightly above the bandwidth of 15 Hz. Next,

procedure 6.8 is executed with initial parameter estimates θ(t0) =
[
0 0

]>
and

initial matrix P (t0) = 10−5 · I2×2. The reference is a fourth-order point-to-point
motion of which the velocity is depicted in Figure 6.9.

6.6.3 Experimental results

The experimental results are shown in frequency-domain with a focus on the
estimation, and in time-domain to show the performance improvement.
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Figure 6.8: FRF of the experimental setup ( ), and experimentally identified
model CrC

−1
ff (θ) with F = 1 ( ) and with fc = 25 Hz ( ).

Frequency-domain results: Two experiments are performed, during the first
experiment F = 1 ( ), during the second experiment fc = 25 ( ) as proposed
earlier. The obtained estimates are compared to the frequency response function
(FRF) of the setup, see Figure 6.8. This shows that without the use of a low-
pass filter a poor estimate is obtained, whereas with the low-pass filter a good
estimate of the setup is achieved. It is interesting to note that, although the
low-pass filter has a cut-off frequency of fc = 25 Hz the resonance frequency of
the plant around 58 Hz is still estimated closely. This is explained using the
parametric model in (6.44) of which the resonance frequency is given by

ωres =

√
(J1 + J2)k

J1J2
(6.48)

being a combination of the inertia and stiffness. Hence, by estimating the compli-
ant contributions of the acceleration and snap terms as in (6.45), the resonance
frequency is estimated closely. Furthermore, it is observed that the damping is
not properly estimated because it is assumed to be zero and thus not adapted.

Time-domain results: To show the benefit of on-line learning in the time-
domain, also two experiments are performed. During the first experiment only
feedback control is used ( ) and in the second experiment the proposed feedfor-
ward controller optimization is included ( ), see Figure 6.9. The results show a
significant performance improvement. Within a fraction of the first task, about
0.1 seconds, the algorithm has computed the feedforward parameters and the
error is reduced with a factor 10, indicating the benefit of direct learning.

To conclude, a good and fast estimate of the feedforward parameters is ob-
tained through on-line learning in a practical situation, furthermore the overall
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Figure 6.9: Positioning error obtained with feedback ( ) compared to feed-
back and learning feedforward ( ), and the scaled reference ( ).

performance is improved with a factor 10.

6.7 Conclusions

In this chapter, a unified framework is provided for automatic feedforward con-
troller tuning. The framework exploits both batch-wise tuning as well as on-line
tuning, leading to new opportunities and insights for feedforward control. A lin-
ear least squares optimization problem with an analytic solution is developed to
optimize the feedforward controller parameters. Furthermore, a detailed statisti-
cal analysis is provided in the case where measurement noise is present, indicat-
ing that biased estimates are obtained in earlier approaches (Butler, 2012). Fur-
thermore, a simple and practical approach is presented to reduce the estimation
bias in a practical situation. An example confirms the theoretical conclusions,
i.e., indicating the possible hazard of using biased estimates for feedforward con-
trol resulting in a deterioration of the positioning performance. Moreover, the
approach is validation through experiments on a benchmark motion system.

6.8 Proof

Proof of Theorem 6.10

The regressor matrix in the least squares solutions (6.21) can be rewritten as
follows,

Φ> = (YmΨ>)> (6.49)
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with Y >m =
[
ym(1) ym(2) . . . ym(k)

]
. Substitute (6.49) in (6.21) to obtain

θ̂(k) = ((YmΨ>)>YmΨ>)−1(YmΨ>)>Ū (6.50)

= (Ψ>Y >m YmΨ)−1Ψ>YmŪ . (6.51)

Substitute, Ym = Y0 + V and Ū = B0P0Y0 = Ψ>Y0θ0, such that (6.51) can be
reformulated as a function of Y0 and V

θ̂ =[Ψ(Y >0 Y0 + 2V >Y0 + V >V )Ψ]−1Ψ>(Y0 + V )Ψ>Y0θ0. (6.52)

Consequently, use the matrix of basis function coefficients Γ in (6.30) and define

Q(q−1) =
[
1 q−1 . . . q−nψ

]>
to rewrite the basis functions as ΨA = ΓaQ(q).

Substitute this result in (6.52) to obtain

θ̂ =[Γ>a Q(Y >0 Y0 + 2V >Y0 + V >V )Q>Γa]−1Γ>a Q(Y0 + V )Q>Γaθ0, (6.53)

which is equivalent to

θ̂ =[Γ>a (R̂yy + 2R̂vy + R̂vv)Γa]−1Γ>a (R̂yy + R̂yv)Γaθ0, (6.54)

with R̂vy and R̂yy given by

R̂vy(k) = QV >Y0Q
>, R̂yy(k) = QY >0 Y0Q

>. (6.55)

Now use that under mild conditions in (Söderström and Stoica, 1989, Appendix
B) is follows that

lim
k→∞

1

k

k∑

t=1

θ̂(k)→ E θ̂(k) (6.56)

with probability one. Consequently,

Ryy = lim
k→∞

1

k
R̂yy(k) Rvy = lim

k→∞
1

k
R̂vy(k), (6.57)

which are the auto-correlation and cross-correlation matrices respectively,

Rab(k) =




E a(k)b(k) . . . E a(k)b(k − nψ)
...

. . .
...

E a(k − nψ)b(k) . . . E a(k − nψ)b(k − nψ)


 , (6.58)

and limk→∞ R̂vv(k) → σ2
nI. Finally, the expected value of (6.54) is given by

(6.29) in Theorem 6.10 which completes the proof.



Chapter 7
On-line Instrumental Variable-Based
Feedforward Tuning for Non-Resetting Motion
Tasks1

Abstract: Tracking of non-resetting point-to-point references with high task
flexibility that cannot be separated into individual batches, e.g., with a varying
step size, requires continuous updating of learning feedforward controllers
rather than task-by-task updating. The aim of this chapter is to develop an
adaptive feedforward controller for non-resetting point-to-point motion tasks
by continuously updating the feedforward parameters based on data. A
consistent and approximate optimal instrumental variable (IV) estimator is
used in a closed-loop setting to update the feedforward parameters with a
real-time bootstrapping procedure. A case study on a wafer-stage and
experimental validation on a benchmark motion system show the immediate
performance benefit.

1The results in this chapter constitute Contribution 6 of this thesis. The chapter is based
on Mooren, N. et al. (2022e). On-line Instrumental Variable-Based Feedforward Tuning for
Non-Resetting Motion Tasks. (Submitted for journal publication).
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7.1 Introduction

Learning feedforward control can yield tremendous performance improvement
for high-precision motion systems that require highly flexible and non-resetting
motion tasks as in Figure 7.1. Consider for example the wafer-stage for semi-
conductor manufacturing in Figure 7.2, which has a short-stroke stage (blue)
for accurate and fast positioning of the semiconductor components in front of a
gripper, and a long-stroke stage (yellow) to enable a large range. Sequentially
picking up semiconductor components from the wafer constitutes such a vary-
ing and non-resetting point-to-point reference in Figure 7.1, where ∆ri varies
depending on the relative position between the current and the next semicon-
ductor component, and the dwell time ∆ti depends on other modules in the
system to be ready for the next task, see, e.g., Boeren et al. (2016); Boeren
et al. (2014); van der Veen et al. (2020). Moreover, the system dynamics are
position-dependent due to the large range. Hence, a data-driven feedforward
approach is required that can cope with continuous motion tasks with a varying
step size and task length, i.e., the system does not resets to the same initial
condition at the start of a next task which is required for batch-wise feedforward
approaches (Bristow et al., 2006). As a result, batch-wise learning of feedforward
parameters is not possible and does not exploit data during the current task.

