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Abstract

Automatic feedback methodologies for the administration of medicinal drugs offer
undisputed potential benefits in terms of cost reduction and improved clinical out-
comes. However, despite several decades of research, the ultimate safety of many—it
would be fair to say most—closed-loop drug delivery approaches remains under
question and manual methods based on clinicians’ expertise are still dominant in
clinical practice. Key challenges to the design of control systems for these applica-
tions include uncertainty in pharmacological models, as well as intra- and interpa-
tient variability in the response to drug administration. Pharmacological systems
may feature nonlinearities, time delays, time-varying parameters and non-Gaussian
stochastic processes.

This dissertation investigates a novel multi-controller adaptive control strategy
capable of delivering safe control for closed-loop drug delivery applications with-
out impairing clinicians’ ability to make an expert assessment of a clinical situation.
Our new feedback control approach, which we have named Robust Adaptive Control
with Particle Filtering (RAC-PF), estimates a patient’s individual response character-
istic in real-time through particle filtering and uses the Bayesian inference result to
select the most suitable controller for closed-loop operation from a bank of candi-
date controllers designed using the robust methodology of µ synthesis. The work is
presented as four distinct pieces of research. We first apply the existing approach of
Robust Multiple-Model Adaptive Control (RMMAC), which features robust control-
lers and Kalman filter estimators, to the case-study of administration of the vasode-
pressor drug sodium nitroprusside and examine benefits and drawbacks. We then
consider particle filtering as an alternative to Kalman filter-based methods for the
real-time estimation of pharmacological dose-response, and apply this to the non-
linear pharmacokinetic-pharmacodynamic model of the anaesthetic drug propofol.
We ultimately combine particle filters and robust controllers to create RAC-PF, and
test our novel approach first in a proof-of-concept design and finally in the case of
sodium nitroprusside.

The results presented in the dissertation are based on computational studies, in-
cluding extensive Monte-Carlo simulation campaigns. Our findings of improved
parameter estimates from noisy observations support the use of particle filtering as a
viable tool for real-time Bayesian inference in pharmacological system identification.
The potential of the RAC-PF approach as an extension of RMMAC for closed-loop
control of a broader class of systems is also clearly highlighted, with the proposed
new approach delivering safe control of acute hypertension through sodium nitro-
prusside infusion when applied to a very general population response model. All
approaches presented are generalisable and may be readily adapted to other drug
delivery instances.
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Chapter 1

Introduction

1.1 General overview of the research problem and its signifi-
cance

Feedback systems are a fundamental part of the functioning of living organisms. A
myriad of mechanical, electrical and chemical feedback loops exist and interact syn-
ergically to ensure homeostasis, that is, the preservation of appropriate (physiological)
conditions for the survival and operation of complex biological entities. Examples of
feedback systems in the human body include the regulation of blood pressure and
flow in the cardiovascular system to ensure tissue perfusion, the light-dependent
muscle reflex controlling the correct aperture of the pupil and the secretion of the
hormone insulin by the pancreas to regulate the metabolism of glucose (an analysis
of these and other physiological feedback examples can be found in Khoo [1999]). In
many cases, the disruption of physiological feedback determines a state of disease.
In the context of the previously cited examples, incorrect cardiovascular regulation
may lead to a range of conditions, such as hypertension or cardiac decompensation;
pupil reflex alteration may result in photophobia; and insulin secretion deficiencies
are associated with type 1 diabetes. Medical intervention may be directed at restoring
these loops, either by removing the cause of the disruption or by creating artificial
loops to support or replace a missing function. A possible type of intervention is the
administration of medicinal drugs, which we will consider as the overarching theme
of this dissertation.

The process of administering a drug can itself be considered a closed-loop pro-
cess. This may not be immediately apparent, as it is a common experience that a
drug is taken with the expectation of achieving a pre-determined therapeutic effect.
Even in cases of such open-ended administration, a clinical re-evaluation after the
therapy would represent the event closing the therapeutic loop (a second course of
the drug could be prescribed, for example, if required). In less trivial drug admin-
istration instances, however, actual titration processes are required, by which a dose
is selected and adjusted over time depending on the observed effect on the patient.
Most commonly, the role of the feedback controller is carried out by a clinical oper-
ator (such as a doctor or a nurse), who may employ their experience to combine the
available qualitative and quantitative information about the patient’s condition and
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2 Introduction

come to an appropriate dosing decision. In some cases, even the patient themselves
may act as the controller, see, e.g., patient-controlled analgesia for pain management
(Nikolajsen and Haroutiunian [2011]). There are drug administration instances, how-
ever, in which automatic feedback control may be deemed useful. Such applications
typically involve patient monitoring and administration control over an extended pe-
riod of time—where the ongoing presence of a clinician may be impractical—and/or
in settings where human error may pose a significant risk. We cite here three of the
most studied drug administration problems, which will be discussed in greater detail
in the next section:

The administration of drugs to control cardiovascular parameters in the critical
setting, e.g., vasodepressors to reduce blood pressure. Critical patients may ex-
hibit frequent changes in their baseline condition and response characteristic, requir-
ing ongoing monitoring and adjustment of the administered dose to ensure that a
suitable target blood pressure is maintained while avoiding potentially dangerous
hypotensive effects which could result from overadministration.

The administration of drugs which cause the loss of consciousness (hypnotic
drugs) in the context of surgical procedures. The required administration profile may
vary according to several factors, including the patient’s individual rate of metabolic
destruction of the drug, the intensity of the nociceptive stimuli and the duration of
the procedure. Close monitoring and control of drug administration is required so
that patients do not experience awareness of the procedure, but at the same time do
not suffer from extended recovery times and/or other undesired effects of excessively
deep anaesthesia.

The administration of insulin to diabetic patients. Insulin promotes the removal
of glucose from the bloodstream and must be administered in patients with impaired
glucose metabolism to prevent high glucose concentration (hyperglycemia) peaks to
occur following food intake, as these may cause terminal damage to organs and
tissues. Excessively low glucose concentrations (hypoglycemia) must also be avoided
as they may be extremely debilitating to the point of sending the body into shock.
Insulin dosing must be carefully managed throughout the life of the patient in order
to maintain glucose level in the physiological range in the face of daily variations in
meal times, content and sizes, as well as metabolic activity.

The problem of designing fully automatic solutions for closed-loop drug admin-
istration applications poses several relevant challenges. The relationship between
the administered drug dose and the observed response can be described in terms
of so-called pharmacokinetic-pharmacodynamic models, which are usually devel-
oped from population studies. When considering a population model, differences in
the actual response may exist across individuals (interpatient variability) and even
within one patient over time, as their condition evolves (intrapatient variability). In
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many cases, this variability may be considerable. Dose-response models may also
include nonlinearities and stochastic effects, including from non-Gaussian processes.
Furthermore, the medical nature of the control task may impose strict constraints in
terms of safety and performance requirements. In control engineering terms, the
specifications of the drug administration problem as described translate into the
problem of designing a feedback control architecture which should ensure closed-
loop stability (robustness) and deliver the necessary performance in the face of para-
metric and non-parametric plant uncertainties of potentially large magnitude for a
general class of systems, including time-varying systems.

The significance of this research lies first and foremost in its potential clinical im-
pact. Successful implementation of closed-loop administration of medicinal drugs
has the potential to improve patient outcomes through more reliable and accurate
dosing, and a reduction in the risk of adverse events from incorrect administration
or human error. Automatic systems taking care of repetitive dosing tasks would also
allow for human resources to be more efficiently allocated to expert decisions, espe-
cially in environments where staffing may be an issue, thus reducing healthcare costs
(Bailey and Haddad [2005]).

Beyond clinical applications, the methodological challenges associated with the
engineering problem relate to the topic of robust adaptive control (RAC). RAC is
defined as a feedback system capable of forcing an unknown time-varying plant to
meet performance requirements while retaining adequate robustness properties and
has been dubbed as akin to the Holy Grail of control engineering (Ioannou [2008])
due to its putative ability to solve a very broad range of control problems. RAC
has been an active area of research for several decades and solutions have been pro-
posed for selected categories of systems. One recently developed such methodology,
which will be considered in this thesis, is Robust Multiple-Model Adaptive Control
(RMMAC) (Fekri [2005]), a multi-controller architecture devised for RAC of linear-
Gaussian plants. Although this thesis primarily focuses on the biomedical engineer-
ing problem, some of the methods adopted whilst seeking an approach suited to
the more general drug delivery problem may provide an extension to existing RAC
methodologies such as RMMAC.

1.2 A historical review of automatic drug delivery

The idea of devising systems for automatic closed-loop drug delivery is by no means
new. The following subsections expand on the already mentioned key areas of re-
search found in the literature. For each, we describe the control methods used and
the results achieved.

Cardiovascular control

Cardiovascular control deals with the regulation of haemodynamic signals. A com-
mon application is the control of mean arterial pressure in patients experiencing
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perioperative hypertension. This is achieved through the infusion of vasodepressor
drugs such as sodium nitroprusside. Methods for closed-loop delivery of sodium
nitroprusside were proposed as early as the late 1970s. Initially based on simple
PID controllers (Sheppard [1980]), the approaches evolved to various adaptive con-
trol methods including self-tuning regulators (Mansour and Linkens [1989]), model
reference adaptive control (Pajunen et al. [1990]) and multiple model adaptive con-
trol (He et al. [1986]; Martin et al. [1987]). A device reporting success in clinical
trials in the late 1980s, named the IVAC Titrator, received market authorisation by
the American Food and Drugs Administration but enjoyed little commercial success
and was soon withdrawn from the market (Bequette [2007]). Later approaches based
on adaptive predictive control (Yu et al. [1992]) and fuzzy logic (Ying and Sheppard
[1994]) were also proposed, but these did not develop into a new device. The stan-
dard clinical practice for the management of perioperative hypertension is still based
on manual control of drug infusion to this day (Varon and Marik [2008]).

In the last decade, joint control of blood pressure and flow using multiple drugs
has been proposed, either with methods based on model predictive control (Rao
et al. [2003]) or approaches based on fuzzy logic methods (Hoeksel et al. [1999]),
which adopt rule-based control actions mimicking the clinicians’ decision processes.
While there is a clinical benefit in jointly controlling blood pressure and flow, there
are also significant challenges given by the limited availability of dose-response mo-
dels describing drug interactions and the very low accuracy of blood flow measure-
ments. Uemura et al. [2006] have taken a different approach and sought to estimate
a patient’s cardiovascular response parameters such as vascular resistance and target
those parameters through drugs, arguing that this could decouple the joint control
problem. Their approach has a superior grounding in physiology but uses basic PI
control for implementation and does not take into account the uncertainty in the
model estimate arising from (potentially large) measurement errors. While all of
the cited approaches have reported some successes in small research trials, to the
author’s knowledge, none are currently employed on a larger scale or have been
developed into a commercial technology.

Control of anaesthesia

Anaesthesia control concerns the administration of a pharmacological agent to pro-
mote adequate insensitivity to external stimuli and pain, and loss of consciousness
in patients undergoing surgery. Anaesthetic drugs may be administered in gaseous
or intravenous form. Early attempts to achieve closed-loop control of gaseous anaes-
thetic were based on the assumption that exhaled drug concentrations would cor-
relate with blood concentrations. The approaches were initially based on PID con-
trol (Ritchie et al. [1987]), and later improved by adopting adaptive predictive con-
trol (Jee and Roy [1992]). While these methods could achieve feedback regula-
tion of blood drug concentrations, differences amongst individual patients in the
concentration-effect relationship (pharmacodynamics) meant that the actual anaes-
thetic effect would not be dependable.
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Direct measures of anaesthetic effect have since been developed, particularly
brain activity-derived measures obtained from real-time processing of electroen-
cephalographic signals. A commonly found measure in the literature is the pro-
prietary Bispectral Index (BIS) developed by Aspect Medical Systems (Norwood, MA,
USA) (Glass et al. [1997]). BIS-based anaesthesia monitors have become fairly wide-
spread in operating theatres, where they assist anaesthesiologists in assessing the
hypnotic state of patients. It has been proposed that BIS could be used as a tar-
get signal and a basis for closed-loop administration systems. Approaches based on
PID control (Absalom et al. [2002]), adaptive control (Struys et al. [2001]) and, more
recently, fuzzy logic control (Bailey and Haddad [2005]) have been developed. Gen-
erally good performance has been reported in tracking desired BIS values, including
in some clinical trials (see e.g., Hemmerling et al. [2013]). Some unresolved issues
remain, however. A key challenge lies in the fact that for the same measured BIS,
depth of anaesthesia may vary amongst patients (Russell [2007]), and, as such, BIS is
used by practitioners as a “guide” rather than a quantitative measure. This may only
be resolved through proprietary research into improving the specificity of BIS (Rus-
sell [2013]). From a control perspective, methods based on BIS-only measurements
may suffer from the converse problem of concentration only-measurements, whereby
variability in pharmacokinetics may lead to inadequate transients (e.g., overshooting
seen in Bailey and Haddad [2005]) as control actions are calibrated on an “average”
model of drug distribution. Adaptive control based on combined pharmacokinetic-
pharmacodynamic models could overcome this problem (this has been attempted in
Gentilini et al. [2001] for gaseous drug isoflurane). However, non-gaseous anaesthetic
agents (such as intravenous propofol) have become predominant in recent years and,
for these, real-time blood concentration measurements remain difficult and inaccu-
rate (Miekisch et al. [2008]). No automatic closed-loop devices are currently approved
for the control of anaesthesia.

Glucose control in type 1 diabetes

The automatic infusion of insulin in diabetic patients has also received considerable
research attention. As mentioned, the pancreas of type 1 diabetes patients cannot
produce insulin and these patients must receive a carefully managed insulin infu-
sion regimen to maintain normoglycemia. Unlike the previously cited examples,
the control of insulin administration is a chronic application for life-long support of
patients.

Research into closed-loop glycaemic control also started around the early 1980s,
with a device for in-hospital research use (glycaemic clamping), named the Biostator,
which was loosely based on a fixed administration rate for insulin and proportional
control of dextrose infusion (Clemens et al. [1982]). Further developments in this
field of application were stymied for many years by the absence of adequate sensor
technologies for continuous glucose monitoring, which were not introduced until the
mid 1990s (see Girardin et al. [2009] for a review of currently available approaches).
A variety of algorithms have been proposed in recent years, including PID control
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(Steil et al. [2006]), adaptive control (Eren-Oruklu et al. [2009]), model predictive con-
trol (Magni [2012]) and neural networks (El-Jabali [2005]). For detailed reviews on
available control algorithms we refer the reader to Lunze et al. [2013] and El Youssef
et al. [2009]. These methodologies have been tested in computational studies (in-
silico) and through a number of small-scale clinical in-vivo trials where they are
used to control wearable insulin pumps (see, e.g., Hovorka et al. [2011]). While these
experimental results have been positive, the current state of the art of individualised
insulin infusion technology remains limited to open-loop systems, in which the al-
gorithms provide alerts and decision support but it is the patient or clinician who
ultimately decides on going ahead with the infusion of a particular insulin dose.
Lunze et al. [2013] cite safety reasons as pivotal to this and list a number of ongoing
challenges in this application, including the presence of model disturbances in the
form of metabolic changes (daytime/nighttime, rest/activity, etc.) and interindivid-
ual differences, the use of insulin alone as a single-input control action in a complex
system, and the limited lifespan of available continuous blood glucose measurement
sensors (currently limited to a few days and requiring frequent recalibration).

Robustness and verifiability: the missing pieces

The above review raises a number of relevant considerations, which have informed
the development of this thesis. Firstly, it is remarkable that despite a long period of
ongoing investigations and promising results in clinical research publications, closed-
loop methods for automatic drug administration have not yet been embraced by the
medical community and manual control remains, to date, the standard of care in the
clinical setting. A number of barriers of a regulatory and financial nature have been
named as delaying factors to the marketing of closed-loop technologies (as discussed
in Bequette [2007]; Doyle et al. [2011]), but it is also evident that significant control
challenges still exist. Indeed, Doyle et al. [2011] have concluded a recent review
of the state of the art of biological systems control by stating that “Success in the
development of [...] closed-loop biomedical devices, will be contingent on the development of
robust, verifiable advanced control algorithms”.

The closed-loop methodologies applied to drug delivery problems have followed
the historic developments of control approaches: traditional PID control initially, then
adaptive control during the 1980s and 1990s, and model predictive control and fuzzy-
logic/artificial intelligence methods in more recent years. The shift towards adaptive
methods highlights, across the board, the critical nature of the challenge posed by va-
riability in the dose-response process. It is also notable that robust control methods,
also developed in the 1980s and 1990s (Zhou et al. [1995]), are rather unrepresented
in the drug delivery literature, although there are a few exceptions (usually with
limited or no clinical testing see e.g., Dumont et al. [2009] for closed-loop adminis-
tration of propofol and Parker et al. [2000] for insulin control). We suggest that this
may be due to the fact that robust approaches are traditionally single-controller and
therefore unlikely to be able to deliver clinically adequate closed-loop performance
in the presence of large population variability. In light of the absence of a definitive
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solution for drug delivery problems, it appears natural that the viability of emerging
new multi-controller robust adaptive control techniques, such as the previously cited
RMMAC (Fekri [2005]), should be investigated.

Furthermore, the review highlights the importance of, and the challenges asso-
ciated with, performing informative measurements in biological systems. Measure-
ments are a fundamental part of feedback control system and this is a key reason
why most contemplated closed-loop solutions relate to contexts where a high num-
ber of sensors can be connected to a patient in a protected environment (such as
the operating room or intensive care ward). As recognised in Doyle et al. [2007],
improved sensor technology would greatly advance feedback control for biological
processes. In current practice, even when measurements are available, they may be
infrequent, sparse with respect to the complexity of the underlying process, and/or
affected by large measurement errors. The risk that these limitations may lead to an
incorrect response from an adaptive feedback controller for drug delivery has not
been well studied. Also, the use of adaptation algorithms which may be perceived
as being too complex or “hidden” to the operator makes it difficult for the clinician
to verify, in real-time, that the system is taking clinically appropriate action. These
are major issues which, in our view, have limited clinicians’ ability to place trust in
automatic closed-loop drug administration systems as proposed thus far.1

1.3 Outline of the thesis and key contributions

This dissertation seeks to investigate a novel approach to the problem of closed-
loop drug administration by addressing the key engineering drivers of robustness
and verifiability, which translate into safety and transparency requirements from a
medical perspective. The end result of this research is a methodology which we
name Robust Adaptive Control with Particle Filtering (RAC-PF). RAC-PF is a multi-
controller approach which features a bank of linear controllers computed using the
H∞ robust technique of µ synthesis to cater for nonparametric uncertainty as well
as intrapatient and interpatient parametric variability in the dose-response charac-
teristic for a particular drug. Controller selection is determined on the basis of the
result of a Bayesian inference process conducted through a real-time particle filtering
algorithm, which uses available measurement data to estimate the probability distri-
bution of an individual patient’s response parameters. The proposed advantages of
such a system are a conservative approach to individualised therapy, owing to the
use of robust control methods, and the fact that the probability distribution result
delivered by the particle filter is available to the operator, thus making it possible to
verify the dependability of the estimate of the individual response.

The research is presented as four distinct yet related items of work. These fol-
low from each other as conceptual steps in the development of RAC-PF, but may
be read individually if desired. The chapters of the thesis, their content and main

1These concerns have been expressed on multiple occasions in personal communications between
the author and several specialist intensivists and anaesthesiologists.
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contributions are described in the following.

Chapter 2 considers the problem of automatic administration of sodium nitroprus-
side and applies the RMMAC architecture to the feedback control of mean arterial
pressure. In a simulation study which assumes a very general model for the dose-
response characteristic, we present a comparison between RMMAC and two other
adaptive control architectures taken from the literature. Key results of this chapter
are evidence of undesirable closed-loop behaviour from past approaches when as-
sumptions on time-varying parameters and the nature of baseline disturbances are
relaxed, and a demonstration of the ability of RMMAC to deliver safer control.

Chapter 3 investigates the use of a particle filter for the real-time estimation of
pharmacokinetic-pharmacodynamic model parameters in relation to the adminis-
tration of the intravenous anaesthetic drug propofol. In a Monte-Carlo simulation
study based on population models, we compare the quality of the inference achiev-
able through a variety of measurements such as the bispectral index (BIS) and blood
concentrations, including inaccurate concentration measurements. A key result of
this chapter is the demonstration of the viability of particle filters for the purpose of
conducting real-time Bayesian inference on pharmacological systems in the presence
of measurement errors, including non-Gaussian-distributed errors. Our findings
also indicate that the incorporation of breath propofol measurements in anesthesia
management systems, despite the intrinsic inaccuracy of breath-based measurement
techniques, would inform better individualised therapy than current BIS-only ap-
proaches.

Chapter 4 introduces the new RAC-PF methodology and applies it to a non-clinical
test bench case: the feedback control of an uncertain linear parameter-varying mass-
spring-dashpot system. We conduct a Monte-Carlo simulation study to evaluate the
level of performance delivered by RAC-PF when compared with two other controller
selection algorithms for multi-controller architectures. We compare RAC-PF with a
method based on extended Kalman filtering (Hassani [2012]) and an ideal (nonre-
alistic) approach capable of perfect identification. The key result of this chapter is
that, for the time scale and state dimension of the problem considered, RAC-PF is
computationally tractable and can match the performance of the best available multi-
controller methods in the literature. For mixed linear/nonlinear problems, we also
introduce a marginalised particle filter formulation which can reduce the computa-
tional cost of the algorithm.

