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Abstract

In many applications, especially in the process industry, low-level controllers are
the workhorses of the automated production lines. The aim of this study has been
to provide simple tuning procedures, either optimization-based methods or tuning
rules, for design of low-order controllers.

The first part of this thesis deals with PID tuning. Design methods for both
SISO and MIMO PID controllers based on convex optimization are presented. The
methods consist of solving a nonconvex optimization problem by deriving convex
approximations of the original problem and solving these iteratively until conver-
gence. The algorithms are fast because of the convex approximations. The con-
trollers obtained minimize low-frequency sensitivity subject to constraints that en-
sure robustness to process variations and limitations of control signal effort.

The second part of this thesis deals with tuning of feedforward controllers. Tun-
ing rules that minimize the integrated-squared-error arising from measurable step
disturbances are derived for a controller that can be interpreted as a filtered and
possibly time-delayed PD controller. Using a controller structure that decouples the
effects of the feedforward and feedback controllers, the controller is optimal both in
open and closed loop settings. To improve the high-frequency noise behavior of the
feedforward controller, it is proposed that the optimal controller is augmented with
a second-order filter. Several aspects on the tuning of this filter are discussed.

For systems with PID controllers, the response to step changes in the refer-
ence can be improved by introducing set-point weighting. This can be interpreted
as feedforward from the reference signal to the control signal. It is shown how these
weights can be found by solving a convex optimization problem. Proportional set-
point weight that minimizes the integrated-absolute-error was obtained for a batch
of over 130 different processes. From these weights, simple tuning rules were de-
rived and the performance was evaluated on all processes in the batch using five
different feedback controller tuning methods. The proposed tuning rules could im-
prove the performance by up to 45% with a modest increase in actuation.
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1
Introduction

”Look inside, the day started right.”

— Fu Manchu, Mongoose

The notion of control is so natural for human beings that we do not even notice it.
Whether it is actions such as walking, maintaining the correct body temperature or
driving a car along the road, the decisions taken by the brain are immensely com-
plicated. External and internal signals interact in complicated ways so that without
much thought, we can perform these mundane tasks. The human being in general,
and its brain in particular, has an amazing capacity to continuously make decisions
and to take action based on those decisions. The brain acts as the controller, which
is the unit that is responsible for taking the decisions. The control systems in the
human body has emerged over millions of years, an infinitesimal fraction of the
time it has been used to control machines. The controllers used in modern industrial
applications are today mostly implemented in computers and are nowhere near as
complex as the brain. However, they share some inherent basic concepts such as the
use of feedback and feedforward.

In a feedforward control system, the controller makes a decision based on some
external input to the system and acts accordingly. Possible errors that arise due
to the actions are not considered. This might be the only control option available,
for instance in systems where it is not possible or very costly to measure the pro-
cess output. In a feedback control system, decisions are instead based on an error
between the controlled variable and its reference value. This makes it possible to re-
duce the effects of disturbances acting on the process, as well as making the system
insensitive to variations in the process.

Many feedback problems can be visualized as in Figure 1.1. The controller
should be designed so that it, based on measurements of the process output y and/or
external signals, calculates a control signal u that drives the process output to the ref-
erence, or set-point, r. The controller should also attenuate load disturbances d, and
not be sensitive to noise n. In the simplest, and perhaps most common applications,
the process only has one input and one output. For that kind of system single-input
single-output (SISO) controllers can be used. SISO controllers are far easier to tune
and maintain than those with multiple-inputs and multiple-outputs (MIMO).

9



Chapter 1. Introduction

Process ΣΣControllerΣ

−1
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d n

y

Figure 1.1 The classical control structure.

In modern factories, and especially in process industry, there can be several
thousands of control loops. For these, controllers are for instance used to control
pressure and flows in pipes or levels, temperatures and concentrations in tanks.
Many loops are controlled by a proportional-integral-derivative (PID) controller.
In its most basic form this controller has three parameters that need to be tuned so
that the process output tracks the reference even when disturbances act on the sys-
tem. The parameters should also be chosen so that the controller is robust to process
variations and not sensitive to measurement noise.

Feedforward in combination with feedback can be used to improve the sys-
tem’s response to changes in set-point or measurable disturbances. In applications
where PID is used for feedback control, it is often reasonable to use feedforward
controllers of the same complexity. No standard controller exists for feedforward
control as is the case with the PID for feedback control. Commonly, a filtered PD
controller, possibly with an added time-delay is used. Such a controller has four
parameters that need to be chosen so that the control system performs well.

In this thesis, methods for tuning robust PID controllers for both SISO and
MIMO controllers are presented. Tuning rules for feedforward controllers that im-
prove the performance of the control system are also presented. All these methods
and tuning rules, either include optimization techniques or are derived from the so-
lution of optimization problems. The methods are mainly intended for use in process
industry where simple controllers, such as the PID are standard. The large number
of control loops in a typical process plant are managed by a distributed control sys-
tem (DCS) in which low-complexity controllers control a small subsection of the
plant. The methods and tuning rules can, however, be used in other applications as
well. All the methods assume that the plants are described by linear time-invariant
models. The cost of deriving high-order and accurate models for every piece of the
process is often too high compared to the profit of good control. Low-order models,
for instance obtained from bump-tests or relay experiments, are simpler to derive
and therefore cheaper. The tuning rules for feedforward controllers are motivated
by their simplicity and once a simple model is obtained, the cost of finding good
controller parameters is low.

The algorithms for design of PID controllers are more versatile and can be used
to tune controllers for high-order models. The algorithms can also be extended to
any controller that is linear in its parameters. On the other hand, they are based on
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Chapter 1. Introduction

optimization techniques that are not readily available in current control systems.
There are both advantages and disadvantages related to the use of low-order

controllers. They are limited by their simplicity in what they can achieve but on the
other hand, their simplicity allows control engineers to manually retune the con-
troller, if the need arises. Tuned properly, the performance of low-order controllers
is often sufficient compared to more complex and costly alternatives, such as for
instance model predictive controllers.

Contents and Contributions of the Thesis

This thesis consists of four chapters and five papers. This section briefly describes
the chapters, the contributions of each paper and the specific contribution made by
each author of the papers.

Chapter 2
In this chapter, a brief introduction to PID control is given. Various performance
and robustness measures are introduced. A number of optimization methods for
design of both PID and feedforward controllers are presented. The results presented
in Papers I and II are summarized.

Chapter 3
An introduction to feedforward controller design is given in this chapter. The need
for feedforward controller design using tuning rules is discussed as well as a num-
ber of controller structures. The chapter also presents a method based on convex
optimization for the design of feedforward controllers. The method is used to ob-
tain the optimal proportional set-point weight for PID controllers. The results from
a large batch of processes are used to derive simple rules for the set-point weight.
An overview of the work presented in Papers III-V is also provided.

Chapter 4
This chapter suggests possible future work that is related to both PID and feedfor-
ward controller design.

Paper I
Hast, M., K. J. Åström, B. Bernhardsson, and S. Boyd (2013). “PID design by

convex-concave optimization”. In: Proceedings European Control Conference,
pp. 4460–4465.

In this paper a method for the design of robust SISO PID controllers is pre-
sented. The method consists of solving a sequence of convex optimization problems,
called the convex-concave optimization procedure. The performance is measured

11



Chapter 1. Introduction

as the integrated error, and robustness constraints are specified as maximum values
of the sensitivity functions. S. Boyd and K.J. Åström proposed the idea of using
the convex-concave procedure to tune PID controllers. B. Bernhardsson extended
the idea to processes with explicit uncertainties. M. Hast derived the constraints
on the curvature of the Nyquist plot, implemented the algorithms and wrote the
manuscript.

Paper II
Boyd, S., M. Hast, and K. J. Åström (2015). “MIMO PID tuning via iterated LMI

restriction”. Submitted to the Internation Journal of Robust and Nonlinear Con-
trol.

