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Summary

Modern mechanical systems such as machine tools, microelectronics manufacturing equip-

ments, mechanical manipulators and automatic inspection machines need precision mo-

tion control to achieve good positioning/tracking performance at high speed and high

accuracy. This results in increasing demands on higher productivity and product qual-

ity in the manufacturing industries. Thus, the requirements on motion control systems

become more and more stringent. But conventional control techniques can no longer

satisfy the increasingly stringent performance requirements of motion control systems.

Recently, intelligent learning control emerges as an effective way to meet the stringent

positioning requirements. In this thesis, intelligent learning control algorithms are de-

veloped to achieve better positioning/tracking performance in motion control systems.

In this thesis, linear motors as the mechanical servo systems are mainly studied. Lin-

ear motors are widely used for applications requiring linear motion at high speed and

high accuracy. The most attractive features of linear motors for precision motion control

include the high force density achievable, low thermal loss, simple mechanical structure,

high dynamic performance and improved reliability. However, the achievable perfor-

mance of linear motors is unavoidably limited by presence of the nonlinear effects and

xiv



uncertainties present. The predominant nonlinear effects underlying a linear motor sys-

tem are the frictional force and force ripples. In some parts of the thesis, the intelligent

learning control schemes are proposed to compensate the friction and force ripples. Be-

sides the compensation of the nonlinear effects in linear motors using intelligent control

algorithms, this thesis proposes some new ideas that aim at solving the problems faced

in the field of the precision motion control. It includes the developments of the Iterative

Learning Control (ILC) for time-delay systems and predictive Iterative Learning Control

(ILC) for time-varying, linear and repetitive systems.

Firstly, an adaptive control algorithm is presented to suppress the force ripples in

Permanent Magnet Linear Motors (PMLMs). The model of force ripples is derived. The

idea is to use the Recursive Least Square (RLS) method to model and then reduce the

force ripples. Thus, linear regression form of the PMLM model is required. It means that

the frequencies of the force ripples should be determined before the implementation of

the adaptive control scheme. The displacement periodicity of the force ripple is obtained

by using a Fast Fourier Transform (FFT) analysis. Based on the full model, the control

algorithm can be commissioned which consists of a PID feedback control component,

an adaptive feedforward component for compensation of the force ripple and another

adaptive feedforward component based on the inverse dominant linear model.

Then, an Iterative Learning Control (ILC) scheme, a model-free approach, is proposed

to compensate the friction and force ripples in the linear motors to achieve good tracking

performance for high precision and repetitive motion control applications. It consists of

xv



a self-tuning Radial Basis Function (RBF) network and an Iterative Learning Control

(ILC) component. The RBF network is applied to model the tracking error over a cycle.

The ILC scheme is used to adjust the reference signal repetitively. The ILC component

further enhances the tracking performance, particularly over the section of the trajectory

where the RBF network is less adequate in its modeling function.

An online automatic tuning method of PID controller based on an Iterative Learning

Control (ILC) approach is presented in this thesis. The basic idea is to use ILC to

obtain a satisfactory performance for the system to track a periodic reference sequence.

A modified ILC scheme iteratively changes the control signal by adjusting the reference

signal only. Once the satisfactory performance is achieved, the PID controller is then

tuned by fitting the controller to yield a close input and output characteristics of the

ILC component.

Next, a new form of repetitive learning control (ILC) approach is proposed which is

applied to time-delay systems for the first time. In the thesis, a necessary and sufficient

convergence condition is derived for the new proposed repetitive control. Additionally, a

robust convergence analysis for the repetitive control under the existence of a time-delay

mismatch, initialization errors, disturbances and measurement noise is provided to show

the robustness of the new proposed approach.

Finally, a predictive Iterative Learning Control (ILC) algorithm is developed for time-

varying, linear and repetitive systems. An error model is introduced, which represents

the transition of the tracking error between two successive trials. Based on this model,

xvi



a predictive iterative learning algorithm is derived, which is only based on the trial

number. In the thesis, a rigorous convergence analysis is provided. In addition, the

robustness of the algorithm against modeling errors, initial errors, as well as the presence

of disturbances are discussed.

Extensive simulation and experimental results are furnished to illustrate the effective-

ness of the proposed learning approaches.

xvii



Chapter 1

Introduction

Although conventional control had a long history in theory and practice, it has encoun-

tered many difficulties in its applications to modern motion control systems. Modern

mechanical systems are often required to yield high productivity and quality at high

speed and high accuracy. Such an increasingly tight control performance requirements

pose a great challenge for researchers and engineers to seek novel algorithms beyond

the conventional control theory. Recently, intelligent controls become effective ways to

overcome the difficulties. In this thesis, the intelligent learning control approaches are

investigated for the precision motion control systems.

1.1 Precision Motion Control

Precision Engineering is the multidisciplinary study and practice of design for precision,

metrology, and precision manufacturing. Precision engineering is defined in [1] as the

‘set of systematized knowledge and principles for realizing high-precision machinery’.

Precision engineering can be generally defined at the micrometre scale which means the

accuracy of 1 micron at manufacturing. Currently, many researchers and engineers aim
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at creating higher precision machines and manufacturings.

Nowadays, manufacturing industries are confronted with increasing demands of higher

quality and higher productivity. These demands can be achieved with high speed, highly

accurate motion and positioning. Performance of motion depends on electrical and

mechanical components, which are used in assembling of drives, as well as the motion

controller. Precision motion is an indispensable part of manufacturing, for example,

read/write head motion in disk drives, motion of chip placement actuators in surface

mount machines, laser drill motion in electronic packaging, scanning motion in confocal

microscope, etc. Precision motion is also critical for micro-assembly and Micro-Electro-

Mechanical-Systems (MEMS) actuation in applications to RF, micro-optic and micro-

fluidic devices. With the continuing demand on high performance and low cost, the

requirement on the precision motion control is ever more stringent.

Although a great deal of effort has been devoted to the field of precision motion con-

trol, some issues encountered in precision motion control attracted the researchers to

explore in this field. One such concern is the control of linear motion. In the real world,

many mechanical systems, such as machine tools, semiconductor manufacturing equip-

ment and automatic inspection machines, require linear motions. One common way to

realize the linear motion by rotary motors is to use gears, lead screw and other transmis-

sion mechanisms to convert rotary motion into linear motion. These mechanisms may

influence the speed, accuracy and dynamic response. Also it may introduce the effects of

contact-types of nonlinearities and disturbances such as backlash and frictional forces.
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The linear motors, as a direct drive, can be used to eliminate the gears and other mech-

anisms, with accompanying of quietness and reliability. This can significantly reduce

the effects of contact-type nonlinearities and some disturbances such as backlash and

frictional forces and increase the reliability of the system. In recent years, linear motor

has received increased attention for use in applications requiring linear motion at high

speed and high accuracy.

In this thesis, two specific types of linear motors are investigated: Permanent Magnet

Linear Motors (PMLMs) and Linear-Piezoelectric Motors (LPMs).

1.1.1 Permanent Magnet Linear Motor

Compared to the traditional rotary machines, the main benefits of a PMLM include the

high force density achievable, low thermal losses and most importantly, the high preci-

sion and accuracy associated with the simplicity in mechanical structure. The PMLM

shows superior performance over many conventional rotary motors. However, the non-

linear effects associated with the PMLM are inevitably arising. The more predominant

nonlinear effects underlying the PMLM are friction which is inevitably present as long

as there is relative motion between two bodies in contact, and force ripples, arising from

the magnetic structure of the PMLM and other physical imperfections. The two pri-

mary components of the force ripple are the cogging (or detent) force and the reluctance

force [2]. The cogging force arises due to the interaction of the permanent magnets in

the stator with the iron cores of the translator. This force exits even in the absence of

any winding current and it exhibits a periodic relationship with respect to the position
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of the translator relative to the magnets. The reluctance force is due to the variation

of the self-inductance of the winding with respect to the relative position between the

translator and the magnets. The reluctance force also has the periodic relationship with

the translator-magnet position.

Friction and force ripples pose several difficulties to motion systems. Stiction, for

example, induces stick-slip motion. Limit cycle oscillations can also occur due to dis-

continuous nature of the frictional force with respect to velocity. Force ripples produce

“bumps” along the direction of motion, which may cause difficulties in achieving smooth

and yet high speed motion with linear control alone. Owing to the typical precision re-

quirements associated with the use of PMLMs, it is thus an important and challenging

task to effectively deal with these nonlinear effects.

1.1.2 Linear-Piezoelectric Motors

A piezoelectric motor is a type of actuator that uses mechanical vibrations in the ul-

trasonic range in a stator structure. Piezoelectric actuators are innovative manipulators

which have shown a high potential in applications requiring manipulation within the sub-

micrometer or even nanometer range. There are two main classes of linear-piezoelectric

motors (LPMs), classified according to the structures and driving principles. The first

class works on a direct-drive principle. Deformations of a piezoelectric element are di-

rectly used to drive the load for precision positioning [3][4][5]. This type motor has the

superior performance with high resolution and nanometer grade positioning precision,

short stroke and a high bandwidth. The second class of LPM is based on the indirect-
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drive principle. The ultrasonic motor is a kind of this class. In a piezoelectric linear

ultrasonic motor, high frequency oscillation are generated by using the piezoelectric ef-

fect, and the rotor is driven by the frictional forces generated at the interface between

the stator and the rotor. The main characteristics of this ultrasonic motors are: high res-

olution, wide dynamic range of velocity, hold stability at power off and a small compact

structure. In this thesis, this type of indirect-drive LPM is the platform for experiments.

For this type of LPM, friction has been identified as the main problem to be addressed

[6]. The highly nonlinear features of friction associated with the servomechanisms pose

the challenges for the researchers and engineers in the control areas. The friction needs

to be compensated in order to improve the transient performance and to reduce steady-

state tracking error.

The nonlinear effects present in the liner motors can be minimized or eliminated

either through proper mechanical design or via the control algorithms. But the me-

chanical design often increase the complexity of the motor structure and the production

cost. Therefore more attention focuses on developing the control algorithms for the high

precision applications.

1.2 Intelligent Learning Control

Intelligent control is a highly multi-displinary technology where controllers are designed

that attempt to model the behaviors of human being. These behaviors include adapta-

tion, learning and making decision. Nowadays, the area of intelligent control tends to
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include everything that is not covered in conventional control.

The automatic control has been used more than 2000 years since the Romans invented

a water-level control device [7]. The notable control invention was the steam engine

governor in 18th century. In the early 1920s, the development of control theory began

and the feedback controllers were widespreadly adopted in the applications. After that,

the Second World War brought tremendous impetus for the advancement of control.

From 1960s to 1980s, the developments of the modern control theory and real-time

digital computers had a significant impact on the control applications. The application of

more powerful computers played a key role in the implementation of more sophisticated

control strategies. With the demand for enhanced performance of the highly complex

systems, the linear control theory cannot address this demand solely. Intelligent control

has arisen as a collection of various control methodologies that have addressed to meet

this trend.

An important attribute or dimension of an intelligent control is learning. Learning

means that the controller has the ability to improve its future performance based on

past experience. In solving some control design problems, the available a priori model

information is so limited that it is difficult to design a control system that meets the

desired performance specifications. Intelligent learning control provides the solution for

this problem with flexibility. With the intelligent learning control, the control system

can be designed to on-line adjust itself automatically to suppress the uncertainty and

thus to enhance performance. Therefore, the intelligent learning control approaches are
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developed for precision motion control systems in this thesis. Iterative Learning Control

(ILC) is mainly studied with respect to the different problems faced in the precision

motion control. Additionally, the adaptive control and Radial Basis Function (RBF)

network are also involved as the intelligent learning control approaches in this thesis.

Among the existing intelligent control approaches, the Iterative Learning Control

(ILC) has become popular approach, especially when dealing with repetitive tracking

control or periodic disturbance rejection problems. The concept of Iterative Learning

Control (ILC) began to flourish in 1984 by Arimoto et al. [8]. It is a technique for

improving the performance of systems or processes that operate repetitively over a fixed

time interval. The monograph by Moore [9] contains more details on the background of

the learning algorithm. A recent book [10] surveys the development of this research area

from inception till 1998. Nowadays, ILC has attracted some interest in control theory

and applications. It has been widely applied to mechanical systems such as robotics,

electrical systems such as servo motors, chemical systems such as batch reactors, as well

as aerodynamic systems, etc.

The goal of iterative learning control is to improve the tracking performance of a

repetitive operation where the system is designed to return to the same initial condi-

tion before beginning the next repetition. The concern in ILC is to find an appropriate

control input that forces the system output to follow the desired trajectory. The de-

sired trajectory and the trial length are defined for a fixed time interval. In contrast,

when system operates to track a periodic signal continuously in time, Repetitive Control
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(RC), as one emerging area in ILC research, should be considered. Repetitive control

is concerned with canceling an unknown periodic disturbance or tracking an unknown

periodic reference signal [11]. Unlike ILC, in repetitive control system the terminal state

of previous trial is automatically the initial state of current trial. The early works of

repetitive control can be found in [12] and [13]. The summary of repetitive control works

can be referred in [14] [15]. There are differences between ILC and repetitive control.

However, they are not really different. In fact, there is a bridge between the ILC and

repetitive control. The repetitive control can be interpreted as “no-reset” ILC in [11]

[16] [17] and [18]. That means that the structure is same as in the ILC but the system

is not reset at the beginning of each iteration. Additionally, ILC and RC are bridged

with the ideas in Longman’s works [19] [20]. In this thesis, the ILC and repetitive con-

trol schemes are investigated to enable enhanced performance in motion control systems

used in the manufacturing industries.

In the control of linear motion via linear motors, the conventional Proportional-

Integral-Derivative (PID) control usually does not suffice in the high precision appli-

cation domain. It is an interesting and challenging problem to compensate the friction

and force ripples adequately. In the literature, a large number of methods has been pro-

posed. For friction reduction, model-based approaches are usually used. In [6], models

of varying complexity have been used to approximate the dynamics of friction. In [21],

a robust adaptive schemes were developed for friction compensation. In [22], an evolu-

tionary programming approach has been proposed to deal with the same problem. This
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method can identify the friction by formulating the identification task as an optimization

problem. With regard to force ripple suppression, in the early years, it was achieved

in the system design phase through good hardware design. The force ripple may be

minimized by skewing the magnets [23] or optimizing the disposition and width of the

magnets [24] [25]. However, these techniques often increase the complexity of motor

structure and the production cost. Recently, the development of the advanced control

can compensate the undesirable nonlinear effects by the additional control effort. Some

researchers [26] develop the force ripple model and identify the force ripples with a force

sensor and a frictionless air bearing support of the motor carriage. In [27], a method of

force ripple identification was done in a closed position control loop by measurement of

the control signal for movements with respect to the different load forces without the

additional force sensors. In [28], a neural-network based feedforward assisted PID con-

troller was proposed. [29] presented a H∞ optimal feedback control scheme to provide

a high dynamic stiffness to external disturbance. The authors in [30] [31] [32] proposed

adaptive algorithms for the rejection of sinusoidal disturbances of unknown frequency.

In this thesis, it is an objective to compensate the nonlinear effect caused by the friction

and force ripples with intelligent approaches.

Moreover, one prominent challenge faced for industrial systems is the time delay,

a common characteristic of many industrial systems. It is an applied problem. Delay

systems can be classified as function differential equations which are infinite dimensional

and include information on the past history. Compared to the systems without time
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delays, the difficulty of a control system design for time delay systems increases with

the value of time delay. It is because there exists time delay term in the characteristic

equation of the system. Survey papers provided the overview of the study of the time-

delay systems, such as [33] [34] [35] [36]. The book by Gu [37] investigated the stability

of linear time-delay systems in detail. In [38], the stability of a linear system with a

point-wise, time-varying delay was explored. Besides the stability analysis for linear

time-delay systems, many techniques were developed for the nonlinear systems with

time delays. In [39], stabilizing controller was designed for a class of nonlinear time-

delay systems, based on the Lyapunov-Krasovskii functionals. In [40], robust adaptive

control was proposed for a class of parametric-strict-feedback nonlinear systems with

unknown time delays. In the manufacturing industries, many tasks, such as batch job of

certain chemical processes, spray painting, and arc-welding, are repetitive and require a

controller that can track a given desired trajectory. For this issue in the motion control,

considerable advanced control algorithms are proposed to compensate the time delay. In

[41] and [42], the author investigated the time delay effects in Iterative Learning Control

schemes for state-delay systems. In these papers, the focus was the development of ILC

for state-delay systems. In [43] and [44], robust ILC design with the Smith Predictor

controller was proposed. In this thesis, repetitive learning control is extended to control

the systems with the input time delay.

Finally, another challenge confronted in the ILC is how to achieve a rapid and guaran-

teed reduction in the learning error. The normal ILC scheme, as a model-less approach,
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cannot guarantee the fast reduction in the error. Additionally, the normal ILC possesses

limitations in terms of achievable performance and tuning guidelines, especially in mul-

tivariable control problems, in [45]. To overcome these limitations, model-based ILC

approaches have been proposed. In [46], the authors introduce some of the ILC work

in the Sheffield group, especially in the area of optimal ILC. In [47], parameter opti-

mization through a quadratic performance index was proposed as a method to establish

a new iterative learning control law. In [48], the possibility of applying norm-optimal

ILC to non-linear plant models was investigated. In [49], a learning control scheme was

proposed to find a finite-time optimal control history that minimizes a quadratic cost.

In [50], an ILC algorithm was developed based on an optimization principle. In the

thesis, predictive ILC algorithm is developed. As a model-based approach, can estimate

the future signals through prediction and achieve better performance. Unlike the above

mentioned methods, in the proposed method, more than one cycle signals in terms of

the trial number are involved in the quadratic performance index, based on the derived

prediction model.

1.3 Contributions

This thesis aims at developing the intelligent learning control approaches for the motion

control systems to achieve satisfactory performance. The adaptive control algorithm

and the RBF network are designed to compensate the nonlinear effects in the linear

motors. As the focus of the thesis, not only the normal Iterative Learning Control (ILC)
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is addressed but also some new forms of ILC and repetitive control are proposed for the

different system characteristics.

Adaptive feedforward compensation of force ripples in linear motors

The presence of force ripples is a highly undesirable phenomenon in the realization

of precision motion control in PMLMs. Therefore in this thesis, an adaptive control

scheme is proposed to suppress force ripple effects impeding motion accuracy in Per-

manent Magnet Linear Motors (PMLMs). In the literature, many methods have been

proposed to deal with the force ripples by identifying the force ripple model. However,

in reality, it is much more complex to model. The force ripples are periodic with dis-

placement along the motor. The ripple can be viewed as a sum of sinusoidal functions

with unknown frequencies and amplitudes. Therefore, in this thesis, the displacement

periodicity of the ripple is obtained by using a Fast Fourier Transform (FFT) analysis,

based on the experimental result. It is a soft approach to identify the frequencies in the

closed-loop by analyzing the control signals. The control method is based on Recursive

Least Squares (RLS) identification of a nonlinear PMLM model which includes a model

of the force ripple. Based on this model, the control algorithm can be commissioned

which consists of a PID feedback control component, an adaptive feedforward compo-

nent for compensation of the force ripple and another adaptive feedforward component

based on the inverse dominant linear model which can serve to expedite motion tracking

response. Simulation and experimental results are presented to show the effectiveness

of the proposed method for high precision motion tracking applications.
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Iterative reference adjustment for high-precision and repetitive motion con-

trol applications

Friction is another prominent nonlinear effect associated with the PMLM. It is highly

nonlinear in nature and difficult to model. In order to compensate the friction and

suppress the force ripple, an Iterative Learning Control (ILC) scheme is proposed in

this thesis, which is suitable for high precision and repetitive motion control applica-

tions. The proposed method is a model free approach and no explicit modeling effort is

necessary. It comprises of a self-tuning radial basis function (RBF) network operating

in parallel with an iterative learning control (ILC) component. The proposed scheme

iteratively adjusts the reference signal. The RBF network is employed as a nonlinear

function estimator to model the tracking error over a cycle, and this error model is

subsequently used implicitly in the iterative adaptation of the reference signal over the

next cycle. The ILC component further enhances the tracking performance, particularly

over the sections of the trajectory where the RBF network is less adequate in its mod-

eling function. Simulation examples and real-time experimental results are provided to

elaborate the various highlights of the proposed method.