Chapter 5 returns to the problem of sodium nitroprusside administration dis-
cussed in Chapter 2 and applies the RAC-PF approach to it. The performance of
the new approach is tested in an extensive Monte-Carlo simulation campaign, in
which virtual patients are drawn from population distributions for the uncertain
dose-response parameters and a variety of disturbance intensities and parameter
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variation trends are used to challenge the feedback control system. The key result of
this chapter is the ability of RAC-PF to deliver safe control of mean arterial pressure
as demonstrated throughout the simulation campaign.

Chapter 6 summarises the work, lists the key findings of the previous chapters and
discusses directions for future research.

Appendices A and B are also provided. These provide further details on the com-
putational implementation of the RAC-PF method in the Matlab/Simulink environ-
ment for the interested reader and describe the additional digital resources attached
to this thesis.
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Chapter 2

Robust control design for automatic
regulation of blood pressure

This chapter presents a solution to the problem of closed-loop administration of
sodium nitroprusside (SNP) for the control of mean arterial pressure (MAP) based
on Robust Multiple-Model Adaptive Control (RMMAC). In doing so, it describes
the SNP dose-response model as well as a structured methodology for the design of
multiple robust controllers, which will be drawn on in later chapters. The focus of
this chapter is the development of a closed-loop system which can deliver satisfactory
MAP control performance in the presence of broad parametric uncertainty in the
dose-response. We introduce some adaptations to the original RMMAC architecture,
in particular to cater for the existence of long, uncertain input time delays. We detail
the operation of the RMMAC methodology and compare the results with those of
two earlier approaches for the regulation of MAP. Our findings expose potential
risk concerns arising from non-robust designs and highlight the value of RMMAC
as a method which can deliver robust stability and performance, for all foreseeable
parametric combinations, where the model of the controlled system can be deemed
linear.

The content of this chapter closely follows the author’s research paper Robust
control design for automatic regulation of blood pressure (Malagutti et al. [2013]). Sec-
tion 2.1 provides a brief summary of the SNP control literature and expands on
some of the concepts introduced in Chapter 1; Section 2.2 provides an outline of the
patient model and the control problem; Section 2.3 describes the proposed control
architecture; Sections 2.4 and 2.5 describe and provide the results of the numerical
simulations; Section 2.6 analyses the results and raises possible directions for further
research.

2.1 Background

The cardiovascular system is essential to the life of the human body. It is a hydraulic
system which utilises blood as its working fluid and, as such, can be characterised
in terms of pressure and flow. Only a relatively narrow range of MAP and cardiac

11
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output (CO) values are compatible with life and, under normal (physiological) con-
ditions, the human body is equipped with internal control systems to maintain a
suitable and steady operating point in the face of external stimuli. In patients whose
autonomic regulation is impaired or insufficient, medical intervention is required to
ensure that the system does not drift away from the physiological range for MAP
and CO. This is generally achieved by intravenous infusion of suitable drugs.

This chapter focuses on the vasoactive drug sodium nitroprusside (SNP) and
its use in the management of acute hypertension (a temporary state of dangerously
elevated MAP) in peri-operative and intensive care settings (Varon and Marik [2008]).
SNP is a vasodilator, i.e., a drug which causes the tension in the walls of arterioles
to be reduced, thereby lowering blood pressure. It is fast-acting and is powerful
enough to cause dangerous hypotension and/or cyanide toxicity if overdosed (He
et al. [1986]). Significant variability (up to 30-fold, according to Slate et al. [1979]) in
sensitivity to the drug exists among different patients and the sensitivity can even
change for one patient over time. Close monitoring by nursing staff and regular
“titration” (adjustment) of the dose depending on the patient’s response are therefore
required to achieve the clinical goals of lowering MAP and ensuring patient safety.

The repetitive, time-consuming nature of the MAP monitoring and SNP dose
adjustment tasks is such that an automatic feedback control approach could bring
benefits in terms of improved patient outcomes and lower clinical costs (Bailey and
Haddad [2005]). The dose-response model for SNP, however, is characterised by time
delays, modelling uncertainty, potentially time-varying parameters and output dis-
turbances (Slate et al. [1979]), rendering the MAP regulation problem a challenging
one from an engineering perspective. Clinically desirable control performance can-
not be achieved with a single-controller feedback control approach and this has been
recognised by several authors, leading to a variety of adaptive control strategies being
proposed over the last three decades (a number of these have been cited in Chapter
1; we also recommend Yu [2006] and Isaka and Sebald [1993] for a comprehensive
review). Closed-loop SNP administration is also the only closed-loop drug admin-
stration problem for which a fully automatic solution was ever commercialised: the
IVAC Titrator device (IVAC Corporation, San Diego, CA, USA) was first marketed in
1987. Despite clinical trials with the Titrator showing its potential to deliver better
outcomes than manual control (Cosgrove et al. [1989],Bednarski et al. [1990],Chit-
wood et al. [1992]), the device was withdrawn from the market shortly after its in-
troduction. Bequette [2007] analyses the failure of this unique device and highlights
cost and regulatory reasons as key to its demise. However, it is remarkable that, over
two decades later, no alternative devices have been developed and operator-based
control of drug infusion still remains the standard of care in the clinical setting.

We have considered whether there may be residual safety concerns associated
with the models used, or particular features of the operation of proposed approaches,
which would make clinical operators uncomfortable with reliance on automatic ad-
ministration as it has been proposed thus far. In earlier work (Malagutti et al. [2011]),
we analysed the approach of Martin et al. [1987] and advocated caution against pos-
sible instances of undesirable behaviour which we were able to simulate under par-
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Figure 2.1: Block description of the patient model (open-loop plant). Notation: u input signal
(drug infusion rate); T pure delay constant; τ1, τ2, τ3 time constants; α recirculation fraction;
K sensitivity (gain) parameter; pdrop MAP drop due to u; p0 patient’s natural MAP in the
absence of pharmacological intervention; y output MAP; w measurement noise; ymeas actual
measured MAP.

ticular operating conditions characterised by the presence of time-varying patient
parameters and a range of disturbances including non-zero-mean signals.

This chapter considers the possibility of using RMMAC (Fekri et al. [2006]), a
recent result in the area of adaptive control, to achieve safe feedback control of SNP
infusion. RMMAC has been developed to conduct feedback control of linear time-
invariant (LTI) systems. It features robust techniques for controller design (µ synthe-
sis) and a Kalman filter-based approach for on-line model estimation. RMMAC can
cater systematically and explicitly for modelling uncertainty (an inherent characteris-
tic of all pharmacological models), as well as incorporate performance constraints on
input and output signals. We deem these to be key advantages of this methodology
in the context of drug delivery applications. We seek to investigate whether RMMAC
can provide a general platform for the development of safer and thus more clinically
viable automatic drug delivery technology.

2.2 Problem description

2.2.1 Patient response model

An experimentally validated model of a patient’s response to SNP is given by the
transfer function of equation (2.1) (Martin et al. [1987], modified from Slate et al.
[1979]). A block diagram representation is shown in Figure 2.1.

Pdrop(s)

U(s)
= e−sT K(τ3s + 1)

((τ3s + 1)(τ2s + 1)− α)(τ1s + 1)
(2.1)

This third-order linear, open-loop stable, single-input single-output (SISO) model
consists of three compartments modelled as first-order linear systems representing
the systemic circulation, the pulmonary circulation and the drug effect site. An in-
ternal loop exists to account for recirculation of the drug within the cardiovascular
system. A pure time delay effect is observed at the input. In accordance with Martin
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et al. [1987], we assume the time constants to be known and time-invariant (τ1=50s,
τ2=10s, τ3=30s) and consider a large range of variability for the the patient’s gain
factor K ∈ [0.25, 9.5]mmHg·hr·ml−1 (this range sensitivity corresponds to a SNP con-
centration of 200µg/ml) and the time delay parameter T ≤ 50s. In the interest of
model generality, we also assume considerable variability in the recirculation con-
stant α ∈ [0.25, 0.75].1 We note that although the time constants are assumed fixed,
changes in α can shift the position of the system poles. The extent of intrapatient
variability is not well documented in the literature but, from clinical data published
in Meijers et al. [1997], we extrapolated that up to a four-fold change in sensitivity
over one hour could be expected in patients undergoing cardiac surgery. As we were
unable to locate information on time-variability of the other two variable parameters,
we assume here the maximum expected rate of change for T and α to correspond to
variations spanning the full range of variability over one hour. To the authors’ knowl-
edge, the above combination of parametric uncertainty and time-variability results in
the most general description ever adopted for the SNP response model.

2.2.2 Signals and sampling rate

The system receives a control signal u at the input, i.e., the drug administration rate
in ml/hr, and exhibits a MAP drop pdrop at the output. This differs from the output
of the system y, which is given by the affine transformation y = p0 − pdrop, where
the offset term p0 represents the patient’s “natural” value of MAP when no drug is
administered. It is important to note that in many past adaptive control approaches
p0 has been deemed measurable (at time t = 0s) and constant or, at most, affected
by broadband random noise. This is a convenient description for control design
purposes, however, it is not realistic from a clinical perspective. Indeed, breathing
and renin-angiotensin activation have been recognised as potential disturbances in
Slate et al. [1979]. Perioperative events including surgical trauma and the concurrent
administration of other drugs are also mentioned in Martin et al. [1992]. In this
work, p0 is modelled as an arbitrary signal with a mainly low-frequency spectrum
(as detailed in Section 2.3.1).

The actual measured output signal ymeas, as shown in Figure 2.1, is given by the
combination of signal y and noise w, which describes both beat-by-beat fluctuations
in MAP and the errors associated with the acquisition and processing of the signal
from the patient. Upon analysis (not shown here) of a number of MAP traces from
real intensive care patients obtained from the MIMIC II database (Saeed et al. [2011]),
we have deemed white Gaussian noise with a standard deviation of 2mmHg to be a
suitable model for w. This choice is consistent with the assumptions of other authors
(Martin et al. [1986], He et al. [1986], Pajunen et al. [1990]).

A final remark concerns the use of continuous-time models and methods when
MAP is a quantity that cannot be measured continuously. A meaningful sampling
rate must be determined for the operation of the proposed control system. In or-
der to operate with a realistic signal, we treat ymeas as a discrete-time signal with a

1Notation: x ∈ [a, b] ≡ a ≤ x ≤ b.
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sampling time of 2s. From a clinical implementation perspective this would mean
obtaining MAP as a stepwise signal given by the average of arterial pressure (such as
would be measured continuously by an intra-arterial catheter) over each heart beat,
where a heart beat can be defined, for example, as the time between repeated features
of an electrocardiogram recording or by another equivalent measure. Such a signal
retains as much dynamic information about MAP as possible and is not monitoring
equipment-specific. The time delay introduced by the required signal processing op-
erations (1 beat) is also negligible when compared with the system’s own large time
delay. Since heart rate varies in patients, in order to work with a data stream with
uniform step lengths we consider ymeas as a downsampled version of the previously
described signal according to a sampling rate fs = 0.5Hz (thus implying that no loss
of MAP information would occur as long as a patient exhibits a heart rate ≥ 30bpm).
The dynamics of the patient response for frequencies in excess of 10−1Hz can be
deemed negligible, therefore we consider fs to be fast enough to allow us to adopt
continuous-time methods for controller synthesis.

2.2.3 Control performance requirements

The following performance requirements apply (Malagutti et al. [2012b]):

• a settling time of preferably 10 minutes or less, but no more than 15 minutes;

• MAP should be contained within ±5mmHg of the desired set-point value when
in steady state operation, ±10mmHg otherwise;

• temporary deviations from the above range may occur, but under no circum-
stances should the system display resonant (persistent oscillatory) or unstable
behaviour or cause MAP to drop below a pre-determined danger threshold (set
at 60mmHg for the purpose of this work);

• to ensure that SNP toxicity is prevented, the infusion rate should not exceed a
pre-determined value. We consider an upper limit for the drug infusion rate of
3ml·kg−1hr−1 (He et al. [1986]);

• high-frequency dynamics in the control signal should be limited since drug
delivery is generally provided through mechanically actuated infusion pumps,
which are likely to suffer from actuator slew rate limitations.

2.3 Control architecture

In Figure 2.2, we show the block diagram of the Robust Multiple-Model Adaptive
Control architecture for this drug delivery application. In a multiple-model adaptive
control system, it is assumed that the behaviour of the controlled plant (response
of patient MAP to SNP) can be matched at any time by that of one of a series of
candidate models included in a model bank. A suitable controller designed for the
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best-matching model is placed in the feedback loop, where it is expected to yield
satisfactory performance. A common issue with multiple-model methods is the de-
termination of the breadth of the uncertainty space which the models need to cater
for and the number of models required to achieve this. An advantage of RMMAC
is that the choice of the models to be included in the bank naturally follows from
the controller design process. In RMMAC, controllers are designed for robust per-
formance using µ synthesis; the operation of matching the real plant with the best
candidate model involves the use Kalman filters and a probability estimator.

2.3.1 Controller design

Modelling for robust design

A comprehensive block diagram for the model is shown in Figure 2.3. It includes a
description of parametric uncertainty for the gain and recirculation parameters:

α = 0.5 + 0.25δ1, K = Knom + Krδ2, δ1, δ2 ∈ R, |δ1| ≤ 1, |δ2| ≤ 1,

following the assumptions that α = (0.5± 0.25) and K = (Knom ± Kr) where Knom is
the nominal sensitivity value and Kr is half the width of the uncertainty range.

Delay is treated as an unmodelled dynamic of the system. The worst-case delay
is T = 50s and neglecting it would introduce a multiplicative modelling error of
e−sT − 1. This error can be bounded by the high-pass transfer function Wum(jω)
as shown in Figure 2.4. The block surrounded by the dotted box in Figure 2.3 has
transfer function

1 + ∆um ·Wum, ∆um ∈ H∞, ‖∆um‖∞ ≤ 1
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Figure 2.3: The system model used for the robust controller design.

and is an effective conservative representation of all possible patient delay dynamics
for T ≤ 50s.

The structure of Figure 2.3 represents the system description used for control-
ler design. A signal called set-point disturbance (SPD) is added to the output of
the plant and represents the possible variations in p0 as discussed in Section 2.2.
SPD is assumed to be a predominantly low-frequency signal and is generated using
an arbitrary signal (w1 : ‖w1(jω)‖∞ ≤ 1) filtered by a low-pass system with trans-
fer function Wspd(jω) (Table 2.1). This corresponds to admitting MAP fluctuations
occurring at a maximum rate of approximately 10mmHg/min, which we deemed a
suitably large rate of change in the interest of model generality. The same filter is also
used as a command prefilter for the reference signal (w3 : ‖w3(jω)‖∞ ≤ 1), which
is set by the clinician (we presume this will be a step-wise signal) and specifies the
required MAP drop. While a prefilter may not be strictly necessary for this applica-
tion in which reference changes are likely to be few and infrequent, we must define a
frequency-domain bound for exogenous signals for the purpose of using µ synthesis
for controller design. The enforcement of such bound through a prefilter ensures that
the design assumptions are not violated in practice. The transfer function Wspd(jω)
is a suitable bound/prefilter for the reference since it has a steady-state gain of 32dB
and a range of ±40mmHg from baseline can be deemed sufficient to cover all pos-
sible setpoint requirements. Its pole location also corresponds to a settling time of
less than 10min, which complies with the performance requirements of Section 2.2.3
in terms of command following. We remark that there is no specific reason other
than computational convenience behind our decision to use Wspd as both a distur-
bance colouring filter and a command prefilter. Measurement noise is modelled as a
random gaussian signal w2 filtered by the high-pass filter Wmn (Table 2.1).

Two weighting transfer functions are also included to reflect the performance re-
quirements for the system. These are essential for controller synthesis as will be
discussed in the next subsection. The weighting function Wp is the performance
weight applied to the error signal (Wp : ‖WpY(jω)‖∞ ≤ 1); it imposes a maxi-
mum error of 6dB (±2mmHg) at steady state and 22dB (±12.5mmHg) at higher
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recirculation parameters

a = 0.5+ 0.25d1, K = Knom + Krd2

d1, d2 [ R, |d1| ≤ 1, |d2| ≤ 1

following the assumptions that a = (0.5+ 0.25) and
K = (Knom + Kr) where Knom is the nominal sensitivity
value and Kr is half the width of the uncertainty range.
Delay is treated as an unmodelled dynamic of the system.

The worst-case delay is T = 50 s and neglecting it would
introduce a multiplicative modelling error of e−sT − 1. This
error can be bounded by the high-pass transfer function
Wum(jv) as shown in Fig. 4. The block surrounded by the
dotted box in Fig. 3 has transfer function

1+ Dum ·Wum, Dum [ H1, ‖Dum‖1 ≤ 1

and is an effective conservative representation of all possible
patient delay dynamics for T ≤ 50 s.
The structure of Fig. 3 represents the system description

used for controller design. A signal called set-point
disturbance (SPD) is added to the output of the plant and
represents the possible variations in p0 as discussed in
Section 2. SPD is assumed to be a predominantly
low-frequency signal and is generated using an arbitrary
signal (w1:‖w1(jv)‖1 ≤ 1) filtered by a low-pass system
with transfer function Wspd(jv) (Table 1). This corresponds
to admitting MAP fluctuations occurring at a maximum rate
of approximately 10 mmHg/min, which we deemed a

suitably large rate of change in the interest of model
generality. The same filter is also used as a command
prefilter for the reference signal (w3:‖w3(jv)‖1 ≤ 1), which
is set by the clinician (we presume this will be a step-wise
signal) and specifies the required MAP drop. While a
prefilter may not be strictly necessary for this application in
which reference changes are likely to be few and
infrequent, we must define a frequency-domain bound for
exogenous signals for the purpose of using μ synthesis for
controller design. The enforcement of such bound through a
prefilter will ensure that the design assumptions are not
violated in practice. The transfer function Wspd(jv) is a
suitable bound/prefilter for the reference since it has a
steady-state gain of 32 dB and a range of +40mmHg from
baseline can be deemed sufficient to cover all possible
setpoint requirements. Its pole location also corresponds to
a settling time of less than 10 min, which complies with the
performance requirements of Section 2.3 in terms of
command following. We remark that there is no specific
reason other than computational convenience behind our
decision to use Wspd as both a disturbance colouring filter
and a command prefilter. Measurement noise is modelled as
a random Gaussian signal w2 filtered by the high-pass filter
Wmn (Table 1).
Two weighting transfer functions are also included to

reflect the performance requirements for the system. These
are essential for controller synthesis as will be discussed
in the next subsection. Weighting function Wp is the
performance weight placed on the error signal
(Wp:‖WpY (jv)‖1 ≤ 1); it imposes a maximum error of 6
dB (+2 mmHg) at steady state and 22 dB (+12.5mmHg)
at higher frequencies. Weighting function Wu places
constrains the control signal (Wu:‖Wu(jv)U (jv)‖1 ≤ 1) in
terms of maximum amplitude at low frequency (200 ml/h,
roughly equivalent to the toxicity threshold for a 65 kg
patient) and penalises high-frequency control dynamics.

Fig. 3 System model used for the robust controller design

Fig. 4 Upper bound (dashed) for the multiplicative modelling
error (solid) introduced by treating delay as an unmodelled dynamic

Table 1 Transfer function reference table

Block name Transfer function Purpose

Wspd
40

(125s + 1)2
SPD and reference filtering

Wmn

s

0.25s + 0.075
measurement noise filter

Wp
(700s + 1)2

(2500s + 1.4)2
weighting TF (output signal)

Wu

20s + 200
80s + 1

weighting TF (control signal)

www.ietdl.org
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& The Institution of Engineering and Technology 2013 doi: 10.1049/iet-cta.2012.0254

Figure 2.4: Magnitude bode plot of the upper bound Wum (dashed) for the multiplicative
modelling error (solid) introduced by treating delay as an unmodelled dynamic.

frequencies. The weighting function Wu places constraints on the control signal
(Wu : ‖Wu(jω)U(jω)‖∞ ≤ 1) in terms of maximum amplitude at low frequency
(200ml/hr, roughly equivalent to the toxicity threshold for a 65kg patient) and pe-
nalises high-frequency control dynamics.

Controller design via µ synthesis

The new controllers were obtained using the technique of mixed-µ synthesis. In the
interest of brevity, we refer the reader to Zhou et al. [1995] for a detailed description
of µ synthesis. For the scope of this exposition, it will be sufficient to explain that the
structured singular value µ—a commonly used tool in H∞ optimal control—is defined
as

µ(M(jω)) = sup
ω∈R+

1
inf

∆(jω)
{σ(∆) : det (I −M∆) = 0} , (2.2)

where σ indicates the maximum singular value and theM–∆ structure is a particular
form of the interconnected system as shown in Figure 2.5. In our particular setting

∆ =




δ1 0 0 0
0 δ2 0 0
0 0 ∆um 0
0 0 0 ∆p


 , where

{
∆p ∈ C3×2

‖∆p‖∞ ≤ 1
.

In plain language, µ represents the inverse of the minimum increase in plant
uncertainty which would result in the system being unable to meet the required
specifications with a particular controller C in the loop. A result derived from the
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Table 2.1: Transfer function reference table
Block name Transfer function Purpose

Wum
2.55s

s+0.045 unmodelled dynamics bound
Wspd

40
(125s+1)2 SPD and reference filtering

Wmn
s

0.25s+0.075 Measurement noise filter

Wp
(700s+1)2

(2500s+1.4)2 Weighting TF (output signal)
Wu

20s+200
80s+1 Weighting TF (control signal)

small gain theorem states that the system is capable of providing robust performance
if µ ≤ 1 (Gu et al. [2005]).