Manual tuning of feedforward parameters and model-based feedforward can
compensate for non-resetting and varying references, i.e., with an inverse model
of the system any reference can be completely compensated. However, the per-
formance is directly related to the inverse-model quality, and manual tuning of
feedforward parameters (Oomen, 2019), e.g., mass, snap and jerk parameters, or
non-linear phenomena such as hysteresis (Strijbosch et al., 2021), is often time-
consuming and need to be performed on an inefficient machine-specific basis.
Moreover, in the case of position-dependent behavior, a different feedforward
tuning is required over the entire range. In view of these challenges, an auto-
matic data-driven tuning approach is preferred to learn feedforward controllers.

Batch-wise learning approaches, such as iterative learning control (ILC),
learn from previous tasks to improve tracking performance for systems with re-
setting references. Iterative learning control (ILC) learning a feedforward signal
that exactly compensates the same reference, even in the case of a non-perfect
model (Altın et al., 2017; Bristow et al., 2006; Veronesi and Visioli, 2014). If
varying and resetting tasks appear, then ILC can be combined with basis func-
tion and learn the corresponding parameters (Bolder and Oomen, 2015; van de
Wijdeven and Bosgra, 2010). However, as ILC requires the same initial con-
dition at the start of each task ri this batch-wise approach is not applicable
(Gorinevsky et al., 1997) if the reference is non-resetting as in Figure 7.1.

On-line learning of feedforward parameters enables performance improve-
ments within a task without imposing restrictions on the resetting behavior of
the reference. In Butler (2012) recursive least squares (RLS) is successfully used
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Figure 7.1: Example of a typical point-to-point non-resetting reference with
varying step size ∆ri ∈ R and dwell time ∆ti ∈ N.
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Figure 7.2: Motivating application: a long-stroke short-stroke wafer-stage for
semiconductor manufacturing that performs non-resetting and varying point-
to-point motion tasks.

for on-line estimation of the acceleration feedforward parameter on a wafer-stage
resulting in an immediate performance improvement. However, in Chapter 6 it
is shown that this approach inherently suffers from a closed-loop estimation
problem resulting in biased estimates resulting in performance degradation. For
accurate reference tracking, it is essential that unbiased parameter estimates in
an on-line setting.

Instrumental variable (IV) estimators can obtain unbiased estimates in a
closed-loop setting by appropriate design of so-called instrumental variables, see,
e.g., Gilson et al. (2011); Gilson and Van Den Hof (2005); Janot et al. (2013);
Ljung (1999); Söderström and Stoica (1989). In Boeren et al. (2018) an IV
estimator is applied for optimal updating of feedforward parameters. This result
shows that for rational systems with resetting point-to-point motion tasks, a
combination of an adaptive input-shaper and feedforward-controller facilitates a
convex optimization problem with an analytic solution. However, IV estimation
is performed in a batch-wise setting it is not applicable to non-resetting varying
references.
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Figure 7.3: Control problem with adaptive input shaper Cr and feedforward
controller Cff with parameter θ(k) this is estimated in real-time.

Although recent progress has been made for on-line feedforward controller
tuning for non-resetting tasks, an approach that yields an accurate estimate, i.e.,
unbiased with small variance, in a closed-loop setting is not yet available. The
main contribution of this chapter is an optimal IV-based adaptive feedforward
controller for non-resetting point-to-point references with an on-line bootstrap-
ping approach (Freedman, 2009; Söderström and Stoica, 1989; Tjarnstrom and
Ljung, 2002), yielding a convex optimization problem for efficient on-line imple-
mentation. The following contributions are identified.

C1 IV estimation of feedforward parameters for arbitrary non-resetting point-
to-point references,

C2 recursive approximate optimal IV estimation through on-line bootstrapping
for accurate parameter estimation,

C3 a case study on the wafer-stage in Figure 7.2 with non-resetting varying
point-to-point references, and

C4 experimental validation on benchmark motion system.

The outline of this chapter is as follows. In Section 7.2, the control problem is
formulated as an estimation problem that is formally presented. In Section 7.3,
the recursive IV-based estimator for on-line feedforward parameter estimation
is presented with an on-line bootstrapping approach. In Section 7.4, additional
design aspects are outlined. In Section 7.5, a simulation case-study is performed
with a wafer-stage setup, and in Section 7.6 the approach is validated on a
benchmark motion system. Finally, in Section 7.7, the conclusions are presented.
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7.2 Problem definition

7.2.1 Control setting and problem definition

The control setting is depicted in Figure 7.3, where P is a linear time-invariant
(LTI) single-input single-output (SISO) system that represent the dynamics of
the short-stroke wafer-stage in the x-direction, and Cfb is a stabilizing LTI feed-
back controller. The system P is rational given by

P =
B0(q−1, θ0)

A0(q−1, θ0)
, (7.1)

where A0 and B0 are polynomials in the backwards time-shift operator q−1,
i.e., u(k − 1) = q−1u(k) with k ∈ Z discrete time, and θ0 ∈ Rnθ are the true
system parameters. The aim is to track a non-resetting point-to-point reference
r depicted in Figure 7.1, by designing the adaptive feedforward controller Cff(θ)
and input shaper Cr(θ) that depend on θ(k). The signal θ(k) ∈ Rnθ contains nθ ∈
N parameters that are updated in an on-line fashion by a parameter estimator on
the basis of r(k), the system input u(k) and the noisy output y(k) = y0(k)+v(k),
where v(k) ∼ N (0, σ2

v) is zero-mean normally distributed with variance σ2
v . In

the remainder, the focus is on improving performance in the dwell time phase
∆ti ∈ N, e.g., where the semi-conductor component in the earlier example is
picked-up from the wafer.

Definition 7.1. The control goal is to minimize the reference tracking error
‖er‖2 with er = r − y, during the dwell time ∆ti by designing the adaptive
feedforward controller Cff(θ) and input shaper Cr(θ).

The tracking error er to be minimized is given by

er =
(
1− SP (Cff(θk) + CfbCr(θk))

)
r, (7.2)

where S = (1+PCfb)−1 is the sensitivity function and θk = θ(k). It is important
to note that the error (7.2) is not necessarily equal to the feedback error e = r̄−y,
with r̄ = Cr(θ)r, which is minimized by Cfb.

7.2.2 Feedforward controller parameterization

The input-shaper Cr and feedforward controller Cff are polynomials and linear
in the parameters θ, which facilitate a convex feedforward parameter estimation
problem that is beneficial for the on-line implementation. Consider the following
parameterization, see also Boeren et al. (2014).

Definition 7.2. The input shaper Cr(θ) and feedforward controller Cff(θ) are
of the form

C =

{
(Cr, Cff)

∣∣∣∣
Cff = A(q−1, θk)
Cr = B(q−1, θk)

}
, (7.3)



7

168 Chapter 7. On-line IV Feedforward for Non-Resetting Motion Tasks

with A(q−1, θk) and B(q−1, θk) polynomials in q−1 given by,

A(q−1, θk) =

na∑

i=1

ψi(q−1)iθik = Ψ>AθA (7.4)

B(q−1, θk) = 1 +

na+nb∑

i=na+1

ψi(q−1)iθik = 1 + Ψ>BθB , (7.5)

that are linear in θk. Where ψ(q−1) ∈ R[q−1] are the basis functions where
nb, na ∈ N, also

ΨA =
[
ψ1 . . . ψna

]> ∈ Rna [q−1] (7.6)

ΨB =
[
ψna+1 . . . ψnθ

]> ∈ Rnb [q−1] (7.7)

are the basis functions of Cff and Cr respectively with corresponding parameters

θA =
[
θ1 . . . θna

]> ∈ Rna , θB =
[
θnb . . . θna+nb

]> ∈ Rnb , and θ(k) =[
θA(k) θB(k)

]> ∈ Rnθ with nθ = na + nb.