In this paper, a method for tuning robust MIMO PID controllers is presented.
The PID parameters are obtained by formulating a nonconvex optimization problem
that is solved by an iterative procedure. The idea stems from the work presented
in Paper I. S. Boyd proposed that the robustness constraints could be expressed
as linear matrix inequalities. All three authors worked on the formulation of the
design problem and its solution. M. Hast implemented and tested the algorithm,
formulated the examples, solved the related optimization problems, and performed
the simulations. S. Boyd wrote the manuscript.

Paper III
Hast, M. and T. Hägglund (2012). “Design of optimal low-order feedforward con-

trollers”. In: IFAC Conference on Advances in PID Control. Brescia, Italy.

In this paper, a tuning rule for a low-order, time-delayed lead-lag, feedforward
controller is presented. The tuning rule is based on first-order process models with
time delay. The integrated squared error for a step load-disturbance is minimized.
The optimal controllers are derived analytically, using a controller architecture hav-
ing two degrees of freedom where the feedforward and feedback controllers are
decoupled. T. Hägglund proposed the problem formulation. M. Hast formulated
and solved the optimization problem, performed the simulations and wrote the
manuscript.

Paper IV
Hast, M. and T. Hägglund (2014). “Low-order feedforward controllers: optimal

performance and practical considerations”. Journal of Process Control 24:9,
pp. 1462–1471.

In this paper, the tuning rules presented in Paper III are simplified and a number
of practical issues are addressed. The optimal feedforward controller is augmented
with a filter that provides high-frequency roll-off. Guidelines for choosing the filter
parameter to decrease the peak of both the control signal and the Bode magnitude
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are provided. A method for reducing the integrated squared error by adapting the
time-delay in the filtered feedforward controller is also presented. The tuning rules
and guidelines are tested on systems of high order. M. Hast refined the tuning rule,
developed the filter guidelines, performed the simulations and wrote the manuscript.
T. Hägglund provided valuable comments during the work.

Paper V
Hast, M. and T. Hägglund (2015). “Feedforward controller design using convex

optimization and tuning rules for proportional set-point weighting”. Submitted
to IET Control Theory & Applications.

In this paper, a method for tuning feedforward controllers based on convex opti-
mization is presented. Design of feedforward controllers for both measurable distur-
bances and the reference is considered. The proposed method is applied to a large
batch of processes, resulting in a simple tuning rule for the set-point weight. M.
Hast formulated and solved the problems, performed the simulations and wrote the
manuscript. T. Hägglund provided valuable comments during the project.
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2
PID Control

”Who controls the past controls the future; who controls the present
controls the past.”

— George Orwell, 1984

The SISO PID controller is by far the most commonly used type of controller in
the process industry [Desborough and Miller, 2002]. Reasons for this include that it
is easy to understand, having only three parameters, and that in many applications
it is sufficiently complex in order to obtain reasonable performance. Furthermore,
the PID controller is well-known to most control technicians and engineers, and is
available in most programmable-logic-controllers (PLCs) and DCS used in industry,
thus, making it cost effective.

Many PID controllers are in fact only utilized as PI controllers and they are of-
ten poorly tuned [Bialkowski, 1993; Åström and Hägglund, 2001]. One reason that
the derivative part is not used is that by increasing the number of controller parame-
ters from two to three, the complexity of tuning the controller is increased; making
hand-tuning of the controllers difficult. Furthermore, the derivative part generally
increases the amount of actuation due to measurement noise. As a remedy for this,
tuning rules could instead be used to find the controller parameters.

Most tuning rules are dependent on specific and often simple models of the
process, while others rely on specific characteristics of the process. The perhaps
most well-known tuning rules are those derived by Ziegler and Nichols [Ziegler
and Nichols, 1942]. These rules rely on characterizing the process by two parame-
ters, which then are used to tune the controller. The internal model control (IMC)
framework [Rivera et al., 1986] has been used as a foundation for deriving tuning
rules, see for example [Vilanova, 2008] or the the SIMC rules [Skogestad, 2003;
Grimholt and Skogestad, 2012]. The lambda (λ )-method [Dahlin, 1968; Sell, 1995]
that has been used extensively in the Swedish pulp and paper industry [Anonymous,
1997], is based on simple models and aims at tuning the PID controller so that the
closed-loop system has a specific time constant. This can be seen as a special case
of IMC. The AMIGO tuning rules [Åström and Hägglund, 2004] are derived by
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Chapter 2. PID Control

solving an optimization problem that maximizes integral gain subject to robustness
constraints, in a batch of over a hundred process models that are common in the
process industry. The resulting controllers parameters have been parameterized in
terms of first-order plus dead-time (FOTD) approximations of the plants and used
as tuning rules.

The benefit of using tuning rules based on low-order process models is that
those kinds of models are relatively easy to obtain, for instance by performing step-
response tests. Simplicity can be important, especially in process industry where
there are a large numbers of control loops. A vast amount of tuning rules exist based
on different model structures and considerations. Many of them are covered in the
impressive collection by [O’Dwyer, 2009]. The drawbacks of using a tuning rule are
that both the performance and the robustness can be poor if the process’ dynamics
is not well described by the simple model. The performance and the robustness can
be improved by tailoring the controller parameters to the process and utilizing all
process knowledge. Optimization can be a useful means to achieve this. With fast
and easy-to-use algorithms all process knowledge can be used to obtain a robust
controller with good performance.

The PID controller is often used as a low-level controller in more sophisticated
control algorithms such as Model Predictive Control (MPC). MPC is often used to
generate reference signals for the PID controllers that in turn calculates the control
signals, which are then sent to the actuators [Desborough and Miller, 2002].

The cost efficiency, the large number of commissioned controllers, and the fact
that they often play an auxiliary role in more complex control schemes makes the
PID research area still very active long after its first introduction. The book [Vi-
lanova and Visioli, 2012] covers a wide variety of recent PID research. The many
aspects of PID control, from modelling of processes, controller structure, tuning and
implementation is presented in the book [Åström and Hägglund, 2006].

SISO PID controllers can be used to control MIMO processes by assigning one
controller to each pair of inputs and outputs. Tuning of each controller is then per-
formed in a sequential fashion that often requires iterative tuning runs. The problem
could be facilitated if the interaction between the loops could be decoupled.

The MIMO PID controller is an extension of the SISO PID controller. It shares
the basic controller structure but uses matrices instead of scalar parameters. Tun-
ing controllers for processes with several inputs and outputs are therefore more
challenging. For instance, a PID controller with two input and two outputs has 12
parameters that need to be chosen. Because of the large number of parameters, op-
timization based design is more suitable than tuning the controller by hand. The
drawback of using a MIMO PID controller is that, except for benign processes, it is
hard to retune if the need arises.
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Chapter 2. PID Control

2.1 The PID Controller

As the abbreviation suggests, the PID controller has three parts; the Proportional,
Integral and Derivative parts. The controller calculates the control signal as

u(t) = K
(

e(t)+
1
Ti

∫ t

0
e(τ)dτ +Td

de(t)
dt

)
, (2.1)

where the three parameters are the gain K, the integral time Ti and the derivative
time Td . The control law (2.1) is the PID algorithm in the parallel form that will be
used throughout this thesis. The controller can be represented in the Laplace domain
with its transfer function

C(s) = K
(

1+
1

sTi
+ sTd

)
(2.2)

or as

C(s) = kp +
ki

s
+ kds. (2.3)

The latter is preferred when performing optimization since the controller is linear
in the parameters kp, ki and kd . It can be noted that the formulation used in (2.3)
allows for e.g., pure I-control by setting kp = kd = 0 whereas it is not possible using
the former formulation. These formulations have some immediate flaws; they are
nonproper and hence not realizable, and they have large gain for high frequencies,
which makes them sensitive to noise. This is one of the reasons that the derivative
action is not used in many commissioned controllers [Åström and Hägglund, 2001]
and is commonly addressed by augmenting the controller with a filter.