The µ synthesis approach to controller design involves an iterative search, among
the set of stabilising controllers Cs, to identify the controller which achieves the
largest robustness margin, i.e., the smallest value of µ.

inf
C∈Cs

sup
ω∈R+

µ(M(jω)) (2.3)

Software tools for µ synthesis are available as part of the Matlab Robust Control Tool-
box.2 Mixed-µ synthesis, which we use, is an extension of the µ synthesis algorithm
which can account for the fact that the uncertainty space of some of the parameters
is real and not complex. This reduces, to some extent, the conservativeness of the
resulting controller design.

Controller design results

The µ synthesis method can be used in an iterative fashion in order to establish how
many robust controllers are actually required in order to meet the specifications of
the control problem. Following the approach of Fekri et al. [2006], we programmed
an iterative Matlab algorithm to determine the maximum achievable performance
of the system as a function of the range of plant uncertainty considered. Achiev-
able performance is rated according to a scalar parameter Ap which multiplies the
performance weight, i.e., W∗p = Ap ·Wp. The algorithm operates as follows:

1. set Ap = 1;

2. set up the interconnected system of Figure 2.3, include the required range of
uncertainty and use W∗p as the performance weight on the error signal;

3. run the mixed-µ synthesis tool on the system generated at step 2;

4. if the value of µ is just below unity (0.985 ≤ µ ≤ 1), Ap is deemed to repre-
sent the maximum achievable performance and the controller synthesised at
step 3 can ensure that performance level is met, otherwise, Ap is increased or
decreased as required and another iteration (starting at step 2) takes place.

2Matlab R©is a numerical computing environment developed by The Mathworks, Natick, MA, USA.
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Patient 

 

Controller 

uΔ=[uδ1  uδ2  uum  z] yΔ=[yδ1  yδ2  yum w]  

Δ 

Figure 2.5: M–∆ interconnected structure for µ synthesis. Note w = [w1 w2 w3], z = [z1 z2]

As the performance weights Wp and Wu represent the required minimum perfor-
mance for the system, a final value of Ap ≥ 1 means that a controller exists such
that the system can exceed the requirements, while Ap < 1 indicates that µ synthe-
sis cannot produce a suitable controller to meet the required performance over the
considered uncertainty set.

All runs of the algorithm included the full complex uncertainty introduced by de-
lay and the full range of real parametric uncertainty associated with the recirculation
constant α, while a variety of subsets of the uncertainty set of K were considered.
This was done to obtain comparable results with multiple-model approaches in the
literature such as He et al. [1986] and Martin et al. [1987], where K is considered to
be the only varying parameter.

Figure 2.6 shows the three fundamental design cases which we used to evaluate
a trade-off between the number of controllers and the maximum achievable Ap as a
function of the breadth of the uncertainty subset of K considered:

• a global non-adaptive robust controller (GNARC), i.e., a controller able to pro-
vide robust performance over the full uncertainty range of K. The maximum
Ap achieved was 0.026, indicating that a single-controller architecture would
not meet the requirements of this problem;

• fixed non-adaptive robust controllers (FNARCs), i.e., multiple controllers (ide-
ally, infinitely many), each designed to maximise performance for a point value
of K (no uncertainty on K). The results of this design case are representative
of the maximum achievable performance with a multiple-controller system. It
is clear from the graph in Figure 2.6 that such an ideal system would be able
to meet and even significantly exceed the required level of performance, more
notably so in the high-K region of the uncertainty range;

• local non-adaptive robust controllers (LNARCs), i.e, controllers capable of pro-
viding satisfactory performance over non-infinitesimal subsets of the uncer-
tainty space of K. This design case represents the “middle ground” between
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Synthesised controller performance over uncertain K
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GNARC

C5

K=5.8÷÷÷÷9.5
Ap=1.477 

C4

K=3.03÷÷÷÷5.8
Ap=1.477 

C3

K=1.64÷÷÷÷3.03
Ap=1.422 

C2

K=0.71÷÷÷÷1.64
Ap=1.37 

C1

K=0.25÷÷÷÷0.71
Ap=1.0 

Figure 2.6: Results of GNARC, FNARC and LNARC controller design instances. The graph
shows the maximum achievable performance Ap as a function of the uncertainty range of K
considered.

the GNARC and the FNARCs. A controller design covering a larger uncer-
tainty subset will result in a system with inferior performance. It is up to the
designer, therefore, to strike a suitable compromise between controller bank
complexity (number of controllers) and system performance (maximum Ap).
In the results shown, we defined suitable performance as either Ap = 1 (the
minimum required) or 60% of the minimum FNARC over the corresponding
uncertainty subset, whichever the greatest. Five controllers were required to
cover the whole uncertainty range of K.

2.3.2 Patient-model matching and controller selection

The actual behaviour of the system is matched to that of one of a number of candidate
models using a bank of Kalman filters and a posterior probability estimator (Figure
2.2). Each Kalman filter uses information from the input signal u(t) and measured
output y(t) to generate a one-step-ahead estimate of the state x̂i(t + 1) and corre-
sponding output ŷi(t + 1) on the basis of the ith candidate model (i ∈ {1, 2, ..., N})
through a predict-update cycle as shown below:

predict cycle:
x̂i(t + 1|t) = Ai x̂(t) + Biu(t)
ŷi(t + 1|t) = Ci x̂(t|t− 1)

(2.4)

update cycle:
ri(t + 1) = y(t + 1)− ŷ(t + 1|t)
x̂(t + 1|t + 1) = x̂i(t + 1|t) + Hri(t + 1)

(2.5)

where the notation â(t + 1|t) indicates the estimate of signal a at time t + 1 using
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ŷ11,...,15
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Figure 2.7: Redundant Kalman filter bank structure to cater for the uncertain delay term.

information available up until time t; ri is the residual signal given by the difference
between the estimate and the actual observed output; Ai, Bi and Ci are the state-space
matrices describing the ith model; H is the Kalman filter innovation gain. In order
to reproduce the approach of Fekri et al. [2006], a steady-state formulation for the
Kalman filter was used for the purposes of the work described here. This means that
H was determined a priori on the basis of knowledge of the variance of the Gaussian
components of setpoint disturbance and measurement noise (w1 and w2, respectively,
in Figure 2.3).

The Kalman filtering approach requires that the system be linear-gaussian. The
description provided in Section 2.2 shows that this assumption is violated here. For
now, we assume that non-gaussian signal components can be taken to be either zero-
mean signals of lower magnitude than the gaussian components (which can, there-
fore, be dealt with reasonably by increasing the anticipated value for noise variance
for the purpose of filter design) or non-zero-mean signals slower than the system’s
dynamics (which can, therefore, be dealt with through the Kalman filter’s inherent
adaptive capability). Simulations provided in Fekri [2005] show that RMMAC can
deal with some degree of non-gaussianity under these conditions. Clearly, these as-
sumptions could have implications in terms of the method’s clinical applicability and
will be discussed further in Section 2.6. A further issue lies with the presence of an
unknown, yet potentially large delay term T, which Kalman filtering cannot take into
account. A workaround for this problem was developed by adding redundancy to
the estimation bank. The Kalman filter design was carried out on the basis of the
linear part of the system alone to generate five filters (one for each robust controller
range). The bank was then duplicated five times, with different amounts of delay
(10s, 20s, 30s, 40s and 50s) being applied to the drug infusion signal u entering each
of the duplicate banks (see Figure 2.7).

The 25 residual signals are then used in the following recursive posterior proba-



§2.4 Numerical simulations 23

bility estimation:

Pi(t + 1) =




βi

(
e−

1
2 r′i(t+1)S−1

i ri(t+1)
)

NF

∑
j=1

β j

(
e−

1
2 r′j(t+1)S−1

j rj(t+1)
)
· Pj(t)




Pi(t), (2.6)

where NF = 25 is the total number of Kalman filters; rj(t); j = 1, . . . , NF is the
difference (residual) between the measured output y and the j-th filter estimate ŷj;
Sj is the steady state residual covariance matrix of rj(t); β j = 1

(2π)m/2
√

det Sj
is a

constant scaling factor, and Pj(t) is the probability that model j is the model which
best represents the patient behaviour at time t. This formulation is the same as
adopted in Fekri et al. [2006].

On the basis of Pi, a switching signal σ(t) for controller selection is generated:

σk(t) =
NT−1

∑
h=0

Pk+NC ·h
(t), (2.7)

where NT = 5 is the number of delay cases considered, NC is the number of control-
lers and k = 1, . . . , NC.

Finally, the control signal u(t) is given by

u(t) =
NC

∑
k=1

σk(t)uk(t), (2.8)

where uk(t) is the control signal generated by controller k in the controller bank.

2.4 Numerical simulations

We have implemented the RMMAC system described in Section 2.3 in Matlab and
Simulink and tested it in a number of computational simulations. We present here
two illustrative situations. The first case is one in which the pressure of a hyper-
tensive but otherwise steady patient (fixed parameters and small-magnitude random
fluctuations in p0) is to be regulated over a period of several hours according to a
step-wise reference signal. This is representative of a typical postoperative situation
where successful automatic closed-loop administration of SNP has been achieved
in the past. The second simulation represents a much more challenging case. The
proposed system is set to follow the same step-wise regulation as in the first case
in the presence of larger random baseline pressure variations combined with an up-
ward DC change in p0 (e.g., representing a very unstable patient with a worsening
hypertensive state), and substantial changes in the delay and sensitivity parameters
over time. While K and T are set to vary in a sinusoidal pattern in this example (for
computational convenience), it should be clarified that the nature of the µ synthesis
design is such that robust performance should be expected regardless of the shape
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of parameter variation as long as the correct controller for the region being traversed
by the changing parameter is placed in the loop. In this regard, the challenge to
the system lies in whether the probability estimator of Section 2.3.2 can successfully
track K—the key parameter for model selection—as it quadruples its value over 1
hour, thus achieving the maximum expected rate of change as mentioned in Section
2.2.1. For the time-varying case, we ease the performance specifications and require
an acceptable MAP error range of ±10mmHg instead of ±5mmHg as the system can
be deemed to be in a transient throughout the experiment. The simulation conditions
for the two cases are summarised in Figure 2.8, together with the relevant results.

As well as RMMAC, two other control architectures taken from the literature were
simulated under the same conditions. These were:

• a combined PD controller and self-tuning regulator which uses least-squares
to estimate the response to SNP as an ARMAX model and implements a mini-
mum variance control law (as in Meline et al. [1985]) with infusion constraints
(as in Arnspanger et al. [1983]) and an additional on-line dead time detection
method (as in Stern et al. [1985]) to cater for variable system delays. Although
a detailed description of the IVAC Titrator device is not available in the litera-
ture, this architecture was deemed similar—notwithstanding any unpublished
supervisory algorithms—to that used in the Titrator approach on the basis of
available publications (Cosgrove et al. [1989], Petre et al. [1983]);

• the multiple model adaptive control (MMAC) architecture of Martin et al.
[1987], which employs 7 candidate models selected with a prediction error
method, 7 PI controllers, and a bank of Smith’s predictors for delay compen-
sation. This was chosen as an example of an earlier multiple-model method in
the literature.

2.5 Results

The results of the first set of simulations (Figure 2.8–left) show that under steady con-
ditions all three systems are capable of maintaining the patient stable and achieve the
desired pressure drop while meeting the tracking performance requirements. These
results are very similar to simulation results published by other authors (Arnspanger
et al. [1983], He et al. [1986], Martin et al. [1987],) and indeed to the traces exhibited
by postsurgical patients during in vivo experiments (Martin et al. [1992]).

However, a noticeable difference in performance between the systems can be seen
in the second case (Figure 2.8–right), with the Titrator and MMAC approaches burst-
ing into undesirable oscillations. The three bottom sets of graphs in Figure 2.8 pro-
vide more information on the reasons underpinning failure of the non-RMMAC com-
parison systems. In the case of the MMAC system, while in the steady experiment
convergence to the correct model (model 4 in this case) is good, an increased level
of noise does force some occasional unnecessary controller switchings. The main
issue for this approach is that output predictions on the basis of which the candi-
date models (and controllers) are compared relies on the value of p0 measured at
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Figure 2.8: Results of simulations. From the top: baseline MAP p0 and required setpoint;
controlled MAP for the MMAC, Titrator and RMMAC approaches; parameters K and T over
time; probability results for matching models in MMAC; estimate of patient gain vs real
gain in the Titrator approach; probability results for matching models in RMMAC. The dot-
ted lines in the controlled MAP traces indicate the allowed error range. The numbers in
the model probability graphs indicate the model with the highest likelihood. (left) Settled pa-
tient, allowed tracking error ±5mmHg. (right) Patient with time-varying parameters, allowed
tracking error ±10mmHg; the black arrows highlight instances of undesirable transient os-
cillations or issues with online estimation as discussed in the text.
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time t = 0 and assumed fixed. As a result, when p0 is raised further the appa-
rent sensitivity of the patient becomes lower (increased infusion for an apparently
unchanged required drop) and the accidental—albeit short-lived—switching of an
incorrect, more aggressive controller (controller 2 in this case) is enough to cause
undesirable hypotensive peaks. The self-tuning regulator faces a similar problem as
can be seen by the result of the recursive parameter estimation (we extrapolated the
DC gain for the estimated system, and show a comparison with the true value of K).
While in the steady case the parameter estimate converges to the correct value, in
the more disturbed experiment the sensitivity is underestimated, once again causing
the system to burst into oscillations. Both non-RMMAC systems are able to resume
effective control following these transient effects. However, the hypotensive peaks
are a clear example of potentially dangerous dynamics which a safe system should
ensure are avoided. In contrast, RMMAC remains within the prescribed ±10mmHg
error range, and the model probability graphs show that our approach retains the
ability to correctly track the variations of K even under challenging circumstances.

2.6 Discussion

We have presented a detailed description of the control design methodology for a
new, RMMAC-based architecture for automated control of SNP infusion in acute
hypertensive patients, together with two sets of results illustrative of the potential of
the new approach in overcoming the limitations of past adaptive control solutions.

Our analysis of past approaches suggests that they can be deemed reasonably safe
in patients whose underlying MAP can be considered as almost stationary, such as
may be expected in recovering postoperative patients. However, we advocate caution
about undesirable behaviour which may occur under more challenging conditions
as shown in our simulations. The presence of potentially non-zero-mean output dis-
turbances is a particularly critical issue in this system. A control approach which
(incorrectly) assumes the mean of p0 to be constant may fail to distinguish between
a change in patient sensitivity and a change in the DC component of p0 and, as a
result enact inappropriate control action thus rendering the closed-loop system un-
safe. While it can be argued that the presence of transient oscillations would provide
additional system excitation and facilitate the correct identification of the sensitivity
parameter, due to the long dead times involved in this application transient insta-
bility may be dangerous. In light of these findings, we suggest that this lack of
generality, although previously unreported in the literature, may have impacted on
considerations about costs and perceived benefits of automated drug delivery tech-
nology and ultimately affected its uptake in the clinical setting to date.

The new RMMAC-based approach has delivered promising results which sup-
port the feasibility of automatic SNP administration even in time-varying, highly
disturbed conditions (e.g., as may be encountered in an intraoperative setting). As
well as achieving stability and performance in simulations, we have shown that the
RMMAC methodology offers a systematic process to incorporate knowledge of the
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model uncertainty into the design process. This a favourable characteristic in this
field of application as pharmacological models are derived from population studies
and are, therefore, inherently characterised by parametric uncertainty.

The use of an iterative µ-synthesis approach for controller design, in particular,
has allowed us to mathematically demonstrate that the required performance could
not be attained over the expected range of parametric uncertainty using a single
linear controller, thus conclusively recognising the necessity to employ adaptive con-
trol. In a multi-controller architecture, we defined a trade-off between the number
of controllers and maximum achievable performance and we were able to cater for a
broader range of modelling uncertainty than considered by previous authors using
a lower number of controllers (5 vs 7 used in Martin et al. [1987] and 8 used in He
et al. [1986]).

With µ-synthesis giving mathematical certainty of robust stability (and perfor-
mance) of the interconnected system between each possible set of patient parameters
and its matching controller, we have clearly exposed that the overall stability (and
therefore ultimate safety) of the closed-loop system rests on reliable system identifi-
cation, i.e., in the ability of the system to track the patient’s parameters so that the
correct controller can be placed in the loop at all times. This is a general issue in
adaptive control and we have shown a simulation example of how a combination
of time-varying parameters and non-zero mean disturbances may lead to incorrect
system identification and consequently to inappropriate control action. Without re-
sorting to additional layers of supervisory algorithms, RMMAC has displayed good
performance and avoided periods of transient instability. This is largely due to the
use of the redundant bank of Kalman filters of Figure 2.7, which is able to deliver
more accurate system estimation results than previous approaches. As we have al-
ready acknowledged, however, Kalman filtering is not the estimation tool of choice in
the presence of uncertain time delays and non-gaussian signals. Indeed, convergence
of (2.6) to the correct model can only be mathematically guaranteed in an ideal en-
vironment with fixed, known time delays and gaussian input signals (Fekri [2005]),
which is clearly not the case here. Due to the violation of this assumption, the RM-
MAC system presented cannot be deemed "robust" in a strict control engineering
sense. Improved performance and avoidance of transient instability over previous
approaches can only be evaluated—and have been shown—heuristically through the
results of simulations. While the main focus of this chapter has been to set out the
methodology for this approach, further work should consider a comprehensive si-
mulation campaign involving a wide variety of cases and parameter variations. As
the linear-gaussian assumptions are likely to limit the broader applicability of RM-
MAC to drug delivery applications, we will also investigate whether a more general
system estimation technique better suited to non-gaussian and possibly non-linear
problems (such as particle filtering) may enhance the approach used thus far.

Since this work deals with the control of patient haemodynamics, a further point
for discussion is that in standard mechanistic models of circulation (Guyton et al.
[1972]) MAP is controlled by both CO and vascular resistance and that while SNP
acts on vascular resistance, it does not directly affect CO. A key question, therefore,
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concerns whether regulation of MAP alone is a sufficient condition to ensure pa-
tient safety. Indeed, joint control of MAP and CO has been proposed (see, e.g., Rao
et al. [2003]). Further discussions with clinicians will be required to evaluate whether
there are clinical risks associated with MAP-only control (also using a single vasoac-
tive drug) and whether multivariable control may be preferable. It should be noted,
however, that in current clinical practice continuous monitoring of cardiac output is
characterised by calibration issues and low measurement accuracy (Alhashemi et al.
[2011]). As a result, the haemodynamic stability of patients is first and foremost
managed by targeting MAP (Varon and Marik [2008]), particularly in the case of
hypertension. In light of this, our work has focussed on MAP alone. Nonetheless,
provided that pharmacological models for drug action and drug interactions are
available, the same approach presented here could be extended, with minor compli-
cations, to handle a multi-drug, multi-signal (multiple-input, multiple-output) case.



Chapter 3

Open-loop real-time estimation of a
pharmacological system using
particle filtering

This chapter investigates the usability of particle filtering in the context of a non-
linear pharmacological problem: the administration of propofol, a commonly used
anaesthetic drug. The need for this investigation has arisen from our discussion
(Chapter 2) of foreseeable limitations of Kalman filtering in relation to model esti-
mation for closed-loop control of drug delivery in nonlinear and/or non-gaussian
systems. We consider particle filtering as it is a numerical Bayesian inference method
which can be used to conduct system estimation in a broader class of systems, inclu-
ding cases in which Kalman filter-based methods may not be applicable. The focus
of this chapter is the design of a particle filter for the estimation of patients’ indi-
vidual pharmacokinetic-pharmacodynamic (PK-PD) characteristics. In the interest of
clarity, the estimation problem is dealt with here in open-loop (i.e., in the absence of
feedback control); the combination of particle filters and controllers will be examined
in Chapters 4 and 5. We detail the typical formulation of a compartmental PK-PD
model and develop a number of particle filters for the propofol case, based on differ-
ent assumptions on available observation signals. We evaluate, through Monte-Carlo
simulations, the ability of the method to conduct estimation in real-time and the
quality of the model estimates under different observation scenarios. Our findings
support the viability of particle filters for this application and highlight how incor-
porating inaccurate measurements through suitable measurement error models can
improve the quality of the model estimates.

The content of this chapter closely follows the author’s research paper Open-loop
real-time estimation of propofol pharmacokinetics-pharmacodynamics using particle filtering
(Malagutti [a]). Section 3.1 provides an overview of anaesthesia monitoring and con-
trolled propofol administration; Section 3.2 presents the PK-PD model used, intro-
duces the particle filtering approach and describes the computational simulations;
Section 3.3 shows the results of the simulation experiments; Section 3.4 analyses the
results, highlights the key findings and discusses potential extensions of the work.

29
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3.1 Background

The drug propofol is a commonly used pharmacological agent which is administered
intravenously to anaesthetise surgical patients. The anaesthetic effect manifests itself
as a loss of consciousness and reactiveness to stimuli on the part of the patient. The
degree of this effect is the subject of expert evaluation by the anaesthetist, who must
ensure that Depth of Anaesthesia (DOA) remains adequate throughout the surgery:
insufficient DOA may result in patients becoming (unpleasantly) aware of the proce-
dures being performed, while excessive DOA may lead to extended recovery times
and other complications, which range from mild to severe effects and even include
death (Cobas and Varon [2006]).

The assessment of DOA does rely on a range of qualitative tests, such as the eval-
uation of movements or reflex responses (Heier and Steen [1996]). To facilitate the
task of the anaesthetist in obtaining consistent anaesthetic outcomes on a range of pa-
tients, two main areas of research have developed over the years: mathematical dose
pre-planning, with methods such target-controlled infusion (TCI), and quantitative
measures of effect, most often brain activity-derived indices such as the Bispectral
Index (BIS). TCI consists in the application of a pre-determined drug infusion pat-
tern based on population-derived models of propofol distribution inside the human
body (pharmacokinetic models), with the assumption that a particular concentration
inside the body would lead to the desired effect. The BIS, on the other hand, as
a quantitative measure of effect describes a relationship between brain activity and
consciousness, allowing for feedback control systems targeting specific BIS level to be
designed and implemented (e.g., the well-known Stanpump, see Struys et al. [1998]).