The following assumption is imposed on the input shaper.

Assumption 7.3. The input shaper Cr satisfies that

Cr(θ, q
−1)|q−1=1 = 1, (7.8)

such that it has unit steady-state gain.

Assumption 7.3 avoids scaling of the reference. Note that the reference r̄(k) =
Crr(k) reaches steady state nk samples after r(k) is constant which is the case
in the dwell time ∆t, with nk the order of Cr. Consequently, r̄(k) = r(k) for
k ∈ ∆T with ∆T = [ti + Ti + nk, ti+1] ∀ i ∈ N, see, e.g., Boeren et al. (2014).
As a result, the tracking error (7.2) is identical to the feedback error

e = S (Cr(θ)− PCff(θ)) r, (7.9)

for all k ∈ ∆T , minimization of (7.9) is obtained if, ideally,

Cr(θ) = PCff(θ) (7.10)

for some θ such that CffC
−1
r = P−1 contains a model of the inverse system.

7.2.3 Estimation for feedforward control

In this section, the control goal is Definition 7.1 is reformulated as an equiva-
lent estimation problem under Assumption 7.3 and the feedforward controller
parameterization C. The ideal setting in (7.10) implies that e = 0 if Cr(θ) = A0

and Cff(θ) = B0 for arbitrairy references. Hence, it is necessary that the true
system P must be in the model set that is defined by the basis functions ΨA

and ΨB .
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Assumption 7.4. The true system is in the model set, i.e., the basis functions
ΨA and ΨB satisfy that ΨAθA = A0, and ΨBθB = B0 for some θA and θB.

The following definition outlines properties of the parameter estimator such
that the tracking error is minimized during the dwell time ∆t.

Definition 7.5. In the setting in Figure 7.3 under Assumptions 7.3 and 7.4, and
with the parameterization C, the tracking error er(k) for k ∈ ∆ is minimized by
obtaining an accurate estimate θ(k), i.e., such that the estimation error θ(k)−θ0

asymptotically has normal distribution
√
k(θ − θ0)→ N (0, P ) for k →∞, (7.11)

with the following properties:

R1 (θ(k)− θ0)→ 0 as k →∞; and

R2 P is minimal.

Definition 7.5 yields that by design of an appropriate estimator, i.e., that
recovers the true plant parameters in the presence of noise v and in a closed-
loop setting, the tracking error is minimized during the dwell time ∆ti.

7.2.4 Control problem

Estimation of the feedforward controller parameters is in practice often done
using a least-squares estimator, see, e.g., Butler (2012); Fujimoto and Yao (2005).
However, it is shown that biased estimates are often obtained if the estimation is
performed in a closed-loop setting with measurement noise, see, e.g., Chapter 6.
The aim of this chapter is to use a suitable estimator, in view of Definition 7.5,
to estimate the feedforward parameters in the closed-loop setting in Figure 7.3
with v 6= 0.

7.3 On-line IV-based feedforward controller
tuning

In this section, an approximate optimal IV estimator with on-line bootstrapping
is presented that yields a recursive update law for the feedforward parameters
θ(k) in the setting in Figure 7.3, which consequently minimizes the tracking error
during the dwell time, see Section 7.3.1 and 7.3.3. This includes conditions on
the optimal instrumental variables to obtain the theoretical lower bound, which
appears to depend on the true system parameters. Therefore, an on-line boot-
strapping procedure is presented that approximates the optimal instrumental
variables in practice in Section 7.3.2. Finally, an implementation procedure is
provided in Section 7.3.4.
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7.3.1 Optimal IV estimation for feedforward

A suitable estimator must be developed for the adaptive feedforward parameters
θ(k) as shown in Definition 7.5 to minimize the tracking error. To do so, an IV
estimator is used that enables recursive tuning of θ(k) on the basis u(k), y(k)
and r(k). Moreover, it is shown that the presented IV estimation problem yields
a recursive update law for the feedforward parameters θ(k) that is suitable for
on-line implementation.

Theorem 7.6. Consider the setup of Figure 7.3 with feedforward parameteriza-
tion C in (7.3), and under Assumptions 7.3 and 7.4. The feedforward parameters
that satisfy R1 and R2, and consequently minimize the er(k) for k ∈ ∆T , are
obtained by

θ(k) = arg min
θ
VIV(k, θ), (7.12)

with

VIV(k, θ) =

∥∥∥∥∥

[
1

k

k∑

i=1

z(i)
(
F (q−1)ε(i, θ)

)
]∥∥∥∥∥

2

, (7.13)

ε(k, θ) = u(k)− φ>(k)θ(k), (7.14)

where ε(k, θ) ∈ R is linear in θ, z(k) ∈ Rnz , F (q−1) is a stable filter, and

φ(k) =

[
ΨA(q−1)y(k)
−ΨB(q−1)u(k)

]
∈ Rnθ . (7.15)

The estimate (7.12) is consistent, i.e., (θ0 − θ(k))→ 0 for k →∞, if

C1 E[z(k)F (q−1)A0(θ0)v(k)] = 0,

C2 E[z(k)F (q−1)φ(k)] is non-singular, and

the estimator error has optimal asymptotic distribution (θ(k)−θ0)→ N (0, PIV )
with minimal variance if

z(k) = A−1
0 (q−1, θ0)φr(k) := zopt(k) (7.16)

F (q−1) = A−1
0 (q−1, θ0) := F opt(q−1) (7.17)

where

φr(k) =

[
ΨA(q−1)yr(k)
−ΨB(q−1)ur(k)

]
, (7.18)

the noise-free part of φ(k) and ur(k) and yr(k) are the noise-free input and
output respectively.
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The proof of Theorem 7.6 is included in Section 7.8.

In this chapter, a recursive IV-based procedure is presented that exploits
on-line bootstrapping to closely approximate optimal IV. Under optimality con-
ditions, the result in Theorem 7.6 yields that the plant parameters are consis-
tently recovered with minimal variance. Moreover, in the non-optimal case the
parameter estimates remain unbiased but the variance can be larger than the
theoretical lower bound. As a result, the reference-induced tracking error (7.9)
is minimized. The presented approach updates each sample in contrast to the
existing approaches, e.g., (Boeren et al., 2017) which exploits resetting refer-
ence tasks. In the case of repeating reference tasks the batch-wise approach in
(Boeren et al., 2017) can be used, where bootstrapping is avoided as shown later.

Next, consider the following persistence of excitation condition.

Definition 7.7. The input u is persistently exciting of order n if for all k there
exists an integer m such that

γ1I >

k+m∑

i=k

ξ(i)ξ(i)> > γ2I, (7.19)

(7.20)

where γ1, γ2 > 0, and ξ(k) =
[
u(k − 1) . . . u(k − n)

]
see (Åström and Wit-

tenmark, 2013; Ioannou and Sun, 1996, Chapter 2.4) (Ioannou and Sun, 1996).