Online automatic tuning of PID controller based on an Iterative Learning

Control approach

Proportional-Integral-Derivative (PID) controllers are popularly used in various pre-

cision motion control systems. Modern industrial controllers are becoming increasingly

intelligent due to more stringent requirements. This thesis proposes an approach for
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closed-loop automatic tuning of PID controller based on an ILC approach. The method

does not require the control loop to be detached for tuning. A modified Iterative Learn-

ing Control (ILC) scheme iteratively changes the control signal by adjusting the reference

signal only. The PID controller is tuned, based on the satisfactory performance achieved.

The proposed method is a model-free approach since no more model effort is necessary.

Simulation and experimental results are furnished to illustrate the effectiveness of the

proposed tuning method.

Repetitive control for time-delay systems

Time-delay systems are difficult to control to achieve satisfactory performance and

stability. In this thesis, a new form of repetitive learning control is proposed which

is applicable to the systems with time-delay. A convergence condition which is neces-

sary and sufficient is derived for the proposed scheme. In addition, a robust convergence

analysis for the learning control under the existence of a time-delay mismatch, initializa-

tion errors, disturbances and measurement noise is also derived to show the robustness

of the proposed approach. Simulation example illustrates the practical applications of

the results for the systems with time delay.

Predictive and Iterative Learning Control algorithm

An Iterative Learning Control algorithm enhanced with predictive features is devel-

oped in this thesis. An error model is introduced which can represent the transition

of tracking error in two successive trials. Based on this model, a predictive and Itera-

tive Learning Control algorithm is derived which is only based on the trial number (or
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repetitive index). A rigorous analysis of the convergence is provided. In addition, the

robustness analysis of the algorithm against the modeling error, initial error and distur-

bances is discussed. To show the effectiveness of the proposed method, an simulation

example is provided.

1.4 Organization of thesis

The thesis is organized as follows.

Chapter 2 presents an adaptive control scheme to reduce the force ripple effects in

Permanent Magnet Linear Motors. A mathematical model of the linear motors is in-

troduced first. Then, a frequency analysis method is developed to derive the dominant

displacement periodicity pertaining to the force ripple. Based on the obtained frequency

information, the adaptive control scheme is proposed, including the control configuration

and the online estimation method. Finally, the simulation and experimental results are

provided, respectively.

In Chapter 3, a learning control scheme is proposed which combines the Radial Basis

Function (RBF) neural network with Iterative Learning Control (ILC) together to realize

the precision motion control. In this chapter, the proposed control scheme is explained in

detail. Then, a convergence analysis for learning algorithm in the discrete-time domain

is provided. Following that, the simulation and experimental results are presented to

elaborate the viability of the proposed control scheme.

Chapter 4 describes an approach for closed-loop automatic tuning of PID controller
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based on an ILC method. The detailed tuning procedure is elaborated in this chapter.

Based on the achieved satisfactory performance with ILC approach, the PID controller

is then tuned. The simulation and experimental results are discussed to reinforce that

the proposed PID tuning method is applicable.

Chapter 5 extends the learning control approach to the systems with time delay. The

repetitive control configuration for the time-delay systems is discussed first. Then, the

general convergence analysis are derived respectively. In the consideration of the model

error, disturbances and measurement noise, the robust convergence analysis is further

derived in this chapter. Finally, the simulation examples are presented to illustrate the

effectiveness of the proposed method.

In Chapter 6, a predictive Iterative Learning Control algorithm is developed. An

error model is introduced first. Based on this model, the predictive iterative learning

algorithm is derived. Then, the convergence analysis is investigated in this chapter.

Simulation examples are given to show the effectiveness of the proposed algorithm.

Finally, conclusions and suggestions for future work are discussed in Chapter 7.
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Chapter 2

Adaptive Feedforward

Compensation of Force Ripples in

Linear Motors

2.1 Introduction

Permanent Magnet Linear Motors (PMLMs), as a specific type of linear motors, are

widely used in applications requiring linear motion at high speed and high accuracy.

As described in Chapter 1, it is known that the nonlinear effects in PMLMs have a

significant effect on the system performance. In the realization of precision motion

control in PMLMs, the presence of force ripples is a highly undesirable phenomenon

which degrades the achievable positioning accuracy. The force ripples are generated

due to the magnetic structure of PMLMs. Figure 2.1 shows the velocity-time response

of a PMLM manufactured by Linear Drives Ltd (U.K.) for a constant input voltage

signal. Figure 2.2 shows the real-time open-loop step response with the input voltage

of 1.2v. From the responses, the presence of force ripples is self-evident and they are

periodic with displacement along the motor. These ripples yield problems in achieving
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Figure 2.1: Open-loop velocity-time response with input voltage of 0.8V

a smooth and precise motion profile using conventional feedback controllers, since the

ripples create “bumps” along the direction of motion.

Some effort has been devoted to suppress the force ripple. A force ripple model was

developed and identified with a force sensor, and a feedforward compensation component

was used to reduce force ripple [51]. In [28] and [52], a neural-network based learning

feedforward controller was applied in the linear motor motion control system. In [53]

and [54], an adaptive robust control scheme was proposed for the high speed and high

accuracy motion control. In [55] a robust adaptive approach is proposed to compensate

the friction and force ripple. In [56], the iterative learning control was applied.

The force ripple phenomenon has been described via a sinusoidal function of the po-

sition x [28]. However, in reality, it is much more complex to model. The ripple can

constitute the sum total of a number of sinusoidal functions with unknown frequencies
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Figure 2.2: Open-loop step response of a PMLM - Displacement (µm) and velocity

(µm/s) versus time

and amplitudes. In this thesis, the displacement periodicity of the ripple is determined

using a Fast Fourier Transform (FFT) analysis. However, in this case, the periodicity

is with respect to displacement and not time. A displacement to time mapping is thus

pre-performed in order to directly apply FFT in the usual way. With the spectrum

available from the FFT analysis, the dominant frequency components can be extracted.

Then, based on an inverse mapping, the displacement periodicity can be derived. Thus,

a more accurate model of the force ripples can be built. With the displacement period-

icity information available, a model of the PMLM can be posed in the linear regression

form to facilitate the application of the Recursive Least Square (RLS) estimation al-

gorithm to identify the remaining model parameters. Based on the model, the control

algorithm can also be commissioned. It comprises of a PID feedback control compo-
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nent, an adaptive feedforward component which compensates for the force ripple, and

another adaptive feedforward component based on the inverse dominant linear model

which serves to speed up the motion tracking response. Simulation and experimental

results demonstrate the effectiveness and robustness of the proposed control scheme.

This chapter is devoted to develop an adaptive control method to reduce the force

ripple based on the identified frequency information. First, the mathematical model of

the PMLM is introduced. Then, a frequency analysis method is developed to derive

the dominant displacement periodicity pertaining to the force ripple. Next, the pro-

posed overall control scheme is described, including the control configuration and the

online estimation method used to identify the parameters. Finally, the simulation and

experimental results are furnished respectively.

2.2 Modeling of the Linear Motor

In this section, a model of the linear motor with parameters specific to an LD series

linear motor (LD 3810) is presented. A simplified model which combines the mechanical

dynamics and the electrical dynamics is given in [54] and [57]:

u(t) = Keẋ + Ri(t) + Ldi(t)/dt, (2.1)

f(t) = Kf i(t), (2.2)

f(t) = Mẍ(t) + fripple(x) + ffric(ẋ) + fnl(t), (2.3)

where u(t) and i(t) are the time-varying motor terminal voltage and the armature cur-

rent, respectively; x(t) is the motor position; f(t) represents the developed force; ffric(ẋ)
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Table 2.1: Linear Motor Parameters
Motor Units LD 3810

Force Constant(Kf ) N/A 130

Resistance(R) Ω 16.8

Back EMF(Ke) V/m/s 123

Length of Travel mm 2054

Moving Mass(M) kg 5.4

Armature Inductance(L) mH 17.4

Electrical Time Constant msec 1.03

Peak Force(Fp) N 1300

Peak Velocity m/sec 2.6

Peak Acceleration m/sec2 140

Continuous Current A 2.5

Continuous Force N 326

Continuous Working Voltage V d.c. 320

Continuous Working Power W 700

and fripple(x) denotes the friction and ripple force; fnl(t) represents the combined force

effects arising from other uncertainty and disturbances present in the linear motor. The

physical parameters of a PMLM (LD 3810) are listed in Table 2.1 [58].

Specially, since this chapter focuses on the compensation of the force ripples, ffric(ẋ)

and fnl(t) in (2.3) are ignored. The model of the linear motors for this chapter is

simplified as

u(t) = Keẋ + Ri(t) + Ldi(t)/dt, (2.4)

f(t) = Kf i(t), (2.5)

f(t) = Mẍ(t) + fripple(x). (2.6)

Since the electrical time constant is low and much smaller than the mechanical one,

the delay of electrical response can be ignored. Here Thus, the following equation can
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be obtained

ẍ = (−KfKe

R
ẋ +

Kf

R
u(t) − fripple(x))/M. (2.7)

Let

a =
KfKe

RM
, (2.8)

b =
Kf

RM
. (2.9)

Thus, it can be written as

ẍ = −aẋ + bu(t) − 1

M
fripple(x). (2.10)

Generally, the force ripple can be represented as a sum of a series of harmonics:

fripple(x) =
J∑

k=1

Afrksin(2πkωx + ϕk), (2.11)

where J is the numbers of harmonics and ω is the fundamental frequency.

2.3 Frequency Analysis

One approach to identify the parameters of the ripple model is to conduct experiments

with a force sensor as presented in [51]. However, this is a tedious process and is also

arguably not effective since it is known that the amplitude of the force ripple varies

with velocity. It is also possible to identify these parameters more efficiently via a soft

approach by analyzing the control signals in the closed-loop. To this end, the Recursive

Least Square (RLS) estimation algorithm (to be highlighted in Section 2.4.2) can be

used which requires the model to be posed in a linear regression form. The parameter
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which causes difficulty to enable such a formulation is the displacement periodicity ω in

the ripple model. It is thus necessary to predetermine it.

It may appear that a frequency analysis method may be used for this identification.

However, it should be noted that the force ripple is a function of displacement x and

not time. If the constant velocity is used in the experiment of frequency analysis, there

exists a simple relationship between displacement x and time. A displacement to time

mapping should be done prior to direct application of these tools. A direct mapping

can be achieved if the motor is run at a constant and low velocity of say 1mm/s. If

the constant velocity can be maintained for sufficiently long travel of the motor, then

displacement and time clearly exhibit a direct relationship. An experiment is carried

out to demonstrate this point. By running a linear motor at 1mm/s, the control signal

versus time plot is almost identical to the control signal versus displacement plot as

shown in Figure 2.3 and Figure 2.4 respectively. There exists only a slight difference

between these two figures due to small fluctuations of the velocity from the constant

value.

Now, applying the FFT to the control signal, it can be obtained as

uk = fk =

N−1∑
n=0

Fnej2π(nk)/N (2.12)

Fn =
1

N

N−1∑
k=0

fke
−j2π(nk)/N (2.13)

where control signal u is a length N discrete signal.

The frequency spectrum of the control signal can be derived as shown in Figure 2.5
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Figure 2.3: Control signal versus time plot
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Figure 2.4: Control signal versus displacement plot
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Figure 2.5: Power spectral density of the control signal

in which the DC value is ignored. From the spectrum, the dominant frequency is seen

to be 0.0143Hz, although other harmonics at 0.00477Hz and 0.0572Hz also appear

in the spectrum, but these are less significant in amplitude being less than 10% of

the dominant frequency. Therefore, only the dominant frequency is considered in the

construction of the ripple model. Since it has a direct mapping from displacement to

time, the dominant displacement periodicity is simply given by 0.0143mm−1. Please

note that the displacement x is in the unit mm.

The model of force ripple can thus be described as:

fripple = Asin(2π × 0.0143x + ϕ)

= Ar1sin(2π × 0.0143x) + Ar2cos(2π × 0.0143x) (2.14)

where Ar1 and Ar2 are the amplitudes which have yet to be identified. Thus, the model
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of the system (2.11) can be rewritten as:

ẍ = −aẋ + bu(t) − [A1sin(2π × 0.0143x) + A2cos(2π × 0.0143x)], (2.15)

where A1 = Ar1/M and A2 = Ar2/M .

2.4 Proposed Control Scheme

The proposed adaptive control scheme is designed based on the system model. In what

follows, the scheme is described systematically in details.

2.4.1 Configuration

Overall, the designed controller is composed of a feedback control component and two

adaptive feedforward components. The feedback component is a PID controller which

is basically used to ensure nominal stability. The overall feedforward component uff

can be divided into two parts. One part is based on the inverse linear model and this

part essentially speeds up the tracking motion response. The other part functions as a

compensator for the force ripples. The control signal can be represented as

u(t) = uff + ufb

= uff,inverse + uff,ripple + ufb, (2.16)

where uff,inverse is the feedforward control based on the inverse linear model; uff,ripple is

the feedforward control for the force ripples; ufb represents the feedback control.
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Substituting the contributions from the various components, it can be obtained as

u(t) =
1

b
[ẍd + aẋd] +

1

b
[A1sin(2π × 0.0143x) + A2cos(2π × 0.0143x)]

+ [Kp(xd − x) + Kd(ẋd − ẋ) + Ki

∫ t

0

(xd − x)dt]. (2.17)

Note that the parameters, a, b, A1 and A2, are unknown and to compute the control

action, their estimates are necessary. Replacing these parameters with their estimates

(same variables with hat), it follows

u(t) =
1

b̂
[ẍd + âẋd + Â1sin(2π × 0.0143x) + Â2cos(2π × 0.0143x)]

+ [Kp(xd − x) + Kd(ẋd − ẋ) + Ki

∫ t

0

(xd − x)dt]. (2.18)

It should be noted that b̂ must be non-zero. In order to identify the parameters on-

line, the Recursive Least Square (RLS) parameter identification can be used. Figure 2.6

shows the full configuration of the proposed method. The whole procedure in the dotted

box can be transferred to a smart device which just needs the u and x signals as inputs

and outputs the additional control signals (uff,ripple and uff,inverse). The identification

algorithm can described in details in the next section.

Substituting (2.18) into (2.15), the closed-loop system is obtained as

ẍ = −aẋ + b[
1

b̂
(ẍd + âẋd + Â1sin(2π × 0.0143x) + Â2cos(2π × 0.0143x))

+ Kp(xd − x) + Kd(ẋd − ẋ) + Ki

∫ t

0

(xd − x)dt]

− [A1sin(2π × 0.0143x) + A2cos(2π × 0.0143x)]. (2.19)

Ideally, the parameter estimates converge to the real parameters perfectly. Then,

introducing the tracking error e by replacing x = xd − e, it follows that the closed-loop
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Figure 2.6: Configuration of the proposed method

is reduced to

ë = −aė − b(Kpe + Kdė + Ki

∫ t

0

edt). (2.20)

This nominal system is a linear one. It remains to design the PID parameters to ensure

nominal stability and performance.

2.4.2 Identification

The parameter identification is based on the model as described in (2.15). With the

displacement periodicity identified, the model can be posed in the linear regression

form with the parameter vector θ̂ = [â b̂ Â1 Â2]
T , and the regression vector φ =

[−ẋ u − sin(2π × 0.0143x) − cos(2π × 0.0143x)]T . The standard RLS identification
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algorithm [59] is used which is described by the following equations:

θ̂(t) = θ̂(t − 1) + K(t)(ẍ − φT (t)θ̂(t − 1)) (2.21)

K(t) = P (t)φ(t) = P (t − 1)φ(t)(I + φT (t)P (t − 1)φ(t))−1 (2.22)

P (t) = P (t − 1) − P (t − 1)φ(t)(I + φT (t)P (t − 1)φ(t))−1φT (t)P (t − 1)

= (I − K(t)φT (t))P (t − 1). (2.23)

The choice of the initial values of θ̂(0) and P (0) follow the usual convention. θ̂(0) can

be chosen as [0 1 0 0]T if no other prior information is available. In order to guarantee

the convergence of the RLS algorithm, P (0) should be positive definite and sufficiently

large.

Since in real-time applications, usually only the position measurement is available from

the optical encoder, the velocity signal needed in the identification cannot be obtained

directly. It is not recommended that the velocity is derived using a pure differentiation

of the position owing to the presence of measurement noise. The following approach

is adopted to make the RLS identification viable without the availability of velocity

measurements [60].

Equation (2.15) can be expressed in a general form:

A(p)x(t) = bu(t) − [A1sin(2π × 0.0143x) + A2cos(2π × 0.0143x)], (2.24)

where A(p) = p2 +ap, and p is the differential operator p = d/dt. The model (2.15) may
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thus be rewritten as:

Hf (p)A(p)x(t) = Hf(p)bu(t) − Hf(p)[A1sin(2π × 0.0143x)

+A2cos(2π × 0.0143x)], (2.25)

where Hf(p) is a stable transfer function with a pole excess of two, and it functions as

a filter.

Let

xf (t) = Hf(p)x(t)

uf(t) = Hf(p)u(t)

sinf (t) = Hf(p)sin(2π × 0.0143x)

cosf(t) = Hf(p)cos(2π × 0.0143x). (2.26)

The model can be rewritten as

A(p)xf(t) = buf (t) − A1sinf (t) − A2cosf (t) (2.27)

=⇒ ẍf = −aẋf + buf(t) − A1sinf (t) − A2cosf(t). (2.28)

Hence, the parameter vector remains as θ̂ = [â b̂ Â1 Â2]
T . The regression vector be-

comes φf = [−ẋf uf −sinf −cosf ]
T . The controller is still implemented as described

in the earlier section. Figure 2.7 shows the proposed scheme of the identification with

the filters Hf(p) and controller. In the figure, ω = 2π × 0.0143. In the simulation study

of the next section, the simulation results will be provided to show the performance of

the proposed method.
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Figure 2.7: Block diagram of overall scheme with filter and control

2.5 Simulation Study

In this section, simulation results are provided pertaining to the performance of the

proposed scheme. MATLAB/SIMULINK was used to carry out the simulation work.

The simulation study was conducted with respect to the model description (2.15) with

Kf = 130N/A, Ke = 123V/m/s, R = 16.8Ω, M = 5.4kg, L = 17.4mH according to the

manufacturer specifications for a PMLM (model LD3810) from Linear Drive, thus giving

a = 176.2566 and b = 1.433. The force ripple is also considered with an amplitude of

8N and a periodicity of 0.0143mm−1, i.e.,

fripple = 8 sin(2π × 0.0143x).

The initial values of θ̂(0) and P (0) are chosen as [0 1 0 0]T and 105I. The filter is

designed as

Hf(s) =
2400

s2 + 110s + 2400
.
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Figure 2.8: Desired trajectory

The desired trajectory is chosen as

xd(τ) = xb + (xb − xf)(15τ 4 − 6τ 5 − 10τ 3), (2.29)

where τ = t/(tf − tb) and the various parameters are set as: initial position xb = 0m,

final position xf = 0.3m, tb = 0s and tf = 3s. The desired trajectory is shown in Figure

2.8.

Figure 2.9 shows the tracking error incurred with only PID control. Figure 2.10 shows

the tracking performance with the proposed method. Compared to Figure 2.9, order of

10−2 reduction in error can be achieved. Figure 2.10 shows significant improvement ob-

tained in the control performance. Figure 2.11 further confirms the parameter estimates

are obtained accurately with a = 176.259, b = 1.433, A1 = 1.481 and A2 = 0.

In the above study, no unstructured modeling error is considered. To verify the robust-
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Figure 2.9: Tracking error with only PID control
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Figure 2.10: Tracking error with the proposed control scheme
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Figure 2.11: Identified parameters: â, b̂, Â1, Â2

ness of the proposed control scheme under practical conditions, four kinds of disturbances

in the model are introduced and simulated. First, the full model for the actual system

(2.4)-(2.6) is simulated, although the reduced model (2.10) continues to be used for the

control design. Secondly, measurement noise is deliberately simulated in the system.