Clinical research and practice have demonstrated that these methods have the po-
tential to bring improvements in the quality of anaesthesia. However, their ultimate
ability to address differences in the pharmacological response of individual patients
is still under question. The predictive ability of pharmacokinetic models is limited
by parametric uncertainty arising from the substantial intra- and interpatient variabi-
lity found in populations (Bienert et al. [2012]). Similarly, mathematical descriptions
of the drug concentration-to-BIS effect relationship (pharmacodynamic models) may
also vary across a population (Schnider et al. [1999]). As a result, TCI and BIS sys-
tems are used in clinical practice as a guide tool which must be integrated by the soft
knowledge of an expert human operator.

We seek to investigate whether greater knowledge of a patient’s individual phar-
macokinetic and pharmacodynamic response could be gathered in real time from
available measurements of BIS effect and plasma propofol concentrations. We do
so by using particle filtering as our Bayesian inference tool of choice, applied to
computer-generated data based on a population pharmacokinetic-pharmacodynamic
(PK-PD) model. Bayesian inference (i.e., the process of determining the likelihood of
a certain patient’s response based on the available observations, or, in other words,
the process of "locating" a patient’s individual response amongst the different res-
ponses exhibited across a population) for the individualisation of pharmacologi-
cal therapy is not a novel concept (Jelliffe et al. [1993]). However, to the author’s
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Figure 3.1: Schematic description of the compartmental pharmacokinetic-pharmacodynamic
model for propofol.

knowledge, real-time inference using particle filtering has not been proposed before.
Furthermore, we seek to evaluate whether recently developed techniques of breath
propofol measurement (Takita et al. [2007]; Hornuss et al. [2012]), as a real-time yet
less accurate (Kamysek et al. [2011]) way of measuring plasma propofol can provide
adequately meaningful information for the inference process.

3.2 Methodology

3.2.1 Propofol response models

The model chosen to describe the dose-response characteristic of propofol is a joint
PK-PD model which draws on the work of Schuttler and Ihmsen [2000] (multi-centre
population study) for the pharmacokinetic part and on that of Wiczling et al. [2012]
for the pharmacodynamics. The structure of the model is described in Figure 3.1.

Pharmacokinetics

The model is based on compartmental pharmacokinetics, that is, the distribution of
the drug throughout the body is modelled as a combination of concentration-driven
mass transfer processes which can be described as first-order differential equations.
Three compartments are identified and referred to as the central compartment, su-
perficial peripheral compartment and deep peripheral compartment (Schuttler and Ihmsen
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[2000]). The transfer coefficients are named elimination (Cl1) and distribution (inter-
compartmental) (Cl2, Cl3) clearances. While the compartments do not have a direct
physiological significance, three-compartment models are commonly used in the li-
terature for propofol (see, e.g.,Bjornsson et al. [2010]; Wiczling et al. [2012] also dis-
cusses several available pharmacokinetic models). The model equations are shown
below:

V1
dC1
dt

= u(t)− Cl1C1 + Cl2 (C2 − C1) + Cl3 (C3 − C1) (3.1a)

V2
dC1
dt

= Cl2 (C1 − C2) (3.1b)

V3
dC1
dt

= Cl3 (C1 − C3) , (3.1c)

where Cx is the concentration of propofol in compartment x and Vx is the volume
of that compartment; u(t) represents the dose administered intravenously (instanta-
neous mixing in the central compartment is implicitly assumed).

Pharmacodynamics

The pharmacodynamic model, linking the propofol concentration in the central com-
partment with the measurable BIS effect, is shown on the right hand side of Figure
3.1. A further, fictitious compartment is added to the model, representing diffusion
into the body site where the drug determines its effect (named the biophase). In the
propofol literature, this part of the model represents has been loosely linked to the
distribution of the drug from the bloodstream to the brain (Bienert et al. [2012]). Dif-
fusion is driven by the difference in concentration between the central compartment
and the effect site, as per the equation:

dCe
dt

= ke0 (C1 − Ce) , (3.2)

where ke0 is the distribution rate to the biophase and Ce is the concentration at the
effect site. Finally, the effect concentration and the BIS value are described as having
a non-linear sigmoidal relationship given by Hill’s equation:

BIS(t) = BIS0

(
1− EmaxCγ

e

Cγ
50 + Cγ

e

)
, (3.3)

where BIS is the Bispectral Index score (0-100), the exponent γ is a parameter affect-
ing the shape of the sigmoid, Emax is the maximum percentage drop in BIS achievable
with propofol and C50 is the necessary concentration at the effect site to determine a
50% reduction in the BIS reading from the initial value BIS0.
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Population statistics and stochastic effects

Patient response is not deterministic and the values of the parameters are identified
by fitting the model above to population data. Interindividual variability in the
response exists and as such, parameters are best described in terms of probability
distributions. Two types of parameter distributions are used in this work: normal
distributions, i.e.

X ∼ N
(
µX, σ2

X
)

,

with parameter X having mean µ and standard deviation σ, and log-normal distri-
butions, i.e.,

X ∼ lnN (θX, ωX)⇒ X = θXe(ηX), ηX ∼ N
(
0, ω2

X
)

,

where parameter X is characterised by a typical (median) value in the population θX
and a random multiplicative effect, the logarithm of which is distributed normally.1

These choices of distributions to describe parametric uncertainty are common in so-
called pharmacological nonlinear mixed-effects modelling (Bonate [2011]).

For completeness and generality of the model, we also assume stochastic effects
to affect the quality of the observations. These can be interpreted as describing
measurement errors or residual errors in the fitted model, or a combination of both.
For BIS measurements we follow the additive noise model used in Wiczling et al.
[2012]:

BISmeas = BIS + εBIS, (3.4)

where εBIS ∼ N (0, σ2
BIS). For plasma concentration measurements, we consider a

multiplicative error model, i.e.,

C1,meas = C1

(
1 + εC1

)
. (3.5)

For the term εC1
, we assume a normal distribution in the case of direct plasma concen-

tration assays (also in accordance with Wiczling et al. [2012]), i.e., εC1,p
∼ N (0, σ2

C1,p
),

and a custom distribution derived from “flattening” a normal distribution in the
case of breath concentration measurements. Introducing the probability distribution
function φ(X) for a normally distributed variable X ∼ N

(
0, σ2) as

φ(0,σ2)(X) =
1

σ
√

2π
exp

{
− X2

2σ2

}
, (3.6)

1Alternative notation conventions in describing the log-normal distribution specify the median of the
distribution lnN

(
ξ, ωX

)
as eξ with ξ ∼ N

(
0, ω2

X
)
. In accordance with the notation used in Schuttler

and Ihmsen [2000], we define here the median as θX , where θX = eξ , instead. This choice, which implies
the condition θX > 0, appears to be customary in pharmacology as PK-PD parameters are most often
positive and the value of the population median can be appreciated more readily with this notation.
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Model parameter Distribution Distribution parameters

Pharmacokinetics
(Schuttler and Ihmsen [2000])

Cl1 lnN θCl1
= 1.44, ωCl1

= 0.362
Cl2 lnN θCl2 = 2.25, ωCl2 = 0.488
Cl3 lnN θCl3 = 0.92, ωCl3 = 0.480
V1 lnN θV1

= 8.31, ωV1
= 0.385

V2 lnN θV2
= 39.5, ωV2

= 0.505
V3 lnN θV3

= 266.0, ωV3
= 0.446

εC1,p
N µεC1,p

= 0, σεC1,p
= 0.013

εC1,b
N µεC1,b

= 0, σεC1,b
= 0.25

Pharmacodynamics
(Wiczling et al. [2012])

BIS0 constant BIS0 = 97
ke0 N µke0

= 0, σke0
= 0.088

γ constant γ = 1
C50 lnN θC50

= 2.19, ωC50
= 0.417

εBIS N µεBIS
= 0, σεBIS

= 3.74

Table 3.1: PK-PD parameters and distribution characteristics. The values represent patients
with a body weight of 70kg, aged 40 years.

the probability distribution function for the error εC1,b
becomes

p
(

εC1,b

)
= min

{
φ(

0,σ2
C1,b

)
(

σC1,b

)
, φ(

0,σ2
C1,b

)
(

εC1,b

)}
(3.7)

A plot of the distribution is shown on the left hand side of Figure 3.2. The
choice of such a distribution arises from a lack of detailed information in the lite-
rature about the measurement error characteristics of breath propofol concentration
measurements. Studies have demonstrated that a correlation between plasma and
breath concentrations exists (Takita et al. [2007]). However, animal experiments have
indicated that the quality of this correlation may worsen with increases in cardiac
output (Kamysek et al. [2011]). The right hand plot of Figure 3.2 shows the cho-
sen distribution applied to the in-vivo data of Kamysek et al. [2011] as an attempt
to cater, conservatively, for the potential error introduced by neglecting the effect of
the haemodynamic state on the exchange of propofol between plasma and exhaled
breath.

Table 3.1 summarises the parameters and the statistical distributions used in this
study.
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Figure 3.2: Left: Probability distribution used to model the error term in breath-derived
propofol concentration measures (solid), compared with the corresponding normal distri-
bution (dashed). Right: Experimental data on simultaneous breath and plasma propofol
measurements (from Kamysek et al. [2011]) superimposed on regions representing the dis-
tribution of the multiplicative error term. The grey-shaded region covers the interval of ±1
standard deviation from the line of identity (red).

3.2.2 Particle filtering

Bayesian filtering

We consider a dynamical system characterised by deterministic and stochastic dy-
namics, i.e.,

x(k) = f1 (x(k− 1), u(k), v(k)) (3.8)

z(k) = f2 (x(k), u(k), w(k)) , (3.9)

where x(k) is the state vector, z(k) is the observation vector, u(k) is an input vector, k
is the discrete-time index, f1, f2 are arbitrary functions and v(k), w(k) are input and
output noise processes. Bayesian filtering seeks to estimate the posterior probability
distribution of the system’s state at k, conditional on the available observations, i.e.,
the distribution p(x(k)|z(1 : k)), where p(·) indicates probability and 1 : k denotes
the time interval between 1 and k. In other words, the result of a Bayesian filter gives
the probability with which the system can be deemed to be in a particular state given
the information provided by the history of available observations. On the basis of
the posterior probability distributions, other estimates about the system can be made,
i.e.,

E(g(x(k)) =
∫

g (x (k)) p (x(k)|z(1 : k)) dx(k), (3.10)

where E(·) denotes the expected value and g(·) is another arbitrary function. This
process of making “informed guesses” about an observed system is termed Bayesian
inference.

Analytical solutions for the filtering problem exist only for restricted categories
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of problems, for example Kalman filtering, which can be applied to systems charac-
terised by linear dynamics and normally distributed (Gaussian) disturbances. For
more general problems (non-linear, non-Gaussian), a closed-form solution to com-
pute the posterior probability is not available and methods based on approximations
must be used. Extensions of the Kalman filter have been proposed to this end, such
as Extended Kalman Filtering (EKF) and Unscented Kalman Filtering (UKF), which
rely on functional approximations to allow for the Kalman result to be applied to
nonideal cases (Chen [2003]). Particle filters take a radically different approach in
that they are a Monte-Carlo method, i.e., they attempt to approximate the true dis-
tribution by using a large number of randomly sampled candidate instances of the
stochastic process to be estimated; each instance is called a particle. Particle filter
methods have the definite advantage of asymptotic convergence (for N → ∞, where
N is the number of particles) to the true distribution Doucet and Johansen [2009],
although, depending on the system, the parallel computation of the dynamics of too
many particles may come at an unaffordable computational cost.

Particle filtering for propofol PK-PD

The pharmacological dynamical system describing the propofol response includes
a non-Gaussian measurement error model as described in (3.7). Nonlinearities are
also present, due both to the the PD component of equation (3.3), and to the fact
that the model parameters are uncertain and must also be estimated by the filter. By
recasting the problem as a joint state and parameter estimation task, the system state
is augmented with the uncertain parameters, i.e., x =

[
xPKPD xθ

]T where xPKPD

and xθ are vectors representing the PK-PD dynamics (as per equation (3.8)) and the
parameters to be estimated, respectively. This renders the dynamics of the system
a more general, nonlinear function of the state. In light of the exposition in the
previous section, a particle filter is a suitable tool to deal with such a general case.

The particle filtering algorithm comprises of a few fundamental steps:

• Initial condition: an appropriately large number of particles (N) are sampled
from a known or presumed initial probability distribution p(x(0)). In the spe-
cific case of the pharmacological problem, the initial (k=0) distributions of the
parameters (xθ) are given by the population statistics as per Table 3.1. The
xPKPD states represent the concentrations in the model compartments and can
be deemed to have a zero initial condition if the observations start at a time
when no drug has yet been administered.

• Propagation: the next state value for each particle is calculated, as is standard
for a discrete-time dynamical system. In our specific problem, we assume the
xPKPD states to propagate in a deterministic way at each time step, i.e.,

xPKPD
i (k + 1) = f1

(
xPKPD

i (k), xθ
i (k), u(k)

)
, (3.11)

where the above equation is an adaptation of (3.8). The subscript i denotes the
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ith particle with 1 ≤ i ≤ N. The states representing the parameters either held
constant or varied stochastically depending on whether resampling occurs at
time k, i.e.,

xθ
i (k + 1) =

{
xθ

i (k) (1 + χ(k)) if k is a resampling time step
xθ

i (k) otherwise
, (3.12)

where χ(k) is a diagonal n × n matrix (n being the number of parameters to
be estimated) with entries sampled from the distribution N

(
0, 0.022), corre-

sponding to random changes with a standard deviation of 2% in the value of
the parameters. Although in this experiment it is assumed that the parameters
are fixed for any one patient, allowing for stochastic variations in the parameter
values when resampling reduces the risk of sample impoverishment, i.e., that
after many resampling steps all particles might end up with the same parame-
ter values, thus reducing the filter’s capability.

• Weighting: when a new observation becomes available, the estimated value
of the system output (BIS value or propofol concentration) for each particle
is compared with the value of the observation and a corresponding weight is
generated based on the distribution describing the likelihood of observations,
i.e., p(z(k)|x(k)). In the case of a BIS observation, for example:

w∗i (k) = φ(0,σ2
BIS)

(
BIS(k)− ˆBISi(k)

)
, (3.13)

where φ is defined as in equation (3.6), w∗i is the weighting attributed to the
ith particle and ˆBISi(k) represents the ith BIS estimate at time kTs (Ts is the
sampling time for the discretisation of continuous-time signals, cf. equation
(3.3)).

• Weight normalisation: following weighting, weight normalisation is perfor-
med, i.e.,

wi(k) =
w∗i

∑N
j=1 w∗j

. (3.14)

• Resampling: N particles are sampled from the distribution approximated by
the weighted particles. By resampling, particles which poorly reproduce the
system’s behaviour are eliminated and reintroduced as copies of better per-
forming realisations. A variety of schemes exist in the literature for this pur-
pose (Douc and Cappe [2005]). Here, we adopt multinomial resampling, by
which random numbers qi (1 ≤ i ≤ N) are drawn according to a uniform dis-
tribution U [0, 1) and used to select which particles to sample according to a
multinomial distribution:

xR
i (k) = xj(k), j : qi ∈

[
j−1

∑
r=1

wr

j

∑
r=1

wr

)
(3.15)
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where the superscript R indicates the resampled particle and equation (3.15)
is a numerical inversion of the cumulative probability distribution determined
by the normalised particle weights. Following resampling, all particles are
assigned the same weight 1

N .

Figure 3.3 shows a flow chart summarising the particle filter algorithm. Estimates
can be derived at any time by performing a weighted sum. The inference equation
(3.10) for the particle filter becomes, therefore,

E(g(x(k)) =
N

∑
i=1

g (x (k))wi(k). (3.16)

3.2.3 Monte-carlo numerical simulations

In order to investigate the ability of the approach as described to estimate the propo-
fol response characteristic, and thus perform a proof-of-concept evaluation of real-
time Bayesian inference in this application based on current models, we designed a
computational simulation campaign in which 1000 patients were sampled at random
from the population parameters of Table 3.1. For all cases, we simulated an input
sequence corresponding to an initial infusion of 2mg/kg of propofol for the first
minute, followed by a 200 minute infusion at 0.2(mg/kg)min−1, after which infusion
stops and the recovery of consciousness takes place (a further 200 minutes are consid-
ered). This choice of infusion profile was deemed consistent with examples observed
in the PK-PD modelling literature such as in Wiczling et al. [2012]; Bjornsson et al.
[2010].

The performance of the approach was assessed by using observations taken du-
ring the anaesthesia section of the simulation (first 200 minutes) and evaluating the
ability of the inferred model to predict the BIS and concentration trends during the
recovery phase (last 200 minutes). The following modelling options were tested
against the simulation data:

i. predictions based on the nominal model (no observation information used);

ii. predictions based on BIS observations alone (1 BIS observation every minute);

iii. predictions based on BIS and breath concentrations (1 breath observation every
5 minutes, 1 BIS observation every minute);

iv. predictions based on BIS and plasma concentrations (1 plasma observation every
5 minutes, 1 BIS observation every minute);

v. predictions based on breath concentrations alone (1 breath observation every 5
minutes);

The intervals between subsequent BIS and breath observations were deemed reaso-
nable in the context of the application and available technologies. While BIS mo-
nitoring can be deemed essentially continuous, it has been argued that due to the
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Figure 3.3: Flow chart describing the particle filtering algorithm.
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low amounts of propofol exchanged between the blood and the breath, time is re-
quired for equalisation of airborne concentrations and therefore too frequent breath
concentration measurements may not be informative (Takita et al. [2007]). Plasma
concentration assays cannot be realistically conducted in real-time, but this case was
contemplated and simulated in order to compare an ideal set of results against those
of a filter relying on the less accurate breath measurements.

In assessing the prediction error we rely on weighted residuals (WR), i.e.,

WR(k) =
z(k)− ẑ(k)

z(k)
, (3.17)

where z(k) is the observation (BIS or propofol concentration) and ẑ(k) is the estimate.
Weighted residuals (expressed as percentages) are a standard approach to express
goodness-of-fit in pharmacological models (Bonate [2011]). The following measures
are adopted:

• Mean Weighted Residual (MWR), defined as the mean of the WR values com-
puted in the 200-400min window, to highlight bias in the estimate;

• Mean Absolute Weighted Residual (MAWR), defined as the average absolute
value of WR in the 200-400min window, to evaluate accuracy in the estimate;

• Absolute Weighted Residual at the Endpoint (AEWR), to evaluate the error at
the end of the prediction horizon (taken at 398min).

For all measures, we computed the mean value over the sampled population.
The simulations were programmed and run using Matlab and Simulink on a

standard desktop computer (Intel R© Core DuoTM CPU, 3.0GHz). In the simulations
requiring a particle filter, 10,000 particles were used.

 

 

 

 

 

  

0 100 200 300 400
0

5

10

15

20

Time (min)

C
o
n
c
e
n
t
r
a
t
i
o
n
 
(
m
g
/
l
)

0 100 200 300 400
0

20

40

60

80

100

Time (min)

B
I
S

-4 -3 -2� -� 0 1 2 3 4

X

p
(
X
)

Breath-measured concentration

P
l
a
s
m
a
 
c
o
n
c
e
n
t
r
a
t
i
o
n

1 1.5 2 2.5 3 3.5
0

1

2

3

4

5

6

-4σ  -3σ  -2σ   -σ    μ    σ    2σ   3σ   4σ 

 

σ 

2σ 

-σ 

-2σ 

Figure 3.4: Simulated values of observable signals. The red line indicates the result for the
nominal model (no parameter variations). The dashed black lines indicate the 5th and 95th
percentile of the population responses. Left: Plasma concentration C1. Right: BIS measure-
ment (noisy).



§3.3 Results 41

3.3 Results

Figure 3.4 shows the concentrations and BIS responses across the population as per
the model of Table 3.1. Although all sampled patients had the same values for the
age and body weight covariates, the interindividual variability is considerable as
displayed by the difference between the 5th and 95th response percentiles.

Table 3.2 summarises the results of the campaign. Most measures point to the
model-based estimate (case i) as the worst overall performer. The case with BIS-only
observations (ii) displays good predictive performance for BIS, but poor results in
estimating the plasma concentrations. Conversely, a filter relying only on breath
propofol concentrations (v) predicts plasma concentrations well but is inaccurate on
BIS. Joint observation of C1 and BIS (cases iii and iv) is associated with the best
predictive results. As could be expected, the overall best performer is the case with
the accurate plasma concentration measurements (case iv). However, it is notable
that the predictive ability in the breath measurement case (iii) is very similar.

Figure 3.5 shows a typical result. We show the true and predicted BIS(t) and
C1(t) traces for patient number 863. The two plots show, at an individual patient
level, the differences already highlighted by the population measures. BIS-only fil-
ters track plasma concentrations less accurately and vice-versa. Case iv yields the
most accurate results. The estimate based on the nominal model provides the worst
tracking.