Assumption 7.8. The reference is persistently exciting according to Defini-
tion 7.7.

Theorem 7.6 reveals that with the IV-estimator (7.12) the estimate θ(k)→ θ0

for k →∞ if the instrumental variables z(t) are uncorrelated with the noise v(t)
(C1) and correlated with the regressor (C2), satisfying R1. Moreover, with the
optimal instrumental variables zopt in (7.16) and the optimal pre-filter F opt in
(7.17), the theoretical lower-bound of the covariance matrix PIV is obtained,
satisfying R2. However, since both zopt and F opt depend on the unknown sys-
tem parameters θ0, approximations of the optimal instrumental variables and
pre-filter are provided next with on-line bootstrapping. Finally, under Assump-
tion 7.4 and 7.8 and with the estimator in Theorem 7.6 the estimate is said to
be identifiable (Söderström and Stoica, 1989).

Note that C1 directly imposes the limitation that z(t) cannot be constructed
from measured signals that contain noise. Therefore, an external signal is re-
quired; in this work the reference is used to construct the instrumental variables,
i.e., z(t) = f(r(t), ṙ(t), r̈(t), . . .), as in, e.g., (Boeren et al., 2018).
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Figure 7.4: Schematic representation for approximate optimal instrumental
variable (IV) estimation for adaptive feedforward with on-line bootstrapping,

where Ψ =
[
ΨA −ΨB

]>
.

7.3.2 Towards optimal feedforward using on-line
bootstrapping

In this section, an approximation of the optimal instruments zopt and pre-filter
F opt is provided using on-line bootstrapping to approximate the optimal vari-
ance, see, e.g., Freedman (2009); Söderström and Stoica (1989); Tjarnstrom and
Ljung (2002) for more details on bootstrapping. This is done by replacing θ0

by an estimate denoted θbs(k) at each sample. The aim is to approximate the
theoretical lower-bound of the estimator variance. The approach is presented
in Figure 7.4, where L is an optional pre-filter, and ẑ and F̂ are approxima-
tion of their optimal versions. In this section, set L(q−1) = q−1, such that
θbs(k) = θ(k − 1) is the previous estimate.

First, the approximation of the optimal pre-filter in (7.17) is straight forward
by replacing θ0 with θbs(k) yielding

F̂ (q−1, θbs, k) = (ΨA(q−1)θAbs(k))−1. (7.21)

Second, the approximation of zopt in (7.16) is more involved, because it
requires the noise-free regressor φr(k) in (7.18) that required yr and ur. To
approximate φr(k), note that ur and output yr can be written as function of
r(k), i.e.,

yr(k) = Tyr(θ0)r(k) (7.22)

ur(k) = Tur(θ0)r(k), (7.23)
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with

Tyr(θ0) = S(θ0)C(θ) (7.24)

Tur(θ0) = P (θ0)S(θ0)C(θ) (7.25)

C(θ) = Cff(θ) + CfbCr(θ), (7.26)

here, Tur(q
−1, θ0) and Tyr(q

−1, θ0) are the mappings from r to the noise-free
input and output respectively. Since Tur and Tyr also depend on θ0, a similar
bootstrapping approach is utilized, i.e.,

ûr(k) = T̂ur(θbs(k))r(k) (7.27)

ŷr(k) = T̂yr(θbs(k))r(k) (7.28)

are used as the approximations of the noise-free input and output with

T̂yr(q
−1, θbs) = S(θbs)C(θ) (7.29a)

T̂ur(q
−1, θbs) = P (θbs)S(θbs)C(θ). (7.29b)

Note that the filters (7.29) can become unstable for some θbs, in this case a
stable approximation is presented in Section 7.4. Consequently, the noise-free
regressor is given by

ẑ(k) =
[
ΨAT̂yr(θbs) ΨBT̂ur(θbs)

]
r(k). (7.30)

In summary, the optimal instruments and the pre-filter are approximated
with (7.30) and (7.21) respectively, where the parameters θbs(k) are (filtered
versions) of θ(k−1) which is referred to as on-line bootstrapping. In the following
section, the resulting update law for the feedforward parameters θ is outlined.

Remark 7.9. If the reference is resetting, i.e., can be split into individual
batches, then the parameterized filters (7.29) can be replaced by a stable approx-
imation of C−1, see, (Boeren et al., 2017). However, that approach is limited to
SISO systems which is not the case for the presented approach with bootstrapping.

7.3.3 Recursive IV for on-line feedforward control

A recursive solution to the parameter estimation problem in Theorem 7.6 that
is suitable for the on-line tuning of Cr(θ) and Cff(θ) is presented in the following
lemma.

Definition 7.10. The parameters θ(k) in Cff(θ) and Cr(θ) at sample k are
given by the recursive solution to (7.12) on the basis of u(k), φ(k), z(k), and the
(initial) parameter estimate θ(k − 1), with the update law

θ(k) = θ(k − 1) +K(k)
(
ν(k)− Φ>(k)θ(k − 1)

)
, (7.31)
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with

K(k) = P (k − 1)Φ(k)[Λ(k) + Φ>(k)P (k − 1)Φ(k)]−1

Φ(k) =
[
R>(k − 1)z(k) φF (k)

]
∈ Rnθ×2

Λ(k) =

[
−z>(k)z(k) 1

1 0

]
∈ R2×2

ν(k) =

[
z>(k)η(k − 1)

uF (k)

]
∈ R2

R(k) = R(k − 1) + z(k)φ>F (k)

η(k) = η(k − 1) + z(k)uF (k)

P (k) = P (k − 1)−K(k)Φ>(k)P (k − 1)

where K(k) ∈ Rnθ×2, P (k) ∈ Rnθ×nθ , η(k) ∈ Rnz , and R(k) ∈ Rnz×nθ are
recursively computed, and uF (k) = F (q−1)u(k) and φF (k) = F (q−1)φ(k), con-
stituting the recursive solution to the IV estimate in Theorem 7.6.

The update law for the feedforward parameters (7.31) is used to update the
feedforward controllers at each sample. Hence, the control input uff and the
reference r̄ at sample k are given by

uff(k) = ΨA(q−1)θA(k)r(k) (7.32)

r̄(k) = ΨB(q−1)θB(k)r(k) (7.33)

where θ(k) is computed using Definition (7.10).
To compute θ(k), only the previous estimate θ(k − 1), the current value

of the input u(k), the output y(k) and the instruments z(k) are required, i.e.,
the recursive algorithm does not require memory of all the past samples to
compute the parameter update for the current time step. Moreover, the matrix
inversion to compute K(k) is of size 2 × 2 for all k which is computationally
inexpensive, this allows to implement the IV-based feedforward controller in an
on-line setting.

Remark 7.11. If the reference can be separated in individual tasks that start
from the same initial conditions, then the batch-wise solution to the identification
problem in Theorem 7.6 is given by

θi = (R>NRN )−1R>NUN ,

for task i with N the number of data points and RN =
∑N
i=1 z(i)F (q−1)φ>(i)

and UN =
∑N
i=1 z(i)F (q−1)u(i), see, e.g., Boeren et al. (2015).
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7.3.4 Procedure

The following procedure outlines the implementation for approximate optimal
IV-based feedforward control.

Procedure 7.12 (On-line approximate bootstrapping IV).

Step 1: Initialization

(a) Set θ(0) = θinit, P (0) = αInθ with α a large number, η(0) = 0 and
R(0) = 0 with 0 a matrix of appropriate size, and k = 1. Moreover,
define ΨA(q−1) and ΨB(q−1).