The filtering of the PID controller can be performed in various ways. Augment-
ing the derivative part with a first-order filter with a small time constant is common,
see [Åström and Hägglund, 2006] (p.73). A drawback with this approach is that
the controller is not strictly proper and amplification of high-frequency noise can
give rise to a jerky control signal. As a remedy for this, a second-order filter can be
connected in series with the PID controller. The controller gain will then approach
zero for high frequencies, a property called high-frequency roll-off. In [Larsson
and Hägglund, 2011] it is concluded that PID controllers with second-order filters
have near optimal performance compared to high-order controllers for low-order
processes. By adding a filter, the number of parameters that needs to be tuned in-
creases, thus making the controller harder to tune. An iterative procedure for tuning
measurement filters is addressed in [Segovia et al., 2014]. The filter time-constant
is chosen as a compromise between robustness, performance and control-signal ac-
tivity. Tuning rules for PID controllers with first and second order filters for stable
processes are presented in [Kristiansson and Lennartson, 2002].
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2.2 Performance

One of the key issues when designing any controller is obtaining good performance.
The controller should preferably follow changes in set-point and attenuate distur-
bances well. Both these requirements need to be quantified using a well defined
performance measure. It is most commonly measured by an integral of some func-
tion of the norm of the control error. The perhaps most natural way to measure
performance is the integrated-absolute-error (IAE) defined as

IAE =
∫ ∞

0
|e(t)|dt (2.4)

and evaluated for system representative external input. Both positive and nega-
tive errors will contribute to an increase in the IAE since it measures the abso-
lute value of the error. Optimization problems that aim at minimizing the IAE are
nonconvex in the controller parameters and can be time-consuming to solve. Most
optimization-based tuning methods that minimize IAE find a local minimum to
(2.4). PID tuning methods that minimize IAE have been presented in [Garpinger,
2009; Grimholt and Skogestad, 2015].

A closely related performance measure is the integrated error (IE) that is defined
as

IE =
∫ ∞

0
e(t)dt. (2.5)

Note that the IE and the IAE are equal provided that the error does not change
sign i.e., when the system is critically damped. For PID controllers, IE is easy to
calculate and it is therefore a good substitute for the IAE measure provided that the
system is well-damped. A pitfall with the IE measure is that it can be small when
the error signal is oscillatory. For instance, an error signal that is sinusoidal will
have an IE that is zero. It is therefore crucial to ensure that the error is well-damped
when measuring performance by IE.

A third commonly used performance measure is the integrated-squared-error
(ISE) defined as

ISE =
∫ ∞

0
e(t)2dt. (2.6)

This measure emphasizes large errors since the error is squared. Optimization prob-
lems where ISE is minimized are nonconvex with the same disadvantages as those
associated with minimization of IAE. However, minimization problems with the
ISE measure can in some cases be solved analytically, for instance as in Chapter 3,
which covers design of feedforward controllers. Quadratic performance measures
are used extensively when designing controllers using state-feedback formulations
such as e.g., Linear Quadratic Control and MPC.

In this thesis, the unit step will be used extensively as reference signal and dis-
turbance to illustrate controller performance. It is natural to study the response of a
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step since the set-point often is changed from one reference point to another. For dis-
turbances, this is not always the case, but the step change is an established generic
input used to study the impact of load disturbances.

2.3 Robustness

Performance is only one of the things that need to be taken into account when a
controller is designed. It is also crucial that the designed controller works well even
if the process model is inaccurate or if the dynamics of the physical process changes
over time. The most vital aspect is ensuring that the controller will not render the
closed-loop system unstable when the model is inaccurate. Robustness is a measure
of the distance from instability that the closed-loop system will be with a given
controller. Design of robust controllers has been an active area of research for a
long time, and has given rise to a wide range of design methods, see [Zhou and
C. Doyle, 1998].

Robustness for SISO processes
Amplitude and phase margins are classical measures of robustness. The amplitude
margin specifies how much the gain of the process can increase before the sys-
tem becomes unstable. The phase margin is a measure of how much the phase at a
certain frequency can be allowed to vary in order for the system to remain stable.
However, these measures do not capture what happens if the phase and gain change
simultaneously. To better capture how much a system can change before it becomes
unstable, the notion of maximum sensitivities is preferred. The sensitivity function

S(s) =
1

1+P(s)C(s)
, (2.7)

where P(s) is a linear time-invariant model of the process, has several interpreta-
tions. It is the transfer function from measurement noise to system output, and the
ratio between a system’s open-loop and closed-loop responses. It thereby reflects
both how noise will influence the system and how disturbances are attenuated. Fur-
thermore, for a given frequency ω , |S(iω)| is the inverse of the distance from a point
on the Nyquist curve to the critical point −1. The maximum sensitivity of a system
defined as

MS = max
ω
|S(iω)| , (2.8)

is thus a measure of the smallest distance to the critical point, and thereby instability.
It is common to design controllers so that MS is in the range from 1.2 to 2.0 [Åström
and Hägglund, 2006].

The transfer function from reference and load disturbance to the system output
and control signal, respectively, is given by

T (s) =
P(s)C(s)

1+P(s)C(s)
, (2.9)
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and is known as the complementary sensitivity function. It is desirable to design
a controller so that |T (iω)| is close to one up to a certain frequency in order to
efficiently follow reference signals. It is also desirable to make |T (iω)| small for
high frequencies in order to reduce high-frequency components in the control sig-
nal since this can increase the wear of the actuator. The complementary sensitivity
function can also be seen as a measure of how large additive changes in the pro-
cess dynamics can be before the system becomes unstable. Assume that the process
dynamics change from P(s) to P(s)+∆P(s) where ∆P(s) is stable. A condition for
stability is [Åström and Hägglund, 2006]∣∣∣∣∆P(iω)

P(iω)

∣∣∣∣< ∣∣∣∣ 1
T (iω)

∣∣∣∣ . (2.10)

This expression implies that if |T (iωo)| is small, the controller will still be able to
handle large changes in the process dynamics at the frequency ωo. By designing
a controller that makes |T (iω)| small for high frequencies, the need for an accu-
rate high-frequency model is less important. It is therefore reasonable to limit the
maximum value of the magnitude of the complementary sensitivity function

MT = max
ω
|T (iω)| (2.11)

by some upper bound, usually in the same range as for the maximum sensitivity.

Graphical interpretation of robustness in the Nyquist plot
Upper bounds on the sensitivity functions can be illustrated in the Nyquist plot.
Both bounds can be represented by circles, with radii and centers that depend on
MS and MT , see [Åström and Hägglund, 2006] for the derivations and Table 2.1 for
the expressions. For MT = 1, the bound on the complementary sensitivity becomes
a vertical line. The circle interpretation will be used extensively in the method for
design of SISO PID controllers as presented in Section 2.5 and in Paper I. Figure 2.1
shows an example of the circle representation in a Nyquist plot for MS = MT = 1.4.

Table 2.1 Radii and centers for the circles that represents the upper bounds on the
sensitivity and the complementary sensitivity functions in the Nyquist plot.

Contour Center Radius

MS −1
1

MS

MT − M2
T

M2
T −1

MT

M2
T −1
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ℜ

ℑ

Figure 2.1 Maximum sensitivity MS = 1.4 represented as a red circle with center
in (−1,0) in the complex plane. The blue circle represents the maximum comple-
mentary sensitivity MT = 1.4 with center in (−2.04,0)

Robustness for MIMO processes
For MIMO processes, the sensitivity and the complimentary sensitivity are defined
analogously to (2.7) and (2.9). Consider a process P(s) with m inputs and p outputs
and a controller C(s) with p inputs and m outputs. The MIMO equivalent of the sen-
sitivity and the complementary sensitivity functions, (2.7) and (2.9), are expressed
as

S = (I +PC)−1 , T = PC (I +PC)−1 , (2.12)

respectively, and where the identity matrix is denoted by I. The MIMO equivalent of
the maximum sensitivities are captured by the H∞-norm of the two functions given
by

MS = sup
ω≥0
‖S(iω)‖ , MT = sup

ω≥0
‖T (iω)‖ (2.13)

where ‖·‖ denotes the spectral norm, i.e., the maximum singular value. The MIMO
definitions of sensitivity and complementary sensitivity are used to formulate the
MIMO PID design problem as an optimization problem in Paper II.