Thirdly, an actual force ripple phenomenon is simulated, which is given by

fripple = 8sin(2π × 0.0143x) + 0.4sin(2π × 0.0286x), (2.30)

although the simpler single sinusoidal function continues to apply to the control system.

Finally, possible errors arising from a FFT analysis is allowed and it is assumed that

the displacement periodicity of the force ripple is determined to be 0.015mm−1 instead

of 0.0143mm−1.
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Figure 2.12: Tracking error with the proposed control scheme (with disturbances simu-

lated)

Figure 2.12 shows the tracking performance under the presence of these uncertainties

and disturbances. Compared to Figure 2.9, order of 10−1 reduction in error is achieved.

Figure 2.13 shows the estimates of the parameters. The proposed control continues to

achieve satisfactory tracking performance, demonstrating a satisfactory robust perfor-

mance.

2.6 Experimental Results

To illustrate the applicability of the control scheme to a real system operating under

practical conditions, experiments are conducted based on an actual PMLM (LD 3810)

manufactured by Linear Drives Ltd (U.K.). The motor components of an LD consist

of the thrust rod, thrust block and robotic motor cable. The aluminum thrust block

contains a series of cylindrical coils, forming the stator of the motor. The thrust rod
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Figure 2.13: Identified parameters:â, b̂, Â1, Â2 (with disturbances simulated)

contains high-energy permanent magnet pieces within a stainless steel tube. For the sys-

tem studied, a PWM amplifier with built-in electronic commutation is used to produce

a force proportional to the control signal. This is the same motor for which the FFT

analysis was done earlier to extract the displacement periodicity. The control scheme

is implemented on a dSPACE AlphaCombo system, which is a multiprocessor system.

The DS1004 Alpha Board is the main computational platform while a DS1003 DSP

Board handles the I/O tasks. A C-coded S-Function is written to perform the control

algorithm. Additionally, the proposed algorithms can be downloaded to a dedicated

computing device or DSP card. A sampling frequency of 2.5kHz is configured. The

resolution of the Renishaw optical encoder used is 1µm. In the real-time experiments,
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Figure 2.14: Experimental set-up

the PID feedback controller is coarsely tuned with parameters Kp = 0.045, Ki = 0.035

and Kd = 0.0001. Figure 2.14 shows the experimental set-up.

Since the nonlinear effects due to friction is not considered in the proposed scheme, it

is an additional source of modeling error especially when the motor is run at high speed.

Thus, to demonstrate the adequateness and robustness of the proposed scheme, the

experimental results for low-velocity and relatively high-velocity scenarios are illustrated

respectively. In addition, the experimental results with only inverse control for the linear

dynamic model are provided to help show the effectiveness of the force ripple component

by comparison with the complete proposed control method.

The desired trajectory for low speed motion is shown in Figure 2.15. In this case, a

maximum velocity is vmax = 0.094m/s and maximum acceleration is amax = 0.096m/s2.

The tracking error with only PID control is shown in Figure 2.16 with a maximum

tracking error of 15.4µm.
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Figure 2.15: Desired motion trajectory at low speed

0 4 8 12 16 20 24
-15

-10

-5

0

5

10

15

20

Time (s)

Tr
ac
ki
ng
 E
rro
r (

µm
)

Figure 2.16: Tracking error with PID control (low speed motion trajectory)
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The initial parameter estimates are chosen as θ̂(0) = [6.5 3 0.21 − 0.12]T , and the

initial P matrix is fixed at P (0) = 103I. Since the actual dynamics of the simulated

model and the experimental setup are slightly different, the different filter used in the

experiment is

Hf(s) =
500

s2 + 60s + 500
.

Figure 2.17 shows the tracking error only with the inverse control based on the dom-

inant linear model. The tracking error with the complete proposed control scheme is

shown in Figure 2.18, and Figure 2.19 displays the parameters estimates under this

scheme. Compared to Figure 2.16, order of 0.4 × 100 reduction in error is achieved.

For performance comparison, the RMS (root-mean-square) tracking error eRMS and

the absolute maximum tracking error eMAX can be used as an indicators to evaluate the

tracking performance over the full cycle. A comparison among the three methods (PID

only, inverse control for the dominant linear model, and the complete proposed method)

is done in terms of eMAX and eRMS . Figure 2.20 and Figure 2.21 compare the maximum

tracking error and the RMS tracking error respectively. The figures show that significant

improvement, in terms of both maximum and RMS error, can be obtained with the

complete proposed control scheme. Additionally, they also verify that the adaptive force

ripple compensator is effective towards enhancing the tracking performance.

For the high speed case, the desired motion trajectory is shown as Figure 2.22. It

gives rise to a maximum velocity of vmax = 0.75m/s and a maximum acceleration of

amax = 4.62m/s2. The same θ̂(0) and P (0) are applied to the adaptive controller.
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Figure 2.17: Tracking error only with the inverse control for the linear model (low speed

motion trajectory)
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Figure 2.18: Tracking error with the proposed control scheme (low speed motion trajec-

tory)
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Figure 2.19: On-line identified parameters:â, b̂, Â1, Â2 (low speed motion trajectory)
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Figure 2.20: Comparison of the maximum tracking error (low speed motion trajectory)
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Figure 2.21: Comparison of the RMS tracking error (low speed motion trajectory)

The tracking error incurred by the respective control schemes are shown in Figure 2.23,

Figure 2.24 and Figure 2.25. Compared to Figure 2.23, order of 0.4 × 100 reduction in

error is achieved.

Figure 2.26 shows the parameter estimates under the proposed scheme. Similar to

the low speed case, a comparison in terms of maximum and RMS error is given in

Figure 2.27 and Figure 2.28 respectively. In terms of RMS error, the proposed scheme

continues to exhibit the best performance among the three schemes. However, in terms

of the maximum error, it does not perform better than the inverse control based on the

dominant linear model. This phenomenon may be attributed to the variation of the

amplitude of the force ripple with velocity. According to [28], force ripple has a high

frequency at high speed which can fall beyond the control bandwidth of the system.

Under this circumstance, the adaptive method cannot cope effectively, so that a larger
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Figure 2.22: Desired motion trajectory at high speed
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Figure 2.23: Tracking error with PID control (high speed motion trajectory)
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Figure 2.24: Tracking error only with the inverse control for the linear model (high speed

motion trajectory)
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Figure 2.25: Tracking error with the proposed control scheme (high speed motion tra-

jectory)
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Figure 2.26: On-line identified parameters:â, b̂, Â1, Â2 (high speed motion trajectory)

maximum error arising during the transient phase can occur. However, the average

tracking error over the entire cycle still remain to be the lowest for the proposed scheme.

Moreover, the result performance can be further analyzed in terms of baseline error [61].

2.7 Conclusions

In this chapter, an adaptive control scheme has been developed to reduce force ripple

effects impeding motion accuracy in Permanent Magnet Linear Motors (PMLMs). The

control method is based on Recursive Least Square (RLS) identification of a nonlinear

PMLM model which includes a model of the force ripple. Based on this model, the

control algorithm can be commissioned which consists of a PID feedback component,
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Figure 2.27: Comparison of the maximum tracking error (high speed motion trajectory)

1 2 3 4
8

10

12

14

16

18

20

22

24

26

Number of Cycles

R
M
S
 o
f T
ra
ck
in
g 
E
rro
r (

µm
)

With the proposed control scheme         
With inverse control for the linear model
With PID control                         

Figure 2.28: Comparison of the RMS tracking error (high speed motion trajectory)
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an adaptive feedforward component for compensation of the force ripple and another

adaptive feedforward component which may serve as the inverse model of the dominant

PMLM model. Simulation and experimental results have been presented which ver-

ify the effectiveness of the proposed control scheme for high precision motion tracking

applications.
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Chapter 3

Iterative Reference Adjustment for

High Precision and Repetitive

Motion Control Applications

3.1 Introduction

In Chapter 2, the development of the adaptive controller concentrates on the reduc-

tion of the force ripples. Actually, friction is also a highly undesirable phenomenon in

PMLMs. In this chapter, all the nonlinear effects as shown in (2.1)-(2.3) are considered

in the control algorithm design. Friction may be reduced to some extent via the use of

more efficient bearings, such as air or magnetic bearings. The force ripples, which may

cause oscillation and yield stability problems [2], may be minimized via a reduced-iron

magnetic core design, usually at the expense of a lower generated force.

In high precision application domains, conventional Proportional-Integral-Derivative

(PID) control usually does not suffice since the need to adequately compensate the

nonlinear dynamics of the system become even more important in these applications.

Although model-based control strategies to deal with the modeling of these nonlinear
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effects can be considered, it is generally acknowledged that it is a difficult and challenging

to model these nonlinear effects explicitly and accurately. Alternatively, self-learning

schemes may be considered [28] [56] [62]. This chapter presents a learning control scheme

which is suitable for high precision and repetitive motion control applications, such

as those encountered in pick and place precision assembly, or fixed sequence robotic

machining processes. For example, in automated manufacturing or assembly, such as

flip-chips assembly, high precision repetitive pick and place operations are necessary

to yield high density devices. For the proposed method, no explicit modeling effort is

necessary. It comprises a Radial Basis Function (RBF) network operating in parallel

with an Iterative Learning Control (ILC) component. In the literature, there are some

works about iterative learning control based on neural network. In [62], an iterative

learning controller using neural network was proposed for the robot trajectory tracking

problem. In this work, the neural network was trained off-line iteratively. In [63],

a learning feedforward controller was developed based on the B-Spline network. The

learning feedforward controller was updated by the filtered feedback control signal. The

network was used to derive the filter. For the proposed method, the RBF network is

trained on-line. Moreover, the actions of RBF and ILC components iteratively adjust

the reference signal, which was discussed by Longman in [15]. This is a useful practical

feature deliberately put in place here, since most off-the-shelf industrial controllers do

not allow any manipulation of the control signal which is mostly closed to the users.

Many of them, however, permit user specification of the reference signal, and its online
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modification to facilitate correction processes such as those used for the compensation

of machine geometrical errors and/or encoder errors. Thus, the proposed approach may

be more easily incorporated into existing control systems. The proposed scheme uses a

RBF network [64] to model the tracking error over a cycle which is subsequently used

implicitly in the iterative adaptation of the reference signal over the next one. In this way,

the learning requirements on the ILC component to achieve a certain degree of tracking

accuracy can be reduced, thus speeding up the overall convergence speed. The weights

of the RBF are recursively adjusted online based on the remnant tracking error from

cycle to cycle. The ILC component further enhances the tracking component, especially

over the sections of the trajectory where the RBF network does not approximate the

error well.

Simulation examples and experimental results are provided to demonstrate the effec-

tiveness and practical viability of the proposed control scheme.

3.2 Proposed Control Scheme

The overall configuration of the proposed control scheme is shown in Figure 3.1.

It comprises a basic feedback-feedforward controller (shown in the shaded portion of

Figure 3.1), typically found in standard industrial motion control systems, as well as a

Reference Adjustment Mechanism (RAM) comprising of a combined RBF-ILC system

which adjusts the reference signal from one cycle to the next. The basic feedback-

feedforward controller is termed as the Standard Controller henceforth. In the following
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Figure 3.1: Proposed combined RBF-ILC strategy (RBF-ILC scheme)

sections, PD controller is utilised as the feedback controller while the inverse of the

linear model is designed as the linear feedforward controller. The RAM represents the

learning mechanism for the control system, and it constitutes the main contribution

from the thesis. The main function of RAM is to learn and model the remnant tracking

error which the standard controller cannot adequately compensate, and use the model

to modify the reference signal to achieve a tighter tracking performance.

In what follows, the functions of the RBF network and the ILC component in the

RAM is separately explained, followed by an elaboration of the RBF-ILC combination.

3.2.1 Radial Basis Function Network

The proposed control system assumes that the system is essentially time-invariant and

the desired trajectory is a periodic one with period Tp. Thus, with the standard controller

in place, the remnant tracking error is a periodic signal with the same period Tp.

Define fe(t) as the remnant tracking error incurred under the standard controller. A
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key motivation of the proposed control scheme is to approximate and model fe(t) over

a cycle of the operation and use this model to modify the desired trajectory for the

standard controller in the subsequent cycles, so as to significantly reduce the tracking

error. The remnant tracking error fe(t) is expected to be a highly nonlinear function of

time. An adequate modeling tool for nonlinear functions should thus be considered.

The RBF neural network is a type of feedforward neural network. It has been shown

that under mild assumptions, RBF networks are capable of universal approximations

[64], i.e., approximating any continuous function over a compact set to any degree of

accuracy. Therefore, RBF networks is used to approximate the nonlinear functions

associated with the tracking errors. These errors may be viewed as arising from the

nonlinear and uncertain dynamics which have not been adequately addressed by the

standard controller. In a way, the RBF network can be viewed as functioning as a

nonlinear reference corrector to improve on the tracking accuracy. Generally, the RBF

network can be represented as

F (x) =

L∑
j=0

ωjφj(‖ x − cj ‖), (3.1)

where {φj(‖x − cj‖)} are the basis functions, L represents the number of weights of

the network, {ωj} are the linear weights and {cj} represent the centers of the radial

basis functions. A common form of the RBF is the Gaussian function described by

φj(‖x − cj‖) = exp(−‖x−cj‖2

2σ2
j

) [2], [65], where {σj} represent the spreads of the basis

function.

Figure 3.2 shows the use of the RBF network to modify the desired trajectory under the

52



Figure 3.2: Standard control with RBF network (RBF-only scheme)

standard control strategy. Let xRBF denote the output of RBF network. The remnant

tracking error fe(t) can thus be represented as

fe(t) = xRBF (t) + ε, (3.2)

with |ε| ≤ εM where εM is a bound on the tracking error residual which is not captured

by the RBF model.

The reference input to the standard controller is the modified desired trajectory x′
d =

xd+xRBF (t), where xd is the user specified desired trajectory. This RBF network models

a nonlinear time function. Thus, the output of the RBF network xRBF (t) is given by

xRBF (tr) =
L∑

j=0

ωjφj(|tr − cj|)

=
L∑

j=0

ωjexp(−|tr − cj |2
2σ2

j

), (3.3)

where tr (0 ≤ tr < Tp) represents the time instant relative to the beginning of each

tracking cycle.

Choice of RBF network parameters:
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Before a RBF network can be trained and used, a number of structural parameters

have to be specified or pre-determined.

The selection of the number of weights L is linked to the complexity of fe(t) and the

required accuracy threshold of the model εM . Although a larger L normally results in a

better fitting model, it also incurs higher computational requirements in order to update

the weights within a specific time frame of the application. Thus, a tradeoff in update

speed and modeling accuracy is always needed. Typically, an acceptable error bound

εM is specified and L can be chosen just large enough to meet this accuracy threshold

specification, while still meeting the time requirement to carry out the online update.

For practical applications of RBF networks, {cj} and {σj} are mostly fixed as constants

[66]. A practical rule of thumb is to spread the centers evenly over the time period

[0, Tp], and the spread to be selected as σj = d√
2
, ∀j, where d is the distance between

intermediate centers [67].

Once these structural parameters are fixed, the RBF network is ready to be trained.

The weights {ωj} of the RBF can be trained online using the backpropagation learning

rule [67]. They are adjusted in the direction of the steepest descent with respect to error,

to minimize the squared error of the network. The cost function to quantify the fitness

of the RBF network is chosen as

E =
1

2
[fe(t) −

L∑
j=0

ωjφj(|tr − cj |)]2. (3.4)
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The energy gradient is given by

∆ωj(t) = −γ
∂E

∂ωj

= γ[fe(t) −
L∑

j=0

ωjφj(|tr − cj |)]φj(|tr − cj |). (3.5)

Since the neural network is trained on-line, it is direct to use the actual tracking error as

the training signal so that it is possible to perform the learning process with the system

under closed-loop control. In this case, the actual tracking error is expected to approach

zero [68]. Therefore, replacing [fe(t) −
∑L

j=0 ωjφj(|tr − cj |)] with the actual tracking

error e(t), the weights adaptation rule in the form of (3.5), is thus obtained as:

ωj(t + 1) = ωj(t) + γe(t)exp(−|tr − cj|2/2σ2
j ), (3.6)

where γ is a learning gain satisfying 0 < γ < 1. A small learning gain results in a more

stable weight convergence at the expense of a slower learning rate. On the other hand, a

large learning gain speeds up the learning rate with a relative loss in stability. Therefore,

the learning gain γ is selected as a tradeoff between stability and learning rate.

In the precision control application of concern in this chapter, it may be noted that

drastic changes of error can occur, commonly encountered during a directional change

in motion when the frictional effects can vary in a discontinuous manner. The RBF

network does not possess a structure to cope with such discontinuities. For further im-

provement on the tracking performance, an ILC component can be further augmented to

the configuration of Figure 3.2. With an ILC augmented to complement the constraints

of the RBF network, the proposed control scheme can also be more tolerant of a less
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Figure 3.3: Standard control with ILC (ILC-only scheme)

appropriately chosen structure for the RBF network. The basic and RBF-augmented

ILC schemes are elaborated in Section 3.2.2 and Section 3.2.3 respectively.

3.2.2 Iterative Learning Control

Iterative learning control (ILC) was proposed by Arimoto et al. to achieve a better

system performance of repetitive systems over a finite time interval [8]. The main idea

associated with the use of the ILC is to enhance the system performance by using the

information from the previous cycle in the next cycle over a period of time until the

performance achieved is satisfactory [56] [62] [69] [70]. ILC is a memory-based control

scheme that needs to store the tracking errors and control efforts of previous iterations

so that the control efforts of the present cycle can be constructed. In this chapter,

the P-type update law is adopted for the ILC [69] [70]. An independent ILC scheme,

without using the RBF error model, is given in Figure 3.3 to modify the command to

the feedback-feedforward controller [69].

Under this configuration, during the ith ILC iteration, the modified desired trajectory
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x′
d,i is given by

x′
d,i(t) = xd(t) + xILC,i(t), (3.7)

where t is the discrete time index. The update law for the ILC is

xILC,i+1(t) = xILC,i(t) + Kei(t + 1), (3.8)

where K is the learning gain. For the P-type ILC, a sufficient condition for learning

convergence can be found in [71] which also provides guidelines for the choice of K. A

more thorough analysis of convergence and stability for sampled-data ILCs can be found

in [72]. Under this basic ILC configuration, the tracking error and the output of the

ILC during the previous cycle are used to update the output of ILC during the present

cycle.

3.2.3 Combined RBF-ILC System

The proposed control scheme of Figure 3.1 combines the advantages of the RBF net-

work and the ILC control components. The RBF network is used to facilitate fast

initial compensation of the tracking errors while the ILC can iteratively induce further

improvement when the self-tuning RBF network ceases to yield further tracking error

reduction, a situation which can occur due to scenarios such as an under-sized structure,

or inherent limitations of the RBF in modeling the discontinuous part of the tracking

errors.

Thus, compared to the basic ILC scheme, the proposed control scheme has a higher

convergence rate owing to the RBF network in place. Compared to a RBF-only scheme,

57



the proposed scheme is able to yield an additional margin of improvement in tracking

performance, especially over portions of the trajectory where the RBF network does not

model the error well. These portions include the directional changeover points and load

change instances. The combined structure also means that the requirements on either

component can be less stringent to achieve the same performance, e.g., a smaller RBF

network or a smaller learning gain can be used.

Under this proposed configuration, during the ith ILC iteration, the modified trajec-

tory x′
d,i is given by

x′
d,i(t) = xd(t) + xRBF,i(t) + xILC,i(t). (3.9)

xILC,i is the output of the ILC during the ith iteration. The structure and the function

of the RBF network remains the same as the one presented in Section 3.2.1. The update

law for the ILC also remains the same as (3.8).