Step 2: On-line IV-based feedforward

(a) Compute F̂ opt(θbs), T̂yr(θbs) and T̂ur(θbs) in (7.29) with θbs(k) =
L(q−1)θ(k − 1).

(b) Obtain u(k), y(k) and r(k), compute φ(k) in (7.15), and z(k).

(c) Compute θ(k), and consequently r̄(k) and uff(k) using Defini-
tion 7.10.

(d) set k → k + 1 and repeat step 2a) - 2c).

This procedure completes the basic implementation of on-line bootstrapping
IV for adaptive feedforward. In Section 7.4 additional implementation aspects
are provided, e.g., how to ensure stability of the filter Tur(θbs) and Tyr(θbs).

Remark 7.13. The bootstrapping step can also be performed in a batch-wise
approach instead of at each sample. By starting to bootstrap with k > ks and
ks > 1, the estimate θ(k) has already converged to avoid divergence at the start
of the algorithm.

7.4 Design aspects

In this section, implementation aspects are provided, including a stable approxi-
mation of the adaptive filters Tur, Tyr, and F̂ opt, the inclusion of an exponential
forgetting factor in the Definition 7.10, and how to choose the optimal filter L
in Figure 7.4.

7.4.1 Stable approximations for on-line bootstrapping

The filters T̂yr(θbs), Tur(θbs) and F̂ opt(θbs) can be unstable for some θbs(k) such
that ûr and ŷr can become unbounded which is undesirable. The filters defined
in (7.21) and (7.29) are expected to be stable by design. Therefore, the following
procedure presents a stable approximation approach where the possibly unstable
poles in T̂yr(θbs), Tur(θbs) and F̂ opt(θbs) are approximated with stable poles.
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Figure 7.5: Graphical illustration of the stable approximation in Proce-
dure 7.14 where unstable poles ( ) are approximated with stable poles ( ) with
zero magnitude error.

Procedure 7.14 (Zero magnitude stable approximation).

1. Separate the denominator of G into a stable part As and an unstable part
Au, i.e.,

G(q−1) =
B(q−1)

Au(q−1)As(q−1)
, (7.34)

where Au(q−1) = a0 + a1q
−1 + . . .+ anq

−n.

2. The stable approximation of G such that |G| = |Ĝs| is given by

Ĝs(q−1) =
B(q−1)

Afu(q−1)As(q−1)
, (7.35)

where Afu(q−1) = an + an−1q
−1 + . . .+ a0q

−n.

Procedure 7.14 creates a stable approximation that has zero magnitude error,
similar to zero-magnitude-error-tracking-control (ZMETC) to obtain a stable ap-
proximation in Butterworth et al. (2008), see Figure 7.5. Alternative approaches
are conceptually possible, e.g., ZPETC (Tomizuka, 1987) to obtain a zero-phase
error estimate if desired, by replacing unstable poles by non-minimum phase
zeros. The motivation for Procedure 7.14 is that it replaces unstable poles by
stable poles which is expected since the filters F̂ (θbs), T̂ur(θbs), and T̂yr(θbs) are
expected to be stable as well.

Remark 7.15. If the P contains a rigid-body mode, i.e., poles at 1 + 0i, then
F opt(θ0) is unstable. To avoid this for F̂ (θbs) the basis functions can be altered
such that the poles are shifted slightly into the unit disk.
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7.4.2 Filtering of θ(k) for bootstrapping

The parameter estimate θ obtained with Procedure 7.12 can be erratic when
few data points are available, potentially leading to divergence of the bootstrap-
ping approach. Directly using these erratic parameters for bootstrapping and
feedforward is undesirable. Therefore, the filter L in Figure 7.4 is introduced to
filter the output of the recursive IV algorithm before bootstrapping, e.g., with
a low-pass filter characteristic. In this chapter, a moving average filter is used
such that

θbs(k) =
(1− γ)q−1

1− γq−1

︸ ︷︷ ︸
L(q−1)

θ(k) (7.36)

with γ = e−2πfcTs where fc ≥ 0 is the cut-off frequency and Ts the sample time.
Note that fc is a tuning parameter, decreasing fc yields that θbs is smoother, and
for limfc→∞ L(q−1, fc) = q−1, i.e., no filtering. Note that with fc > 0 the filter

L introduces a modeling error in F̂ opt, T̂ur and T̂yr. Hence, there is a trade-off
between performance and robustness in the tuning of fc that is preferably large.

7.4.3 Incorporating system knowledge

Modern control systems are implemented in discrete-time, i.e., a part of the plant
that is introduced through zero-order-hold discretization and system delays are
often known in advance. To use this knowledge instead of estimating it, the
system can be parameterized as

P (q−1, θ0) = P̃ (q−1)
B0(q−1, θ0)

A0(q−1, θ0)
, (7.37)

where P̃ (q−1) contains the known part. Consequently, by using ũ(k) =
P̃ (q−1)u(k) instead of u(k) in Definition 7.10, the adaptation law is adapted
accordingly. Moreover, the implementation of the adaptive feedforward becomes
C̃r(q

−1) = Cr(q
−1)P̃ (q−1) accordingly.

Remark 7.16. Alternatively, the inverse of P̃ can be implemented in the feed-
forward controller, i.e., C̃ff = P̃−1Cr, if P̃−1 is stable. Moreover, a combination
where the numerator and denominator of P̃ are implemented in Cr and Cff re-
spectively is also possible.

7.5 Wafer-stage case study

In this section, a case study is performed that mimics the model and the type
of references that are encountered in the wafer-stage motivating example in
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Figure 7.6: Case study: simplified model of the short-stroke wafer stage dy-
namics in the x-direction.

Figure 7.2. A simplified model of the short-stroke stage dynamics in the x-
direction is depicted in Figure 7.6, i.e., it is modeled as two masses with a
flexible element in-between.

7.5.1 Wafer-stage model

The model is given by

P (q−1) = P̃ (q−1)
ΨB(q−1)θB0
ΨA(q−1)θA0

= P̃ (q−1)
9.26 · 10−6(1 + q−1)

(1− q−1)2(1− 1.967q−1 + 0.9977q−2)
,

where P̃ contains a discrete-time approximation of 2.2 samples delay, and the
basis functions are

ΨB(q−1) =
(

1−q−1

Ts

)
(7.38)

ΨA(q−1) =

[(
1−q−1

Ts

)2 (
1−q−1

Ts

)3 (
1−q−1

Ts

)4
]>

. (7.39)

with true system parameters θA0 =
[
39.4 −0.018 0.00031

]
· 10−5 and θB0 =

−24.4 · 10−5. A Bode plot of the system is shown in Figure 7.7 in ( ). A
stabilizing feedback controller is given by

Cfb(q−1) =
0.69 + 0.006q−1 − 0.68q−2

1− 1.672q−1 + 0.696q−2
(7.40)

resulting in a bandwidth of approximately 10 Hz. Moreover, the system output
is subject to additive normally distributed zero-mean noise with variance σv =
10−4.

The aim is to track a point-to-point reference with a random step size ∆ri
and random dwell times ∆ti, similar to the actual references encountered in
the wafer stage setup. Several point-to-point reference tasks are depicted in
Figure 7.8 which are shifted to the origin for comparison.
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Figure 7.7: Case study: bode plot of the true system ( ) and the model that
is obtained with recursive approximate optimal IV identification with on-line
bootstrapping ( ) with the initial estimate ( ).