2.4 Optimization

When designing controllers, both performance and robustness need to be taken into
account. Formulating and solving an optimization problem is often a good way to
proceed in these cases. All of the results presented in this thesis rely heavily on
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2.4 Optimization

optimization. A mathematical optimization problem can be formulated as

minimize
x

f0(x)

subject to fi(x)≤ bi, i = 1, . . . ,m
h j(x) = c j j = 1, . . . ,k,

(2.14)

where the vector x = (x1, . . . ,xn) is the optimization variable, and the function
f0 : Rn→R is the objective function that we want to minimize. The inequality con-
straints are expressed by the functions fi : Rn→ R, i = 1, . . . ,m that should be less
than the bounds b1, . . . ,bm. The functions h j : Rn→ R, j = 1, . . . ,k are the equality
constraints, which should be equal to constants c j. A vector x∗ is called a global
optimum (minimum) if it satisfies

f0(x∗)≤ f0(x) (2.15)

for all x that satisfies the constraints. The vector x∗ is a local optimum if there
exists a δ > 0 such that (2.15) is satisfied for all x that satisfies the constraints in
‖x∗− x‖ < δ . Solving (2.14) efficiently is in general difficult. However, classes of
optimization problems exist, such as the convex problems, that can be efficiently
solved for the optimal global solution.

It should be mentioned that optimal solutions are not necessarily good solutions.
Care must be taken when formulating an optimization problem so that it captures
the most reasonable aspects.

Convex Optimization
Mathematical optimization problems can be divided into a large number of classes.
One important class is the convex optimization problems. An optimization problem
posed as (2.14) is convex if the equality constraints h j are affine in x and all the
functions f0, . . . , fm are convex, i.e., they satisfy

fi(θx+(1−θ)y)≤ θ fi(x)+(1−θ) fi(y) (2.16)

for all x,y that belongs to the convex domain of fi, and 0 ≤ θ ≤ 1. A function
h(x) is concave if −h(x) is convex. Many optimization problems encountered in
engineering can be formulated as convex optimization problems. Examples include
linear, quadratic, least-squares, second-order cone and semidefinite programs, and
are used in a wide range of applications.

The theory of convex functions and optimization are well understood [Rock-
afellar, 1970; Boyd and Vandenberghe, 2004] and there are several benefits of opti-
mization problems that are convex. A fundamental property of a convex optimiza-
tion problem is that any local optimum is also a global optimum. This implies that
it is sufficient to find a local optimum, which is simpler.

A number of easy-to-use tools for formulating convex optimization are avail-
able, for instance CVXOPT [M. S. Andersen et al., 2013; M. Andersen et al., 2011]
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Figure 2.2 Illustration of a convex-concave function f (x)− g(x) composed as a
difference between the two convex functions f (x) and g(x).

for Python, and YALMIP [Lofberg, 2004] for MATLAB [MATLAB, 2012]. All
convex optimization problems in this thesis are formulated using CVX [Research,
2012; Grant and Boyd, 2008] and solved with the SDPT3 solver [Toh et al., 1999;
Tütüncü et al., 2003].

Convex optimization is used as a foundation for the design methods presented
in Paper I and II. The design of feedforward controllers presented in Paper V is
formulated as pure convex optimization problems.

The convex-concave procedure
The problem of finding the PID parameters so that the controller has good perfor-
mance and robustness can unfortunately not be formulated as a convex optimiza-
tion problem. Nevertheless, it can be formulated as a difference of convex program
(DCP), which can be formulated as

minimize
x

f0(x)−g0(x)

subject to fi(x)−gi(x)≤ 0, i = 1, . . . ,m.
(2.17)

where the functions fi, gi for i = 0 . . .m are convex functions. From (2.17) it can
be seen that convex optimization problems are special cases of DCPs where the
functions gi, i = 0 . . .m are affine. Any function with a bounded Hessian can be de-
composed into a difference between two convex functions [Yuille and Rangarajan,
2003], although the decomposition is not unique.

An illustration of a function that is clearly nonconvex can be seen in the left-
most plot of Figure 2.2. It can, however, be decomposed into the difference of the
functions displayed in the middle and rightmost plots.

The convex-concave procedure [Yuille and Rangarajan, 2003] is a heuristic
method for finding a local minimum to (2.17). The method is an iterative procedure
that in each iteration solves a convex optimization problem. The procedure in its
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basic version requires a feasible initial point x0. A convex formulation is obtained
by linearizing the functions gi around the current solution point xk. The resulting
convex problem is solved, the function is linearized around the obtained solution
point and the procedure is repeated until convergence. A good summary of the pro-
cedure, for differentiable fi and gi, can be found in Algorithm 1.1 in [Lipp and
Boyd, 2014] and it is restated here in Algorithm 1. All the iterates xk will be feasi-

Algorithm 1: Convex-concave procedure.
given an initial feasible point x0.
k := 0.
repeat

1. Form ĝi(x;xk) := gi(xk)+∇gi(xk)
T (x− xk) for i = 0, . . .m.

2. Set the value of xk+1 to a solution of the convex problem

minimize
x

f0(x)− ĝ0(x;xk)

subject to fi(x)− ĝi(x;xk)≤ 0, i = 1, . . . ,m.

3. k := k+1.

until stopping criterion is satisfied.

ble and the sequence of objective values will be nonincreasing, and converge [Lipp
and Boyd, 2014]. If not initialized at a local maximum the procedure will converge
to a local minimum or saddle point. The final point found can depend on the given
initial point. The time it takes to solve the PID design problems encountered in this
thesis are a few seconds for the SISO design, and a few minutes for the MIMO de-
sign, and it is therefore possible to test a number of initial parameters and solve the
corresponding problems, taking the best of these parameters as the solution.

The stopping criterion

( f0 (xk)−g0 (xk))− ( f0(xk+1)−g0(xk+1))≤ δ (2.18)

with δ chosen as a small positive number is used in the design of PID controllers.
The procedure is thus stopped when when there is little progress in the last iteration.

The convex-concave procedure has some advantages compared to similar algo-
rithms. In the convexification step, all information from the convex parts is retained.
This can be compared to sequential quadratic programming [Boggs and Tolle, 1995]
where the original program, in each iteration, is approximated as a quadratic opti-
mization problem. Furthermore, using the convex-concave procedure there is no
need to include trust regions where it is ensured that the approximation is valid
[Lipp and Boyd, 2014].
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Several extensions to the convex-concave procedure such as; elimination of a
feasible initial point, augmentation of a line search, and vector inequalities, can be
found in [Lipp and Boyd, 2014].

2.5 Tuning of SISO PID Controllers

In Paper I, a method that utilizes the convex-concave procedure for design of robust
PID controllers, which minimizes IE subject to robustness constraints, is presented.
The objective is to find the controller parameters x = [kp ki kd ]

T so that the perfor-
mance measure is minimized while the robustness constraints are satisfied.

Performance
It can be shown [Åström and Hägglund, 2006] that for a process, controlled with a
stabilizing PID controller

IE =
1
ki

(2.19)

when a unit-step disturbance enters at the process input. Minimizing IE is, thus,
equivalent to maximizing the integral gain. Provided that the system is well-damped
this is in turn equivalent to minimizing IAE. From (2.19) it is easy to see that mini-
mizing IE is equivalent to the optimization criterion

maximize ki. (2.20)

The criterion is clearly linear in the optimization variables and it is therefore convex.
From an optimization point-of-view IE is thus simpler to work with than for instance
IAE. Furthermore, for stable processes the first term in a Taylor series expansion
of S(s) around zero is S(s) ≈ s

P(0)ki
. Thus, maximization of integral gain can be

interpreted as minimizing low-frequency sensitivity.

Robustness constraints
To ensure that the system is robust, constraints on the maximum sensitivity func-
tions are imposed. As discussed in Section 2.3, the robustness constraints can be
interpreted as the Nyquist curve being outside the circles defined in Table 2.1. The
PID controller (2.3) can be written as

C(s,x) =
[
1 1

s s
]

x. (2.21)

Let the open-loop transfer function be L(s,x) = P(s)C(s,x) = L(s)x, which is linear
in the controller parameters. The point L(iω)x on the Nyquist plot is outside a circle
with center c and radius r if

r−|L(iω)− c| ≤ 0. (2.22)
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Figure 2.3 Nyquist plot of an open-loop system (blue) together with a black circle
corresponding to a constraint on the maximum sensitivity function. For the point on
the Nyquist plot that is marked with the red cross, the red line corresponds to the
boundary of the convexified constraint in the next iteration. The point is constrained
to lie in the half plane to the right of this line in the next iteration.