3.3 Convergence Analysis of Proposed Control Scheme

In this section, the discussion of the convergence analysis is based on the model (2.1)-

(2.3) shown in Chapter 2. Additionally, the frictional force is also considered in the

model. In consideration of the frictional force, the model can be similarly simplified by

ignoring the delay of electrical response

ẍ = (−KfKe

R
ẋ +

Kf

R
u(t) − fripple(x) − ffric(ẋ) − fnl(t))/M. (3.10)

Let K1 = (KfKe/R) and K2 = (Kf/R). Thus, it can be written as

ẍ = −K1

M
ẋ +

K2

M
u(t) − 1

M
(fripple(x) + ffric(ẋ) + fnl(t)). (3.11)
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As proposed in the above section, the control u is given by

u(t) = k′
p[xd(t) + xILC,i(t) + xRBF,i(t) − x(t)]

+ k′
d[ẋd(t) + ẋILC,i(t) + ẋRBF,i(t) − ẋ(t)], (3.12)

where k′
p and k′

d are the PD control parameters, respectively. The closed-loop system,

consisting of the feedback controller and the linear motor, is considered as the compen-

sated system.

Substituting u into (3.11) yields

ẍ = −K2k
′
p

M
x − (

K1

M
+

K2k
′
d

M
)ẋ +

K2k
′
p

M
(xILC,i + kdẋILC,i)

− 1

M
[ffric(ẋ) + fripple(x) + fnl]

+
K2

M
[k′

p(xd + xRBF,i) + k′
d(ẋd + ẋRBF,i)], (3.13)

where kd = k′
d/k

′
p.

The state space form of the compensated system may be described as:

χ̇i(t) = Aχi(t) + Bri(t) + Di(t)

xi(t) = C1χi(t)

ẋi(t) = C2χi(t),

(3.14)
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where

χi = [xi ẋi]
T , A =

[
0 1

−K2k′
p

M
−(K1

M
+

K2k′
d

M
)

]

B =

[
0

K2k′
p

M

]
, C1 = [1 0], C2 = [0 1]

Di(t) = [0 d]T

d = − 1

M
[ffric(ẋ) + fripple(x) + fnl]

+
K2

M
[k′

p(xd + xRBF,i) + k′
d(ẋd + ẋRBF,i)]. (3.15)

In (3.14), ri(t) = xILC,i + kdẋILC,i, Di(t) represents the nonlinear part of the compen-

sated system, and i denotes the ith repetitive operation of the system. The trajectory

is considered as a periodic one, i.e., t ∈ [t0, t0 + Tp].

Lemma 3.1. (Theorem 5.D4 of [73]). The time-invariant dynamic linear system z(k+

1) = Φz(k) is asymptotically stable if and only if all eigenvalues of Φ have magnitudes

less than 1, i.e., |λj(Φ)| < 1.

Theorem 3.1. For the system (3.14) with the assumptions that ‖χi(t0)−χi−1(t0)‖ ≤

bχ0, ‖Di(t) − Di−1(t)‖ ≤ bD, and

‖
[

I − C1θ −C1θkd

−C2θ I − C2θkd

]
‖ < 1,

where θ =
∫ T

0
eA(T−τ)dτBK, given the desired trajectory xd(t) over the fixed time in-

terval [t0, t0 + Tp], by using the learning control law (3.16), then, the tracking error is

bounded

lim
i→∞

‖ei‖ ≤
√

σ(bχ0, bD)

(1 − ρ)λmin(P )
,
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where ρ and P are defined in (3.50) and (3.43), respectively. Moreover, the tracking

error e(t) is converge uniformly to zero at the sampling instants t = t1, t2, ..., tN , where

ti − ti−1 = const, as i → ∞ when bχ0, and bD → 0.

Proof. The proof includes two steps. The first step is to derive the convergence in the

case of Di = 0 and the control system (3.14) to be exactly re-initialized at χ(t0). The

second step is to prove the boundedness of the error under the proposed control scheme

in the case of ‖Di − Di−1‖ ≤ bD and ‖χi(t0) − χi−1(t0)‖ ≤ b0.

Step 1. The case of Di = 0: It is also assumed that the control system (3.14) is

exactly re-initialized at χ(t0). Consider a sampling period T where tk − tk−1 = T and

give a set of sampled data of the desired output trajectory xd(tk), k ∈ {0, 1, 2, ..., N}.

The control objective is to design a sampled-data iterative learning controller such that

when starting from an arbitrary initial state χi(t0), the output xi(tk) at each sampling

instant approaches to xd(tk), i.e., xi(tk) → xd(t) as i → ∞.

To derive the convergence, the following sampled-data learning law is used

xILC,i(tk) = xILC,i−1(tk) + Kei−1(tk+1), (3.16)

where xILC(tk) is the output of the ILC, xILC(tk) denotes the constant input for the

compensated system for t ∈ [tk, tk+1] and k = 0, 1, ...N − 1. Here K is a constant

gain. In this sampled-data iterative learning algorithm, the error history is sampled at

t0, t1, ..., tN , and stored in the memory. The system is analyzed at each sampling instant

via a discrete approach. The solution of the state space (3.14) at the sampling instant
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tk can be written as

χi(tk+1) = eA(tk+1−t0)χi(t0) + [

∫ t1

t0

eA(tk+1−τ)dτBri(t0)

+... +

∫ tk+1

tk

eA(tk+1−τ)dτBri(tk)]. (3.17)

The tracking error ei(tk+1) at the ith repetition is that ei(tk+1) = xd(tk+1) − xi(tk+1).

From this definition, the following output error equation can be obtained

ei(tk+1) = xd(tk+1) − xi−1(tk+1)

−(xi(tk+1) − xi−1(tk+1))

= ei−1(tk+1) − C1(χi(tk+1) − χi−1(tk+1)).

(3.18)

Substituting (3.17) into (3.18) yields

ei(tk+1) = ei−1(tk+1) − C1e
A(tk+1−t0)∆χi(t0)

−C1[

∫ t1

t0

eA(tk+1−τ)dτB∆ri(t0) + ...

+

∫ tk+1

tk

eA(tk+1−τ)dτB∆ri(tk)], (3.19)

where ∆χi(t0) = χi(t0) − χi−1(t0), and ∆ri(tk) = ri(tk) − ri−1(tk) = xILC,i(tk) −

xILC,i−1(tk) + kd(ẋILC,i(tk) − ẋILC,i−1(tk)) = Kei−1(tk+1) + kdėi−1(tk+1).

ėi(tk+1) can be written as

ėi(tk+1) = ẋd(tk+1) − ẋi−1(tk+1)

−(ẋi(tk+1) − ẋi−1(tk+1))

= ėi−1(tk+1) − C2(χi(tk+1) − χi−1(tk+1))

= ėi−1(tk+1) − C2e
A(tk+1−t0)∆χi(t0)

−C2[

∫ t1

t0

eA(tk+1−τ)dτB∆ri(t0) + ...

+

∫ tk+1

tk

eA(tk+1−τ)dτB∆ri(tk)]. (3.20)
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Let

E(k + 1) = I − C1

∫ tk+1

tk

eA(tk+1−τ)dτBK,

E(k + 1)′ = −C1

∫ tk+1

tk

eA(tk+1−τ)dτBKkd

Ē(k + 1) = I − C2

∫ tk+1

tk

eA(tk+1−τ)dτBKkd,

Ē(k + 1)′ = −C2

∫ tk+1

tk

eA(tk+1−τ)dτBK, (3.21)

where I is a unit matrix. At the time point tk+1, since the previous controls ∆ri(t0),

∆ri(t1), ... ∆ri(tk) are available, by the assumption, substituting the control law (3.16)

into (3.19) yields

ei(tk+1) = [I − C1

∫ tk+1

tk

eA(tk+1−τ)dτBK]ei−1(tk+1)

−C1[

∫ t1

t0

eA(tk+1−τ)dτB(Kei−1(t1) + kdKėi−1(t1))

+... +

∫ tk+1

tk

eA(tk+1−τ)dτBkdKėi−1(tk+1)]. (3.22)

ėi(tk+1) can be written as

ėi(tk+1) = [I − C2

∫ tk+1

tk

eA(tk+1−τ)dτBkdK]ėi−1(tk+1)

−C2[

∫ t1

t0

eA(tk+1−τ)dτB(Kei−1(t1) + kdKėi−1(t1))

+

∫ t2

t1

eA(tk+1−τ)dτB(Kei−1(t2) + kdKėi−1(t2))

+... +

∫ tk+1

tk

eA(tk+1−τ)dτBKei−1(tk+1)]. (3.23)
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For t = t1 at the ith iteration, the above equation becomes

ei(t1) = [I − C1

∫ t1

t0

eA(t1−τ)dτBK]ei−1(t1)

−C1

∫ t1

t0

eA(t2−τ)dτBKkdėi−1(t1)

= E(1)ei−1(t1) + E(1)′ėi−1(t1)

ėi(t1) = [I − C2

∫ t1

t0

eA(t1−τ)dτBKkd]ėi−1(t1)

−C2

∫ t1

t0

eA(t2−τ)dτBKei−1(t1)

= Ē(1)ėi−1(t1) + Ē(1)′ei−1(t1), (3.24)

where

E(1)′ = −C1

∫ t1

t0

eA(t2−τ)dτBKkd,

Ē(1)′ = −C2

∫ t1

t0

eA(t2−τ)dτBK.

For t = t2 at the ith iteration, it can be obtained as

ei(t2) = E(2)ei−1(t2) + E(2)′ėi−1(t2)

−C1

∫ t1

t0

eA(t2−τ)dτB[Kei−1(t1) + Kkdėi−1(t1)]. (3.25)

Let

E2,1 = −C1

∫ t1

t0

eA(t2−τ)dτBK,

E ′
2,1 = −C1

∫ t1

t0

eA(t2−τ)dτBKkd. (3.26)

(3.25) can be rewritten as

ei(t2) = E(2)ei−1(t2) + E(2)′ėi−1(t2)

+E2,1ei−1(t1) + E ′
2,1ėi−1(t1). (3.27)
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Similarly, it is obtained as

ėi(t2) = Ē(2)ėi−1(t2) + Ē(2)′ei−1(t2)

+Ē ′
2,1ei−1(t1) + Ē2,1ėi−1(t1). (3.28)

Similarly,

ei(tN) = E(N)ei−1(tN) + E(N)′ėi−1 + EN,1ei−1(t1)

+ E ′
N,1ėi−1(t1) + EN,2ei−1(t2) + E ′

N,2ėi−1(t2) + ...

+ EN,N−1ei−1(tN−1) + E ′
N,N−1ėi−1(tN−1) (3.29)

ėi(tN ) = Ē(N)ėi−1(tN) + Ē(N)′ei−1 + Ē ′
N,1ei−1(t1)

+ ĒN,1ėi−1(t1) + Ē ′
N,2ei−1(t2) + ĒN,2ėi−1(t2) + ...

+ Ē ′
N,N−1ei−1(tN−1) + ĒN,N−1ėi−1(tN−1), (3.30)

where

EN,i = −C1

∫ ti

ti−1

eA(tN−τ)dτBK, E ′
N,i = EN,ikd

Ē ′
N,i = −C2

∫ ti

ti−1

eA(tN−τ)dτBK, ĒN,i = Ē ′
N,ikd,

i = 1, ...N − 1. (3.31)

The above equations can be written as a composite form

ei = Eei−1, (3.32)
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where ei = [ei(t1), ėi(t1), ei(t2), ėi(t2), ..., ei(tN), ėi(tN )]T and

E =




E(1) E(1)′ 0 0 ... 0 0

Ē(1)′ Ē(2) 0 0 ... 0 0

E2,1 E ′
2,1 E(2) E(2)′ ... 0 0

Ē ′
2,1 Ē2,1 Ē(2)′ Ē(2) ... 0 0
...

...
...

...
...

...
...

EN,1 E ′
N,1 EN,2 E ′

N,2 ... E(N) E(N)′

Ē ′
N,1 ĒN,1 Ē ′

N,2 ĒN,2 ... Ē(N)′ Ē(N)




.

Since K is a constant sequence matrix, kd is a constant, and C1

∫ tj
tj+1

eA(tj+1−τ)dτB,

C2

∫ tj
tj+1

eA(tj+1−τ)dτB, k = 0, 1, ...N − 1; j = 0, 1, 2, ...N − 1 and j < k are the constant

matrices for given N sampling patterns, each element of E is a constant matrix with

respect to the iteration i. Thus, the system becomes a discrete time-invariant system.

According to Lemma 3.1, ei is convergent if E is stable, i.e., all |λi[E]| < 1.

Since the matrix E is a lower block triangular, it can be obtained as

λi[E] = ∪N−1
j=0 {λk

[
E(j + 1) E(j + 1)′

Ē(j + 1)′ Ē(j + 1)

]
}. (3.33)

This implies that ei is convergent if

[
E(j + 1) E(j + 1)′

Ē(j + 1)′ Ē(j + 1)

]
for each j = 0, 1, 2, ...N−1

is a stability matrix.

Note that for a constant sampling

E(j + 1) = I − C1

∫ tj+1

tj

eA(tj+1−τ)dτBK

= I − C1

∫ T

0

eA(T−τ)dτBK. (3.34)

Thus, ei is convergent if ‖
[

I − C1θ −C1θkd

−C2θ I − C2θkd

]
‖ < 1,where θ =

∫ T

0
eA(T−τ)dτBK.

This completes the proof of Step 1.

Step 2: In the above development, convergence is established without considering

disturbances. In the following, it shows the uniform convergence of the system against
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state disturbances, and reinitialization error at each iteration. Consider the repetitive

system (3.14) with uncertainty and disturbance.

The solution of (3.14) can be obtained as follows:

χi(tk+1) = eA(tk+1−t0)χi(t0)

+

∫ tk+1

t0

eA(tk+1−τ)dτBri(tk)

+

∫ tk+1

t0

eA(tk+1−τ)Di(τ)dτ. (3.35)

For the error model, it can be obtained as

ei(tk+1) = ei−1(tk+1) − C1e
A(tk+1−t0)∆χi(t0)

−C1

∫ tk+1

t0

eA(tk+1−τ)dτB∆ri(tk)

−C1

∫ tk+1

t0

eA(tk+1−τ)∆Di(τ)dτ (3.36)

ėi(tk+1) = ėi−1(tk+1) − C2e
A(tk+1−t0)∆χi(t0)

−C2

∫ tk+1

t0

eA(tk+1−τ)dτB∆ri(tk)

−C2

∫ tk+1

t0

eA(tk+1−τ)∆Di(τ)dτ. (3.37)

Taking a similar procedure as the proof in Step 1 and applying the control law (3.16) at

t0, t1, ...tk to (3.36), it can be written as

ei = Eei−1 − H̄1∆χi(0) − H̄2, (3.38)
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where ei,E are given in (3.32), and

H̄1 =




C1e
A(t1−t0)

C2e
A(t1−t0)

...

C1e
A(tN−t0)

C2e
A(tN−t0)


 (3.39)

H̄2 =




C1

∫ t1
t0

eA(t1−τ)∆Di(τ)dτ

C2

∫ t1
t0

eA(t1−τ)∆Di(τ)dτ
...

C1

∫ tN
t0

eA(tN−τ)∆Di(τ)dτ

C2

∫ tN
t0

eA(tN−τ)∆Di(τ)dτ.




. (3.40)

Notice that

‖ H̄1‖ =
√

λmax(H̄T
1 H̄1) ≤

√
‖H̄T

1 H̄1‖

≤ (‖C1‖ + ‖C2‖)e‖A‖NT
√

N, (3.41)

‖ H̄2‖ =
√

λmax(H̄
T
2 H̄2) ≤

√
‖H̄T

2 H̄2‖

≤ (‖C1‖ + ‖C2‖)Te‖A‖NT
√

NbD. (3.42)

Since ‖I −C
∫ T

0
eAτdτBK‖ < 1, it is shown in Theorem 3.1 that the constant matrix E

is stable. Thus, the following Lyapunov equation holds,

ETPE − P = −I, (3.43)

where P is positive definite matrix, and I is the unit matrix. Consider the Lyapunov

function Li = eT
i Pei. Then along the solution of (3.38) it can be obtained as

∆Li+1 = Li+1 − Li = eT
i+1Pei+1 − eT

i Pei

= −||ei||2 − 2eT
i ETP [H̄1∆χi+1(0) + H̄2]

+2∆χT
i+1(0)H̄T

1 P [H̄2 +
1

2
H̄1∆χi+1(0)] + H̄T

2 PH̄2. (3.44)
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Using −2αT β ≤ ζαTα + 1
ζ
βT β where ζ is an arbitrarily positive constant, with the help

of (3.41), (3.42) and (3.44), the following inequalities hold:

− 2eT
i ET P [H̄1∆χi+1(0) + H̄2] ≤ ζeT

i ei

+
1

ζ
[H̄1∆χi+1(0) + H̄2]

T (PEETP )[H̄1∆χi+1(0) + H̄2]

≤ ζ‖ei‖2 +
1

ζ
‖PE‖2[(‖C1‖ + ‖C2‖)e‖A‖T√Nbχ0

+ (‖C1‖ + ‖C2‖)Te‖A‖T√NbD]2. (3.45)

Using the definitions of the norm, the following inequalities hold

2 ∆χT
i+1(0)H̄T

1 P [H̄2 +
1

2
H̄1∆χi+1(0)] ≤ 2‖H̄1‖‖P‖bχ0(‖H̄2‖ +

1

2
‖H̄1‖bχ0)

≤ 2N(‖C1‖ + ‖C2‖)‖P‖e‖A‖NT bχ0

.[(‖C1‖ + ‖C2‖)Te‖A‖NT bD +
1

2
(‖C1‖ + ‖C2‖)e‖A‖T bχ0]

H̄T
2 PH̄2 ≤ ‖H̄T

2 P‖(‖H̄2‖)

≤ N(‖C1‖ + ‖C2‖)Te‖A‖NT bD‖P‖[(‖C1‖ + ‖C2‖)Te‖A‖T bD]. (3.46)

Incorporating the above inequalities produces

∆Li+1 ≤ −(1 − ζ)‖ei‖2 + σ(bχ0, bD), (3.47)
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where

σ(bx0, bD) =
1

ζ
‖PE‖2[(‖C1‖ + ‖C2‖)e‖A‖NT

√
Nbχ0

+ (‖C1‖ + ‖C2‖)Te‖A‖NT
√

NbD]2

+ 2N(‖C1‖ + ‖C2‖)‖P‖e‖A‖NT bχ0

.[(‖C1‖ + ‖C2‖)Te‖A‖NT bD

+
1

2
(‖C1‖ + ‖C2‖)e‖A‖NT bχ0]

+ N(‖C1‖ + ‖C2‖)Te‖A‖NT bD‖P‖

.[(‖C1‖ + ‖C2‖)Te‖A‖T bD], (3.48)

and 1 > ζ > 0 constant.

Since λmin(P )||ei||2 ≤ Li ≤ λmax(P )||ei||2, it can be obtained as

Li+1 − Li ≤ − 1 − ζ

λmax(P )
Li + σ(bχ0, bD). (3.49)

Rearranging terms, it can be written as

Li+1 ≤ [1 − 1 − ζ

λmax(P )
]Li + σ(bx0, bD)

= ρLi + σ(bχ0, bD), (3.50)

where ρ = 1 − 1−ζ
λmax(P )

. The choice for ζ to make |ρ| < 1 is obvious, i.e.,

1 − λmax(P ) < ζ < 1 if λmax(P ) < 1 (3.51)

0 < ζ < 1 if λmax(P ) ≥ 1. (3.52)
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Finally, one can easily find that

Li ≤ ρiL0 +
1 − ρi

1 − ρ
σ(bχ0, bD), lim

i→∞
Li ≤ σ(bχ0, bD)

1 − ρ
(3.53)

lim
i→∞

||ei|| ≤
√

σ(bχ0, bD)

(1 − ρ)λmin(P )
. (3.54)

This implies that the output error is bounded for t ∈ [0, N ], and even the uncertainties

that exist converge to a residual set
√

σ(bχ0,bD)

(1−ρ)λmin(P )
whose size depends on the bounds of

bχ0, bD. Furthermore, limi→∞ ||ei|| = 0 if bχ0, bD → 0.