7.5.2 Tuning

In view of Assumption 7.4, the basis functions for feedforward are selected as in
(7.39). The initial parameter estimates are chosen as

θA(0) =
[
0.75 1.25 1.5

]
θA0 ,

θB(0) = 0,

such that there is a significant initial error. Moreover,

P (0) =




2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 0.2


 · 104,

and the cut-off frequency in (7.36) fc = 5 Hz to filter out the high-frequency
variations in θ before on-line bootstrapping.

7.5.3 Estimation performance through Monte Carlo
simulation

To study the convergence and the variance of the recursive IV estimator with
on-line bootstrapping, a set of 1000 Monte-Carlo simulations is performed with
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Figure 7.8: Case study: individual reference tasks taken from the point-to-
point reference in the simulation case study. Note that each tasks has a different
random step size and dwell time, the end of a task is indicated with the markers
( ).

random noise realizations where each simulation consists of 60 point-to-point
tasks as in Figure 7.1. Also, the optimal recursive IV estimator with true system
parameters is used in the simulations to compare the theoretical lower bound for
the variance with the obtained approximate optimal IV variance. Moreover, a
simulation is performed without bootstrapping such that C1 and C2 in Theorem
7.6 are satisfied and the estimator is asymptotically unbiased, but the variance is
not optimized. To do so, the converged estimation error θ−θ0 of all simulations is
shown in the histogram plot in Figure 7.9 for the first parameter with Procedure
7.12 (left) and with optimal IV (right).

From the results, it can be concluded that indeed the estimation error is
normally distributed as shown in Theorem 7.6. Moreover, the variance of the
on-line bootstrapping IV estimator ( ) closely resembles the optimal IV es-
timator variance ( ), in contrast to the IV estimator without bootstrapping
( ) where the variance is much larger. The mean and variance of the optimal
estimator and the approximate bootstrapping IV estimator are summarized in
Table 7.1, confirming these observations.

Finally, the obtained plant estimate CrC
−1
ff ≈ P in line with (7.10) is show

in Figure 7.7 together with the true plant P0 and the initial estimate. The result
shows that indeed a good estimate of the true system is obtained.

7.5.4 Feedforward performance results

The results of directly using the estimate θ(k) obtained with approximate opti-
mal on-line bootstrapping IV for feedforward control as in Figure 7.3 in shown
in Figure 7.10, where the tracking error e = r − y is shown in addition to the
feedback error er = r̄− y. Moreover, the tracking error er is also shown without
feedforward control for comparison.
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Figure 7.9: Case study: histogram plot of the estimation error for θ2 over
1000 Monte Carlo simulations for optimal IV ( ) and with a fixed set of
instrumental variables ( ), i.e., without bootstrapping (left). By employing
the presented bootstrapping method in Procedure 7.12 the estimator variance
( ) (right) is significantly improved and closely approximates the optimal
variance ( ).

Table 7.1: Mean and standard deviation of the converged error with 1000
Monte-Carlo simulations for optimal IV, approximate optimal IV with boot-
strapping and IV without bootstrapping.

Opt. IV IV + bootstrapping IV

Mean 1.61 · 10−7 1.59 · 10−7 −1.17 · 10−6

Standard deviation 5.28 · 10−6 5.53 · 10−6 5.06 · 10−5

The results show that with feedforward a significant performance improve-
ment is obtained within the first task. Moreover, the focus is on the part where
the velocity of the reference is zero, indicated by the gray areas, for the pick-up
of a semiconductor component. In this phase, both error er and e are identical
because of the underlying Assumption 7.3, indicating that good performance is
obtained.

7.6 Experiments on a benchmark motion
system

A benchmark motion system is used for experimental validation in a practical
situation, i.e., where the system is not fully captured by the basis functions. The
introduced approximate optimal IV approach with on-line bootstrapping is used
for feedforward, moreover, a comparison is made with a recursive least squares
(RLS) approach using the same basis functions.
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Figure 7.10: Case study single simulation: convergence of the tracking error er
in (7.2) ( ) with on-line IV-based feedforward in Procedure 7.12 in comparison
to the tracking error er without feedforward ( ). A scaled version of the
reference ( ) and its velocity ( ) are also shown, the areas ( ) indicate
∆T where performance is required, i.e., where e ( ) in (7.9) is equal to er.

7.6.1 Experimental setup and tuning

The experimental setup is shown in Figure 7.11 which consists of two masses
that are connected by a flexible axle as schematically depicted in Figure 7.6.
The position of the collocated mass is used for feedback which is measured by
an encoder with a resolution of 2π

2000 rad, which induces additional quantization
noise. A frequency response function of the setup is measured and depicted
in Figure 7.12 in ( ), which contains similar dynamics as the model used in
Section 7.5. Therefore, the same set of basis functions is used. The setup also
contains 2.2 samples of delay and a sampling zero that is included in P̃ as in
(7.37), i.e., this is not estimated. All other settings and initial parameters are
identical so the simulation case study and provide in Section 7.5.2.

7.6.2 Experimental results

The resulting system estimates CrC
−1
ff and errors obtained in the experiments

are shown in Figure 7.12 and Figure 7.13 respectively, from which the following
conclusions can be made.

• The obtained plant estimate for feedforward, with the converged param-
eters, corresponds well with the measured FRF, indicating that a good
model is obtained. In contrast to the recursive LS estimator, which yields
a very poor estimate of the system due to an estimation bias, see Chapter 6.

• The tracking performance with IV-based on-line feedforward is signifi-
cantly improved compared with only feedback control, i.e., within 0.2 sec-
onds the error converges to a small value and remains small.
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Figure 7.11: Benchmark motion system used for experimental validation.

• The tracking performance with Recursive LS-based on-line feedforward is
even worse than without feedforward due to the bad system estimate.

These results confirm that in the presence of noise the recursive IV-based estima-
tor is able to obtain a good system estimate and consequently good performance
in the dwell time as required for the actual wafer-stage application.
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Figure 7.13: Experimental validation: tracking error er ( ) in (7.2) obtained
with Procedure 7.12 yielding good performance in comparison with the case
without feedforward ( ). Also a recursive least-squares based feedforward
( ) is used that performs poor due to estimation bias. A scaled version of the
reference ( ) and its velocity ( ) are also shown, and the areas ( ) indicate
where performance is required and where e (7.9) is equal to er.
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Figure 7.12: Experimental validation: bode plot of the measured frequency
response function (FRF) of the experimental setup ( ), the plant model CrC

−1
ff

obtained with approximate optimal on-line IV feedforward ( ) and with re-
cursive least squares identification ( ).

7.7 Conclusions

On-line learning of adaptive feedforward parameters for the tracking of varying
point-to-point references is enabled through an approximate optimal instrumen-
tal variable (IV) estimator with an on-line bootstrapping approach. Traditional
batch-wise learning approaches, such as ILC, are not applicable due to the non-
resetting behavior of such references. In this chapter, feedforward parameters
are estimated in an on-line setting on the basis of the reference and the system
input and output, by using an IV estimator an unbiased estimate is approximate
optimal variance is obtained in a closed-loop setting with measurement noise. A
simulation case study of a wafer-stage setup and experiments on a benchmark
motion system shows the immediate performance improvement that is obtained
within a task. Ongoing work focuses on the implementation for systems that
have slowly varying parameters by incorporating a forgetting factor in the on-line
IV algorithm, such that the feedforward parameters are updated accordingly.
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7.8 Proofs

Proof of Theorem 7.6

The proof of Theorem 7.6 consists of three parts, i) it is shown that the minimizer
of (7.12) has an analytic expression θ(k), ii) it is shown that for k → ∞ this
solution converges to θ0 under the conditions in Theorem 7.6, and iii) it is
shown that the obtained estimator variance, with zopt(k) and F opt, is equal to
the theoretical lower bound.