A further result of interest is an insight into the accuracy of the estimation of
individual model parameters. Figure 3.6 shows the particle filter distributions for
the estimates of a pharmacokinetic and a pharmacodynamic parameter: V2 and C50,

Measure Case C1 BIS

MWR (%) i -29.8 -10.9
ii -58.0 4.02
iii -31.8 7.13
iv -26.6 1.83
v -20.3 -10.6

MAWR (%) i 60.5 33.7
ii 68.2 26.7
iii 38.4 16.9
iv 40.4 17.7
v 40.6 29.9

AEWR (%) i 76.8 23.8
ii 93.6 18.5
iii 57.4 14.6
iv 57.4 13.6
v 56.0 19.9

Table 3.2: Results of the simulation campaign
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Figure 3.5: Observations and tracking by the five estimation approaches for simulated patient
#863. The true observed values are shown by the dashed black trace. The solid coloured lines
show the results of the five estimation methods: i (magenta), ii (blue), iii (gold), iv (green),
v (cyan). Top: Plasma concentration C1. Bottom: BIS measurement (noisy).

respectively. While the results on other parameters may be different, the comparison
between the four methods is informative. The figures clearly show that the method
relying on pharmacokinetic (concentration) information only does not estimate the
pharmacodynamic parameters well, and vice-versa. The convergence of the esti-
mate, as shown by the distance between the 5th and 95th percentile of the particle
distribution, is greater when the more precise measures of plasma concentrations are
available. It should also be noted that most of the convergence occurs in the first
50 minutes of observations, and that even with best estimation, the breadth of the
confidence interval can be quite large. Taking Figure 3.6 as an example, the rela-
tive difference between the mean of the estimate and the 95th percentile for the best
estimate case iv is a sizable 40% in the case of V2 and 15% for C50.

The simulation and particle filtering of each 400min patient case was carried out
in approximately 120 seconds, i.e., about 20× faster than real-time.
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Figure 3.6: Convergence of parameter estimates for the four particle filter cases for patient
#422. The case number is shown on the top right of each plot. All plots show the true
value of the parameter (blue), the particle filter mean (red) and the 5th and 95th percentile of
the particle distribution (black dashed). Top section: pharmacokinetic parameter V2. Bottom
section: pharmacodynamic parameter C50.
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3.4 Discussion

This chapter has introduced a method for real-time inference of a pharmacologi-
cal dose-response system. The results raise interesting considerations both from a
methodological and a clinical perspective.

From a methodological perspective, we have demonstrated that the particle filter
approach as presented is able to deliver better predictive performance than a-priori
predictions. Since there are no constraints on model linearity or on the distribution of
stochastic processes, the proposed Bayesian inference method is general and, given
any PK-PD model and a set of available observations, an appropriate particle filter
formulation could be designed and implemented. As mentioned previously, a pos-
sible limitation of this approach lies in the computational burden of particle filters,
which grows exponentially with the state dimension of the underlying model. Our
simulation campaign has indicated that real-time computation of a large number of
particles is possible in this case without requiring specialised hardware. Although
we did not conduct a systematic analysis to select the number of particles, a compar-
ison of selected simulations with varying numbers of particles ranging from 1,000 to
50,000 indicated 10,000 to be an adequate compromise between computational time
and accuracy. Our positive finding in terms of the tractability of the real-time filter-
ing problem can be attributed to the relatively slow dynamics of drug distribution
and effect, when compared to the speed of computer processing.

The accuracy of parameter estimation warrants further discussion. The positive
findings in terms of predictive capability are not matched by very precise parameter
estimates. This can be partly attributed to measurement errors, particularly when
large in magnitude and characterised by flat distributions such as (3.7), as they intro-
duce significant uncertainty which the filter cannot resolve, thus resulting in a less
focussed particle scatter in the parameter space. It is expected that improvements
in the techniques and/or error models for breath propofol measurements would
lead to more accurate estimation results. However, as already highlighted, the con-
vergence of estimates is only marginally better when direct (and accurate) plasma
measurements are made available to the filter. This raises further questions relating
to underdetermination and adequate system excitation.

Underdetermination refers to the fact that there are fewer observable signals than
unknown parameters and, as such, there may be multiple parameter combinations
giving rise to similar observations. While the three-compartment formulation used
here was deemed to be representative of the consensus in the literature, PK-PD mo-
dels are not developed from first principles, and therefore the number of model
parameters is the result of a trade-off choice between complexity and goodness-of-
fit. Indeed, simpler (Wiczling et al. [2012]: two-compartment) and more complex
(Bjornsson et al. [2010]: four-compartment) models do exist for propofol. Further
work should evaluate whether a lower-order particle filter would be able to achieve
similar levels of predictive ability with a better convergence of parameter estimates.
In other words, whether the loss of higher-order dynamics associated with the use of
a simpler model can be offset by an improvement in the focus of the particle scatter.
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System excitation refers to the ability of the input provided to the system (drug
infusion) to elicit input-out dynamics of sufficient intensity to allow for accurate
parameter identification. From a systems engineering perspective, the mostly flat
infusion profile presented by the literature as a “clinical standard” limits the amount
of information available to the filter after the initial settling dynamics have been ex-
hausted. This explains the lack of further convergence in the particle scatter, despite
new observations being available, from approximately 50 min onwards (Figure 3.6).
Indeed, pharmacokinetic studies of propofol have highlighted that close observation
of plasma concentrations in the first few minutes after administration provides pre-
cious information on the response dynamics Masui et al. [2009]. Fast early-stage
concentration measurements, however, are not possible with breath-based methods,
due to the slow equalisation dynamics between breath and blood. We expect that a
similar experiment conducted with greater variations in the infusion profile would
result in further improvements in the inference results, although we acknowledge
that alternative infusion profiles may be subject to clinical constraints which are be-
yond the expertise of this author. Ongoing excitation would become essential if the
parameters were to be assumed as being time-varying, and not fixed as was done in
this study. An evaluation of the scope to improve estimation results through alterna-
tive infusion profiles would be a valuable extension to this work.

From a clinical perspective, the results of this computational study have high-
lighted that even for an established PK-PD model, the breadth of possible responses
owed to interindividual variability is substantial. In light of this it is clear that a TCI
system relying solely on a-priori estimates based on measurable patient details (such
as body weight and age) may grossly under- or overestimate plasma concentration
and BIS trends, as confirmed by the large values in the error measures of case i. In
terms of Bayesian inference, our findings show that particle filters are a viable tool
to incorporate information from available observations and obtain a more accurate
estimate of a patient’s individual response in real time. Importantly, our work shows
that inaccurate measurements can contribute to the inference process if incorporated
through a suitable error model. In the case of propofol, this study supports the
usefulness of information acquired through breath-based measurements of propofol
concentration when used in conjunction with EEG-derived measures of effect such
as BIS. The predictive capacity of methods iii and iv, in the standard conditions
assumed for this simulation study, were found to be almost equivalent. Although the
positive results shown here will need to be confirmed through in-vivo studies, our
data suggest that more accurate real-time inference of individual patients’ PK-PD
response is possible with current technology. A better characterisation of individual
response has the potential to improve clinical decision making and may also be used
to support algorithms for automatic closed-loop drug administration.
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Chapter 4

An adaptive multi-controller
architecture with a particle
filter-based supervisor

This chapter temporarily abandons the focus on medicinal drugs and presents work
with a distinct control engineering focus. Having found (in Chapter 2) that the
Kalman filter model estimation approach of Robust Multiple-Model Adaptive Con-
trol (RMMAC) may not be ideal to deal with systems which are not linear-Gaussian
and time-invariant, and having explored (in Chapter 3) particle filtering as a more
general model estimation approach, the main aim of this chapter is to investigate
whether a combination of multiple robust controllers and real-time particle filtering
can be used successfully as an adaptive feedback control architecture. We present
here this novel approach, which we name Robust Adaptive Control with Particle
Filtering (RAC-PF), and conduct Monte-Carlo simulations to compare its perfor-
mance with that of another known extension for RMMAC: Robust Adaptive Control
with Extended Kalman Filtering (RAC-EKF). The test-bench used for the compari-
son is a multivariable linear parameter-varying system. Our results show that when
real-time computation of the particle filter can be achieved, RAC-PF can match the
performance of RAC-EKF, indicating that there is no disadvantage in adopting the
more general approach in problems where a more restrictive EKF-based methodo-
logy would be suitable.

The content of this chapter closely follows the author’s research paper An Adaptive
Multi-Controller Architecture Using Particle Filtering (Malagutti et al. [2012c]). Section
4.1 delivers some essential background information on multi-controller architectures;
Section 4.2 provides details on the control architecture and its associated methods;
Section 4.3 describes the benchmark case study; Section 4.4 presents the simulation
results; Section 4.5 discusses the results and expands on directions for further work.

47
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4.1 Background

Adaptive control is often required to control plants with large parametric uncertainty
for which a single controller cannot yield adequate robust stability and performance.
Many approaches to the problem of adaptive control have been considered in the
literature (see Anderson and Dehghani [2008] and reference therein). Since this thesis
considers a multi-controller approach, we direct the interested reader, in particular, to
other multi-controller methods, which have received widespread attention. Examples
of results can be found in the works of Schiller and Maybeck [1997]; Safonov and Tsao
[1997]; Anderson et al. [2000]; Hespanha et al. [2001]; Fekri et al. [2006]; Al-Shyoukh
and Shamma [2009]; Kuipers and Ioannou [2010]; Hassani et al. [2011]. Common to
all these methods is the use of information gathered in real-time about the controlled
plant to decide on appropriate control actions.

Architectures performing Multiple Model Adaptive Estimation and Control con-
sist of a finite set of candidate controllers and an identification module. At least one
of the candidate controllers is assumed to meet the desired closed-loop stability and
performance requirements for the plant in the loop. The role of the identification
module is to select, out of the candidate set of controllers, the controller which can
deliver the “best” closed-loop performance. Except for unfalsified control (outlined
in the work of Safonov and Tsao [1997]), which is not a model-based approach and
utilises measured data to falsify—and assess the performance of—controllers in and
out of the loop in real time based on a cost function, the other cited techniques use
model-based approaches. Their identification modules compute a set of performance
signals which are suitably defined indexes based on the output estimation errors
with respect to a set of candidate reference models. Slightly different approaches are
used in Al-Shyoukh and Shamma [2009], where the identification module explores
award-based calibrated forecasts, and in Kuipers and Ioannou [2010], where multiple
parameter estimators produce an explicit estimate of the unknown parameter which
is then used for controller selection.

A common feature of the above multi-controller approaches is that they are de-
signed to control systems which meet strict assumptions about the controlled plant,
typically linear time-invariant (LTI) systems with gaussian disturbances. For exam-
ple, Hassani et al. [2011] discuss a proof of asymptotic stability and model estimate
convergence of RMMAC in the LTI case. Fekri [2005] outlines that acceptable ro-
bust performance can be obtained using RMMAC in cases of mild violation of the de-
sign assumptions (slowly time-varying systems and/or incorrect disturbance model).
Kuipers and Ioannou [2010] show that a controller mixing approach can be used to
improve estimation in the presence of perturbations in the disturbance power and
bandwidth, but do not discuss variations of parameters. The applicability of multi-
controller methods to a broader class of problems is the subject of ongoing inves-
tigation. Recently, Hassani [2012] experimented with a variation of RMMAC which
conducts a joint estimation of the system state and uncertain parameters using an Ex-
tended Kalman Filter (EKF) and selects the controller accordingly. This architecture
was named Robust Adaptive Control with Extended Kalman Filtering (RAC-EKF).
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RAC-EKF delivered promising results in controlling time-varying plants, as the EKF
estimates, and tracks the variation of, the parameter values over time.

In this chapter, we investigate the potential of using a particle filtering approach
to inform controller selection in a multi-controller architecture. Particle filtering is a
numerical, sequential Monte-Carlo method which computes an approximation of the
probability distribution of the state of a partially observed dynamical system by iter-
atively refining an initial distribution as new observations become available (Cappe
et al. [2007]). In recent years, particle filtering has attracted interest as a versatile
stochastic filtering tool and has found many applications, including tracking (Schon
et al. [2011]), signal processing and telecommunications (Djuric et al. [2003]), geo-
physics (Van Leeuwen [2009]), and biomedical engineering (Zenker et al. [2007]). As
already mentioned in Chapter 3, particle filters are a very general tool, which can
be used in non-linear, time-varying and non-gaussian problems. However, they are
associated with a potentially burdensome computational cost. To the authors’ knowl-
edge, estimating the probability distribution of the uncertain plant parameters in or-
der to mix the control actions of a bank of (robust) controllers in a multi-controller
feedback architecture is a novel proposal, and worthy of investigation. Here, we de-
velop a new approach, RAC-PF, and employ it to control a linear parameter-varying,
two-input two-output (TITO) uncertain plant with gaussian disturbances. As this
plant is a natural candidate for the RAC-EKF approach, we seek to compare the two,
in order to evaluate whether there are any advantages or disadvantages in terms of
closed-loop performance in adopting the more general tool RAC-PF.

4.2 Methodology

4.2.1 Problem description

We assume that the plant to be controlled is a linear system with uncertain, poten-
tially time-varying parameters, as expressed by the equations

ẋ(t) = A(θ(t))x(t) + Bu(t− τ) + Gw(t) (4.1a)

y = C(θ(t))x(t) + v(t), (4.1b)

where x(t) ∈ Rn is the state of the system, u(t) ∈ Rm is the control input, y(t) ∈
Rq is the measured output, w(t) ∈ Rr is a non-measurable input disturbance, and
v(t) ∈ Rq is measurement noise. The control input is applied with actuation delay
τ. Also, θ(t) ∈ Rp represents the vector of uncertain parameters, which is assumed
to belong to a known compact set: θ(t) ∈ Ω, ∀t. The set itself is taken to be “large”,
which means that the poles of the plant can change considerably as a results of the
variations of the parameters. However, the plant is assumed to remain open-loop
stable at all times, i.e., Re{λi} < 0, i = 1, . . . , n, ∀θ ∈ Ω, with λi being the eigenvalues
of matrix A.

The general structure of the proposed closed-loop architecture is shown in Figure
4.1. The system is to act as a regulator, minimising the effect of the disturbances on
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Figure 4.1: Multi-controller closed-loop architecture. Notation: C1,...,NC
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u(t) control signal; w(t) plant noise; v(t) measurement noise; y(t) observed output; σ(t)
controller selection signal.

the output.

4.2.2 Controller design

The controller design methodology adopted here draws on H∞ control theory and
mixed-µ synthesis (Skogestad and Postlethwaite [2006]) much in a similar way as
has been done in the RMMAC work of Fekri et al. [2006] and in Chapter 2 of this
thesis. Such an approach is particularly suited to dealing with uncertain plants as it
allows the designer to compute a linear controller which ensures that the feedback
interconnection of the plant and the controller is stable for every allowed value of
the uncertain parameters (robustness). Moreover, the method provides a systematic
performance-based process for designing the bank of controllers. By using mixed-µ
synthesis in an iterative algorithm, a single or multiple controllers (bank of control-
lers) can be computed, the number of which is the natural outcome of performance
design specifications for the adaptive system. The required performance is defined
as the maximum allowable percentage increase in the H∞ norm of selected perfor-
mance signals (for our regulator, higher performance corresponds to a lower RMS
value for C(θ(t))x(t)) when compared to the best performance achievable if the un-
certain parameters were known exactly (in a hypothetical system capable of perfect
identification).

There is, of course, a trade-off between the breadth of the allowable uncertainty
space and maximum achievable performance. When the parametric uncertainty set
Ω is large, a global robust controller (hereafter referred to as GNARC: Global Non-
Adaptive Robust Controller) may lead to unsatisfactorily poor performance. A multi-
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controller architecture features NC robustly designed controllers, each catering for a
subset of the uncertainty space ωi ⊆ Ω : ω1 ∪ · · · ∪ ωNC ≡ Ω (LNARCs: Local
Non-Adaptive Robust Controllers) and is therefore capable of delivering greater per-
formance while ensuring robustness, provided that the correct plant-controller pair
is used in the feedback loop at all times.1 The breadth of subsets ωi follows from
the specification of a required performance improvement over the GNARC case. Al-
though the methodology of Fekri et al. [2006] is well defined for single-input single-
output plants, it can be extended quite readily to a multiple-input multiple-output
case (see Hassani [2012] for details).

4.2.3 Parameter estimation and particle filtering

The key challenge of adaptive control in such a multi-controller architecture is, there-
fore, that of selection of the correct LNARC. Most approaches in the literature either
estimate the uncertain parameters and select the controller based on the estimation
result (as in Kuipers and Ioannou [2010]; Hassani [2012]), or they associate a perfor-
mance signal to each model and controller (as in Schiller and Maybeck [1997]; An-
derson et al. [2000]; Hespanha et al. [2001]; Fekri et al. [2006]; Hassani et al. [2012]).
In Schiller and Maybeck [1997]; Fekri et al. [2006] a posterior probability for each
controller is computed using dynamic hypothesis testing.

In the problem discussed here, arbitrary time-variability of the parameters over a
large uncertainty set is assumed. In Chapter 3, we have highlighted that the joint esti-
mation of the system’s state and parameters constitutes a nonlinear filtering problem.
Hassani [2012] proposes the use of an extended Kalman filter (EKF) as a suboptimal
solution.

We consider an alternative approach based on particle filtering (PF). As intro-
duced in Chapter 3, particle filtering is a sequential Monte-Carlo method which aims
to compute the approximate posterior probability density of the (augmented) state,
conditioned on the available observations of input and output until that time point,
i.e. p(x(k)|Z(0:k)), where Z(0:k) ≡ {u(j) y(j)}k

j=0 is the observation vector, with
k = b t

Ts
c, and Ts being sampling time, since PF is a numerical, therefore discrete-

time method.
A thorough theoretical presentation of PF can be found in Doucet and Johansen

[2009]. For the purpose of this chapter, it will suffice to recall that the posterior
probability density is approximated by a finite number of samples (particles), which
can be understood as candidate realisations of the system to be estimated. At time
k = 0, N particles are initialised by sampling from a known or presumed prior
probability density p(x(0)). Each particle carries a state estimate x̂h(0), with h =
1 . . . N. Throughout the subsequent time steps, particles undergo a state update,
weighting and resampling process. We described this algorithm in Chapter 3. A
visual illustration of the particle filtering steps is provided in Figure 4.2.

1The risk of instability induced by incorrect plant-controller pairing is not considered here; discus-
sions on this topic can be found in the work of Dehghani et al. [2009]
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Figure 4.2: Illustration of the sampling-weighting-resampling process, which underpins par-
ticle filtering.

Over a number of iterations, the particles cluster in the state space in a way that
approximates the posterior probability density of the state, i.e.,

p̂(x(k) ∈ η|Z(0:k)) =
nη

N
, (4.2)

where η ⊆ Ω and nη is the number of particles for which x̂h(k) ∈ η. As the number
of particles increases, so does the accuracy of the approximation but also the com-
putational cost. Also, models with a greater number of states require more particles
to be approximated. Since this problem involves a system which can be described as
linear conditionally on the time-varying parameters, a specialised form of the filter
called marginalised PF (also known as Rao-Blackwellised PF; see Schon et al. [2005])
can be exploited. In a marginalised PF, the conditionally linear states are estimated
using the optimal Kalman filter result (marginalisation), while the other (nonlinear)
states are estimated by the standard PF algorithm. This helps reduce, to some extent,
the computational burden of the algorithm.
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Figure 4.3: The MSD system. The spring coefficients k2 and k5 are uncertain.

4.2.4 Controller selection

Controller selection is obtained by integrating the approximate probability density
function which results from the particle filter iterations. Specifically, the number of
particles ni associated with each uncertainty subset i, with i = 1, . . . , NC, determines
the probability of model i being the correct one. The results shown in Section 4.4 are
generated using a weighted approach to controller selection. The input signal u fed
to the plant is a weighted sum of the control signals ui generated by the individual
controllers,

u =
NC

∑
i=1

πiui, πi =
ni
N

, (4.3)

where πi is the approximate probability of the true plant parameters belonging to
subset i, and N is the total number of particles.

4.3 Control Example

4.3.1 Model description

In this section we apply the proposed methodology to control a mass spring dashpot
(MSD) assembly. The MSD system, depicted in Figure 4.3, has a noncollocated con-
trol property and in that sense it is very similar to applications such as flexible robot
arms (where the control action is applied to a point far from the arm tip) or flexible
spacecraft structures where the controls (e.g., control-moment gyros) are away from
the radar/telescope that must be pointed accurately. It also closely approximates the
dynamics of an active suspension system.

The control action is exerted as forces acting on masses m2 and m3 (with actuation
delay τ), while the control goal is to regulate the displacements of masses m1 and
m4, the measurement of which is corrupted by independent random gaussian noise
processes v1(t) and v2(t) with a power spectral density of 10−5. Disturbance forces
d(t) act on masses m2 and m4, where d(t) is generated by low-pass filtering of two
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independent random gaussian noise processes, i.e.,

[
d1

d2

]
=

[ 0.1
s+0.1 0

0 0.1
s+0.1

] [
w1

w2

]
, (4.4)

with a power spectral density of 10 for w1(t), w2(t).
A state-space description of the plant (augmented to include the noise model

(4.4)) is given in (4.5).
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B =




0 0
0 0
0 0
0 0
0 0
1

m2
0

0 1
m3

0 0
0 0
0 0




G =




0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
.1 0
0 .1




CT =




1 0
0 0
0 0
0 1
0 0
0 0
0 0
0 0
0 0
0 0




(4.5)

The values of the model constants are m1 = m2 = m3 = m4 = 1kg, k1 = 0.15N/m,
k3 = k4 = 0.1N/m, b1 = b2 = b3 = b4 = b5 = 0.1Ns/m, τ = 0.01s. The
spring coefficients k2 and k5 are uncertain parameters, with k2 ∈ [0.75, 2.5]N/m and
k5 ∈ [0.9, 2.5]N/m.