Remark 3.1. As t → ∞, the RBF is trained well. This implies that ∆xRBF,i

approaches to a small number. This also implies that σ decreases. From (3.54), it is

observed that this may help to reduce the error. On the other hand, the ILC may help

to achieve a bounded error as shown in (3.54), as i → ∞. The bounded error depends

on the disturbance bound and RBF training.

3.4 Simulation Study

The proposed control scheme is simulated on a PMLM, decribed in (2.1)-(2.3). The

parameters of the PMLM can be found in Table 2.1 in Chapter 2.

In the simulation study, the frictional force is considered as a combination of Coulomb

and viscous friction. The friction model may be written as

ffric(ẋ) = (fc + fv|ẋ|)sign(ẋ), (3.55)

where fc is the minimum level of Coulomb friction and fv is the viscous friction para-

meter. Note that the friction force acting is discontinuous when ẋ changes sign which
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Figure 3.4: Desired trajectory, xd

corresponds to when the motion changes direction. In the simulation study, these pa-

rameters are chosen as:fc = 10N , fv = 10N. They are simply estimated by a spring

balance in the experimental study.

The force ripple, dominant in PMLMs, is also considered in the simulation, and it is

described as a periodical sinusoidal type signal, with an amplitude of 8.5N ([28]) and a

spatial period of 71.2mm, i.e., fripple = 8.5 sin 2π
71200

x, where x is expressed in µm.

The desired trajectory is chosen as (2.29). The desired trajectory with the period

Tp = 6s is shown in Figure 3.4. The PD controller parameters are tuned, using the

Ziegler-Nichols frequency response method, to be k′
p = 0.15 and k′

d = 0.00024. The

design of the feedforward controller is based on the second-order linear model. Figure

3.5 shows the tracking error incurred over one cycle when only the standard controller
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Figure 3.5: Tracking error with the standard controller

is used. This is the remnant tracking error which the proposed control method is aim

to model and subsequently reduce by modifying the reference signal.

In terms of the RMS tracking error and the absolute maximum tracking error, the

standard controller yields eRMS = 11.63µm with a maximum error eMAX of 20.49µm.

These errors are thus representative of performance achievable by standard motion con-

trollers, and can be used as benchmarks to compare the performance of various control

schemes.

3.4.1 Tracking Performance- RBF-only Scheme

In this part, the RBF network is used as a parametric model for the tracking error shown

in Figure 3.5. Following the parameter selection guidelines described in Section 3.2.1,

101 centers (i.e., L = 101) are chosen. Thus, the time period [0, 6] is split into 100 equal
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Figure 3.6: Tracking error with the RBF-only scheme

intervals. The center width is chosen as σ = 0.042, and the learning gain is fixed at

γ = 0.015. Figure 3.6 shows the tracking error incurred during the 1st, 5th and 20th

cycles when the RBF is additionally used to modify the reference signal.

The RBF network shows a strong capability to approximate the remnant tracking error

over the entire period. With eRMS reduced to 3.2µm at a maximum error of 9.02µm

after only one cycle, it is clear that the tracking error can be reduced significantly with

the RBF enhancement.

Figure 3.7 shows the RBF network output during the 20th cycle, compared to the

actual remnant tracking error with the standard controller. The RBF network is able to

approximate the remnant tracking error very well, except at the directional changeover

point at t = 3s when the discontinuity in frictional force is experienced. The disconti-
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Figure 3.7: Approximation of tracking error by the RBF network

nuity appears at zero velocity at t = 3s. It is because the friction force as a function of

only velocity is not specified at zero velocity.

Figure 3.8 shows the tracking performance of this scheme over subsequent cycles. It

should be noted that with the RBF network alone, while the tracking error has been

reduced significantly, it can be observed that incremental improvement tapers and slows

considerably after the 5th cycle. The limitation of RBF network in approximating the

discontinuous part of the time function at t = 3s is also rather evident, as this portion

of the error remains even after a large number of cycles have lapsed as seen in Figure

3.7. This limitation can be overcome with an additional ILC component.
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Figure 3.8: Iterative convergence performance with L=101 in terms of eMAX and eRMS

3.4.2 Tracking Performance- ILC-only Scheme

To illustrate the advantages of using a RBF-ILC combination, the tracking performance

with only ILC is first simulated to serve as a basis for comparison. Following reported

guidelines [71] on the choice of the learning gain, K = 0.15 is selected. Figure 3.9 depicts

the tracking error incurred with only ILC component during the 1st, 5th, and 20th cycle.

Compared to Figure 3.6, the tracking error with ILC converges relatively more slowly

in the absence of the RBF network.

Although it is clear in Figure 3.8 that the ILC-only scheme can yield iterative improve-

ment, the high initial convergence rate offered by the RBF network component cannot

be achieved. However, it is able to reduce the maximum tracking error iteratively, and

the improvement yield is especially evident at the directional changeover points. This
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Figure 3.9: Tracking error with only ILC

fares favorably compared to the RBF-only scheme where the incremental improvement

after the initial few cycles is limited. The merits of both schemes would be combined in

a RBF-ILC hybrid scheme to be presented in the next subsection.

3.4.3 Tracking Performance- RBF-ILC Combined Scheme

The combined scheme is thus expected to exhibit a fast error convergence rate (conse-

quent of the RBF network component) and also to incur good tracking performance over

time (consequent of the ILC component). Figure 3.10 shows the tracking error incurred

with the combined RBF-ILC scheme. The number of weights used remains fixed at

L = 101 and the ILC learning gain remains at K = 0.15 for a fair comparison. Figure

3.8 compares the learning convergence with RBF-only and the ILC-only scheme. The

fast initial convergence rate of the RBF-only scheme is retained, yet the hybrid scheme is
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Figure 3.10: Tracking error with the RBF-ILC combined scheme

able to yield further tracking improvement even when the performance of the RBF-only

scheme tapers off after the initial few cycles.

It is interesting to also verify that such an RBF-ILC combination is able to relax the

requirements on the individual RBF and ILC components. The simulation is re-run with

L = 51 which is only 50% of the RBF network size earlier considered. After 48 cycles,

the proposed scheme is able to meet or better the performance obtained earlier at the

20th cycle with L = 101, as shown in Figure 3.11. The combined scheme is thus more

tolerant of less appropriate parameter selection on the individual components, being

able to compensate with more learning cycles.

In order to provide the clear information of every component, Figure 3.12 presents the

outputs of XRBF , XILC , the feedback controller and the feedforward controller in the
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Figure 3.11: Iterative convergence performance with L=51 in terms of eMAX and eRMS

last cycle.

3.5 Experimental Results

In this section, actual experimental results are provided to illustrate the effectiveness

of the proposed method. Experiments were conducted based on an actual PMLM (LD

3810) described in Section 2.6.

The desired trajectory remains the same as in Figure 3.4. Figure 3.13 shows the

tracking error in following the desired trajectory over one cycle with the performance

indicator as eRMS = 12.49µm at a maximum error of 23.8µm.

In what follows, the performance achieved under the various schemes is presented. It

should be pointed out that similar trends to the simulation results are observed.
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Figure 3.12: Outputs of components in the 20th cycle (a). XRBF ; (b). XILC; (c).

feedback controller; (d). feedforward controller
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Figure 3.13: Tracking error with standard controller
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Figure 3.14: Tracking error with RBF enhancement (a). during the 1st iteration (b).

during the 10th iteration (c). during the 40th iteration

3.5.1 Experimental Results- RBF-only Scheme

The RBF network is now augmented to the standard controller. 101 weights are selected

to enable an efficient online update of the weights within the allowable sampling period.

The initial values of the weights are set to zero, the center width is chosen as σ = 0.042,

and the learning rate set to γ = 0.0018, all in accordance to the guidelines presented in

Section 3.2.1. Figure 3.14 shows the tracking error incurred during the 1st, 10th and 40th

cycles. The performance indicator has improved with eRMS = 10.3µm at a maximum

error of 21.2µm after the first cycle. Figure 3.15 shows the good approximation of the

tracking error with the RBF network during the 40th cycle.

Figure 3.16 shows the convergence performance of the proposed schemes over 40 cycles.
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Figure 3.15: Approximation of tracking error by the RBF network

While the improvement with the RBF network addition is self-evident, it can also be

noted that the incremental performance begins to taper off after the 10th cycle. After the

10th cycle, eMAX = 5.19µm and eRMS = 1.84µm. During the 40th cycle, eMAX = 3.9µm

and eRMS = 1.63µm, indicating slight improvement attained.

3.5.2 Experimental Results- ILC-only Scheme

For the ILC only scheme, the learning rate is chosen as K = 0.039, and zero initial

conditions are used. Figure 3.17 shows the tracking error during 1st, 10th and 40th

cycles. The tracking error can be reduced with each incremental cycle. However, the

amount of initial error reduction is significantly less than the corresponding reduction

when a RBF network is used.

Figure 3.16 shows the performance of this scheme over 40 cycles. While the absolute
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Figure 3.16: Iterative convergence performance with L=101 in terms of eMAX and eRMS
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Figure 3.17: Tracking error with only ILC (a). during the 1st iteration (b). during the

10th iteration (c). during the 40th iteration
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error reduced is less than the RBF-only scheme, the ILC-only scheme is able to persist

to attain a more consistent incremental error reduction even after the 10th cycle.

3.5.3 Experimental Results- RBF-ILC Combined Scheme

From the above experiment results, it may be noted that the RBF and the ILC compo-

nents offer rather distinct advantages. Similar parameters are retained, with L = 101,

K = 0.039, and zero initial conditions. Figure 3.18 shows the tracking error incurred

during the 1st, 10th and 40th cycles. The convergence performance of the scheme is

also shown in Figure 3.16. Under this RBF-ILC combined scheme, the performance

indicators improve from eRMS = 1.74µm after the 10th cycle to eRMS = 1.1322µm after

the 40th cycle. The maximum error also reduces from 4.64µm to 3.05µm. Compared

to the performance of RBF only, a slight improvement is obtained. It is partially due

to the restrictions in the measuremetn resolution. The tracking error cannot reduce

further. In addition, the experimental setup has smaller friction than expected. So In

the RBF+ILC scheme, ILC takes relative slight effect on the performance. However, in

terms of both absolute error reduction and error reduction rate, this scheme exhibits the

best performance among the schemes experimented.

3.6 Conclusions

A learning control scheme is developed which is suitable for high precision and repetitive

motion control applications. It uses a Radial Basis Function (RBF) network as a model

for the tracking error, and an Iterative Learning Control (ILC) component to further
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Figure 3.18: Tracking error with The RBF-ILC combination (a). during the 1st iteration

(b). during the 10th iteration (c). during the 40th iteration

improve on the error model. Unlike the usual ILC scheme which adapts a feedforward

control signal to achieve improved tracking performance over time, the proposed scheme

iteratively adjusts the reference signal. The RBF network speeds up the initial error

convergence while the ILC component can yield further improvement with time. Simu-

lation examples and experiment results presented have verified the desirable features of

the proposed method.
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Chapter 4

Online Automatic Tuning of PID

Controller Based on an Iterative

Learning Control Approach

4.1 Introduction

Proportional-Integral-Derivative (PID) controllers are now widely used in various in-

dustrial applications where the tracking and regulation of time-continuous variables is

necessary. The strong affinity with industrial applications is due largely to its simplicity

and the satisfactory level of control robustness which it offers. Apart from possible minor

structural differences, the distinct factor governing how well the controller performs is

the tuning method adopted. To-date, many different approaches are available for tuning

the PID controller (e.g., [74] [75] [76]). In more recent times, automatic tuning methods

have evolved (e.g., [77] [78] [79]), where the user of the industrial controller only needs

to provide simple performance specifications, initiate the tuning process with a push

button, and the PID controller can be tuned satisfactorily. These tuning approaches

can be generally classified under offline and online approaches. In the latter case, the
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controller is tuned while it is still performing the control function, with no loss in pro-

duction time. From economy, practical usage and application domain viewpoints, the

closed-loop online approach is an attractive approach.

To-date, however, a specific PID tuning approach is typically limited to certain classes

of systems only. It also typically requires a linear model of the system, in an implicit

or explicit form, based on which the controller is tuned. It is unrealistic to assume that

the system of concern fits the assumed model well, since all systems encountered in

practice are nonlinear in nature. As a result, the final control performance can be rather

limited and unacceptable when the user requirements become stringent. Under this

situation, one response may be to develop a more complex version of the PID controller.

In [80], an adaptive PID controller based on the model reference technique is proposed.

In [81], a direct adaptive PID control scheme has been proposed for both off-line and

on-line tuning of PID parameters. In [82], a learning-enhanced nonlinear PID controller

has been developed specifically for nonlinear systems. Central to all these work is a

model that becomes more complicated and unwieldy, in order to yield the incremental

performance needed. Correspondingly, the entire control design procedure also becomes

complicated.

This chapter presents a new scheme to tune the PID control parameters based on

an Iterative Learning Control (ILC) approach. The basic idea is to use ILC to derive

the ideal control signal for the system to track a periodic reference sequence. This

reference sequence can be the natural reference signal for the control system when it is
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executing repetitive operations, e.g., a servo-mechanical system executing repeated pick

and place operations. It can also be a deliberate periodic sequence purely for tuning

the PID controller, after which the natural reference sequence can be applied. This

deliberate excitation signal can be derived, for example, by subjecting the closed-loop

system to relay feedback and inducing steady state oscillation signal at an interesting

frequency of the closed system. In [83], the author proved that for each causal linear

time-invariant ILC, there is an equivalent feedback that achieves the ultimate ILC error

with no iterations. In this chapter, the PID controller is directly constructed from the

ILC algorithm, which is preferred in pratice. In this chapter, deliberate effort is put

in to ensure that the tuning is done online, i.e., the tuning procedure is carried out

while closed-loop operations is in progress. To this end, the ILC deviates from the

usual configuration ([84]), by iteratively changing the reference signal rather than the

control signal. Most industrial control systems do not allow the control signals to be

changed, although the reference signal can be subject to user specifications. Thus, the

method represents an approach which can be more readily incorporated into existing

closed-architecture systems.

Once the ILC yields a satisfactory overall control signal, as far as a selected function

of the tracking error is concerned, the PID controller is ready to be tuned. A system

identification approach is adopted where the PID parameters are adjusted such that the

best fit to the overall input and output signal of the ILC-augmented control system is

obtained. For this purpose, it is possible that a higher order controller is adopted instead
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Figure 4.1: Basic PID feedback control system

of the PID controller. The proposed method is a model-free approach since no model,

implicit or explicit, is assumed, and at no time, is the controller detached from the

system. In this chapter, the proposed method is subject to simulation-based evaluation

as well as real-time experimental tests on a piezoelectric linear motor.

4.2 Proposed Approach

In this section, the proposed tuning approach of the PID controller tuning using an ILC

approach is elaborated. The entire procedure is essentially carried out over two phases.

In the first phase, a modified ILC procedure is carried out to yield the ideal input and

output signals of the overall ILC-augmented control system. The second phase is to use

these signals to identify the best fitting PID parameters with a standard Least Square

(LS) algorithm. In the following subsections, these two phases are elaborated.

4.2.1 Phase 1: Iterative Refinement of Control

Figure 4.1 shows the system under PID feedback control (PID1). The controller PID1

is described by:

u(t) = Kp1e(t) + Ki1

∫ t

0

e(t)dt + Kd1
de(t)

dt
. (4.1)
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An ILC component is now added to the basic control system to iteratively obtain

enhanced control signals for tracking of the periodic reference signal. Figure 4.2 shows

the configuration with the ILC augmentation. Instead of the usual approach of refining

the control signal which may not be permitted in the typical closed-architecture control

system, the ILC component modifies the desired reference signal through successive

trials to improve the tracking performance. In this chapter, the P-type update law is

adopted for ILC. Under the configuration shown in Figure 4.2, during the i-th iteration,

the modified desired trajectory x′
d,i is given by

x′
d,i(t) = xd(t) + ∆xd,i(t), (4.2)

where t is the discrete time index. The update law for the ILC is

∆xd,i+1(t) = ∆xd,i(t) + λei(t + 1), (4.3)

where λ is the learning gain. For the P-type ILC, a sufficient condition for learning

convergence can be found in [71] which also provides guidelines for the choice of λ. A

more thorough analysis of convergence and stability for sampled-data ILC can be found

in [72]. Under this ILC configuration, the tracking error and the output of the ILC

during the previous cycle are used to update the output of ILC during the present cycle.

Figure 4.2 can be configured in the equivalent form as shown in Figure 4.3(a), where

the ILC structure for enhancement of the reference signal can be viewed instead as a

parallel learning controller to PID1, comprising of a ILC component and PID1 in series.

When a satisfactory level of control performance has been achieved, the ideal input e
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Figure 4.2: Iterative Learning Control block diagram

and output ∆u for a cycle of the reference signal would have been available for the next

phase.

4.2.2 Phase 2: Identifying New PID Parameters

In this phase, an equivalent PID controller PID2 is derived in place of the parallel

ILC+PID1 component, so that Figure 4.3(b) is as close to Figure 4.3(a) as possible, as

far as the response of the signal ∆u to e is concerned.

The PID2 controller can be expressed as:

∆u(t) = Kp2e(t) + Ki2

∫ t

0

e(t)dt + Kd2
de(t)

dt
. (4.4)

The standard least Square (LS) algorithm is used to obtain the parameters of PID2.

Equation (4.18) can be written in the linear regression form:

∆u(t) = ϕT (t)θ, (4.5)

where θ = [Kp2 Ki2 Kd2]
T and ϕT (t) = [e(t)

∫ t

0
e(t)dt de(t)/dt]. In practical applica-

tions, the derivative signal is seldom obtained via direct measurement, and measurement

noise is amplified if it is derived via direct differentiation. In this chapter, the differential

filter is used to derive the derivatives [60]. Figure 4.4 shows the block diagram of the

estimator with filters Hf (p), where p = d/dt represents the differential operator.
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Figure 4.3: (a). Equivalent representation of the ILC-augmented control system (b).

Approximately equivalent PID controller

Figure 4.4: Block diagram of the estimator with filters, Hf
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Equation (4.18) can be expressed in a general form:

∆u(t) = A(p)e(t), (4.6)

where A(p) = p + 1
p

+ 1. With the additional filters Hf(p), (4.6) can be rewritten as:

Hf(p)∆u(t) = Hf (p)A(p)e(t), (4.7)

where the filter Hf (p) is a stable transfer function.

Let

∆uf(t) = Hf (p)∆u(t)

ef(t) = Hf(p)e(t). (4.8)

Thus, (4.7) can be written as:

∆uf(t) = Kp2ef (t) + Ki2

∫ t

0

ef (t)dt + Kd2
def(t)

dt
. (4.9)

Hence, the parameter vector remains as θ = [Kp2 Ki2 Kd2]
T . The regression vector

becomes

ϕT
f (t) = [ef (t)

∫ t

0

ef(t)dt
def(t)

dt
]

= [Hf(p)e(t)
1

p
Hf(p)e(t) pHf(p)e(t)]. (4.10)

Define:

U = [∆uf(1)∆uf(2)...∆uf(N)]T ,

Φ =




ϕT
f (1)

ϕT
f (2)
...

ϕT
f (N)


 , (4.11)
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where N is the number of data used in the estimation. Thus, the least squares estimates

of the parameters can be determined efficiently as:

θ̂ = (ΦT Φ)−1ΦT U. (4.12)

Once the best fit PID2 controller is identified. the final PID controller is the combi-

nation of PID1 and PID2 which can be written as:

u(t) = (Kp1 + Kp2)e(t) + (Ki1 + Ki1)

∫ t

0

e(t)dt + (Kd1 + Kd2)
de(t)

dt

= Kpe(t) + Ki

∫ t

0

e(t)dt + Kd
de(t)

dt
, (4.13)

where Kp, Ki and Kd are the three overall parameters of the final PID controller. In

this way, the PID controller is tuned in the closed-loop.