This is a convex-concave, or difference of convex, constraint with f (x) = r and
g(x) = |L(iω)−c|. Linearizing g(x) around a solution point xk we obtain the convex
constraint

f (x)− ĝ(x;xk) = r−ℜ
(

Lxk− c
|Lxk− c| (Lx− c)

)
≤ 0 (2.23)

where ℜ and the bar denote the real part and the conjugate transpose, respectively.
Graphically, this can be interpreted as a half-plane in the complex plane that the
point on the Nyquist plot is restricted to, see Figure 2.3.

Process uncertainties
The robustness constraints can be generalized to processes with a certain class of
uncertainties. Consider an uncertain process model P̃ for which each point on the
Nyquist plot is known to lie within a circle with a frequency dependent radius ρ ,
i.e.,

P̃(iω) = P(iω)+∆(iω), |∆(iω)| ≤ ρ(ω). (2.24)

The constraint
r−|PC+∆C− c| ≤ 0 (2.25)

specifies that the Nyquist plot for all processes in the uncertainty set is outside the
circle. The constraint can be rewritten as

r−|L− c|+ρ|C| ≤ 0. (2.26)
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This constraint is the difference of the two convex functions r + ρ|C| and |L− c|
where the second function can be handled in the same way as the robustness con-
straints in the previous section.

Curvature constraints
Minimization of IE can give Nyquist curves with very small curvature. The step
response of such a system is often oscillatory [Åström and Hägglund, 2006]. This
could be avoided by using another cost function that penalizes oscillatory responses
or by including constraints on the curvature as was done in [Panagopoulos et al.,
2002]. Let the loop transfer function be decomposed by its real and imaginary part
i.e., L(iω) = x(ω)+ iy(ω). The curvature of L is then given by

κ =
ẋÿ− ẏẍ

(ẋ2 + ẏ2)3/2 , (2.27)

where the dot and the double dot correspond to first and second derivative with
respect to ω . Constraining the curvature by γ can then formulated as

xT Qpx− xT Qnx− γ|Zx|2 ≤ 0 (2.28)

where Qp and Qn are positive semidefinite matrices and Z is a complex vector. By
linearizing the concave part, a quadratic convex constraint is obtained.

Properties and extensions
The constraints are formulated for all frequencies, which leads to a semi-infinite
optimization problem. To obtain a tractable optimization problem a frequency grid
is introduced, and the constraints are imposed for each point in the grid. In each
iteration, a convex optimization problem is solved, therfore a dense grid can be
used. In the optimization problems in Paper I, 1000 grid points were used. It is vital
to ensure that the grid captures the relevant frequency interval for the process.

The algorithm must be initialized with controller parameters which satisfy the
constraints. If the process is asymptotically stable, initialization with kp = ki = kd =
0 will satisfy the robustness constraints. For integrating and unstable processes,
care must be taken to ensure that the initial controller is stabilizing and satisfies the
constraints.

There are several benefits of using the convex-concave procedure for design of
PID controllers. For instance, other convex constraints can easily be included in the
optimization problem. In each iteration, a convex optimization problem formulated
as a second-order cone program is solved. Interior point methods are known to solve
such problems quickly [Boyd and Vandenberghe, 2004]. For the design problems
presented in Paper I, no more than 11 iterations where needed, which on an ordinary
desktop computer takes a few seconds. One could argue that this is in fact less time
than it takes to find a tuning rule, appropriate for the process at hand, and calculating
the controller parameter from that.
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The ideas presented in Paper I can easily be extended. The algorithm is nonpara-
metric, since it only needs the frequency response of the process and the controller.
Fractional order PID controllers, see for instance [Padula and Visioli, 2011], on the
form

C(s) = kp +
ki

sλ + kdsµ (2.29)

where λ and µ are fixed scalars can easily be handled since the controller is linear
in the parameters. However, implementing such a controller in a DCS is not trivial
and it is often done by approximating the fractional controller by an integer one, see
[Monje et al., 2008] and the references therein.

The presented method for design of PID controllers can also be used for systems
with a static nonlinearity in the feedback loop, by use of the circle criterion [Khalil
and Grizzle, 1996]. The criterion implies that the closed-loop system is absolutely
stable if the Nyquist curve is outside a circle, which is defined by bounds on the
nonlinearity.

2.6 Tuning of MIMO PID Controllers

In many MIMO processes, the interactions between the control loops are sufficiently
decoupled so that each process output can be controlled by a SISO controller. How-
ever, for some processes the loops are so tightly coupled that this cannot be disre-
garded. The MIMO PID tuning method presented in Paper II will be briefly outlined
in this section.

Consider a linear time-invariant process with m inputs and p outputs and given
by its frequency response P(iω) ∈ Cp×m or its transfer function P(s). The process
is assumed to be stable and strictly proper, but not necessarily rational. It is further
assumed that m≤ p and that P(0) has full rank.

The MIMO PID controller is given by

C(s) = KP +
1
s

KI +
s

1+ τs
KD, (2.30)

where the controller parameters are real matrices, i.e., KP, KI ,KD ∈ Rm×p. The
derivative part of the controller is filtered by a first-order low-pass filter with a fixed
time-constant τ > 0. A MIMO PID controller has 3mp parameters to tune, which
makes manual tuning in the best of cases, cumbersome. Ensuring good robustness
and closed-loop stability can even for simple plants be hard.

The constraints, which are imposed on the closed-loop system, are expressed
using the H∞ norm. For a p×q transfer function H, ‖H‖∞ is its H∞ norm

‖H‖∞ = sup
ℜs≥0
‖H(s)‖, (2.31)
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where ‖H‖ is the spectral norm, i.e., the maximum singular value. For a stable H
the infinity norm can be expressed as

‖H‖∞ = sup
ω≥0
‖H(iω)‖. (2.32)

The aim of the optimization procedure is to obtain a robust controller that has
small low-frequency sensitivity and does not use too much actuation. Robustness is
captured by imposing upper bounds on the infinity norm of the sensitivity functions
S and T defined in (2.12). The transfer function from the reference to the controller
output or more importantly, from measurement noise to controller output is given
by Q =C(I+PC)−1. Requiring ‖Q‖∞ ≤Qmax limits the size of the control signal’s
response to a change in the reference signal.

Perfect zero steady-state error for constant input will be obtained if S(0) = 0,
which is implied by P(0)KI being nonsingular. A Taylor series expansions of S(s)
around s = 0 gives S(s) ≈ s(P(0)KI)

−1 for small s. By minimizing ‖(P(0)KI)
−1‖

the low-frequency sensitivity is reduced. The design problem can be stated as the
following, nonconvex, optimization problem

minimize
KP,KI ,KD

‖(P(0)KI)
−1‖

subject to ‖S‖∞ ≤ Smax,
‖T‖∞ ≤ Tmax,
‖Q‖∞ ≤ Qmax,

(2.33)

where Smax, Tmax and Qmax are upper bounds on the largest singular value of the
sensitivity functions.

Formulation of the design problem using LMI restriction
The constraint on the sensitivity function can be expressed as

‖S(iω)‖ ≤ Smax, ∀ω ≥ 0, (2.34)

which is a semi-infinite constraint in the frequency parameter ω . By introducing
a large set of N frequency samples 0 < ωk < ωN and replacing the constraints in
(2.33) with one constraint for each frequency sample

‖S(iωk)‖ ≤ Smax, k = 0, . . . ,N (2.35)

is obtained. The same procedure is applied to the constraints on T and Q. A dense
enough grid needs to be chosen so that it captures the relevant changes in the func-
tions. It should also be chosen so that the range of frequencies captures the asymp-
totic values of S(iω), T (iω) and Q(iω) for both low and high frequencies. Let the
subscript k denote a transfer function evaluated at s = iωk to keep the notation un-
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cluttered. A sampled version of (2.33) is

minimize
KP,KI ,KD

‖(P(0)KI)
−1‖

subject to ‖Sk‖ ≤ Smax,
‖Tk‖ ≤ Tmax,
‖Qk‖ ≤ Qmax,
k = 1, . . . ,N.