4.3.2 Controller bank design

As mentioned, in the proposed adaptive control approach the parametric uncertainty
set is divided into smaller subsets and a robust controller is designed, using mixed-
µ synthesis, for each subset. The complete procedure of subdivision of parametric
uncertainty and local controller design is explained in Hassani [2012]. This process
defines three subregions or uncertainty intervals as indicated in Table 4.1

Table 4.1: Summary of controller design

Controller Uncertainty Interval k2 Uncertainty Interval k5

GNARC [0.75 2.50] [0.90 2.50]
LNARC # 1 [1.27 2.50] [1.50 2.50]
LNARC # 2 [0.75 1.27] [0.90 2.50]
LNARC # 3 [1.27 2.50] [0.90 1.50]
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Figure 4.4: Maximum Singular Values of the Global and Local Controllers.

Note that all controllers are TITO LTI systems. Figure 4.4 compares the maximum
singular value plots of the GNARC compensator and the three LNARCs. At low
frequencies the local controllers generate a loop-gain about 25dB larger than the
GNARC. This leads to greater disturbance rejection in closed-loop, especially in the
frequency region where d(t) has most of its power, i.e., ω ≤ 0.1rad/s. We emphasise
that each individual local controller closed-loop design guarantees performance- and
stability-robustness over its associated parameter subinterval (Table 4.1).

4.3.3 Particle filter

The problem of joint estimation of the state and uncertain parameters is recast as a
discrete-time nonlinear filtering problem as follows:

xl (k + 1) = Ad(xn(k))xl(k) + Bdu(k− b τ
Ts
c) + Gdw(k)

xn(k + 1) = f (xn(k))
y(k) = Cxl (k) + v(k)

(4.6)

where τ denotes input time delay. Notation xl , xn identifies the “linear” and “non-
linear” states, respectively (xn = [k2 k5]

T). Subscript d indicates zero-order hold dis-
cretisation of (4.5). The sampling time used is Ts = 0.005s.2

The fact that the sampling time is much faster than the plant dynamics is also
relevant to PF design. We wish to avoid the risk that an overly rapid selection of the

2Controllers designed with mixed-µ synthesis can be of very high order; care must be taken to select
an appropriate sampling time for discretisation.
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particles may lead to an incorrect estimate. The implemented PF uses conducts the
operations of particle weighting, resampling, and time update of the nonlinear states
every Ns = 100 time steps; see (4.7a) and the algorithm below.

Given a rate of change bound for the uncertain parameters, e.g., here we assume
|k̇2|, |k̇5| < 0.175Nm−1s−1, the most general update function for xn is

xn(k + 1) = xn(k) + χ (∀k = l(Ns), l ∈N) (4.7a)

χ ∼
[

U(−0.175NsTs, 0.175NsTs)
U(−0.175NsTs, 0.175NsTs)

]
. (4.7b)

Uniform distributions (U) are used to capture the rate of change constraints while
making no assumptions on the trend of parameter variations.

Marginalised Particle Filter algorithm

(a) Initialisation. Set state xh(0) for particles h = 1, . . . , N as

xl (0) = 0 xn (0) ∼
[
U (0.75, 2.5)
U (0.9, 2.5)

]
,

also set time index k = 0 and weights Wh(−1) = 0.

(b) Weighting. For each particle h, compute the estimated output as ŷh(k) = Cxl
h(k). Then, evaluate

the particles’ normalised weights W̃h(k) as

Wh(k) = Wh(k− 1) + p(y(k)|xh(k)), W̃h(k) =
Wh(k)

∑N
ii=1 Wii(k)

,

where, for this problem (bivariate normal distribution),

p(y(k)|xh(k)) =
1

2πSh,11Sh,22

√
1−ρ2

e
− 1

2(1−ρ2)
Ψ

,

Ψ =

[
(xh,1−y1)

2

S2
h,11

+
(xh,4−y2)

2

S2
h,22

+
(2ρ(xh,1−y1)(xh,4−y2))

2

Sh,11Sh,22

]
,

with S =

[
S11 ρS11S22

ρS11S22 S22

]
being the Kalman innovation covariance matrix.3

(c) Resampling. If k = l(Ns), l ∈ N, resample N particles on the basis of W̃(k) using a residual
resampling algorithm Hol et al. [2006] and reset Wh(k) = 0; otherwise, go to step (d).

(d) Time update. For each particle h = 1, . . . , N,

(i) Kalman filter correction of the linear state estimate using the available observation y(k)

xl
h(k|k) = xl

h(k|k− 1) + Hh(y(k)− Cxl
h(k|k− 1)),

where H is the Kalman innovation gain.3

(ii) If k = l(Ns), l ∈ N, sample χ (4.7b) and update xl
h (4.7a), then compute Ad,h(xn

h(k)) and
Bd,h(xn

h(k)); otherwise, go to (iii).

(iii) Time update of the marginalised linear states xl
h(k + 1|k) via (4.6).

(e) Iteration. Set k→ k + 1 and repeat over from Step (b).

3The Kalman filter matrices can either be computed on-line (Schon et al. [2005]) or pre-computed as
a function of xn and accessed via look-up tables to reduce computational time.
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4.3.4 Numerical simulations

We used the proposed architecture in two sets of numerical simulations. First, we
considered a number of cases in which the unknown spring coefficients are assumed
constant (simulated control horizon: 100s), in order to create a map of the magni-
tude of achieved output RMS as a function of k2 and k5. Then, we examined cases
of sinusoidal variations of the time-varying parameters (simulated control horizon:
700s), in order to evaluate the system’s ability to adequately track the plant as it
evolves through time and implement a suitable control action. For each simulation,
four different approaches to controller supervision were implemented:

• the proposed particle filter-based supervisor (identified as Robust Adaptive
Control with Particle Filtering, RAC-PF);

• a supervisor based on Extended Kalman Filtering, analogous to that detailed
in Hassani [2012] (identified as RAC-EKF);

• a supervisor based on exact knowledge (Perfect Identification) of the real pa-
rameter values, i.e., a system which is not realistically feasible but provides a
reference in terms of maximum achievable performance by switching among
the available controllers (identified as RAC-PI); and

• a system with no supervisor utilising only the GNARC controller, which gives
an indication of the best achievable performance with robust non-adaptive con-
trol.

Due to the presence of stochastic processes (random plant noise and measure-
ment noise), each case was simulated as a batch of 50 Monte-Carlo runs (each run
used different initial seeds for the generation of the random processes). The sim-
ulations were performed in Matlab and Simulink. The RMS values of the output
are deemed to be an indication of the performance of each approach and are com-
puted from simulation time t = 50s onwards. This is intended to exclude from the
computation any transients associated with initialisation bias. For each method we
introduce measures of RMS performance improvement over the GNARC method and
performance degradation over the RAC-PI method as:

%Impr. =
RMSGNARC − RMSmethod

RMSmethod
(4.8a)

%Degr. =
RMSmethod − RMSRAC−PI

RMSRAC−PI
(4.8b)

4.4 Results

Figure 4.5 shows a typical output result (specifically, for a constant parameter case).
The different level of performance between the GNARC and the adaptive approaches
is visually evident. It is also clear that the performance of RAC-PF, RAC-EKF and
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Figure 4.5: Output for the four different control methods in a constant-parameter simulation
with k2 = 1.3N/m k5 = 2.1N/m

RAC-PI is very close, to the extent that they are hardly distinguishable. This justifies
the use of quantitative comparison measures of (as per equation (4.8)), which will be
presented by means of figures and tables in the following subsections.

4.4.1 Constant parameters

In Figure 4.6, we show the RMS values of the system outputs when using RAC-PI.
These are computed as the average result for the Monte-Carlo batch over a uniformly
spaced grid of 210 points spanning the uncertainty region. Discontinuities in the
surface plot can be seen at the edges of the LNARC design subregions (Table 4.1).
Output RMS is shown to increase for lower values of k2 and k5.

Figure 4.7 presents the output RMS results for the RAC-PF approach. A key dif-
ference between these plots and those of Figure 4.6 is the absence of discontinuities:
this is due to the fact that the weighted approach to controller selection ((4.3)) cre-
ates a smooth transition between adjacent controllers. This has the potential to avoid
transients induced by switching operations and may improve performance at subset
boundaries. The RMS values are only slightly higher than those of RAC-PI, as had
been anticipated by inspection of Figure 4.5.

The percentage degradation of RAC-PF with respect to RAC-PI is shown in Figure
4.8. This shows some performance loss with peaks of up to 60% for x1 and 40% for
x4; the plot for x4 shows that on the boundary region between subsets the new
approach can perform slightly better than the perfect identification method (negative
degradation). It should be remarked that since the RMS values are very small in
absolute terms, the two methods still achieve, in practice, very similar results.
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Figure 4.6: RMS of the output signals as a function of the uncertain parameter values k2 and
k5 (RAC-PI).
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Figure 4.7: RMS of the output signals as a function of the uncertain parameter values k2 and
k5 (RAC-PF).
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Figure 4.8: Performance degradation of RAC-PF over RAC-PI.

The plots of Figure 4.9 give a clear result in terms of improved performance over
the GNARC, with 200 to 900% improvement for both x1 and x4. This reaffirms the
superiority of adaptive control in the context of this example.
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Figure 4.9: Performance improvement of RAC-PF over GNARC. Note the inversion of the
k2, k5 axes to aid visualisation.

We compare the performance of the RAC-PF method also with the RAC-EKF
method of Hassani [2012]. Figure 4.10 shows that RAC-PF produces a 5 to 45%
higher RMS value for x1 and 50% lower to 50% higher RMS value for x4. RAC-EKF
is therefore slightly better performing than RAC-PF for the constant parameter case.
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Figure 4.10: Percentage RMS increase using RAC-PF over RAC-EKF.

Finally, Figure 4.11 shows the distribution and evolution through time of the par-
ticles for one of the constant parameter simulations. As expected, the density map
shows greater particle concentration in the proximity of the true value of the un-
known parameters. The estimation results for the RAC-EKF method are also shown
for comparison.
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Figure 4.11: Comparing parameter estimation between PF and EKF for the constant parame-
ter case. Particle scatter is described as a density map with warmer colour indicating greater
particle density. The PF estimate is given by the mean of the particle distribution (4.2).
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Figure 4.12: Comparing parameter estimation between PF and EKF for the parameter-
varying case.

4.4.2 Time-varying parameters

For the time-varying case, sinusoidal variations are imposed on both uncertain pa-
rameters, at a frequency of 6.67 · 10−3rad/s for k2 and 0.02rad/s for k5. The variations
span the whole uncertainty range. The rate of the change is comparable with the dy-
namics of the other plant states: this represents a challenging task for adaptation.

Figure 4.12 shows the tracking of the parameters by the particle filter. The particle
scatter and mean PF estimate show that the approach is able to track the uncertain
parameters as they evolve through time. Tracking accuracy is lower for k5, which
varies at the very maximum allowed rate of change, still, this is sufficient to achieve
stable control. The PF parameter estimate in fast-varying conditions is as accurate
as—and in some cases even superior to—the one generated by the EKF.

The control performance is compared in Table 4.2. The comparison confirms
that the adaptive architectures can deliver a dramatic improvement in performance
over a global non-adaptive approach and shows that both RAC-PF and RAC-EKF
can achieve very close performance to that of an ideal system capable of perfect
identification, with RAC-PF delivering the best performance out of the two methods.

4.5 Discussion

We have proposed the use of the general numerical nonlinear filtering tool of particle
filtering as a method to enact appropriate controller selection in a multi-controller
architecture, particularly when used to control time-varying plants. In the case of
the TITO time-varying plant presented here, the RAC-PF architecture has shown the
ability to track the uncertain parameters well and deliver a level of performance very
similar to that of the ideal RAC-PI system, even when rapid parameter variations
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Table 4.2: Performance comparisons for the time-varying case

Controller output RMS %Impr. %Degr.
GNARC x1 0.59 0 91

x4 0.55 0 84
RAC-PI x1 0.090 556 0

x4 0.090 511 0
RAC-EKF x1 0.093 534 3.2

x4 0.110 400 18.1
RAC-PF x1 0.092 541 2.1

x4 0.097 467 7.2

were imposed.

The comparison with the results of the RAC-EKF approach is noteworthy, since
the characteristics of the problem considered (linearity, zero-mean gaussian distur-
bances) are particularly suited to the use of Kalman filter-derived approaches. In-
deed, an estimation approach based on the Extended Kalman Filter is a natural choice
for this problem, as demonstrated by the minimal performance degradation exhibited
by RAC-EKF when compared to the ideal system. The RAC-PF approach, however,
has a much broader potential scope of application than RAC-EKF, since it can be rea-
dily extended to suit other estimation problems in which the tuning of Kalman-based
methods would be complex, if at all possible (e.g., predominantly nonlinear systems,
presence of variable/unknown time delays, arbitrarily distributed stochastic signals
and/or parameter variations,. . . ). The differences in performance between RAC-EKF
and RAC-PF are very small, indicating that, from a control perspective, there would
only be minor performance disadvantages in adopting RAC-PF as a one-stop de-
sign solution without having to evaluate a-priori the applicability of EKF. In fact, the
performance of RAC-PF even exceeds that of RAC-EKF in selected regions of uncer-
tainty for parameter x4, particularly at the boundary of the uncertainty subintervals.
This can be attributed to the "mixing" approach to controller selection adopted by
RAC-PF, which is not possible under RAC-EKF (the result of the EKF is a parameter
estimate, so only one controller can be switched into the loop at a time, in a so-called
"switching" approach). Kuipers and Ioannou [2010] have also reported that mixing
controller action in multi-controller approaches have the potential to deliver greater
performance than switching approaches.

The additional breadth of scope of RAC-PF comes at the cost of increased com-
putation. Simulations on a standard desktop computer (Intel R©CoreTM2 Quad CPU
3.00GHz, 4GB RAM) ran just under real-time (88s computation time for a 100s si-
mulation) using N =150 particles. This, however, included simulation of both the
controlled plant and the feedback control approach. Faster computations could be
expected from a dedicated system. Still, when compared to the computational cost
of RAC-EKF (10s computation time for a 100s simulation), it is evident that the ap-
plicability of RAC-PF is dependent on the availability of adequate computational



64 An adaptive multi-controller architecture with a particle filter-based supervisor

resources. We have highlighted that in mixed linear-nonlinear problems, margina-
lisation of the particle filter may assist with a reduction of the computational bur-
den. Further work on the optimisation of the particle filtering software code and
its implementation on platforms other than Matlab are likely to further reduce the
computational demands of the approach.



Chapter 5

Robust adaptive control with
particle filtering for sodium
nitroprusside administration

This chapter applies the robust adaptive control architecture with particle filtering
(RAC-PF) described in Chapter 4 to the sodium nitroprusside (SNP) administration
problem for the control of mean arterial pressure (MAP) already discussed in Chap-
ter 2. We design and carry out a Monte-Carlo simulation campaign with the aim
to evaluate the viability and effectiveness of the RAC-PF approach as a feedback
control methodology to regulate MAP in patients experiencing acute hypertension.
The simulation is designed to be broad and takes into account uncertainty in the
patient response model, as well as potential non-zero-mean disturbances in the base-
line arterial pressure and a variety of possible time trends in the variation of the re-
sponse parameters. The results show that the proposed system can achieve adequate
and safe feedback control of mean arterial pressure. Our findings also highlight the
fundamental—and possibly clinically overlooked—role of system excitation in en-
suring that successful simultaneous identification and control of time-varying drug
administration systems can be achieved.

The content of this chapter closely follows the author’s research paper Particle
filter-based robust adaptive control for closed-loop administration of sodium nitroprusside
(Malagutti [b]). Section 5.1 briefly reviews the scope of the work; Section 5.2 details
the SNP dose-response model, the proposed RAC-PF control architecture, and the
characteristics of the computational simulations; Section 5.3 reports on the outcomes
of the simulation campaign; finally, Section 5.4 comments on the results and the
potential of the proposed approach, and outlines further research directions.

5.1 Background

Earlier in this thesis (see Chapter 2), we introduced the reader to the proposed control
task of regulating MAP in acute hypertensive patients through closed-loop infusion
of SNP. We identified significant intra- and interpatient variability in the dose re-
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sponse parameters, non-zero-mean disturbances in the baseline MAP and uncertain
time delays as challenges to the design of a control methodology capable of deliver-
ing robust performance in this application. Although we reported on positive results
by adapting the Robust Multiple-Model Adaptive Control (RMMAC) architecture
of Fekri [2005] to this control problem (also detailed in Malagutti et al. [2013]), we
acknowledged that the use of Kalman filter-based estimators was not ideal for an
application where the basic assumptions for Kalman filtering (linear time-invariant
systems with gaussian disturbances) were violated, albeit sufficiently mildly to allow
for RMMAC to deliver acceptable performance (as discussed in Chapter 4, Section
4.1). Furthermore, in Chapter 2 we only showed selected simulations to demonstrate
the ability of the approach to avoid undesirable transient behaviour, but did not
report on a broader simulation campaign.

The work in this chapter presents a novel approach to the control of automatic
infusion of SNP with a strong focus on robustness. Whilst retaining the same robust
controllers designed for RMMAC in Chapter 2, the new methodology uses parti-
cle filtering to generate an estimate of the dose-response characteristic in real-time
(as in Chapter 3) and exploits the estimation result to inform appropriate feedback
control. We have named the new method Robust Adaptive Control with Particle
Filtering (RAC-PF) and we have reported on a non-clinical case study featuring this
architecture in Chapter 4. We deem particle filters—a much more general tool than
Kalman filters—to be better suited to the estimation of systems characterised by
time-varying parameters, non-Gaussian disturbances and even nonlinearities, such
as may be present in pharmacokinetic-pharmacodynamic systems (Bonate [2011]).
This chapter provides an overview of the RAC-PF design for the SNP administration
problem and reports on an extensive computational simulation campaign designed
to assess the viability of the new methodology and its effectiveness in delivering safe
automatic feedback control of SNP infusion for a broad range of response character-
istics and disturbances.

5.2 Methodology

5.2.1 Dose-response model

We have already shown the structure of the dose-response model for a patient re-
ceiving SNP, according to Martin et al. [1987], in figure 2.1. Three interconnected
first-order linear systems represent the systemic and pulmonary circulation com-
partments and the drug effect site. In transfer function form, the dynamic behaviour
of the system is given by:

Pdrop(s)

U(s)
= e−sT K(τ3s + 1)

((τ3s + 1)(τ2s + 1)− α)(τ1s + 1)
(5.1)

and the output is given by the affine transformation

ymeas(t) = p0(t)− pdrop(t) + w(t). (5.2)
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Three system parameters are deemed uncertain and a priori unknown: K, T and
α. These represent the sensitivity in the patient’s response, the recirculation fraction
and the input time delay, respectively. The allowed ranges for the values and the
rates of change are summarised below (cf. Section 2.2.1).

0.25 < K(t) < 9.5,
[

mmHg
ml/hr

] ∣∣∣ dK
dt

∣∣∣ < 3K(t)hr−1

10 < T(t) < 50, [s]
∣∣∣ dT

dt

∣∣∣ < 40hr−1

0.25 < α(t) < 0.75,
∣∣∣ dα

dt

∣∣∣ < 0.5hr−1

(5.3)

The offset term p0(t) is also treated as potentially time-varying in the interest of
generality. As p0(t) represents a patient’s underlying MAP, it is modelled here as
a mainly low-frequency signal, given by the combination of its measurable value at
t = 0 and an arbitrarily shaped but frequency-domain-bounded component, which
we will refer to as baseline disturbance pdist(t):

p0(t) = p0(t = 0) + pdist(t)

pdist(t) : Pdist(s) ≤
0.4

s+0.01

. (5.4)

Thus, p0(t = 0) can be regarded as a known fixed offset at the output, while the
disturbance component can be treated as part of the state as shown in the following
state space description of the patient response model:

ẋ = Ax(t) + Bu(t− T(t)) + Lv(t) + Mpdist(t)
ymeas = p0(t = 0)− Cx(t) + w(t)

, (5.5)

with

A =




−
(

1
τ1
+ 1

τ2
+ 1

τ3

)
−
(

1
τ1τ2

+ 1−α(t)
τ2τ3

+ 1
τ1τ3

)
α(t)−1
τ1τ2τ3

0

1 0 0 0
0 1 0 0
0 1 0 −0.01


 (5.6a)

B =




1
0
0
0


 L =




0.0625
0
0
0


 M =




0
0
0

0.4


 C =

[
0 K(t)

τ1τ2

K(t)
τ1τ2τ3

1
]

, (5.6b)

where v(t) ∼ N(0, 1), w(t) ∼ N(0, 2) are normally distributed random noise signals
at the input (actuation noise) and the output (measurement noise), respectively. The
signal ymeas(t) represents the measurable MAP value.

5.2.2 Control performance requirements

We refer the reader to Section 2.2.3 for the already discussed performance require-
ments for this application.
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Fig. 2. Control architecture. Notation: r(t) reference signal (desired MAP value); C1,...,5 candidate controllers; ε(t) = r(t) − ymeas(t)
MAP tracking error; u(t) control signal (drug infusion rate); p0(t) patient’s underlying MAP; y(t) output MAP; w(t) measurement noise;
ymeas(t) measured MAP; π(t) = {πi}i=1,...,5 probability of the estimated model parameters belonging to the uncertainty subset for which
robust controller Ci has been designed; σ(t) controller selection signal.