Part i) The cost function VIV is quadratic ‖x‖2 = x>x and linear in θ, hence,

a sufficient condition for the minimizer is that ∂V (θ)
∂θ = 0. By substituting (7.14)

in (7.13) and equating the derivative to zero, it follows that the minimizer is
θ(k) = (R>k Rk)−1R>k Uk with

Rk =

k∑

i=1

z(i)F (q−1)φ>(i), Uk =

k∑

i=1

z(i)F (q−1)u(i),

and (R>k Rk) is non-singular.
Part ii) To prove consistency, i.e., (θ−θ0) → 0 for k → ∞ with probability one,
under the conditions in Theorem 7.6, use the relation u(k) = φ>θ0 + v̄(k) with

v̄(k) = −A0v(k), and define Vk =
∑k
i=1 z(i)F (q−1)v̄(i) to write Uk = Rkθ0 +Vk.

Consequently, the estimation error is

(θ(k)− θ0) = (R>k Rk)−1RkVk,

using (Söderström and Stoica, 1989, Lemma B.2), where it is shown that under
mild conditions

lim
k→∞

Rk = E
[
z(k)F (q−1)φr(k)

]
=: R (7.41)

lim
k→∞

Vk = E
[
z(k)F (q−1)v̄(k)

]
=: V, (7.42)

with φr(k) the noise-free part of φ(k). Consequently, the asymptotic estimation
error, i.e., for k →∞, (θ0− θ) = (R>R)−1R>V is zero if R is non-singular, and
E z(i)F (q−1)v̄(i) = 0, which is the case since zopt(k) in (7.16) is uncorrelated
with v.

Part iii) The final part of the proof is based on (Söderström and Stoica, 1989,
Chapter 8.2), where it is shown that (θ(k)− θ0)→ N (0, PIV) for k →∞ with

PIV = (R>R)−1R>ΓR(R>R)−1, (7.43)

where R = limk→∞
∑k
i=1 z(i)F (q−1)φ>(i) under mild assumptions in Söder-

ström and Stoica (2002), and

Γ = σ2
v E[F (q−1)H(q−1)z(k)][F (q−1)H(q−1)z(k)]>, (7.44)
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with H(q−1) = A(q−1, θ0), a proof of this result can be found in (Söderström
and Stoica, 1989, Appendix A8.1). In Söderström and Stoica (1989) it is also
proven that

PIV ≥ P opt
IV =

[
σ2
v E
(
[A−1

0 φr(k)]>[A−1
0 φr(k)]

)]−1
. (7.45)

Finally, it remains to show that by substitution of (7.16) and (7.17) in (7.43) it
follows that PIV = P opt

IV , which is outlined in detail in (Söderström and Stoica,
1989, p. 274), which completes the proof.
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Chapter 8
Conclusions and Recommendations

8.1 Conclusions

The control algorithms developed in this thesis enable improvement via the rejec-
tion of repeating disturbances and automated feedforward tuning for tracking
of varying references up to the repeatable part of the error. The developed
approaches exploit the intersection between control and machine learning tech-
niques for mechatronic systems. The methods improve control of future mecha-
tronic systems with ever-increasing performance and flexibility demands while
at the same time having a strong desire for cost-efficient mechatronic designs.
This leads to more complexity for controller design, for both tracking of varying
reference tasks and the rejection of disturbance with underlying structures, for
these challenges user-friendly control solutions are presented.

8.1.1 Learning for disturbance rejection

The first main contribution of this thesis addresses the rejection of unknown
disturbances (research challenge R1), by developing a Gaussian-process-based
internal model for repetitive control (RC). Disturbances often exhibit underly-
ing periodic structures that are not directly visible in the time domain. In this
situation, traditional temporal RC, which can compensate for time-domain pe-
riodic disturbances, is not directly applicable. The developed GP-based buffer
for RC enables the elegant incorporation of these underlying periodic structures
as prior knowledge in the form of a covariance function. The result is a new
systematic design approach with a few high-level tuning knobs for RC that is
applicable to a wide range of disturbances.

The first part of this contribution is tailored toward the rejection of a wide
variety of temporal disturbances that are not necessarily periodic in the time
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domain. The new design approach enables the rejection of single-period and
multi-period disturbances, and disturbances with time-domain periods that do
not fit in the traditional FIR buffers. Moreover, by appropriate selection of
the covariance function the developed RC is robust for either non-repeating
disturbances or variations in the disturbance period time, thereby recovering
Steinbuch et al. (2007) as a special case in a single generic approach. A second
major advantage is that due to the extrapolation capabilities of the GP-based
buffer, compensation is enabled in the first period. This approach is presented
in Chapter 2.

Rejection of disturbances that are not repeating in the time-domain but
rather in, e.g., the position-domain, commutation-angle domain, or combinations
of these at the same time, is enabled. This is encountered in many industrial
applications, e.g., a non-perfect roller or a two-dimensional commutation dis-
turbance in a magnetically levitated platform. The presented approach learns
a continuous potentially multi-dimensional disturbance model from the inher-
ently non-equidistant data points in the specific domains. This is established in
the general framework by using spatially periodic prior knowledge or a multi-
dimensional covariance function, see Chapter 3 and Chapter 4 respectively. In
addition, a sparse approximation is presented to reduce the computation load of
the GP in Chapter 3. The method is validated on an industrial substrate carrier
with spatial disturbances.

The final part of the first contribution is the rejection of torque ripple distur-
bances that are spatially-periodic and do not require continuous updating over
time, e.g., as encountered in the coarse pointing assembly (CPA) in Chapter 5.
This is enabled with a computationally efficient two-step design routine. In the
first step, GP-based RC outlined Chapter 2 is employed to learn a continuous
temporal model of the disturbance at constant velocity. In the second step, the
time-domain data is used to learn a GP-based model in the commutation-angle
domain for compensation at arbitrary velocity variations. This is experimentally
validated on the CPA resulting in an automated routine that is a key enabler
for free-space optical communication with the CPA, see Chapter 5.

In summary, the combination of these four chapters is a complete and system-
atic framework to reject disturbances for future complex systems by employing
an intelligent function estimator from the machine learning community in the
traditional RC approach.

8.1.2 Feedforward tuning for flexible motion tasks

The second main contribution of this thesis enables on-line learning of feed-
forward parameters from data for the tracking of both batch-wise repeating
reference tasks and varying reference tasks. The developed approach enables
fast learning, even during a batch, by continuous estimation of feedforward pa-
rameters from data during closed-loop operation. This yields a big performance
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improvement for future systems, where traditional approaches are either not ap-
plicable due to strict limitations on the task flexibility or require cumbersome
and time-consuming tuning procedures.

A unified framework is developed for automatic feedforward controller tuning
in both on-line and batch-wise settings for non-resetting tasks. A recursive least
squares estimator optimizes the feedforward controller parameters in real-time
using data. Furthermore, a detailed statistical analysis is provided in the pres-
ence of measurement noise, indicating the possible hazard of on-line feedforward
parameter estimation in a closed-loop setting. A practical approach is presented
to mitigate the effects of noise on the feedforward parameters. The theoretical
claims and developed approach are experimentally validated on a benchmark
motion system. This contribution is presented in Chapter 6.