(2.36)

This problem can be reformulated to a problem where the cost function and all the
constraints can be written as quadratic matrix inequalities on the form

Z∗Z � Y ∗Y, (2.37)

where Z∗ denotes the Hermitian transpose of Z. The symbol � 0 is used to denote
matrix inequality, Z � 0 means that Z is Hermitian and positive semidefinite. Con-
straints on this form are convex in Y but not in Z. The cost function can be rewritten
as ‖(P(0)Ki)

−1‖= 1/σmin(P(0)KI), where σmin denotes the smallest singular value
of the matrix. Minimization of the cost function in (2.33) is therefore equivalent
to maximization of the smallest singular value. By introducing and maximizing a
scalar variable t, this can be formulated as

σmin(P(0)KI)≥ t⇔ (P(0)KI)
∗(P(0)KI)� t2I, (2.38)

which is on the same form as (2.37) where Z = P(0)KI and Y = tI. The constraint
on the sensitivity function can be reformulated in a similar way

‖Sk‖ ≤ Smax⇔ ((I +PkCk)
−1)∗(I +PkCk)

−1 � S2
maxI (2.39)

By multiplying this expression with 1/Smax(I +PkCk)
∗ and 1/Smax(I +PkCk) from

the left and right, respectively, the constraint can be expressed as

(I +PkCk)
∗(I +PkCk)� 1/S2

maxI. (2.40)

This is a constraint on the form (2.37) with Z = I +PkCk and Y = 1/SmaxI. The
same procedure can be applied to the constraints for T and Q and an optimization
problem equivalent to (2.36) can be expressed as

maximize
t,KP,KI ,KD

t

subject to Z∗k Zk � Y ∗k Yk, k = 1, . . . ,M
(2.41)

where the number of constraints is M = 3N+1 and Zk = I+PkCk for all constraints
apart from the one connected to the cost function.

The problem stated in (2.41) is nonconvex and to solve it a linear matrix in-
equality (LMI) restriction is imposed on all the constraints. The LMI restriction is
obtained by first noting that for any choice of Z and Z̃

0� (Z− Z̃)∗(Z− Z̃) = Z∗Z−Z∗Z̃− Z̃∗Z + Z̃∗Z̃ (2.42)
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is valid. From this inequality it follows that

Z∗Z � Z∗Z̃ + Z̃∗Z− Z̃∗Z̃ (2.43)

and subsequently, the matrix inequality

Z∗Z̃ + Z̃∗Z− Z̃∗Z̃ � Y ∗Y (2.44)

implies Z∗Z �Y ∗Y , for any matrix Z̃. The constraint in (2.44) is convex in Z and Y .
The inequality can be formulated as the LMI[

Z∗Z̃ + Z̃∗Z− Z̃∗Z̃ Y ∗

Y I

]
� 0. (2.45)

A convex optimization problem is obtained by applying the LMI restriction on all
the constraints in (2.41). The problem is formulated as

maximize
t,KP,KI ,KD

t

subject to
[

Z∗k Z̃k + Z̃kZk− Z̃kZ̃k Y ∗k
Yk I

]
� 0, k = 1, . . . ,M,

(2.46)

which is a semidefinite program.

Using the LMI restriction to obtain MIMO PID controllers
The optimization problem (2.46) can be solved iteratively to obtain the controller
parameters. The algorithm is initialized with a pure integrating controller with a low
gain, i.e.,

KP = KD = 0, KI = εP(0)† (2.47)

where P(0)† is the pseudo-inverse of the stationary gain of the process and ε > 0
is a small scalar chosen such that the constraints in (2.33) are satisfied. The method
can be summarized in the following steps. First, the LMI restriction is formed using
Z̃k = Zcurr

k where Zcurr
k is the current value of Zk. The optimization problem (2.46) is

then solved and the procedure is then repeated.
Choosing Z̃k = Zcurr

k guarantees that the LMI restriction in each step is feasible.
The cost function t is nonnegative and nonincreasing and will therefore converge.
The iterations are stopped when the progress in each step is small according to
(2.18). The method is summarized in Algorithm 2.

Design of continuous-time MIMO PID controllers using iterative LMI ap-
proaches have previously been presented in [Bianchi et al., 2008; Lin et al., 2004;
Zheng et al., 2002], where the design is done using a state-space representation
and the problem is transformed to that of a static output feedback. However, these
methods do not consider plants with time delays. A similar method for discrete-time
controllers has been presented in [Lim and Lee, 2008].
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2.6 Tuning of MIMO PID Controllers

Algorithm 2: MIMO PID tuning via Iterated LMI Restriction.
given process frequency data Pk and an ε > 0 such that the controller
C = (ε/s)P(0)† satisfies the constraints.
i := 0.
repeat

1. Form LMI restriction. Calculate Z̃k = Z curr
k for k = 1 . . .M

2. Solve.

maximize
t,KP,KI ,KD

t

subject to
[

Z∗k Z̃k + Z̃kZk− Z̃kZ̃k Y ∗k
Yk I

]
� 0, k = 1, . . . ,M

3. Update iteration. i := i+1

until stopping criterion is satisfied.

The method presented in [Galdos et al., 2010] uses convex optimization to ob-
tain MIMO PID controllers. The generalized Nyquist stability criterion is approxi-
mated with convex constraints and the norm between the actual and a desired open-
loop transfer function is minimized. Design of robust multiloop PID controllers,
i.e., diagonal MIMO PID controllers using semidefinite programming have been
proposed in [Bao et al., 1999]. The closest prior work is presented in [Saeki et al.,
2010] where LMI restrictions are used iteratively but where S, T and Q are lumped
together into one function wheras the method presented in this thesis allows for in-
dividual constraints on the functions. The method presented in this thesis minimizes
the low-frequency sensitivity and provides an initialization procedure that works for
all stable plants.

Example and comparison with other PID design methods.
To illustrate how the PID controllers obtained using the LMI restriction method per-
form, the method will be applied on the well-known Wood-Berry binary distillation
column [Wood and Berry, 1973].

The process is given by the transfer function

P(s) =


12.8e−s

16.7s+1
−18.9e−3s

21.0s+1
6.6e−7s

10.9s+1
−19.4e−3s

14.2s+1

 . (2.48)

There is substantial interaction between the inputs and outputs even at steady-state
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which can be seen from the relative gain array [Åström and Hägglund, 2006],

RGA =

[
2 −1
−1 2

]
. (2.49)

Tuning a PID controller by hand is difficult because of the coupled dynamics.
The design parameters were chosen as

Smax = 1.4, Tmax = 1.4, Qmax = 3/σmin(P(0)) = 0.738 (2.50)

and the filter time-constant was chosen as τ = 0.3. For details about sampling and
initialization, see Section 8 in Paper II. The obtained controller parameters are

KP =

[
0.1750 −0.0470
−0.0751 −0.0709

]
, KI =

[
0.0913 −0.0345
0.0402 −0.0328

]
,

KD =

[
0.1601 −0.0051
0.0201 −0.1768

]
.

To illustrate how the obtained controller performs, it is compared with three pre-
viously presented PID controllers designed for the Wood-Berry process. It should
be stressed that the compared methods all have different approaches and focuses.
The aim of this comparison is to show that the obtained controller gives good per-
formance, since this is not explicitly handled in the optimization problem. Only PID
controllers that do not include any additional decoupling filters are included in the
comparison in order to make the comparison fair.

The first controller in the comparison is taken from [Tan et al., 2002]. The pre-
sented method involves solving an optimization problem using a loop-shaping H∞
approach, resulting in a high-order controller. A PID controller is then obtained by
reducing the high-order controller via a truncated Maclaurin approximation.