It should be noted that the approach is applicable to control systems where the natural

reference signal may not be a repetitive signal. In these cases, a deliberate periodic

sequence, at an interesting frequency of the control system, can be injected purely for

tuning the PID controller, and the above mentioned steps remain applicable. Thereafter,

the deliberate signal can be replaced by the natural reference signal of the system.

4.3 Simulation Results

In this section, simulation study is conducted to verify the effectiveness of the proposed

tuning method. The simulation example adopts the model described in Section 2.2 for

precise repetitive positioning applications. The following specific system model is used
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in the simulation:

5.4ẍ = −35.1ẋ + 8.1u − ffric − fripple − fnl. (4.14)

The force ripple in (4.14) is described as a sinusoidal function with a period of 71.2mm

and an amplitude of 3N , i.e.,

fripple = 3sin(2πx/71200). (4.15)

The frictional force model can refer to Section 3.4. According to the friction model in

Equation (3.55), the model parameters of the friction force used in the simulation study

are given as:

fc = 3N, and fv = 10N.

In the simulation study, a sinusoidal desired trajectory is chosen with a frequency of

0.25Hz as shown in Figure 4.5. The initial feedback controller PID1 has parameters

Kp1 = 0.045, Ki1 = 0.03 and Kd1 = 0.0002. In order to test the robustness of the

proposed tuning method under practical conditions, measurement noise is introduced to

the system in the simulation study. Figure 4.6 shows the tracking error incurred under

the feedback controller PID1.

As shown in Figure 4.6, the initial PID controller (PID1) alone yields eRMS = 12.9µm

and eMAX = 28.3µm in terms of the absolute maximum tracking error and the RMS

tracking error.

Next, the ILC scheme, as discussed in Section 4.2, is applied to the system to further

reduce the tracking error, and in the process, yields the input and output signals neces-
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Figure 4.5: Desired trajectory
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Figure 4.6: Tracking error with the feedback controller PID1
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Figure 4.7: Tracking error during the 20th cycle (a). tracking error (µm) (b). control

signal ∆u(v)

sary for the tuning of the new PID controller. The learning gain is chosen as λ = 0.14.

The result is shown in Figure 4.7 after 20 iterations. The tracking performance is en-

hanced significantly with eRMS = 0.82µm and eMAX = 2.1µm. Figure 4.8 shows the

convergence performance of the ILC scheme over 20 cycles.

At this stage, it is ready to compute the parameters of PID2. The tracking error e(t)

and the control signal ∆u(t), during the 20th cycle, are used as the input and the output

signals to determine the parameters. These signals are first filtered using the low pass

filter Hf(s). The filter Hf(s) is designed as

Hf(s) =
1600

s2 + 80s + 1600
. (4.16)

The least square algorithm is used to determine the estimates of the PID2 parameters.
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Figure 4.8: Iterative convergence performance (a). maximum tracking error (b). RMS

tracking error

The best fitting parameters are calculated to be

Kp2 = 0.7436, Ki2 = 0.2612 and Kd2 = 0.0051. (4.17)

Thus, the final PID controller is tuned with the parameters: Kp = 0.7886, Ki = 0.2912

and Kd = 0.0053. Figure 4.9 shows the tracking performance when the tuned PID

controller is applied to the system without any ILC component. A good performance

with eRMS = 0.81µm and eMAX = 1.63µm is achieved. The maximum tracking error is

reduced significantly, compared to the ILC scheme shown in Figure 4.7. This is possible

as the PID controller can suppress the noise in the system effectively, whereas the ILC

is well-known to be sensitive to noise and sharp changes in reference commands.

Next, a non-repetitive reference signal is used to simulate the case where the natural

reference signal is a non-periodic one, such as step-types of reference signal for non-
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Figure 4.9: Tracking error with the tuned PID controller

repetitive point-to-point positioning. Figure 4.10 shows the performance comparison for

the setpoint following. The circled parts in the figure are enlarged as shown in Figure

4.11. From the figures, it can be observed that good performance can be achieved with

the proposed PID tuning method, achieving shorter rise time and settling time. Note

that the vertical scale is in terms of 104µm, so the improvement is significant.

4.4 Experimental Study

In order to demonstrate the effectiveness of the proposed PID tuning method, exper-

iments were conducted on a single axis stage manufactured by Steinmeyer. A SP-8

piezoelectric motor is used to drive the stage. Table 4.1 shows the specifications of the

stage and the motor. The experimental studies were conducted on a dSPACE DS1102

control board. MATLAB and SIMULINK were the control platforms used for the ex-
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Figure 4.10: Comparison of performances for step changes in setpoint
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Figure 4.11: Magnified parts
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Table 4.1: Specifications of Piezoelectric Linear Motor
Travel Velocity(Max) Resolution Output force(Max)

200mm 250 mm/s 0.1µ m 40N

Figure 4.12: Setup of the linear-piezoelectric motor

periment. The control scheme is implemented in the form of a C-coded S-function.

A sampling frequency of 1kHz is configured. Figure 4.12 shows the experimental test

platform.

A sinusoidal reference signal is used in the experimental study with a period of 3s,

shown in Figure 4.13. The parameters of the initial feedback controller PID1 are set

as: Kp1 = 0.009 Ki1 = 0.021 and Kd1 = 0.000001. Figure 4.14 shows the tracking

error incurred under the initial feedback controller PID1. The above experimental result

yields eRMS = 102.99µm and eMAX = 245.71µm.

Next, the ILC scheme is applied to the system to reduce the tracking error further

and achieve the input and output signal for the tuning of the new PID controller. The

learning gain is chosen as λ = 0.04. Under the ILC scheme, the result is shown in Figure
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Figure 4.13: Desired trajectory used in the experimental study
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Figure 4.14: Tracking error with the initial feedback controller PID1
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Figure 4.15: Tracking error during the 30th cycle (a). tracking error (µm) (b). control

signal ∆u(v)

4.15 after 30 iterations. From the figure, it can be observed that the tracking performance

is clearly enhanced with the learning scheme, compared to the initial feedback controller

alone. In the 30th cycle, the performance indices of eRMS = 34.34µm and eMAX =

107.72µm are achieved. The tracking convergence is shown in Figure 4.16. Note that

the blip in Figure 4.16(b) is due to the initialization transience associated with the ILC

law.

With the information obtained from the 30th cycle, the parameters of PID2 can be

estimated. In the experimental study, the low pass filter is still designed as in (4.17).

The best fitting parameters are determined as

Kp2 = 0.0186, Ki2 = 0.0282 and Kd2 = 0.0000105. (4.18)
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Figure 4.16: Iterative convergence performance (a). maximum tracking error (b). RMS

tracking error

The final PID controller is thus obtained with Kp = 0.0276, Ki = 0.0492 and Kd =

0.0000115. Then, the final PID controller is applied to the system without the ILC

component. The tracking performance is shown in Figure 4.17 with eRMS = 39.3µm

and eMAX = 93.4µm. Improved tracking performance is obtained with the tuned PID

controller. Similar to the phenomenon observed in the simulation study, the maximum

tracking error is reduced significantly.

In the experimental study, tracking results for non-repetitive setpoint following are

also observed. Figure 4.18 shows the performance for the setpoint following. In order

to present the performance clearly, the circled parts in the figured are magnified and

shown in Figure 4.19. Improved performance is observed when compared to the initial
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Figure 4.17: Tracking error with the tuned PID controller

PID controller. Note again that the vertical scale is in terms of 104µm.

4.5 Conclusions

In this chapter, a new approach for closed-loop automatic tuning of PID controller based

on an Iterative Learning Control (ILC) approach is proposed and developed. The method

does not require the control loop to be detached for tuning purposes, but it requires the

input of a periodic reference signal. Such a reference signal can be the natural reference

signal of the control system when it is used to execute repetitive operational sequence, or

it can be an excitation signal purely for tuning the PID controller. A modified iterative

learning control scheme iteratively changes the control signal by adjusting the reference

signal only. Once a satisfactory performance is achieved, the PID controller is tuned

by fitting the controller to yield a close input and output characteristics of the ILC
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Figure 4.18: Performance comparison for step changes in setpoint
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component via a standard least squares algorithm. Simulation and experimental results

verify the effectiveness of the proposed tuning method positively.

107



Chapter 5

Repetitive Control for Time-Delay

Systems

5.1 Introduction

Time delays are inevitable in many manufacturing processes. For example, in the steel

rolling process, the thickness measurement point is often located at a distance from

the hard press point, giving rise to a measurement delay. Compared to systems without

delay, time-delay systems are well-known to be difficult to control to achieve satisfactory

performance and stability. Many authors deal with the control of the time-delay systems

via current state feedback controllers [85][86][87]. These approaches are sensitive to

parameter uncertainties, and they assume that bounds on these uncertainties are known

and available prior to the control design.

The diffences and connections between iterative learning control and repetitive control

are pointed out in Chapter 1. Repetitive Control (RC) is a learning controller applicable

to execute repetitive operations, although it has yet to achieve the same level of effective-

ness for time-delay systems as for delay-free systems. The RC in its current state cannot
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yield satisfactory error convergence for time-delay systems even if a small learning gain

is used, when the systems are not pre-compensated with some dead-time compensation

schemes which require a full process model. In many cases, divergence can occur despite

the use of a small gain. However, for delay-free systems, RC has become popular, and its

potential has been demonstrated in real industrial applications. RC is able to utilize the

system’s repetition to compensate or reject uncertainties and disturbances, and hence

able to track a prescribed periodic trajectory. RC can be considered as “no-reset” ILC.

Several important findings of ILC for linear systems have appeared in the open literature

[8][88][89][90][91]. For nonlinear systems, robust ILC schemes have been proposed by

Horowitz et al. [92], Xu and Qu [93], Xu et al. [94] and Chen et al. [95]. However, stud-

ies which consider the presence of time delay in the input signal have been scarce. This

is a reason why the application of ILC or RC to process control problems has been rarely

reported. This phenomenon motivates some effort to develop RC schemes for time-delay

systems. Chen et al. [96] investigated a robust control problem of state-delay systems

using the ILC algorithm. In [43] and [44], robust ILC designs under the framework of

a Smith predictor controller is proposed, where the time-delay is compensated via the

Smith structure so that the compensated system appears as delay-free to the ILC.

In this chapter, a modified RC configuration is proposed, which is more general than

currently reported ones, and which is applicable to extended classes of processes, includ-

ing time-delay processes. A key and prominent feature of this new RC is the inclusion of

a time shift block to allow the scheme to be adapted to systems with a large time-delay

109



and phase lag phenomenon. Via the time shift block, this new and modified RC con-

figuration is able to provide time-delay compensation during the learning phase. A new

necessary and sufficient condition is derived to ensure convergence of the tracking error

under this configuration. In addition, a robust convergence analysis is provided to study

the convergence of the RC under time-delay modelling error, initialization errors, dis-

turbances and measurement noise. In the chapter, simulation examples illustrating the

practical application of this repetitive control to process control problems are provided.

5.2 RC Configuration for Time-Delay Systems

In this chapter, the system under consideration possesses an input time delay. Figure 5.1

shows the standard RC configuration. Unfortunately, while this configuration works well

for robotic and servo control applications with relatively small time delays, it fails in the

realm of industrial control applications and requirements due to the typical presence of

time-delay and large phase lag. When the usual RC is applied to the time-delay system,

the error at k time instant is used to calculate the next RC output. However, due to

the time lag phenomenon, the actual system output can be affected only after a time

duration. This typically results in large or even divergent tracking errors, even if a small

learning gain is used. To-date, RC systems which are applicable to industrial control

applications are very rarely reported.

A new RC configuration is proposed as shown in Figure 5.2 which is suitable for

industrial control applications. The system under control is represented by G0(s)e
−Ls,
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Figure 5.1: Learning Control block diagram

Figure 5.2: Learning control structure for the time-delay system

where L is the time delay present in the input. Unlike the standard RC scheme, an

additional time delay component is included to delay the tracking error e(t) by a time

duration of L̄ before it is fed to the RC. An appropriate design of this delay can achieve

the effect of time-delay compensation for convergent RC tuning. An analysis is provided

to show this key aspect of the modified RC.

In the figure, the dotted block denoted by Gm(s) represents an optional reference

model for the closed-loop which can then be used to generate the tracking error more

effectively. Gm can be fixed as Gm = 1 (i.e., no Gm block at all) or a simple rational

function to obtain a continuous and more realizable reference signal. In the subsequent

developments in the chapter, unless otherwise specified, the development is illustrated

by using Gm = 1 with no loss in generality.
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In the state space form, the time-delay system with input delay can be described by:

χ̇(t) = Aχ(t) + Bu(t − L),

x(t) = Cχ(t). (5.1)

Correspondingly, in the discrete-time domain, it can be obtained

χ(k + 1) = Fχ(k) + Gu(k − N), χ(0) = χ0

= Fχ(k) + Gq−Nu(k),

x(k) = Cχ(k), (5.2)

where F = eAh, G =
∫ h

0
eAhBdt, N = L/h, and h denotes the sampling interval.

For the new proposed configuration, the RC updating law, including the time delay

e−L̄s, is given by

ui+1(k) = ui−1(k) + γei(k − N̄ + 1), (5.3)

where the subscript i represents the ith iteration cycle, ei = xd − xi and N̄ = L̄
h
.

Theorem 5.1. Consider the system described by (5.2). Using the RC law (5.3) with

N̄ = T − N where T = Tr

h
and Tr is the period of the reference signal, a necessary and

sufficient condition for error convergence is given by

|z1,2| = |1 − γCG| < 1. (5.4)
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Proof:

In the idea of repetitive control, consider a discrete-time system with the plant initial

conditions carried over from previous iteration. Consider the ith repetitive cycle with

k = 0, 1....T , the system (5.2) can be described [97] as

xi(0) = xi−1(T ) = Cχi−1(T )

xi = M0χ0 + Mq−Nui

= M0χ0 + M̃ui, (5.5)

with

xi = [xi(1) xi(2) ... xi(T )]T , (5.6)

ui = [ui(0) ui(1) ... ui(T − 1)]T , (5.7)

M0 =




CF

CF 2

...

CF T


 , (5.8)

M =




CG 0 ... 0

CFG CG ... 0
...

...
...

...

CF T−1G ... CFG CG


 , (5.9)

M̃ = Mq−N . (5.10)

The error, during the i-th cycle, is given by ei = [ei(1) ei(2) ... ei(T )]T. With this defin-

ition, the output error equation can be obtained as
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ei+1 = xd − xi+1

= xd − xi−1 + xi−1 − xi+1

= ei−1 + M0χi−1(0) + M̃ui−1 − M0χi+1(0) − M̃ui+1

= ei−1 + M̃(ui−1 − ui+1) + M0(χi−1(0) − χi+1(0)). (5.11)

Using the RC updating law (5.3), (5.11) can be rewritten in terms of the error variable

only as

ei+1 = ei−1 − γM̃q−N̄ei + M0(χi−1(0) − χi+1(0)),

= ei−1 − γMq−(N̄+N)ei + M0(χi−1(0) − χi+1(0)). (5.12)

Using N̄ = T − N , (5.12) becomes

ei+1 = ei−1 − γMq−T ei + M0(χi−1(0) − χi+1(0)),

= ei−1 − γMei−1 + M0(χi−1(0) − χi+1(0))

= (I − γM)ei−1 + M0(χi−1(0) − χi+1(0)). (5.13)

Here, the residual part M0(χi−1(0)−χi+1(0)) can be considered as disturbance, which has

no influence on the convergence. Since M is a lower triangular matrix, the difference

equation (5.13) in term of iteration axis for k = 1, 2...T has the same characteristic

equation

z2 − (1 − γCG) = 0. (5.14)
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If all the roots of the characteristic equation lie within the unit circle, the error ei is

convergent as i → ∞. Thus, the necessary and sufficient condition for convergence is

given by

|z1,2| = |1 − γCG| < 1.

The proof is completed.

Remark 5.1. Note that this condition is similar to the convergence condition for delay-

free systems, and it is obtained without a need to have a model-based error prediction

mechanism in place.

Remark 5.2. Note also that with the modified RC configuration, error convergence

can be achieved, via only a time shift, for time-delay systems without any error predic-

tion requirement ahead of time (i.e., ei(t + N)). Only prior knowledge of the time-delay

L is necessary, but not the full process model which is the case when ILC is used in

conjunction with a Smith predictor controller [43].

5.3 Robust Convergence Analysis

Since L is a parameter needed in this repetitive control scheme, it is interesting to explore

the convergence in the face of error in the modelling of L, as well as the existence of

initialization errors, disturbances and measurement noise. Note that the conventional

RC (i.e., L̄ = 0) applied to delay systems is thus a special case of this analysis, with the

115



time-delay modeling error of

∆L = Tr − L. (5.15)

In this section, the robust convergence analysis of the proposed method is presented.

Uniform error convergence can be shown to be attainable when disturbances and uncer-

tainty tend to zero.

The following time-delay system with disturbances and measurement noise is consid-

ered

χi(k + 1) = Fχi(k) + Gui(k − N) + wi(k)

xi(k) = Cχi(k) + vi(k), (5.16)

where wi(k) and vi(k) represent the disturbances and the measurement noise respec-

tively. Considering a modeling error in time-delay, let N̄ = T − (N + ∆N), where

∆N = ∆L
h

, and ∆L represents the modeling error in the estimate of the time-delay L.

The following assumptions are made

Assumptions:

(1). The initialization error is bounded, i.e.,

‖ χd(0) − χi(0) ‖≤ bχ0 , ∀i.

(2). The desired output xd(k) is realizable. This implies that for a given bounded
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xd(k), there exists a unique bounded desired input ud(k), k ∈ [0, T ] which satisfies

χd(k + 1) = Fχd(k) + Gud(k − N),

xd(k) = Cχd(k). (5.17)

(3). The disturbance wi(t) and the measurement noise vi(t) are bounded, i.e.,

bw
�
= sup

k∈[0,T ]

‖ wi(k) ‖, bv
�
= sup

k∈[0,T ]

‖ vi(k) ‖ .

Definitions:

The following norms are used in this chapter. They are defined as

‖ g ‖ = max
1≤i≤n

| gi |,

‖ H ‖ = max
1≤i≤m

(
n∑

j=1

| hi,j |), (5.18)

where g = [g1, g2, ...gn]T is a vector and H = [hi,j]m×n is a matrix.

Define a =‖ F ‖. The λ norm is defined as

‖ f(k) ‖λ= sup
k∈[0,T ]

a−λk ‖ f(k) ‖, (5.19)

where f(k) (k = 0, 1, 2...T ) is a discrete-time vector. λ is chosen as | λ |> 1 and the

choice of the sign depends on a, i.e.,

{
λ > 0 if a > 1

λ < 0 if a < 1.
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Theorem 5.2. Consider the system described by (5.16) which satisfies the above as-

sumptions. Given a realizable trajectory xd(.), there exists a γ which results in the

output error ei(k), and input error ∆ui(k) being bounded under the proposed scheme.

Proof: Accounting for the modeling error in the time-delay, the control update law

can be written as

ui+1(k) = ui−1(k) + γei(k − N̄ + 1)

= ui−1(k) + γei−1(k + N + 1 + ∆N). (5.20)

Assume that e is continuous and differentiable. According to Lagrange’s Theorem, there

exists a τ value such that ei−1(k + N + 1 + ∆N) can be written as

ei−1(k + N + 1 + ∆N) = ei−1(k + N + 1) + ∆Ne′i−1(τ). (5.21)

Define

ε = γ∆Ne′i−1(τ).

Since e is continuous and differentiable, ε is bounded as

sup
k∈[0,T ]

‖ ε ‖≤ bε.