Figure 5.1: RAC-PF control architecture. Notation: r(t) reference signal (desired MAP value);
C1,...,5 candidate controllers; ε(t) = r(t) − ymeas(t) MAP tracking error; u(t) control signal
(drug infusion rate); p0(t) patient’s underlying MAP; y(t) output MAP; w(t) measurement
noise; ymeas(t) measured MAP; π(t) = {πi}i=1,...,5 probability of the estimated model param-
eters belonging to the uncertainty subset for which robust controller Ci has been designed;
σ(t) controller selection signal.

5.2.3 The control approach

The RAC-PF architecture is shown in Figure 5.1. In the proposed approach, multi-
ple controllers are required in order to ensure that a controller-plant pair capable of
maintaining closed-loop stability and delivering the required level of performance
exists for all possible values of the patient parameters. A particle filter tracks the
parameters in real-time and informs the controller selection algorithm with a proba-
bility result, which is in turn used to determine the most appropriate control signal
for the closed-loop system.

Controller design

The controllers are designed using µ synthesis. Controller design and µ synthesis
have been discussed previously and we refer the reader to Malagutti et al. [2012a,
2013] and Section 2.3.1 for a detailed description of the controller design methods
and results as applied to the SNP dose-response model of (5.1).

For the purpose of the presentation hereof, it suffices to report that the perfor-
mance specifications were imposed as frequency-domain bounds on signals ε(t) and
u(t) as shown in Figure 5.2. These constraints translate into requirements for a
small reference tracking error at low frequencies (to ensure proper target following at
steady state) and a mainly low-frequency infusion rate signal (to cater for the slew-
rate limitations of the actuator, likely a motorised infusion pump). Our µ synthesis
computations have shown that a single linear feedback controller could not deliver



§5.2 Methodology 69

0 2000 4000 6000 8000 10000
0

2

4

6

8

10

Time (s)

K
 
(
m
m
H
g
/
(
m
l
/
h
r
)
)

 
 
 
 
 
 

 
 

b-v-61

Frequency-domain
     upper bound 
     for u(t) 

b-iii-60 

Frequency-domain 
upper bound 
for ε(t) 

b-iv-63 

Figure 5.2: Performance bounds. Frequency-domain upper bound constraints for perfor-
mance and control signals adopted for controller design using the µ synthesis technique.

the required level of performance due to the large ranges of parametric uncertainty
(in particular the sensitivity parameter K). However, satisfactory performance could
be achieved by subdividing the uncertainty range of K into multiple subsets and de-
signing a robust controller for each subset. Figure 5.3 and Table 5.1 describe the 5
controllers resulting from our synthesis and the corresponding uncertainty subsets.
Note that all controllers cater for the full uncertainty range of parameters α and T,
while, with respect to K, each controller is associated with a region of best performance
and a region of acceptable performance based on a minimum required normalised per-
formance index Ap = 1 (cf. Section 2.3.1).

Controller To suit K To suit K To suit To suit
number i (best performance) (acceptable performance) α delay

(mmHg/(ml/hr)) (mmHg/(ml/hr)) T (s)
1 0.25 – 0.57 0.25 – 0.78 0.25 – 0.75 0 – 50
2 0.57 – 1.25 0.37 – 1.77 0.25 – 0.75 0 – 50
3 1.25 – 2.30 0.75 – 3.45 0.25 – 0.75 0 – 50
4 2.30 – 4.32 1.33 – 6.50 0.25 – 0.75 0 – 50
5 4.32 – 9.50 2.45 – 9.50 0.25 – 0.75 0 – 50

Table 5.1: Characteristics of the robust controllers.
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Particle filtering

Particle filtering is used to jointly estimate the state and the uncertain parameters of
the patient response (particularly patient sensitivity K) so that the correct controller
can be used in the feedback loop. To this end, the estimation problem is recast as
a nonlinear tracking problem to include the uncertain parameters in the state, as
shown in (5.7) below. We refer to the original system states as “linear” states xl ,
as opposed to the “nonlinear” states xn representing the parameters. Such a mixed
linear/nonlinear formulation makes it possible to use marginalised particle filtering
as we have done in Chapter 4.

Since particle filtering is a discrete-time approach, a suitable sampling time must
be chosen. Due to the nature of clinical MAP observations (require averaging over
at least 1 cardiac cycle), we consider a sampling time Ts = 2s. The discrete-time
description of the system used in the particle filter is given by

xl (k + 1) = Ad(xn(k))xl (k) + Bdu(k− bT(xn(k))
Ts

c) + Ldv(k) + Md pdist(k)

xn(k + 1) = f (xn(k)) (5.7)

ymeas(k) = p0(0)− Cd(xn(k))xl (k) + w(k),

where k = b t
Ts
c (b·c is the floor operator). The subscript d indicates zero-order hold

discretisation of continuous-time model (5.5).
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The expression f (xn) indicates a function of xn and describes the time update of
the nonlinear states. It is given by:

xn(k + 1) =




K(k + 1)
T(k + 1)
α(k + 1)


 = xn(k) + χ(k), (5.8)

where χ(k) is sampled from an array of probability distributions which are in-
tended to reflect the likely trajectory of the parameters. Uniform distributions (U)
are used to capture the constraints on the rate of change of parameters expressed
in (5.3) while making no assumptions on possible shapes of variation (tracking by
random walk), as shown below.

χ(k) ∼




U(−0.017K(k), 0.017K(k))
U(−0.028, 0.028)

U(−0.00028, 0.00028)


 (5.9)

The particle filter algorithm follows the exact sampling, updating, weighting
and resampling steps already described in Section 4.3.3 (also illustrated in Figure
4.2). Due to the fast sampling time with respect to the plant time constants, par-
ticle weights are accumulated over 120s between subsequent resampling events (cf.
Chapter 4) to avoid impoverishment of the distribution which could arise from overly
frequent resampling.

Controller selection

Controller selection is carried out by integrating the approximate probability distri-
bution which results from particle filtering. The number of particles nj associated
with each of the best performance subsets listed in Table 5.1 is proportional to the
probability of controller j being the correct one for insertion in the loop. Using the
same weighted approach to controller selection as in Chapter 4, the drug infusion
rate u can be computed as a weighted sum of the control signals uj generated by
each controller.

u =
5

∑
j=1

πjuj, πj =
nj

N
, (5.10)

where πj is the probability of the true parameters belonging to subset j and N is the
total number of particles.

This is of course only one of the possible methods for controller selection. Alter-
native criteria could also be proposed, based on other properties of the probability
distribution (e.g., mean, median, a specific percentile, presence of multimodality,
etc.). This added flexibility is an advantageous aspect of the proposed architecture:
some further tuning of the closed-loop system is possible without redesigning the
controllers.
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5.2.4 Numerical simulations

A broad computational simulation campaign was conducted in order to evaluate
the ability of the proposed adaptive control approach to control MAP through SNP
administration in a wide variety of conditions. To reflect the unpredictable nature
of blood pressure disturbances and patient parameter variations, a large number of
cases were randomly generated and simulated. All simulations involved a control
horizon of 10,000 seconds (approximately 2 hours and 45 minutes), with a target
MAP of 100mmHg for the time period 0s-4,000s and 80mmHg for 4,000-10,000s.

Two categories, or simulation streams, of hypertensive patients were simulated:

(a) relatively “settled” patients, i.e. displaying elevated MAP (p0 = 120mmHg at
t = 0) with pdist(t) modelled as a random, zero-mean, low-intensity additive
disturbance (in the range ±6mmHg);

(b) more “unsettled” patients, i.e. displaying the same initial MAP as (a) but greater
intensity of random fluctuations (in the range ±15mmHg), as well as two step
increases in pdist(t) (+20mmHg) at 2,000s and 5,500s, modelling a worsening hy-
pertensive condition.

Scenarios of controlled MAP reduction of 20-80mmHg were deemed quite general
whilst clinically plausible.

The pdist(t) signal used in the simulations was generated by filtering the super-
position of a gaussian white noise process and step signals (the latter only for stream
b) with a suitable low-pass filter to meet the frequency domain bound assumption
of (5.4). The seeds for the generation of all random processes were also randomised
and changed for every simulation: no two simulations in the campaign, therefore,
would exhibit the same p0(t), w(t) and v(t) traces.

For each simulation stream, the following simulation batches were computed:

(i) 40 simulations in which mid-range parameter values were chosen, i.e.,
K=4mmHg/(ml/hr), α=0.5 and T=30s, and held fixed throughout the control
horizon;

(ii) 80 simulations in which the three model parameters K, α, and T were randomly
selected from the allowed ranges as per (5.3) and held constant throughout the
control horizon;

(iii) 80 simulations in which the initial values of the parameters were randomly
selected as in (ii) with piece-wise linear variations throughout the control horizon.
A random number of slope changes between 2 and 5 was selected for each run.
The slope of the ramp was also selected at random each time ensuring it would
not exceed the constraints of (5.3);

(iv) 80 simulations in which the initial values of the parameters were randomly
selected as in (ii) with piece-wise exponential variations throughout the control
horizon. Between 2 and 5 changes were again randomly selected for each run.
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Figure 5.4: Examples of ramp, exponential and sinusoidal shapes for simulated parameter
variations. The corresponding simulation runs are specified.

The exponent was also randomly selected in such a way that the slope of the
resulting curve would not exceed the constraints of (5.3);

(v) 80 simulations in which the initial values of the parameters were randomly se-
lected as in (ii) with piece-wise quarter-sinusoidal variations throughout the control
horizon. Between 2 and 5 changes were again randomly selected for each run.
The target value for each change was randomly selected in such a way that the
slope of the resulting curve would not exceed the constraints of (5.3);

The main purpose of batch i was to help verify the ability of the approach to deliver
repeatable results. Batches ii to v were intended to test the ability of the control ap-
proach to respond to a wide range of parameter variations (for examples of variation
trends see Figure 5.4). The total number of simulations was 720, corresponding to
2,000 in-silico patient hours.

Due to the large amount of available data, aggregate measures for the control
and identification performance were adopted. For each simulation run, the following
measures were computed:
Measures concerning control performance

• tc1
, tc2

– the convergence time (10% to 90% of transition) as the two MAP set-
point changes are imposed;

• t±5, t±10, t±15 – the time (out of 10,000s) ymeas remained within ±5mmHg,
±10mmHg and ±15mmHg of the setpoint r(t), respectively;

• εmax, εmin, εavg – the peak positive and negative, and average setpoint tracking
error recorded over the control horizon;
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• tpp, tnpp – the time the RAC-PF controller and the true patient system form
a provably performant (pp) or non-provably performant (npp) pair as evaluated
through µ analysis (Skogestad and Postlethwaite [2006]), i.e., a pp closed-loop
pair would achieve a performance index Ap ≥ 1 in Figure 5.3 (Note: Due to the
inherent conservativeness of µ analysis, a npp pair does not necessarily indicate
an unstable or underperforming closed-loop condition, but only that there is
no mathematical proof of robust performance. At npp times, loop performance
should be evaluated from other indices.);

• tsat – the time the infusion rate signal remained at the maximum allowed value
(controller saturation).

Measures concerning estimation of the response characteristic:

• t0 – time (out of 10,000s) for which the K subinterval deemed the most likely
by the particle filter, i.e. with the greatest πi (intervals as per best performance in
Table 1) contains the true simulated value of K;

• t1 – time for which the K subinterval deemed the most likely by the particle
filter is a neighbouring interval to that containing the true value of K;

• t2 – time for which the K subinterval deemed the most likely by the particle
filter is 2 intervals away from that containing the true value of K;

• Krel , Trel , αrel – the mean relative estimation error for parameters K, T and α,
respectively (the mean of the particles is used to determine the estimate).

The simulation environment was programmed using Matlab and Simulink and
run on a standard desktop computer (Intel Core 2 Quad CPU, 3.0GHz).

5.3 Results

Figure 5.5 shows the results of simulation b-v-54: a case featuring large variations in
the SNP response parameters over time and significant fluctuations in baseline MAP.
From the graphs, it can be readily appreciated that the proposed control approach
tracks the simulated time-varying response characteristics and meets the required
performance specifications.

For completeness, and to provide context in the interpretation of the aggregate
results for groups of simulations, Table 5.2 lists the overall results for simulation
b-v-54.

The aggregate results for all of the simulations are shown in Table 5.3. For each
measure, the mean value and standard deviation over the corresponding batch are
displayed.

The results for batches a-i and b-i confirm the repeatability of results using
the proposed method. The standard deviation values are much lower than for other
batches, indicating that the system was able to deliver consistent outcomes, as re-
quired, when applied multiple times to the same case. The fact that the standard
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(a)

(b)

(c)

(d)

4                5               4   3  1   2    3 

Figure 5.5: Results of simulation v-b-54. (a): p0(t) (blue) and controlled MAP output ymeas(t)
(red), the dotted lines indicate the ±10mmHg allowed error range. (b): Real value of K(t)
(red) and mean particle estimate (solid white) superimposed on particle density map; the
dashed white lines indicate the 15th and 85th percentile of the particle distribution. (c):
Subinterval probability results, the superimposed numbers indicate the controller with the
greatest probability. (d): Infusion rate signal u(t).
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t0 t1 t2 tpp tnpp Krel αrel Trel
(s) (s) (s) (s) (s) (%) (%) (%)

5924 3442 634 9716 284 81 -25 -22

tc1
tc2

tsat t±5 t±10 t±15 εmax εmin εavg
(s) (s) (s) (s) (s) (s) (mmHg) (mmHg) (mmHg)
186 332 0 6558 9368 9980 16.7 -14.07 1.08

Table 5.2: Aggregate results for simulation b-v-54.

deviation values are not zero can be explained in terms of the stochastic features
present in both the patient model and the particle filter. As no two simulations are
identical, some variability in the results exists even with parameters K, α and T being
exactly the same.

When considering the other batches (a/b-ii to v), the results show that con-
trol of MAP was successfully achieved in all cases, with no instability or danger-
ous pressure drops observed in any of the computed simulations. The controlled
MAP trace was maintained within ±10mmHg of the desired setpoint for over 94%
of the time in any given batch of simulations (considering Mt±10

− 2σ, i.e., 9404.74s
for the worst-performing batch b-v). Similarly, the occurrence of temporary devia-
tions > ±15mmHg from the setpoint was prevented for over 98% of the time and
peak tracking errors (εmax, εmin) had a magnitude of less than 20mmHg at all times.
Tracking of the setpoint was achieved with negligible bias as shown by the very low
value of εavg for all batches. It should be clarified that the above statistics refer to
the whole simulation (including the initial condition and the two setpoint changes),
thus suggesting that control performance remained entirely adequate throughout the
simulation campaign. Furthermore, performance was consistent across simulation
batches, indicating that the system can deal with time-varying parameters regardless
of the shape of the variations, as long as the assumptions of (5.3) are met. Transition
times tc1,2

also met the specifications and were contained below 10 minutes in almost
all cases, with the longest observed transition taking approximately 13 minutes to
settle. As could be expected, due to the simpler nature of the control task (lower
disturbance), the performance results for stream a were better than those for stream
b, although only marginally.

The results associated with the identification of patient parameters by the particle
filter show that the system is tracked as it evolves through time (with t0 and t1
combined representing about 90% of the total simulation time on average). However,
the system slightly but consistently overestimates K, and delivers estimation errors
Krel of about 50-70% on average. The large standard deviation values for αrel and
Trel , on the other hand, suggest that the latter two parameters are not dependably
identified (there is poor convergence of the particle scatter with respect to α and T).
Although the estimation errors may seem significant, the precision in identification is
adequate in the context of the required performance, since each controller can cater
for variations of two to four fold in the value of K, and for all possible values of α
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and T (Table 1). The tpp result confirms this, by showing that the system pairs the
patient with a suitable controller at most times, with closer inspection of simulation
data showing that tnpp is accrued mostly in the initial stages when the particle filter
has not yet converged. Notably—and perhaps counterintuitively at a first glance—
identification of the patient response is more accurate for the more challenging cases
of stream b than for stream a as indicated by higher values of t0.

Each simulation took approximately 8 minutes to execute (corresponding to a si-
mulation time-to-real time ratio of 1:20) using 1000 particles. This number of particles
was found to deliver a reasonable compromise between accuracy in the results and
computation time. A number of test simulations conducted ahead of the campaign
did not show noticeable improvements in the estimation results when run using 5000
particles.

5.4 Discussion

We have tailored RAC-PF, a novel approach for the control of uncertain, time-varying
systems, to the case study of automatic closed-loop SNP administration for the man-
agement of acute hypertension. Having adopted an underlying response model
which is, to our knowledge, the most general ever adopted in the literature (with
regard to the ranges of variablity of parameters, the allowed rates of change and
shapes of variations, and the presence of both random and non-zero-mean changes
in p0(t)), the system delivered the required performance with no evidence of un-
safe behaviour throughout the extensive simulation campaign presented herein. We
therefore propose that RAC-PF may represent a viable solution to assist with auto-
mated control of hypertension not only in the traditionally considered post-operative
setting, but also in the more challenging intraoperative context, where rapid changes
in a patient’s response characteristic may occur (Meijers et al. [1997]). The results
provide a strong motivation for the approach to be tested further in in-vivo models
(e.g., animal testing).

Only a limited number of authors have considered automatic control of MAP
during surgery (although not specifically with SNP). The challenge of on-line adap-
tation to variations in the patient response has generally been addressed through
ad-hoc rules (Furutani et al. [2004]) which mimic physicians’ clinical decision pro-
cess (Hoeksel et al. [1999]). The RAC-PF method is fundamentally different. By
adopting a dose-response model which incorporates uncertainty, µ-synthesis allows
the designer to conclusively determine a priori the minimum number of controllers
required to achieve the desired level of robust performance, while particle filtering
tracks the patient’s response as it evolves through time to inform correct controller
selection. In addressing the argument that methods for automatic drug administra-
tion may have been dismissed on grounds of perceived safety in the past, we deem
the transparent nature of RAC-PF, where an explicit relationship is retained between
the estimated posterior probability distribution of the patient response and the cho-
sen control action, to be well suited to clinical applications. A further advantage of
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RAC-PF over ad-hoc approaches is that the framework is not specific to SNP and
the same methodology could be used to design controllers and estimators, given a
reference dose-response model, for a different drug delivery problem.

The results also supports the viability of particle filtering in a real-time pharmaco-
logical application. The fact that simulations ran much faster than real-time without
requiring particular hardware or software optimisation is a notable positive finding.
Particle filter methods have been proposed to assist with the estimation of physio-
logical systems and draw inference from patient data in order to support clinical
decision-making processes (see, e.g., Zenker et al. [2007]). To our knowledge, how-
ever, such methods have been generally devised for off-line computations. Our work
highlights the potential of particle filter as a viable tool for real-time closed-loop
system identification. As pharmacokinetic/pharmacodynamic models commonly
combine linear and nonlinear dynamics (Bonate [2011]), we anticipate that margi-
nalisation would be applicable to a broad class of problems in this area. Further
work should consider other case studies, including nonlinear and multiple-input-
multiple-output systems, in order to identify any limitations to the practical use of
particle filtering in estimating more complex systems.

On the point of identifiability of the system, a number of relevant comments can
be made. Perhaps counterintuitively, the results show good control performance,
but the identification statistics point to somewhat imprecise parameter estimates.
As well as being a result of the underdetermined nature of the estimation prob-
lem (multiple uncertain parameters and a single output), this outcome stems from a
well-known trade-off between control and identification in feedback systems (Fors-
sell et al. [1997]). The very purpose of a feedback controller is to suppress some of
the dynamics from the controlled system, thus the stronger the control action (per-
formance), the lesser input-output information is available to estimate the response
characteristic. An extreme situation would be that of a controller capable of forcing
a perfect, flat-line MAP output at all times: in such a situation no knowledge of the
patient characteristic could be gathered (arguably, adaptive control would not be re-
quired, either). The necessary imposition of performance constraints in our design,
therefore, affects the precision of system identification. The fact that the controllers
were designed to cater for all values of α and T and, as a result, the identification of
these parameters was inaccurate, is a clear example of this trade-off. Furthermore,
accuracy in identification depends on the level of excitation of the system, i.e. the
amount of energy delivered by exogenous inputs (in this case, r(t) and p0(t)), which
elicits observable dynamics at the output. Since r(t) is mostly a constant signal, exci-
tation is provided mainly by the changes in p0(t). This explains why identification is
more accurate (greater t0) for the more disturbed simulations of stream b. It should
be remarked that the trade-off between identifiability and excitation is an inescapable
one and affects both traditional clinician-based methods and computer-based solu-
tions equally. A notable question arising in light of these considerations is whether
the commonly stated clinical goal of maintaining a patient “settled” is a desirable
one, or whether this is actually counterproductive when changes in a patient’s re-
sponse must be timely identified and acted upon. Our analysis suggests that impos-
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ing a clinically acceptable, time-varying MAP target would result in greater system
excitation and thus improve ongoing system identification.



Chapter 6

Conclusions

In this thesis, we have proposed a new feedback control architecture to address iden-
tified robustness and verifiability shortcomings in existing systems for the automatic
feedback administration of medicinal drugs. The new adaptive control approach,
named Robust Adaptive Control with Particle Filtering (RAC-PF), combines modern
methods in robust control and stochastic filtering. We have demonstrated, through
our simulation work, the potential ability of RAC-PF to deliver safe control in the
case study of control of acute hypertension with the vasodepressor drug sodium
nitroprusside.