The second controller is taken from [Wang et al., 1997]. A relay auto-tuning
procedure, which gives information about the stationary gain and the frequency re-
sponse at the cross-over frequency is used to design a PID controller with a specific
gain and phase margin. The obtained controller consists in PI-type controllers in the
diagonal elements of C and PID controllers in the off-diagonals.

In [Dong and Brosilow, 1997] a third method for tuning PID controllers is
presented. The method constists in finding an IMC controller, designed to pro-
vide decoupled control. The IMC controller is then reduced to a PID controller
by a Maclaurin series expansion around s = 0. The obtained PID unstabilized the
closed-loop system and comparison will therefore be done against the obtained PI
controller.

An extra low-pass filter was added to the derivative term in the cases where the
PID controllers where given in nonproper form. The filter time-constant was chosen
as τ = 0.01. The system and controller output responses to unit step changes in the
reference signals can be seen in Figure 2.4 and Figure 2.5, respectively. All methods
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Figure 2.4 Unit step output-responses for the Wood-Berry process. The left col-
umn shows the responses of y1 (upper) and y2 (lower) for a unit-step in r1. The right
column shows the responses to a unit-step in r2. The black curves correspond to the
responses with the controller obtained using the LMI restriction method. The red,
green and cyan correspond to the controllers presented in [Tan et al., 2002], [Wang
et al., 1997] and [Dong and Brosilow, 1997], respectively.

give similar responses with approximately the same closed-loop time-constants. The
LMI restriction method gives larger overshoots but also more decoupling between
the channels. The overshoots could be reduced by introducing set-point weighting.
Some performance metrics are presented in Table 2.2 where the IAE is defined as

IAE = ∑
i, j

∫ ∞

0
|ei j(t)|dt, i = 1,2, j = 1,2 (2.51)

and the largest peak in the control signal is denoted

umax = max
i, j

max
t
|ui j(t)|, i = 1,2, j = 1,2. (2.52)

All four controllers have comparable performance, judged with the IAE measure,
with the LMI restriction method being 11% better than the second best controller by
[Dong and Brosilow, 1997]. From Figure 2.4 it can be seen that the LMI restriction
method has the least interaction between the loops but a larger overshot than the
other methods. It should be noted that the PID controller presented in [Tan et al.,
2002] is much more aggressive than the others. The PI controller in [Dong and
Brosilow, 1997] is the least aggressive, which is reasonable since it does not have
derivative action.
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Figure 2.5 Unit step control-signal responses for the Wood-Berry process. The left
column shows the responses of u1 (upper) and u2 (lower) for a unit-step in r1. The
right column shows the responses to a unit-step in r2. The black curves correspond to
the responses with the controller obtained using the LMI restriction method. The red,
green and cyan correspond to the controllers presented in [Tan et al., 2002], [Wang
et al., 1997] and [Dong and Brosilow, 1997], respectively.

Table 2.2 Performance measures and control signal peaks for the compared PID
controllers.

Design IAE umax

LMI 17.7 0.71
Tan et al. 21.2 9.81
Wang et al. 20.1 0.81
Dong et al. 19.9 0.31
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2.7 Contributions Overview

The contributions of the work presented in Paper I and II are summarized as meth-
ods for designing SISO and MIMO PID controllers that minimize low-frequency
sensitivity subject to robustness constraints. The methods rely on the convex-
concave procedure that iteratively solves a number of convex optimization prob-
lems. In each iteration, the nonconvex constraints, and in the MIMO case also the
cost function, are approximated by convex constraints. Since the problem solved in
each iteration is convex, the algorithms are fast. Designing a SISO controller takes
roughly 5 seconds and a two-input two-output MIMO takes roughly 2 minutes. Ex-
amples and comparisons with other methods have shown that the method produces
PID controllers which perform well.
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3
Feedforward Control

”I was beat before I even had a chance to begin”

— Nicke Andersson, Time got no time to wait for me

Feedforward control can be described as taking action based solely on external in-
puts, without regard to the effect of the action taken. If measurements of the ef-
fect are not available it can be the only means of control. However, feedforward
controllers are mostly used together with feedback controllers, where their main
purposes are to improve reference tracking, to decouple the interaction effects in
MIMO control structures, or to improve rejection of measurable disturbances.

Feedforward controllers are in general easier to design than feedback controllers
since the stability issue is straightforward. A stable feedforward controller will not
destabilize a stable control loop. Stability, and robustness with respect to stability,
are two of the main concerns when designing feedback controllers whereas the fo-
cus when designing feedforward controllers is on performance.

For many process industry control applications, the PID controller is the stan-
dard controller. Apart from static feedforward, no default feedforward controller
exists. In the work presented in this thesis, the emphasis is on simple controllers, in
the sense that they have few parameters. This also allows us to derive tuning rules
from which the controller parameters can easily be calculated. More complex feed-
forward controllers could possibly give better performance but the aim has been
to provide tuning rules for controllers that are of comparable complexity with the
PID controller. These simple controllers can provide substantial improvements in
performance.

This chapter will review and serve as a summary of the results presented in
Paper III-V.

3.1 Feedforward Controllers

Consider the feedforward control structure in Figure 3.1. The objective is to design
the feedforward controller Fd(s) so that the effect of the disturbance d on the output
y is as small as possible. The transfer function from d to y is given by

Gyd(s) = Pd(s)−Pu(s)Fd(s), (3.1)
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Pu ΣΣ

Pd−Fd

u
y

d

Figure 3.1 Open-loop feedforward controller structure.

where Pu is the process model and Pd is the disturbance model. The controller

Fd(s) =
Pd(s)
Pu(s)

(3.2)

completely attenuates the disturbance. This will be referred to as the ideal feedfor-
ward controller. There are, however, a number of issues with this controller. The
controller is unstable if Pu has zeros in the right-half plane. The controller could
be nonrealizable if the time-delay in Pu is larger than that of Pd or if the number
of zeros is larger than the number of poles. Furthermore, even if the controller is
stable and realizable, the variations of the control signal u could be too large for
common disturbances. There is therefore more to the design of feedforward con-
trollers than simply inverting the process dynamics. The controller (3.2) is also, as
every open-loop control scheme, sensitive to variations in the process.

As mentioned above, feedforward control is often done in combination with
feedback, see Figure 3.2. The transfer function from the disturbance to the process

Pu ΣΣCΣ

Pd−Fd

−1

r
u

y

d

Figure 3.2 Classical feedback structure with feedforward from a measurable dis-
turbance.
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output is given by

Gyd =
Pd−PuFd

1+PuC
. (3.3)

The ideal feedforward controller (3.2) will completely reject the disturbance also
in closed-loop. Focus will therefore be on scenarios where the controller (3.2) is
nonrealizable. For such a feedforward controller, the feedback interconnection will
reduce the the sensitivity to process variations for frequencies where |S(iω)| < 1.
With the structure in Figure 3.2, the two controllers will interact and both act on the
disturbance. For a feedforward controller that is designed for optimal performance
in the open-loop setting, the interaction might have a severe impact on the overall
performance, usually with large overshoots as the result. If, on the other hand, the
feedforward controller is designed based on the closed-loop dynamics, the interac-
tion is taken into account. However, should the feedback controller be retuned, the
feedforward controller also needs to be retuned.

Tuning rules for low-order feedforward controllers using the conventional con-
troller structure have been presented in [Guzmán and Hägglund, 2011]. This work
has served as inspiration for the tuning methods presented in Paper III.

3.2 Disturbance Rejection

Feedback controllers are often designed to attenuate load disturbances. However,
the controller acts on the disturbances only when a control error arises and it could,
e.g., for robustness reasons, give a sluggish response. Attenuation of measurable
disturbances can be improved by the addition of a feedforward controller.