(5.20) can this be written as

ui+1(k) = ui−1(k) + γei−1(k + N + 1) + ε. (5.22)

Bound on Input Error:
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Define ∆ui(k) = ud(k) − ui(k) such that

∆ui+1(k) = ud(k) − ui+1(k)

= ∆ui−1(k) − γei−1(k + N + 1) − ε

= ∆ui−1(k) − γ[Cχd(k + N + 1) − Cχi−1(k + N + 1) − vi−1(k + N + 1)]

−ε. (5.23)

By referring to (5.16) and (5.17), (5.23) can be written as

∆ui+1(k) = ∆ui−1(k) − γ[CFχd(k + N) + CGud(k) − CFχi−1(k + N) − CGui−1(k)]

+γCwi−1(k + N) + γvi−1(k + N + 1) − ε

= ∆ui−1(k) − γ[CF (χd(k + N) − χi−1(k + N)) + CG∆ui−1]

+γCwi−1(k + N) + γvi−1(k + N + 1) − ε

= [I − γCG]∆ui−1(k) − γCF (χd(k + N) − χi−1(k + N))

+γCwi−1(k + N) + γvi−1(k + N + 1) − ε. (5.24)

Taking norms for (5.24) gives

‖ ∆ui+1(k) ‖ ≤ ‖ I − γCG ‖‖ ∆ui−1(k) ‖

+ ‖ γCF ‖‖ χd(k + N) − χi−1(k + N) ‖

+bw ‖ γC ‖ +bvγ + bε. (5.25)
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χd(k) − χi(k) can be written in terms of the control signal by referring to (5.5)

χd(k) − χi(k) = F k(χd(0) − χi(0)) +

k−1∑
j=0

F k−1−jG(ud(j − N) − ui(j − N))

−
k−1∑
j=0

F k−1−jwi(k). (5.26)

Thus, it can be obtained as

χd(k + N) − χi−1(k + N) = F k+N(χd(0) − χi−1(0))

+

k+N−1∑
j=0

F k+N−1−jG(ud(j − N) − ui−1(j − N))

−
k+N−1∑

j=0

F k+N−1−jwi−1(j). (5.27)

Taking the norm for the above equation yields

‖ χd(k + N) − χi−1(k + N) ‖ ≤ ak+N ‖ χd(0) − χi−1(0) ‖

+
k+N−1∑

j=0

ak+N−1−j ‖ G ‖‖ ud(j − N) − ui−1(j − N) ‖

+bw

k+N−1∑
j=0

ak+N−1−j. (5.28)

Define ‖ I −γCG ‖≤ ρ < 1, bC =‖ C ‖ and bG =‖ G ‖. Therefore, (5.25) can be written

as

‖ ∆ui+1(k) ‖ ≤ ρ ‖ ∆ui−1(k) ‖ +γbCak+N+1bχ0

+γbCbGa

k+N−1∑
j=0

ak+N−1−j ‖ ∆ui−1(j − N) ‖

+γbwbca

k+N−1∑
j=0

ak+N−1−j + γbwbC + bvγ + bε. (5.29)
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Multiplying a−λk to both sides of (5.29), it can be obtained as

‖ ∆ui+1(k) ‖λ ≤ ρ ‖ ∆ui−1(k) ‖λ +γbCbχ0a
N+1 sup

k∈[0,T ]

(a−λkak)

+γbCbGa sup
k∈[0,T ]

a−λk
k+N−1∑

j=0

ak+N−1−j ‖ ∆ui−1(j − N) ‖

+γbwbca sup
k∈[0,T ]

a−λk
k+N−1∑

j=0

ak+N−1−j + γbwbC + bvγ + bε. (5.30)

At this stage, it is noted that

sup
k∈[0,T ]

(a−λkak) = a. (5.31)

Let us define

b1 = γbCbχ0a
N+2 + γbwbca sup

k∈[0,T ]

a−λk

k+N−1∑
j=0

ak+N−1−j + γbwbC + bvγ + bε.

Additionally, it follows that

γbCbGa sup
k∈[0,T ]

a−λk

k+N−1∑
j=0

ak+N−1−j ‖ ∆ui−1(j − N) ‖

= γbcbG sup
k∈[0,T ]

a−(λ−1)k

k+N−1∑
j=0

a−λ(j−N) ‖ ∆ui−1(j − N) ‖ a(λ−1)(j−N)

≤ γbCbG ‖ ∆ui−1(k) ‖λ sup
k∈[0,T ]

a−(λ−1)k

(
a(λ−1)k − 1

aλ−1 − 1

)

= γbCbG ‖ ∆ui−1(k) ‖λ

(
1 − a−(λ−1)T

aλ−1 − 1

)
. (5.32)

Define b2 = γbCbG

(
1−a−(λ−1)(T+N)

aλ−1−1

)
. Substituting (5.32) into (5.30), it can be obtained

as

‖ ∆ui+1(k) ‖λ ≤ (ρ + b2) ‖ ∆ui−1(k) ‖λ +b1. (5.33)

Define ρ̃ = ρ + b2. Thus, (5.33) can be written as

‖ ∆ui+1(k) ‖λ ≤ ρ̃ ‖ ∆ui−1(k) ‖λ +b1. (5.34)
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Since ρ < 1, there exists a sufficiently large | λ | which makes ρ̃ < 1. Applying Lemma

A.0.2 in [98], it can be obtained

lim
i→∞

‖ ∆ui(k) ‖λ=
b1

1 − ρ̃
. (5.35)

Since b1 is bounded, (5.35) shows that the input error is bounded ∀i in [0, T ]. Also

when all the disturbances tend to zero, the input error tend to zero.

Bound on Output Error:

Next, it is proven that the output error is also bounded with appropriate choice of the

learning gain γ. Following (5.28), it can be written as

‖ ei(k) ‖ ≤ ‖ C ‖‖ χd(k) − χi(k) ‖

≤ bca
k ‖ χd(0) − χi(0) ‖

+bc

k−1∑
j=0

ak−1−j ‖ G ‖‖ ud(j − N) − ui(j − N) ‖

+bcbw

k+N−1∑
j=0

ak−1−j. (5.36)

Multiplying a−λk to both sides of (5.36),

‖ ei(k) ‖λ ≤ bcbχ0 sup
k∈[0,T ]

(a−λkak)

+bcbG sup
k∈[0,T ]

a−λk

k−1∑
j=0

ak−1−j ‖ ud(j − N) − ui(j − N) ‖

+bcbw sup
k∈[0,T ]

a−λk

k−1∑
j=0

ak−1−j . (5.37)

Define

b3 = bcbw sup
k∈[0,T ]

a−λk
k−1∑
j=0

ak−1−j.
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According to (5.32), it follows that

‖ ei(k) ‖λ ≤ bcbχ0a

+bcbG ‖ ∆ui−1(k) ‖λ sup
k∈[0,T ]

a−(N+1)a−(λ−1)k

(
a(λ−1)(k−N)−1

aλ−1 − 1

)

+b3

≤ bcbχ0a

+bcbGa−1 ‖ ∆ui−1(k) ‖λ

(
a−λN − a−(λ−1)T−N

aλ−1 − 1

)

+b3. (5.38)

Define b4 = bcbχ0a + b3. Taking the limit as i → ∞ and using (5.35), it can be obtained

as

lim
i→∞

‖ ei(k + N) ‖λ= b4 + bcbGa−1 b1

1 − ρ̄

(
a−λN − a−(λ−1)T−N

aλ−1 − 1

)
. (5.39)

The output error is bounded as i → ∞. The proof is completed.

5.4 Simulation Examples

In this section, simulation examples are given to demonstrate the effectiveness and per-

formance of the proposed algorithm in comparison with the usual RC. Consider the

following second-order system with time-delay

G(s) =
25

(s + 5)2
e−2s. (5.40)

In the simulation study, the reference signal is chosen to be a sinusoidal signal with a

period of 4s, as shown in Figure 5.3.
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Figure 5.3: Reference signal

5.4.1 Usual RC

When the usual RC algorithm is applied, a divergent trend may be observed, even when

a small learning gain γ = 0.05 is chosen. The divergent performance is shown in Figure

5.4. Additionally, Figure 5.5 also reveals the divergent phenomenon under the usual RC

which can be attributed to the input time-delay present in the system.

5.4.2 New RC

The new proposed RC scheme is applied to the same system by first assuming the delay

is known exactly. Tracking convergent performance can be achieved over 30 cycles with

a learning gain of γ = 0.4, as shown in Figure 5.6. eMAX (maximum absolute error)

is reduced from 1.83 in first cycle to 0.021 in the 30th cycle, while eRMS (root-mean-

square error) is reduced from 1.05 to 0.014 correspondingly. This gain of γ = 0.4 is
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Figure 5.4: Divergent tracking performance under the usual RC
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Figure 5.5: Tracking performance comparison under the usual RC (a). error in the first

cycle (b). error in the 30th cycle
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Figure 5.6: Convergent tracking performance under the new proposed RC

eight times the gain of γ = 0.05 used for the earlier simulation with the usual RC,

yet error convergence is attainable. The initial blip appearing in Figure 5.6(b) reflects

the transient period for initialization of the iterative learning to complete. Figure 5.7

shows the comparison of the tracking errors in the first cycle and 30th cycle. From the

figures, it is clear that the new proposed RC algorithm can yield a satisfactory tracking

performance for the system with time-delay.

5.4.3 Robust Performance

Finally, in order to verify the robustness of the proposed method, the simulation was

conducted by deliberately including measurement noise and a modelling error in the

time-delay. The time-delay is chosen as 2.8s in the simulation, representing a 40%

modelling error. Figure 5.8 shows the convergent tracking performance over 30 cycles
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Figure 5.7: Tracking performance improvement with the new proposed RC (a). error in

the first cycle (b). error in the 30th cycle

with the same learning gain of γ = 0.4. eMAX (maximum absolute error) is reduced from

1.83 in first cycle to 0.155 in the 30th cycle. Correspondingly, eRMS (root-mean-square

error) is also reduced from 1.05 to 0.054. The new RC has shown a satisfactory resilience

to the effects of disturbance and modelling error.

Figure 5.9 shows the comparison of the errors in the first cycle and 30th cycle. From the

figures, it is clear that the new proposed RC algorithm is robust to these uncertainties.

5.5 Conclusions

In this chapter, a new form of repetitive learning control has been proposed which

is applicable to an extended class of systems, including time-delay systems. A new

convergence condition which is necessary and sufficient has been derived for this new
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Figure 5.8: Convergent tracking performance with the system experiencing disturbances

and modelling error
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Figure 5.9: Tracking performance comparison with the system experiencing disturbances

and modelling error (a). error in the first cycle (b). error in the 30th cycle
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RC. In addition, a robust convergence analysis for the RC under the existence of a time-

delay mismatch, initialzation errors, disturbances and measurement noise has shown the

robustness of the new proposed approach. Simulation examples have also verified viable

practical applications of the new RC to motion control problems.
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Chapter 6

Predictive and Iterative Learning

Control Algorithm

6.1 Introduction

Since the ILC method was proposed in 1984, many of the ILC algorithms are based

on generic structures which do not explicitly contain the system models [99] [100][56].

The “model-free” approach, however, possesses limitations in terms of achievable perfor-

mance and tuning guidelines, especially in multivariable control problems [45]. To over-

come this limitation, model-based ILC algorithms have been proposed in [101][102][89][103].

With a model-based approach, estimates of future signals become available through pre-

diction, and predictive ILC control has been suggested to achieve better performance

and exhibit better convergence properties as compared to the basic ILC algorithms with

inevitably less ‘foresight’ [104] [105]. In [104], an iterative learning algorithm with pre-

dictive control is developed, in which the predictor is designed in the time domain. For

a repetitive process, however, it is often more interesting of the predictor design which

is based on the trial number instead of continuous time. In [105], an optimal predic-
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tive ILC controller for linear systems is presented, in which the predictor is constructed

based on the trial number (or repetitive number). The full state feedback is introduced

in their proposed algorithm. However, in most applications, many state variables are not

directly measurable and must be estimated [91]. In [106], an optimal ILC algorithm is

proposed for non-minimum phase systems with the interpretation of frequency domain.

In addition, as indicated in the conclusion of [105], the robustness issue has not yet been

adequately addressed in their results.

Based on the above considerations, this chapter is dedicated to develop a novel pre-

dictive iterative learning algorithm for time-varying, linear and repetitive systems. This

algorithm is simpler compared to that of [105], while keeping the basic predictive control

features. An error model that represents the transition of the tracking error between

two successive trials is first introduced. Based on this model, a predictive and iterative

learning algorithm is derived which is only based on the trial number (or repetition

index). The convergence properties of this algorithm is investigated rigorously in this

chapter. In addition, the robustness of the learning system against the modeling errors,

initial errors, and the presence of disturbances are derived by using a sup-norm approach

rather than the traditional λ−norm [107] towards convergence analysis. An example is

given to demonstrate the effectiveness of the proposed algorithm.
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6.2 Problem Formulation

Consider a repetitive linear discrete-time system with uncertainty and disturbance as

follows

xi(t + 1) = A(t)xi(t) + B(t)ui(t) + wi(t), (6.1)

yi(t) = C(t)xi(t), (6.2)

where i denotes the ith repetitive operation of the system; xi(t) ∈ Rn, ui(t) ∈ Rr, and

yi(t) ∈ Rm are the state, control input, and output of the system, respectively; wi(t)

is uncertainty or disturbance; t ∈ [0, N ] represents time; and A(t), B(t), and C(t) are

matrices with appropriate dimensions.

The problem is stated as follows: Find an update mechanism for the input trajectory

of a new repetition based on the information from the previous repetitive operation so

that the controlled output converges to the desired reference over the time horizon [0, N ].

Due to the cyclic nature of the repetitive processes, it is convenient to pack the infor-

mation in each cycle (or trial) together. The equation (6.1) becomes

xi(1) = A(0)xi(0) + B(0)ui(0) + wi(0),

xi(2) = A(1)A(0)xi(0) + A(1)B(0)ui(0) + B(1)ui(1) + A(1)wi(0) + wi(1),

...

xi(N) = ΠN−1
k=0 A(k)xi(0) + ΠN−1

k=1 A(k)B(0)ui(0) + ... + B(N − 1)ui(N − 1)

+ΠN−1
k=1 A(k)wi(0) + ... + wi(N).
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Packing the results in a matrix form for the time steps within a repetition, it can be

obtained as

yi = Gui + G0xi(0) + wi, (6.3)

where yi = [yT
i (1), yT

i (2), ..., yT
i (N)]T ,

G =




C(1)B(0) 0 ... 0

C(2)A(1)B(0) C(2)B(1) ... 0
... ...

C(N)ΠN−1
k=1 A(k)B(0) C(N)ΠN−1

k=2 A(k)B(1) ... C(N)B(N − 1)


 ,

G0 =




C(1)A(0)

C(2)A(1)A(0)
...

C(N)ΠN−1
k=0 A(k)


 ,

wi =




C(1)wi(0)

C(2)A(1)wi(0) + wi(1)
...

C(N)ΠN−1
k=1 A(k)wi(0) + ... + C(N)wi(0)


 ,

ui = [uT
i (0), uT

i (1), ..., uT
i (N − 1)]T .

In the above, i denotes the ith repetitive operation of the system and wi represents the

batch-wise independent error (including measurement noises). G is an impulse response

matrix which can be derived through identification or linearization of a nonlinear model.

In the framework to be developed, the following norms are used.

‖ f ‖ = max
1≤i≤n

|fi|, ‖ S ‖= max
1≤i≤m

(
n∑

j=1

|sij|),

where f = [f1, ..., fn]T is a vector, and S = [sij ] ∈ Rm×n is a matrix.
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6.3 Predictive and Iterative Learning Control Algo-

rithm

In this section, the formulation of the predictive and learning algorithm is described.

6.3.1 Predictor Construction

Once the state space model is available, the subsequent steps for predictor construction

is straightforward. The output error at the (i + 1)th iteration can be written as:

ei+1 = yd − yi+1

= ei − (yi+1 − yi)

= ei − G∆ui+1 − G0∆xi+1(0) − ∆wi+1. (6.4)

The structure of error model (6.4) can be useful in formulating predictive controllers. In

order to do this, a prediction model may be defined as follows:

êi+1 = êi − G∆ui+1, (6.5)

where êi+1 denotes the error predicted at instant i for instant i + 1. This model is

redefined at each sampling instant i from the actual error vector previously applied,

that is êi = ei. Comparing (6.5) with (6.4), one may observe that the disturbance

noise vector is not included since it is assumed to be unknown. In addition, ∆xi+1(0)

is omitted as it may complicate the control formulation. Applying the equation (6.5)
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recursively, it follows that

êi+2 = ei − G∆ui+2 − G∆ui+1, (6.6)

êi+3 = ei − G(∆ui+3 + ∆ui+2 + ∆ui+1), (6.7)

...

êi+h = ei − G(∆ui+h + ∆ui+h−1 + ... + ∆ui+1), (6.8)

where h is the prediction horizon.

6.3.2 Derivation of Algorithm

A linear quadratic performance index is considered which may be written in the following

form:

J =

h∑
j=1

[
êT

i+j êi+j + γ̄∆uT
i+j∆ui+j

]
, (6.9)

where γ̄ > 0 is a control weight and h is a prediction horizon. Note that this criterion

includes not only the error associated with the next trial, but also those associated with

the next h trials, as well as the corresponding changes in input. The weight parameter

γ̄ > 0 determines the relative importance of more distant (future) errors and incremental

inputs compared with the present ones. By including more distant signals, the learning

algorithm becomes less ‘short sighted’ [105].

The complexity introduced by the equations (6.5)-(6.8) is basically the result of the

number of unknown control sequence ∆ui+j. One way of reducing the number of un-

knowns is to predetermine the form of the control sequence. It has been proven useful
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to impose a step control sequence together with a cost function such as the one given

in the equation (6.9), thus reducing the number of unknowns to a single one [108][109].

The control sequence can be imposed to be constant over the prediction interval, i.e.,

∆ui+1 = ∆ui+2 = ... = ∆ui+h. Now, the prediction equations over the i+h horizon can

be obtained.

êi+1 = ei − G∆ui+1, (6.10)

êi+2 = ei − 2G∆ui+1, (6.11)

êi+3 = ei − 3G∆ui+1, (6.12)

...

êi+h = ei − hG∆ui+1. (6.13)

The optimization problem becomes

J =
h∑

j=1

êT
i+jêi+j + γ∆uT

i+1∆ui+1, (6.14)

where γ = hγ̄. Substituting (6.10)-(6.13) into (6.14) yields

J = (êi+1, êi+2, ..., êi+h)




êi+1

êi+2

...

êi+h


 + γ∆uT

i+1∆ui+1

= [




INm

INm

...

INm


 ei −




INm

2INm

...

hINm


 G∆ui+1]

T [




INm

INm

...

INm


 ei −




INm

2INm

...

hINm


 G∆ui+1]

+ γ∆uT
i+1INr∆ui+1,

where INm and INr are the Nm×Nm and Nr×Nr unit matrices, respectively. Imposing
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the condition on the gradient, ∂J
∂∆ui+1

= 0, the control action can be derived as:

∆ui+1 = (GT F T
1 F1G + γINr)

−1GT F T
1 F2ei, (6.15)

where F1 = [INm, 2INm, ..., hINm]T and F2 = [INm, INm, ..., INm]T . In this equation, it is

noted that

F T
1 F1 = [INm, 2INm, ..., hINm]




INm

2INm

...

hINm


 (6.16)

= (1 + 22 + ... + h2)INm = aINm, (6.17)

where a = 1
6
h(h + 1)(2h + 1). It is also noted that

F T
1 F2 = [INm, 2INm, ..., hINm]




INm

INm

...

INm


 (6.18)

= (1 + 2 + ... + h)INm = bINm, (6.19)

where b = 1
2
h(1 + h). Thus, (6.15) becomes

ui+1 = ui + b(aGT G + γINr)
−1GTei, (6.20)

where γ > 0.