The RAC-PF methodology inherits from the Robust Multiple-Model Adaptive
Control (RMMAC) approach of Fekri [2005] a systematic, performance-based ap-
proach to the design of multiple robust controllers involving µ synthesis, which can
be applied to a broad class of uncertain systems and provides a mathematical guar-
antee of local robust performance. We have combined the designed bank of con-
trollers with a novel supervisory algorithm for controller selection based on particle
filtering. The use of particle filters as a tool for real-time joint state and parameter
estimation of the individual patient response model expands the applicability of this
adaptive control architecture to a broad class of systems, including time-varying and
non-linear systems, and systems featuring non-Gaussian stochastic processes (where
the Kalman filter-based identification approach of RMMAC may be limiting, as dis-
cussed in Chapter 2). The Bayesian inference result from the particle filter is used to
guide controller selection, while it also provides information on the dependability of
the estimate. The transparency of the inference process allows for on-line verification
of the operation of the automatic algorithm (e.g., by a clinical expert).

Throughout the dissertation, we have investigated the potential and limitations
of RMMAC in relation to drug delivery (Chapter 2) and the viability of particle filter
methods in estimating pharmacological response (Chapter 3), formulated the RAC-
PF approach, and successfully tested it in Monte-Carlo simulation studies (Chapters
4 and 5). In this chapter, section 6.1 summarises the contributions of the work, while
section 6.2 discusses a number of outstanding challenges and outlines recommended
directions for future research.
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6.1 Summary of contributions

Sodium nitroprusside administration requires multiple controllers. The approach
adopted for the design of the multi-controller bank (common to RMMAC and RAC-
PF) enables the designer to explore systematically the trade-off between the number
of controllers and the maximum achievable level of robust performance. In rela-
tion to the closed-loop administration of sodium nitroprusside, we have conclusively
demonstrated that the desired performance would not be achieved with a single
(global) robust controller. This establishes the requirement for adaptive control in
this application with unprecedented clarity.

Robust controllers can deliver improved safety. The results shown in Chapter 2
demonstrate a potential risk of undesirable closed-loop behaviour during the ad-
ministration of sodium nitroprusside for two earlier non-robust methods. While the
identified critical combination of high patient sensitivity, long transport delays and
baseline arterial pressure increase may be unlikely to occur in practice, the results
highlight a situation of unacceptable clinical risk. We show that robust controllers
can prevent, by design, such risk of instability.

Particle filters are tractable when applied to a standard PK-PD response model.
In Chapter 3 we have shown that it is possible to design a particle filter to conduct
real-time Bayesian inference for the estimation of patient-specific response parame-
ters. Such an algorithm is very general as it can cater for nonlinear and non-Gaussian
effects. Despite concerns about the computational demands of particle filters, imple-
mentation on a three-compartment PK-PD model was found to be tractable without
requiring particular software optimisation or special hardware.

Improved individualised anaesthesia is possible with current technology. Our
results from Chapter 3 highlight that target-controlled infusion (TCI) methods for
anaesthesia based on average population response models may considerably under-
or over-predict patient response following intravenous propofol infusion. We show
that it would be possible to improve the predictive performance of current models
by incorporating already available real-time measurements such as Bispectral Index
measurements, and that this can be achieved through a particle filter.

Inaccurate breath propofol concentrations can provide useful information. In the
context of propofol delivery and patient-specific model estimation, we have demon-
strated that techniques for real-time breath propofol concentration measurements,
despite reported issues with accuracy, can provide useful additional information and
may be incorporated in the particle filter approach, with a suitable error model, to
yield more accurate estimates.
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Development of a new closed-loop architecture. We have introduced a novel feed-
back control methodology which combines a bank of robustly designed controllers
with a controller selection method based on the result of a particle filtering algo-
rithm. We have named this new architecture Robust Adaptive Control with Particle
Filtering (RAC-PF).

RAC-PF can be used for the control of linear parameter-varying systems. RAC-
PF can be successfully employed in the control of linear parameter-varying systems.
The results of the comparison with RAC-EKF conducted in Chapter 4 demonstrate
very similar closed-loop performance between the two systems. While RAC-PF does
have a greater computational cost than a Kalman filter-based approach, we have
shown that where real-time operation can be achieved (i.e., sufficient computational
resources are available and/or the system dynamics are not too fast), there is no
disadvantage in tackling control design using the more general RAC-PF tool. We
have also highlighted that in the case of linear parameter-varying or mixed linear-
nonlinear problems, the RAC-PF algorithm can be made less burdensome through
marginalisation of the particle filter.

RAC-PF can deliver safe control of sodium nitroprusside infusion. An extensive
Monte-Carlo simulation of hypertension control based on the broadest dose-response
model ever adopted in the literature is reported on in Chapter 5. The results allow
us to conclude that, on the basis of the models available, RAC-PF can be deemed a
safe solution for closed-loop drug delivery in relation to this application.

6.2 Final considerations and recommendations for future work

Translation to other drug delivery applications

The RAC-PF approach as presented here is a viable method for the control of sodium
nitroprusside infusion. It is also a general feedback control architecture. Indeed, as
shown in Chapter 4, where we used RAC-PF to successfully reduce vibrations in
a mechanical system, the same design methodology may be adapted to suit other
control problems.

In the field of closed-loop drug delivery, the application of RAC-PF in the estab-
lished research areas of anaesthesia control (expanding on the identification work
presented in Chapter 3) and diabetes management could be readily contemplated.
The investigation of cardiovascular control would also be of particular interest both
as a multi-variable case study and also one in which the particle filters could be
used to cater for the inherent inaccuracy in blood flow measurements (the multi-
drug cardiovascular response model of Woodruff et al. [1997] could be considered
as a starting point). Adaptive control with robust methods in highly nonlinear ap-
plications is a further potential area where RAC-PF could be expected to provide an
innovative edge. One such area is cancer chemotherapy, where threshold effects and
stochastic effects, such as mutations, exist yet much simplified models are used for
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feedback control design (see Parker and Doyle [2001] for a discussion of challenges
in cancer modelling and Algoul et al. [2011] for a recent control proposal).

Investigation of alternative controller selection methods

In Chapter 5 we introduced a controller selection strategy which involves a probabi-
lity-weighted sum of the control actions of the controllers in the bank (as per Equa-
tion (5.10)) and indicated that this is just one possible approach to controller selection.
As the particle filter inference result is conceptually affine to performing a real-time
quantitative assessment of a patient’s response, we have discussed that the posterior
probability distribution may serve both as the basis for controller selection and as
an informative tool for clinicians. As such, there may be other clinical applications
for which alternative controller selection methods, based on features of the distribu-
tion other than the mean, may be more clinically appropriate. Some examples where
alternative methods may be informative include:

• where a mandatory level of confidence in the estimate is dictated by clinical
risk considerations, a conservative selection may be informed by the location of
a specific distribution percentile;

• where multimodal probability distributions can be expected (e.g., Zenker et al.
[2007], in applying particle filtering to cardiovascular estimation, discuss that
multimodal distributions may arise naturally in physiological systems), algo-
rithms may be required to detect, and discern amongst, multiple probability
peaks.

Alternative controller selection strategies, as well as their impact on performance
and robustness of the system, represent a topic of definite interest for further re-
search.

In-vivo testing

Methods which have been validated through extensive in-silico testing should pro-
gress to being investigated in-vivo. In light of the results of Chapter 5, RAC-PF may
be considered for in-vivo evaluation as a closed-loop mean arterial pressure con-
troller. In considering in-vivo translation of adaptive control approaches, additional
challenges must be contended with; most critically, the issue of integrity of the ob-
served signals. This is particularly true if the technology is expected to be deployed
in an environment where unpredictable disturbances are likely to arise, e.g., in the
operating room. This a well known issue. As an example, an early work on sodium
nitroprusside administration by Martin et al. [1992] describes the need for an ad-hoc
supervisory algorithm to reject artifacts in arterial pressure observations caused by
events such as arterial catheter flushing and accidental sensor disconnections. Ar-
tifact rejection was deemed necessary in order to prevent erroneous signals from
disrupting closed-loop control.
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In RAC-PF, the accuracy of the Bayesian inference results—and, consequently,
that of control—is directly affected by the quality of the disturbance model associa-
ted with the observations. Where measurement inaccuracies can be expected, these
should be reflected in the model, as we sought to do by developing an alternative
probability distribution for breath propofol observations in Chapter 3. Analysis of
whether unexpected disturbances can be incorporated in a stochastic model of mea-
surement error or require the development of a further supervisory layer needs to
be conducted on a problem-by-problem basis. Tools developed in the area of sensor
fault detection (see, e.g., Bequette [2010] for work developed in the context of glucose
sensing in diabetes monitoring) may be considered in order to tackle this challenge.
For problems which relate to intensive care patient observations, in-vivo data from
the MIMIC II clinical database (Saeed et al. [2011]) represent a valuable resource
for analysis. In Chapter 2, we introduced the assumption of normally-distributed
measured errors for mean arterial pressure, which was based on the analysis of se-
lected MIMIC II traces free of operational artifacts. This assumption will need to be
reviewed ahead of in-vivo implementation.

Investigating sufficiency of excitation

As highlighted in the discussion sections of Chapters 3 and 5, the performance of
the particle filter depends on the level of excitation provided to the system. This
is not unique to particle filters but applies to system identification in general. A
key consequence is that, in the absence of sufficient excitation, adaptive control may
fail to track changes in the controlled system and thus fail to adequately adapt,
resulting in undesirable closed loop performance or even transient instability. This
is a general problem with model-based adaptive control and extends beyond the
drug delivery applications considered in this thesis. In Chapter 4 we have cited
the asymptotic convergence result for RMMAC under assumptions of persistency
of excitation. As the particle filter inference also converges to the true posterior
probability distribution for a sufficiently large number of particles (as mentioned in
Chapter 3), a similar argument for convergence to the correct model estimate could
be mounted for RAC-PF in relation to time-invariant systems.

In reflecting on drug administration problems, even if it is assumed that exoge-
nous excitation is present, it is evident that the notion of asymptotic convergence is
inadequate for this class of applications. In order for feedback control to be clinically
useful, a correct model estimate must be achieved within a meaningful (bounded)
time horizon. Furthermore, if underlying time-variations in model parameters are
to be expected, robust operation requires that the model estimator converge to the
correct parametric subset in a lower amount of time than it would take for the model
to drift to an underperforming/unstable controller-plant pair. Timely convergence
of the particle filter distribution depends on the nature of the reference input and
disturbance signals, and the number and range of parameter subintervals to be dis-
criminated between.

It is of course possible, as we have done for the sodium nitroprusside adminis-
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tration case study in this thesis, to conduct a post-hoc verification of the robustness of
a RAC-PF design through a Monte-Carlo simulation campaign which must include
low-excitation scenarios (cf. “settled patients” in Chapter 5). If the results show evi-
dence of undesirable transient behaviour, the problem may need to be reformulated
by changing the performance target, redesigning the controllers and running a new
simulation campaign. Depending on the complexity of the system to be controlled,
this iterative design process may be lengthy.

In light of the above, a very relevant item for further work is a study of the in-
verse problem, i.e. computing an additional excitation signal to be provided at the
reference input(s) which would ensure an adequate likelihood of discrimination be-
tween candidate parametric subintervals over a bounded time horizon. In our view,
guaranteed sufficiency of excitation represents, at this time, the single most needed
enhancement of RAC-PF as it would allow the designer to establish a-priori robust-
ness not only on the controllers side but also in the convergence of the identification
algorithm.

Investigating applications in other categories of systems

RAC-PF extends the reach of the RMMAC approach to a broader class of systems.
The robust controller design approach makes it possible to design multiple linear
controllers for closed-loop control of nonlinear, non-gaussian systems (plant nonlin-
earities can be dealt with through piece-wise linearisation and/or treated as unmod-
elled dynamics; non-gaussian signals do not pose a challenge to H∞ methods, as
long they are bounded in the frequency-domain), while particle filtering can deliver
more general model-based estimation than Kalman filter methods.

Unfortunately, due to the numerical nature of particle filters, it is not possible
to provide a theoretical proof of robustness for the RAC-PF approach. This means
that RAC-PF might contribute to, but does not end, the ongoing search for the Holy
Grail of adaptive control. Still, we are convinced that the promising results observed
in our research call for further investigation of the method from an applications
perspective, beyond the biomedical domain which we have focussed on in this thesis.
Selected areas for which we have conducted some preliminary research and deem of
particular interest are listed below:

• Control of linear parameter-varying plants for which estimation conducted
through Extended Kalman Filtering may fail to converge, i.e., linear cases in
which RAC-EKF would deliver a much inferior performance to RAC-PF (see
Krener [2003] for a mathematical discussion of EKF convergence issues);

• Control of plants characterised by an open-loop-unstable characteristic, for
which it is possible to consider a particle-filter formulation based on the Youla-
Kucera parametrisation (Anderson [1998]).



Appendix A

Matlab/Simulink implementation
of RAC-PF

This Appendix details the implementation of RAC-PF for the problem of controlled
administration of sodium nitroprusside as described in Chapter 5. It is intended
as a guide to the interested reader, to assist them in interpreting or reproducing
the approach, and/or adapting it to a different type of control problem. All of the
following details refer to the Simulink file \AppendixA\AutoSNP_thesis.mdl, which
is provided as part of the digital resources attached to this thesis (see Appendix B).
In the same folder (\AppendixA) are all the necessary function files and scripts to run
a complete sample simulation and view the results.

This Appendix assumes a working knowledge of the Matlab and Simulink en-
vironments. Readers who are unfamiliar with these platforms may wish to refer to
some introductory material such as Beucher and Weeks [2008].

The top-level Simulink implementation is shown in Figure A.1. In the schematic,
we identify the three key areas of simulation settings, closed-loop system and results
output. Each is detailed in a dedicated section below. The final Section A.4 describes
how to run the provided sample simulation.

A.1 Simulation settings

This part of the model deals with setting the information required for a simulation
run. The values of the model parameters and the seeds for the white noise ran-
domiser are provided as Matlab workspace variables and must therefore be assigned
ahead of launching the simulation, either manually or by running a script made for
the purpose. Since all the simulated runs in Chapter 5 have the same characteristics
in terms of baseline mean arterial pressure p0(0) = 120mmHg and target controlled
pressure (reference), these two signals are generated as part of the model. The inten-
sity of the random disturbance process p0(t) and the magnitude of step increases in
the offset pressure are determined as workspace variables (cf. ’settled’ vs. ’unsettled’
simulation streams in Section 5.2.4). Note that the target pressure drop is provided
as a fraction with a denominator of 40. This is due to the presence of the low-pass
shaping filter Wspd, which has been assumed to have a DC gain of 32dB as discussed
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closed-loop system(red) and results output (green).
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in Chapter 2.
The attached version of the implementation also includes a switch selector which

can be actioned by the user to select between two models for sodium nitroprusside
response. In this thesis we have considered the model used by Martin et al. [1987],
but there is the option of testing the designed feedback solution also for the slightly
different response model of Slate et al. [1979].1

Several other constant data used in the implementation are also drawn from the
workspace. These are not shown explicitly in the diagram of Figure A.1 and must be
initialised before any simulations can be run:

• The state-space objects representing the µ-synthesised controllers;

• The sampling time Ts;

• The Wspd filter;

• The look-up table which contains the matrix entries for the discrete-time formu-
lation (cf. matrices Ad and Bd in equation (5.7)) of the response model and the
Kalman innovation gain values for Kalman filtering (used for the marginalised
KF).2

A script has been designed for this purpose (initialise.m).

A.2 Closed-loop system

This section represents the true “heart” of the approach. It takes care of simulating
the response of the dynamical system, running the particle filter and conducting
controller selection.

The following sub-sections detail the operation of the key functional blocks.

Patient model

Inside this block is a selector between two Simulink models of patient response be-
haviour. Figure A.2 shows the selection structure and the detail of the implementa-
tion of the model by Martin et al. [1987]. The latter effectively replicates the block
diagram of Figure 2.1.

1Note that even though both models have the same uncertain parameters K, α and T, like values
do not translate into a like response, so care must be taken if designing a comparative simulation
campaign.

2The use of a look-up table is not strictly required as it is possible to calculate the system matrices
and Kalman gains on the run. Using a look-up table does, however, render the algorithm much quicker.
For information about the look up tables refer to the comments in the file createLUT.m provided in the
digital materials.
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Figure A.2: Top: patient model selector. Bottom: block diagram of sodium nitroprusside
response model according to Martin et al. [1987].

Particle filter

This block implements the particle filter estimator which takes the input u and output
ymeas observations as input data, and proves particle estimates (mean of the distri-
bution) and particle data at the output. The structure of the block is given in figure
A.3.

The particle filter itself is mainly implemented through the Particle Filter Function
block, which calls on the Matlab function fcnPF.m. This function, which is executed
by the simulator at every time step, implements the marginalised particle filter al-
gorithm as described in Section 4.3.3. The following operations are performed by
the code fcnPF.m. We refer the reader to the code file and the comments therein for
detailed line-by-line descriptions.

• acquiring particle data from the previous time instant;

• computing the update of the linear system states including a state correction
through a Kalman filter gain;
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• weighting the output of the system against the current observations;

• resampling at selected time instants and introducing stochastic variations to the
parameters according to uniform probability distributions.

The initialise or pass through block calls upon the external function fcnPF2.m. It
has the sole role of initialising the particle data at the beginning of the simulation
(i.e. introducing the initial parameter distributions across the particle population, cf.
equation (5.3)). At all other times it does not affect the signals.

We also remark the presence of the delay subsystem, which has the role of retaining
a working memory (in the form of an array) of inputs over the previous 30 time
samples (corresponding to 60 seconds as Ts =2s). The delayed inputs array is used
in the particle filter, where it is indexed differently by different particles depending
on their associated value for the uncertain input time delay.

Finally, we point out the presence in the block diagram of inputs for data from
the real system. These inputs can be used, by making suitable changes to the particle
filter code, to assign the particles the true values of the system parameters. This
unrealistic mode of operation has been developed for code testing purposes only.
During normal operation of the approach, these additional data inputs are effectively
disconnected from the particle filter.
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Figure A.3: Inner workings of the particle filter implementation block
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Figure A.4: Controller selection structure.

RAC-PF

This block, depicted in detail in Figure A.4, is responsible for controller selection.
Particle data is fed to the controller mixing function block, which calls upon the ex-

ternal function fcnPF3.m. This function computes the number of particles present in
each subinterval for sensitivity parameter K, as per Table 5.1 and generates weights
for controller mixing. A user-controlled options to experiment with pre-filtering (Fil-
ter block) of the controller weights prior to enacting controller selection is present,
although it has not been not used at this time. The selector input allows the user to
select a different controller selection mode based on all-or-none controller switching
(i.e., the controller corresponding to the K subinterval with the greatest probability
is assigned a weight of 1 and all others are assigned a weight of 0). This alterna-
tive controller mode based on switching is available for experimentation but was not
the one used in this thesis. The weight signal is used to determine the controlled
drug infusion rate through controller weighting as described in equation (5.10). The
straight-forward weighted sum operation is conducted in the mu-synthesised control-
lers block. Also note that a saturation block is present: this implements the ceiling of
administrable dose for toxicity reasons as discussed in Chapter 5.

A.3 Results output

The output section is a very simple block which takes care of writing all of the
relevant simulation data to workspace variables. The inner workings of the block are
shown in Figure A.5.
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Figure A.5: Simulation output block. Signals of interest are saved in workspace variables.
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The results data comprise of the simulated and estimated (mean of the particle
filter) parameter values, the input u and output y signals, the model weights, as well
as the values for the key uncertain parameter K for all particles (these are extracted as
a subset of the particle information; the default number of particles for this operation
is N =1000). The methods are set up for Simulink to deliver a mere ’dump’ of
simulation data. Any further processing of the results must be conducted in the
workspace after the simulation is complete by running user-developed scripts. We
have provided our code (see file plotresults.m) to generate plots such as those
presented in Section 5.3.

A.4 Running a simulation

Running a simulation requires the following essential steps:

1. Initialise the simulation environment by running the function (initialise.m).

2. Set the desired characteristics for the simulation run. For the purpose, we
have provided a file called (createsim.m), which sets high-intensity random
fluctuations and two step changes in p0, constant values for the parameters α

and T, and some sinusoidal variations for K.

3. In the Simulink window, ensure that the user controls and constants represent-
ing the number of particles, number of non-resampling steps, controller blend-
ing mode, weight filtering and type of response model are set to the desired
values.

4. Call on the Simulink environment to execute the simulation, either from the
Matlab command line (using the command sim) or from the Simulink GUI
(’play’ button).

5. Once the simulation is complete, the results may be reviewed by running
(extractresults.m) and/or plotting with plotresults.m.

When batches of simulations are required, as we did in Chapters 4 and 5, the op-
erations listed above can be invoked automatically through a suitable looping script.
Any data of interest must be computed and saved to file at the end of each run since
running a simulation overwrites the workspace variables each time.



Appendix B

Attached digital materials

In the interest of reproducibility of the results presented in this thesis, a CD contain-
ing digital resources has been supplied as an attachment to this work. This Appendix
is intended to assist the interested reader in the navigation of the additional content
provided.

The content of the attached CD is shown in Figure B.1

Figure B.1: Folder structure of the digital materials provided with the thesis

The materials are organised as follows:

• The folder ThesisPDF contains a digital copy of the thesis document;

• The folders \Chapter2 to \Chapter5 contain copies of the submitted/pub-
lished research articles relating to each chapter.

• The folder \AppendixA contains sample code and Simulink models to conduct
a sample simulation with RAC-PF as described in Appendix A.

For programming-specific information, refer to the comments embedded in the
Matlab programming code. Additional materials and copies of the raw results dis-
cussed in the dissertation may be obtained by contacting the author.

A copyright note. The digital materials library attached to this thesis is released,
and may be redistributed, for academic research purposes only, provided that the original
source of the information is duly acknowledged. The materials are protected by
copyright and all other uses—including but not limited to personal non-academic
use, use in publications and uses of a commercial nature—are strictly prohibited
without the prior written consent of the author.
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