The final contribution aims at the optimal tuning of feedforward parame-
ters in a closed-loop setting and in the presence of noise by exploiting instru-
mental variable (IV) estimation. The approach is tailored towards varying and
non-resetting point-to-point references, as encountered in the wafer-stage in Fig-
ure 1.1, to which traditional batch-wise learning approaches are not applicable.
This is enabled with a recursive IV estimator which has an analytic solution.
The approach approximates the optimal IV estimator by employing a recursive
bootstrapping procedure, resulting in performance improvements within a batch
even in the presence of noise as experimentally validated on the same benchmark
motion system. This contribution is presented in Chapter 7.

The second contribution provides both theoretical analysis and a practical
method for automatic tuning of feedforward parameters from data for complex
systems.

8.2 Recommendations

Based on the insight that is obtained from the research in this thesis, the follow-
ing further improvements are envisioned for the control of future mechatronic
systems.

A general observation is that the research in this thesis confirms that the field
of machine learning has a lot to offer for control of future systems, to improve
both performance as well as user-friendliness. This is confirmed in many other
related studies, see, e.g., Aarnoudse and Oomen (2020); Alam et al. (2020);
Balta et al. (2021); Banka and Devasia (2018); Oomen (2018); Oomen and
Rojas (2017); Van Meer et al. (2021). It is recommended to further investigate
the potential benefit of machine learning and artificial intelligence approaches
for control of future mechatronic systems, for example with neural networks
along the lines of Aarnoudse et al. (2021), Gaussian processes in various control
related approaches (Poot et al., 2022), reinforcement learning as in Berkenkamp
et al. (2017); Poot et al. (2020), and deep learning for system identification as
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in Ljung et al. (2020). Consider the following more specific recommendations in
line with the research in this thesis.

Uncertainties in repetitive control: The internal disturbance model that is
learned using GP-based RC results in a posterior distribution, i.e., a mean and
variance. In the approach presented in this thesis, the posterior mean is utilized
for compensation. A recommendation is to utilize the posterior variance, which
is a measure of confidence for the learned disturbance model, see Chapter 2-4. It
is envisioned that the confidence bounds obtained with the GP-based buffer can
be used as a time-varying or position-varying learning gain for RC, e.g., if the
estimate is unreliable then the learning gain is preferably small and vice versa.

Automated tuning of hyperparameters: In the current GP RC approach
the hyperparameters, e.g., smoothness and periodicity, are tuned manually. To
make this approach even more user-friendly, data of an a priori performed ex-
periment can be used to automatically tune these hyperparameters, e.g., by
optimizing the marginal likelihood with respect to the hyperparameters, see Pil-
lonetto et al. (2014); Williams and Rasmussen (2006).

Model-free repetitive control: Traditional repetitive control (Hara et al.,
1988) requires a parametric learning filter that contains a model of the closed-
loop system. If the model quality is poor, then a robustness filter is required
for stability leading to non-perfect learning. On the other hand, data-driven
approaches appeared where (inverse) GP-based models are learned from data
(Blanken and Oomen, 2020; de Rozario and Oomen, 2019; Lataire and Chen,
2016; Pillonetto et al., 2014). Moreover, recursive approaches appeared to fur-
ther improve the computational efficiency of GP regression in an on-line setting
(Bijl et al., 2017). It is envisioned that combining these approaches for estimat-
ing the learning filter, in combination with the GP-based RC approach in this
thesis can potentially contribute to a model-free RC approach along the lines of,
e.g., De Rozario and Oomen (2019).

Direct learning for optimal commutation functions: An automated pro-
cedure is developed to learn a static commutation function for torque ripple
compensation. In practice, there is one commutation function per coil that has
to be designed while taking into account the design trade-offs, e.g., power effi-
ciency versus performance. Taken together these may result in a torque ripple.
Direct learning of these commutation functions as a GP from data can poten-
tially improve the performance by exploiting more freedom and automatically
taking into account these trade-offs, while at the same time automating the
commutation function design.
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Adaptive feedforward for parameter varying systems: Model-based
feedforward controller design for positioning systems that exhibit parameter
varying dynamics often leads to a cumbersome design procedure. These lin-
ear parameter varying (LPV) systems can potentially benefit from learning of
position-dependent feedforward parameters (Bloemers et al., 2018; de Rozario et
al., 2017) using instrumental variables, but also Gaussian processes are promising
for LPV feedforward, see Van Haren et al. (2022). By sufficiently fast adapta-
tion or direct learning of an LPV model for feedforward as in Tóth et al. (2012),
it is envisioned that user-friendly feedforward tuning and performance for LPV
systems can be improved.

Selection of basis functions: It is shown in Chapter 6 and Chapter 7 that
the basis functions for feedforward control are currently selected using physical
insights. Moreover, the basis functions have a significant impact on the esti-
mation performance if measurement noise is present, i.e., in such a situation it
might be favorable to choose different basis functions. A topic for future research
is the automatic selection or optimization of basis functions as in, e.g., Oomen
and Rojas (2017). Addressing a trade-off between over-fitting and bias due to
under-modeling, and by altering basis functions to reduce the effect of noise at
the cost of introducing a modeling bias, might be beneficial.
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Bilge, Tom, Abdullah en Thijs bedanken voor jullie bijdragen en de prettige
samenwerking.

Ik wil mijn (oud)collega’s van CST en D&C bedanken, in het bijzonder, Alex,
Camiel, Fahim, Joey, Nic, Nard, Masahiro, Maurice, Enzo, Lennart, Johan, Le-
ontine, Koen, Wataru, Mathyn, Max (2x) en Paul voor de gezelligheid op de
gang, de vele koffie pauzes, lunch wandelingen en vrijdag middag borrels. Niet
te vergeten de conferenties zoals de Benelux meetings, waar een flinke delegatie
vanuit Eindhoven rond het middaguur in de ‘aqua mundo’ te vinden was voor
een sessie team building. Specifiek wil ik ‘Groep Oomen’ bedanken voor de fan-
tastische tijd die ik met jullie heb gehad, van Karaoke in Tokyo en Philadelphia
tot de met rook gevulde hotel kamer feestjes op de Benelux.

Dan misschien wel het belangrijkste, ons kantoor, waar ik met heel veel ple-
zier ben geweest de afgelopen jaren, o.a. voor, beleggings/klus/verf/hypotheek-
advies, darten en het boeken van conferentie tripjes (met onze kosten functie
voor de ideale hotel locatie). Ik heb vooral een hoop gelachen met jullie en af en
toe werd er ook hard gewerkt. Nic, Max en Nard als harde kern, bedankt voor
jullie bijgedrage aan dit proefschrift, zonder jullie was het niet gelukt! Van dis-
colampen en rookmachines op conferenties tot ons gedeelde enthousiasme voor
(gratis) eten, dat ga ik ontzettend missen! Ook wil ik onze buren bedanken,
specifiek Fahim voor de vele ‘Botjes’ die we de afgelopen jaren gespeeld hebben,
mogelijk had er een extra hoofdstuk in dit boekje kunnen zitten als we dat niet
gedaan hadden, maar ik denk dat het essentieel is geweest ;)

I also want to thank our visiting office mates, in particular, Wataru and
Masahiro. I had a great time with you teaching me a lot about Japanese cooking
skills, ranging from Nissin Raoh ramen, to various types of okonomiyaki and trips
to Takumi, which were oishii, ありがとう !
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