Remark 6.1. The proposed ILC scheme has a feedforward structure, and the ith cur-

rent input is generated by the earlier data at the i − 1th trial. One advantage of this

algorithm is that it takes the same dimensionality of the matrix as the non-predictive

ILC with a quadratic criterion [91], thus achieving a prediction capability while keeping

the basic predictive control features.
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Remark 6.2. When the system disturbances and noises present become significant,

a similar observer algorithm as that of Lee et al. [91], may be considered:

ui+1 = ui + b(aGT G + γINr)
−1GT ēi/i, (6.21)

where ēi/i is the estimate of ei. The following observer is used for obtaining ēi/i:

ēi/i−1 = ēi−1/i−1 − G∆ui, (6.22)

ēi/i = ēi/i−1 + K(ei − ēi/i−1), (6.23)

where K is the filter gain matrix which can be obtained through various means, such as

the pole placement and Kalman filtering techniques.

6.3.3 Convergence and Robustness of Algorithm

For the proposed control laws, the following convergence properties can be established.

Theorem 6.1. Consider the system (6.4) under the assumptions that wi+1 − wi = 0,

xi+1(0) − xi(0) = 0 and G is full row rank. Given the desired trajectory yd over the

fixed time interval [0, N ], by using the learning control law (6.20), the tracking error

converges to zero for h ≥ 1 as i → ∞.

Proof: To analyze the convergence, the closed-loop system could be derived. Sub-
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stituting (6.20) into (6.4) produces a closed-loop

ei+1 = [INm − bG(aGT G + γINr)
−1GT ]ei

= [INm − b

a
G(GT G +

γ

a
INr)

−1GT ]ei.

Let

E = INm − b

a
G(GT G +

γ

a
INr)

−1GT . (6.24)

Applying the matrix inversion lemma ([110]) leads to

(GT G +
γ

a
INr)

−1 =
a

γ
INr − a2

γ2
GT (

a

γ
GGT + INm)−1G

=
a

γ
[INr − GT (GGT +

γ

a
INm)−1G].

Applying this formula to (6.24) yields:

E = INm − b

a
G(GT G +

γ

a
INr)

−1GT

= INm − b

γ
[GGT − GGT (GGT +

γ

a
INm)−1GGT ]

= INm − b

γ
[GGT (GGT +

γ

a
INm)−1(GGT +

γ

a
INm) − GGT (GGT +

γ

a
)−1GGT ]

= INm − b

a
GGT (GGT +

γ

a
INm)−1.

Since G is full row rank, GGT is positive definite and non-singular (can be obtained

directly from the Singular Value Decomposition (SVD)). Thus, it follows that

E = INm − b

a
[(GGT +

γ

a
INm)(GGT )−1]−1

= INm − b

a
[INm +

γ

a
(GGT )−1]−1.
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For the convergence analysis, it is necessary to know the eigenvalues of E.

λi(E) = λi{INm − b

a
[INm +

γ

a
(GGT )−1]−1} = 1 − b

a
λi{[INm +

γ

a
(GGT )−1]−1}

= 1 − b

a

1

{1 + γ
a
λi[(GGT )−1]} .

Since GGT is positive definite and non-singular, this implies that λi[(GGT )−1] > 0.

This implies that 1 + γ
a
λi[(GGT )−1] > 1 since γ > 0, a > 0. Further, this implies that

0 < 1
1+ γ

a
λi[(GGT )−1]

< 1. Also, since 0 < b
a

= 3
2h+1

≤ 1 for the prediction horizon h ≥ 1,

this together with 0 < 1
1+ γ

a
λi[(GGT )−1]

< 1 yields

0 <
b

a

1

{1 + γ
a
λi[(GGT )−1]} < 1. (6.25)

Notice that E is a constant matrix. This implies that |λi(E)| < 1. The conclusion

follows.

Another advantage of the proposed ILC is the availability of tuning parameters like

the input weighting matrix γ and prediction horizon h which can be used to enhance

the robustness against model uncertainty. This feature can be shown by considering a

case where G contains uncertainties.

The error evolution equation for the true system is written as:

ei+1 = ei − Gtrue∆ui+1 = ei+1 − (G + ∆G)∆ui+1, (6.26)

where G is the nominal matrix, and ∆G is the perturbation matrix. Assume that

‖ ∆G ‖≤ ϕ, (6.27)

where ϕ is a constant. The upper and lower bounds on ϕ are to be found such that if ϕ

is within these bounds, the error convergence still holds.
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Since E is an asymptotically stable matrix as shown in the proof of Theorem 6.1, the

following Lyapunov equation holds:

ET PE − P = −INm, (6.28)

where P is a positive definite matrix. This equation is used in the proof of the following

theorem.

Theorem 6.2. Consider the system (6.26) under the assumptions that wi+1 − wi = 0,

xi+1(0)−xi(0) = 0 and the nominal matrix G is full row rank. Given the desired trajec-

tory yd over the fixed time interval [0, N ], by using the learning control law (6.20), the

tracking error converges to zero for h ≥ 1 as i → ∞, if

−c −√
c2 + d

d
< ϕ <

−c +
√

c2 + d

d
, (6.29)

where

c = ‖ ET P ‖‖ (aGT G + γINr)
−1GT ‖, (6.30)

d = ‖ (aGT G + γINr)
−1GT ‖2‖ P ‖ . (6.31)
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Proof: Substituting (6.20) into (6.4) gives

ei+1 = ei − (G + ∆G)∆ui+1

= [INm − bG(aGT G + γINr)
−1GT ]ei − b∆G(aGT G + γINr)

−1GTei

= Eei − b∆G(aGT G + γINr)
−1GTei.

For simplicity, denote H = (aGT G + γINr)
−1GT . Define the Lyapunov function Vi+1 =

eT
i+1Pei+1 and it follows that

∆Vi+1 = Vi+1 − Vi = eT
i+1Pei+1 − eT

i Pei

= (Eei − ∆GHei)
T P (Eei − ∆GHei) − eT

i Pei

= eT
i (ET PE − P )ei − 2eT

i ET P∆GHei + eT
i HT∆GT P∆GHei

≤ −||ei||2 + 2ϕ ‖ ET P ‖‖ H ‖‖ ei ‖2 +ϕ2 ‖ H ‖2‖ P ‖‖ ei ‖2 . (6.32)

From the definitions of (6.30) and (6.31), it can be obtained that

∆Vi+1 ≤ (−1 + 2cϕ + dϕ2)||ei||2

= d(ϕ − −c +
√

c2 + d

d
)(ϕ − −c −√

c2 + d

d
)||ei||2. (6.33)

It is obvious that if −c−√
c2+d

d
< ϕ < −c+

√
c2+d

d
, then dϕ2 + 2cϕ − 1 < 0. This together

with d > 0, implies that the convergence is achieved. The proof is completed.

In Theorem 6.1 and Theorem 6.2, the convergence properties are established without

considering the measurement noises, disturbances, and initialization errors. In practical

applications, the robustness of ILC algorithms against these uncertainties is an impor-

tant issue which should be addressed.
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For ease of presentation, the following notations for abbreviation purposes are defined:

λG0 = λmax(G
T
0 PG0), λP = λmax(P ), PG0 = ||GT

0 P ||,

λG0E = λmax[(G
T
0 PE)(ET PG0)], λE = λmax[(PE)(ET P )].

Theorem 6.3. Consider the system (6.4) under the assumptions that ||wi − wi−1|| ≤

bw, ||xi(0) − xi−1(0)|| ≤ bx0 and G is full row rank. Given the desired trajectory yd over

the fixed time interval [0, N ], by using the learning control law (6.20), the tracking error

converges to the following bound for h ≥ 1 as i → ∞,

lim
i→∞

||ei|| ≤
√

g(bx0, bw)

(1 − ρ)λmin(P )
, (6.34)

where g(bx0, bw) is constant proportional to constants bx0, and bw. Moreover, limi→∞ ||ei|| =

0 if bx0 = bw = 0.

Proof: The error model is derived according to the current conditions.

ei+1 = [INm − bG(aGT G + γINr)
−1GT ]ei − G0∆xi+1(0) − ∆wi+1

= Eei − G0∆xi+1(0) − ∆wi+1.

Similar to the proof in Theorem 6.2, the Lyapunov function can be selected as Vi =
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eT
i Pei. Then, it can be shown that

∆Vi+1 = Vi+1 − Vi = eT
i+1Pei+1 − eT

i Pei

= [Eei − G0∆xi+1(0) − ∆wi+1]
T P [Eei − G0∆xi+1(0) − ∆wi+1] − eT

i Pei

= eT
i (ET PE − P )ei − 2eT

i ET PG0∆xi+1(0) − 2eT
i ET P∆wi+1

+ 2∆xT
i+1(0)GT

0 P∆wi+1 + ∆xT
i+1(0)GT

0 PG0∆xi+1(0) + ∆wT
i+1P∆wi+1

= −eT
i ei − 2eT

i ET PG0∆xi+1(0) − 2eT
i ET P∆wi+1 + 2∆xT

i+1(0)GT
0 P∆wi+1

+ ∆xT
i+1(0)GT

0 PG0∆xi+1(0) + ∆wT
i+1P∆wi+1. (6.35)

Since −2αT β ≤ ηαT α + 1
η
βT β where η is an arbitrarily positive constant, the following

inequalities hold:

−2eT
i ET PG0∆xi+1(0) ≤ ηeT

i ei +
1

η
∆xT

i+1(0)(GT
0 PE)(ETPG0)∆xi+1(0)

≤ η||ei||2 +
1

η
λmax[(G

T
0 PE)(ETPG0)]b

2
x0

−2eT
i ET P∆wi+1 ≤ η||ei||2 +

1

η
λmax[(PE)(ETP )]b2

w.

It is also noted that

∆xT
i+1(0)GT

0 PG0∆xi+1(0) ≤ λmax(G
T
0 PG0)b

2
x0

∆wT
i+1P∆wi+1 ≤ λmax(P )b2

w

2∆xi+1(0)T GT
0 P∆wi+1 ≤ 2||GT

0 P ||bx0bw.

According to the definition of the sup-norm, eT
i ei ≥ ||ei||2. This implies that −eT

i ei ≤

−||ei||2. Then, it follows

∆Vi+1 ≤ −(1 − 2η)||ei||2 + g(bx0, bw), (6.36)
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where g(bx0, bw) = (λG0 + 1
η
λG0E)b2

x0 + 2PG0bx0bw + (λP + 1
η
λE)b2

w.

From λmin(P )||ei||2 ≤ Vi ≤ λmax(P )||ei||2, it follows

Vi+1 − Vi ≤ − 1 − 2η

λmax(P )
Vi + g(bx0, bw) (6.37)

Vi+1 ≤ [1 − 1 − 2η

λmax(P )
]Vi + g(bx0, bw) = ρVi + g(bx0, bw), (6.38)

where the value of η is chosen as

1 − λmax(P )

2
< η < 1/2 if λmax(P ) < 1, (6.39)

0 < η < 1/2 if λmax(P ) ≥ 1, (6.40)

such that 0 < ρ < 1. Finally, the following inequailities can be established:

Vi ≤ ρiV0 +
1 − ρi

1 − ρ
g(bx0, bw), (6.41)

lim
i→∞

Vi ≤ g(bx0, bw)

1 − ρ
, (6.42)

lim
i→∞

||ei|| ≤
√

g(bx0, bw)

(1 − ρ).λmin(P )
(6.43)

Hence, limi→∞ ||ei|| = 0 if bx0, bw → 0. The proof is completed.

Remark 6.3. This chapter provides a novel predictive ILC scheme. The algorithm

is simple while maintaining the basic predictive control structure. The proposed learn-

ing control law (6.20) differs from the results of Lee and Lee [104] and Amann et al.

[105]. The following differences are noted:

In [104], a model-based predictive iterative learning law is proposed based on a quadratic
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criterion, and the predictor is designed in the time domain.

δuk(t) = (GmT QGm + R)−1GmT Qek(t), (6.44)

One difference between the algorithm of Lee and Lee [104] and the proposed algorithm

is that the predictive learning control in the former works along the time domain, while

the proposed predictor design is based on the trial index. It is clear that if the prediction

is based on the trial number, the ILC control performance can be improved since the

ILC is inherently a learning process based the trial number.

In [105], an optimal iterative learning algorithm which is also based on the trial num-

ber for linear time-invariant systems is given. The control scheme requires a full state

feedback, and the solution of a Riccati equation and a recursive equation. However, in

most applications, state variables are not directly measurable and must be estimated

. In addition, solving a Riccati equation and a recursive equation results in additional

computational burden for ILC control, especially for time-varying systems. Also, as

indicated in the conclusion of Amann et al. [105], robustness has not been adequately

addressed in their results. The proposed algorithm is able to circumvent the above-

mentioned difficulties, i.e., no state estimate is necessary for the algorithm. This is the

main difference from the result of Amman et al. [105]. Specifically, the robustness of the

proposed algorithm against modeling errors, initial state errors, and the presence of dis-

turbances, is also analyzed in details, showing the effects of various types of disturbances

on the final error bound.
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Figure 6.1: Tracking performance by the proposed controller: No uncertainty is consid-

ered.

6.4 Simulations

An injection molding problem for ram velocity control is considered [111]. The following

equation describes the dynamics of the system:

G(s) =
2.144 × 1011

(s + 125)(s + 1138)[(s + 383)2 + 11352]
. (6.45)

A discrete-system state equation in the time domain may be obtained directly from (6.45)

with zero-order hold and the sampling time T = 0.005s. Since the injection molding is a

cyclic process, it is attractive to use a learning controller. In this section, the proposed

learning controller is used for the cycle-to-cycle control of the injection molding process.

First, to illustrate the performance of the proposed controller, simulations are presented

with the prediction horizon h = 4. In this case, the selection of γ = 0.05 is made.

Figure 6.1 shows the control performances at the 1st, 2nd, 3rd, and 10th cycles. It is

observed that the proposed predictive ILC scheme can yield a good set-point tracking

performance as the cycle number increases.
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Figure 6.2: Tracking performance by the proposed controller: Modelling error is consid-

ered.

To test the robustness of the proposed algorithm, it is assumed that there is a modeling

error in the identified and actual models. The learning controller is designed based on

the nominal model derived from

Gm(s) =
2 × 1011

(s + 100)(s + 1100)[(s + 383)2 + 11352]
(6.46)

which has a large model uncertainty compared to the actual model (6.45). Figure 6.2

shows the control result of the proposed predictive learning algorithm. Clearly, the

control can achieve satisfactory tracking performance even under perturbation of the

model parameters.

To further test the robustness of the proposed algorithm, measurement noise is in-

troduced into the system. Now the uncertainties include both the modeling error and

measurement noise. The control performance is shown in Figure 6.3. Additional distur-

bance is added to the system, a repetitive one given by sin(0.0314t). Figure 6.4 shows

the control performance. The error convergence and robustness of the control system
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Figure 6.3: Tracking performance by the proposed controller: Modelling error and mea-

surement noise are considered.

Figure 6.4: Tracking performance by the proposed controller: Modelling error, measure-

ment noise and repetitive disturbance are considered.

are favorably verified.

To show the better performance of this scheme, a comparison with the pure ILC

scheme without any predictive feature is done. Figure 6.5-6.7 shows the performance of

the pure ILC scheme with a learning gain of 0.5 simulated under the same scenarios as

the predictive-ILC scheme. A better performance from the proposed scheme is observed

in all the comparisons.
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Figure 6.5: Tracking performance by a pure ILC

Figure 6.6: Tracking performance by a pure ILC: Measurement noise is considered.

Figure 6.7: Tracking performance by a pure ILC: Measurement noise and repetitive

disturbance are considered
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6.5 Conclusions

An iterative learning control algorithm enhanced with predictive features has been de-

veloped in this chapter for time-varying linear systems. An error model is introduced

which can represent the transition of tracking error in two successive trials. Based on

this model, a predictive and iterative learning control algorithm is derived which is only

based on the trial number (or repetition index). A rigorous analysis of the convergence

of this hybrid algorithm is provided. In addition, the robustness of the algorithm against

modeling errors, initial errors, as well as the presence of disturbances are discussed. An

example on injection molding is provided which has verified the applicability of the

proposed approach under various non-ideal scenarios.
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Chapter 7

Conclusions

7.1 Summary of Contributions

As the micro and nanotechnology is gradually penetrating the development of the mod-

ern manufacturing industries, high speed, high accuracy positioning systems become

essential to yield higher quality products with a higher productivity. The increasingly

stringent requirements pose an great challenge for the controller design. The researchers

attempt to seek the new and novel control algorithms to meet these demands beyond

the traditional control theory. In this thesis, intelligent learning control algorithms are

developed to achieve better performance for the precision motion control systems.

First, an adaptive control is presented to reduce the force ripple effects. The displace-

ment periodicity of the force ripples is obtained by using FFT analysis. With a full

model structure, the Recursive Least Square (RLS) estimation algorithm is designed

to identify the parameters. The adaptive feedforward controller is formed to fulfill the

objective.

Then, an Iterative Learning Control (ILC) scheme is developed which is suitable for
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high precision and repetitive motion control applications. Unlike the usual ILC scheme

which applies a feedforward control signal to improve the tracking performance, the

proposed control scheme is used to adjust the command to the feedback controller. The

weights of RBF network are tuned online based on the remnant tracking error from cycle

to cycle. The ILC component further enhances the tracking performance.

Subsequently, this thesis presents an approach for closed-loop automatic tuning of PID

controller based on an Iterative Learning Control (ILC) method. A modified iterative

learning control scheme iteratively changes the control signal by adjusting the periodic

reference signal. With the obtained satisfactory performance, the PID controller is

tuned by fitting the controller to yield a close input and output characteristics of the

ILC component.

Following that, the repetitive control scheme is extended to a class of systems with time

delay. The convergence condition is derived for the new repetitive control. Additionally,

a robust convergence analysis is discussed in consideration of the time-delay modeling

error, initialization error, disturbances and measurement noise.

Finally, a predictive Iterative Learning Control (ILC) algorithm is developed for time-

varying linear systems. An error model is introduced, which represents the transition of

the tracking error between two successive trials. Based on the error model, the predictive

and iterative learning algorithm is derived. The convergence and robust convergence

analyses are discussed respectively.

In this thesis, the proposed intelligent learning control algorithms are supported by
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the simulation and experimental results.

7.2 Suggestions for Future Work

The thesis has presented the research works on the intelligent learning control for the

precision motion control systems. Further research topics in this field are suggested as

follows.

In Chapter 4, the Iterative Learning Control (ILC) is applied to tune the PID con-

troller. It is realized by fitting the input and output signal obtained by ILC. The

equivalent PID controller is chosen as a linear controller. The final PID controller is

tuned to be the closest to the obtained input and output signals by best fitting. ILC,

as a model-free method, can reduce the tracking error as small as possible even though

in the presence of the nonlinear effects in the system. However, in this case, although

the ILC scheme can achieve almost perfect performance, the finally tuned linear PID

controller cannot obtain the same performance as ILC, attributed to the presence of the

nonlinear effects. Thus, there is a compromise between the achieved ILC performance

and the PID tuning. In order to solve this issue, in the ongoing and future work, a

nonlinear PID controller is suggested as the equivalent PID controller to achieve the

further improvement.

In Chapter 5, the repetitive learning control method is extended to the time-delay

systems. Good convergence performance can be obtained with the modified RC method.

It is naturally expected that the idea in Chapter 4 can be extended to the systems with

154



time delay. Thus, a new PID tuning method can be obtained for the time-delay systems.

This represents one direction of the future research work. Additionally, in Chapter 5, the

proposed method is verified by the simulation study. Time delays can be found in many

manufacturing industries. The proposed method provides a new view of controlling the

systems with time delay. The experimental study is helpful in practical implementation.

It is suggested that an experimental study can be conducted in the ongoing work for the

time-delay systems.

In some chapters of this thesis, the designs of the control algorithms are conducted on

the single axis linear motors. However, the proposed intelligent learning controls are not

confined to the single axis linear motors. They can be extended to the gantry systems.

Gantry systems are widely used in machining industries, such as lathes and milling

machines, and semiconductor manufacturing industries. Among the various gantry sys-

tems, the XY table and H-type are most popular positioning systems. For the gantry

systems, the consideration of the design focuses on the control of the individual motors

to track the desired motion trajectories and the synchronization. The intelligent learn-

ing controls can help the gantry systems operate efficiently with high speed and high

accuracy.
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