A structure that facilitates the tuning of the feedforward controller and decouple
the feedback and the feedforward controllers is shown in Figure 3.3 where a decou-
pling filter H(s) has been added. This is equivalent to the decoupling feedforward
structure presented in [Brosilow and Joseph, 2002]. The transfer function from d to
y is

Gyd =
Pd−PuFd +PuCH

1+PuC
. (3.4)

By choosing the decoupling filter as

H = Pd−PuFd , (3.5)

the transfer function becomes Gyd = Pd−PuFd , which is identical to the open-loop
transfer function (3.1). Thus, H provides a second degree of freedom that decou-
ples the feedback and feedforward controllers and allows design of the feedforward
controller to be done by only considering the open-loop structure in Figure 3.1. The
decoupling filter is not necessary if the ideal controller (3.2) is implemented but it
provides advantages when this cannot be done.

The decoupling filter subtracts the open-loop response of the measurable distur-
bance from the control error. To see what happens in the case of model errors let P̄d
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Figure 3.3 Decoupled feedback/feedforward structure.

and P̄u be approximate models of Pd and Pu, respectively. Furthermore, let Fd and H
be designed based on the approximate models, i.e.,

H = P̄d−FdP̄u. (3.6)

The transfer function from d to y is then given by

Gyd = S (Pd− P̄d−Fd (Pu− P̄u))+ P̄d−FdP̄u, (3.7)

where S is the sensitivity function. The transfer function is a sum of the expected
open-loop response and an additional term that governs the response due to the
model mismatch. If the model is perfect, i.e., P̄d = Pd and P̄u = Pu, the mismatch
term vanishes. For any robust, and reasonably designed feedback controller, S is
small for low frequencies and close to one for high frequencies. A model mismatch
in the low-frequency region will therefore have little impact on the closed-loop re-
sponse. This implies that the controllers will reject constant disturbances even if
the stationary gains of P̄u and P̄d are not equal to those of Pu and Pd , respectively.
For processes with small high-frequency gain, the impact of a mismatch at those
frequencies will also be negligible. However, care must be taken so that the models
capture the frequency characteristics in the mid-frequency region where the gains
of S, Pu and Pd are largest.

Design of low-order feedforward controllers using the decoupled controller
structure has also been addressed in [Rodrı́guez et al., 2013], where a number of
tuning rules for reducing IAE, ISE and overshoot are presented. Tuning rules for
optimal feedforward design for systems with right-half plane zeros, using the de-
coupling structure, has been addressed in [Rodrı́guez et al., 2014].

ISE minimizing controllers
The tuning rules presented in Paper III and IV are based on the structure in Fig-
ure 3.3, which allows design of the feedforward controller by considering the open-
loop transfer function (3.1).
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Let the processes be defined as

Pi(s) =
Ki

1+ sTi
e−Lis, (3.8)

where Pi denotes either the disturbance model Pd or the process model Pu with
corresponding parameters. The processes are assumed to be stable i.e., Td and Tu
are nonnegative. The low-order feedforward controller is given by

Fd(s) = Kff
1+ sTz

1+ sTp
e−sLff . (3.9)

This can be interpreted as a lead/lag filter with a time-delay, or as a filtered and time-
delayed PD controller. Inclusion of an integrator in the controller is not desired since
constant disturbances would cause the control signal to grow large over time. The
parameters are the static gain Kff, the filter time-constant Tp, the time-delay Lff and
the derivative time Tz.

For a unit-step disturbance the output, in time-domain, is given by

y(t) = L −1 ((Pd−FdPu)/s) (3.10)

where L −1 denotes the inverse Laplace operator.
The objective is to find the controller parameters that minimize ISE, defined in

(2.6). The optimal controller is the solution to the following optimization problem

minimize
∞∫

0

y(t)2dt

subject to Tp ≥ 0
Lff ≥ 0

(3.11)

where the constraints ensure that the controller is causal and stable. If the time-
delay of the disturbance model is greater than that of the process model, the optimal
controller is obtained from (3.2) as

Fd(s) =
Kd

Ku

1+ sTu

1+ sTd
e−s(Ld−Lu) (3.12)

for which (3.10) is zero regardless of the disturbance. The remainder of this section
will focus on the case where perfect disturbance rejection is not possible.

The derivation of the solution to the optimization problem is presented in Pa-
per III and the solution is simplified in Paper IV. The optimal static gain and time-
delay are easily derived and intuitively simple. For the open-loop response to con-
verge to zero, the optimal stationary gain must be the same as in the ideal case i.e.,

Kff =
Kd

Ku
. (3.13)
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The disturbance affects the output before any action from the controller can pass
through the dynamics of the process. Any additional time-delay in the controller
would only increase the ISE and

Lff = 0 (3.14)

is therefore the optimal choice. The optimal choice of the two remaining parameters
are conveniently expressed by the auxiliary parameters

a =
Tu

Tp
, and b = a(a+1)e

Lu−Ld
Td . (3.15)

Using these parameters, the optimal choice of the filter parameter is

Tp =


3a−1−b+(a−1)

√
1+4b

b−2
Td if b < 4a2 +2a or b < a+

√
a

0 otherwise.
(3.16)

The optimal choice of the derivative time is

Tz = (Tp +Tu)

(
1− 2Tu

b(Td +Tp)

)
(3.17)

where Tp corresponds to the optimal parameter from (3.16). The choice of Tp = 0
is optimal for certain processes but unfortunately such a controller is nonrealizable.
A remedy for this could be to choose a small Tp and then calculate Tz based on that
choice. Another approach that will be described in the next section is to add a filter,
which also reduces the sensitivity to measurement noise.

Practical considerations
The ISE optimal controller is derived assuming noise-free measurements and no
control-signal limitations, which of course is an idealized picture of reality. In an in-
dustrial setting, the measurements of the disturbances are likely corrupted by noise,
which the optimal controller can be sensitive to. Figure 3.4 shows a block diagram
where noise n is added to the measurement of the disturbance. High-frequency noise
can result in unwanted control activity that will increase the wear of the actuator. To
reduce the impact of such noise, the controller can be fitted with a low-pass filter.
In the work presented in Paper IV, it is proposed that the optimal controller is fitted
with a second order low-pass filter, i.e., the feedforward controller is given by

Fd(s) = Kff
1+ sTz

(1+ sTp)(1+ sTf )2 e−sLff . (3.18)

The filter time-constant of the low-pass filter Tf is tuned so that the controller has
satisfactory control signal characteristics. This sacrifices performance in favor of
noise suppression and reduced actuator wear. The order of the filter was chosen so
that the controller would have roll-off also for Tp = 0. A number of guidelines on
how to choose Tf are also presented in Paper IV, and they are summarized in this
section.
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Figure 3.4 Open-loop structure with additive noise on the measurements of the
disturbance.

Effects of control signal filtering Assuming that n is white noise, the variance of
the control signal u, with respect to the noise, is given by

var(u) =
K2

ff
4Tf

(
1+

T 2
z −T 2

p

(Tf +Tp)2

)
. (3.19)

The expression for the variance is equal to the integrated squared control signal

ISU =

∞∫
0

(
du(t)

dt

)2

dt (3.20)

for a unit-step in d. This is a measure of the control signal activity from which it
can be seen that increasing the filtering will give a smoother control signal. With the
low-pass filtered controller, the derivative of the control signal will be smaller than it
is with the optimal controller. Additive white noise corruption of the measurements
is of course an idealized assumption of the noise properties, but the expressions
(3.19) and (3.20) serve as good illustrations of how the filtering affects the properties
of the control signal.

Control signal peak For processes such that the optimal Tp is zero, the filtering is
necessary in order to get a realizable controller. From a control signal perspective
this can be seen as the worst-case since Tp > 0 provides an extra order of filtering.
For Tp = 0, a number of control-signal related measures can be analytically derived.
For a unit-step disturbance, the peak in the control signal will be

upeak =−Kff

(
1+

Tz−Tf

Tf
eTz/(Tf−Tz)

)
. (3.21)

Limiting the peak to be a factor ∆ of Kff, i.e.,

upeak =−Kff∆ (3.22)
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and solving for Tf gives

Tf =
Tz

1+
1

W0

(
e−1

∆−1

) (3.23)

where W0 is the principal branch of the Lambert W-function [Corless et al., 1996].

Controller gain reduction Limiting the peak of the controller signal and using
(3.23) to calculate a suitable filter time-constant is one design approach. Another is
to chose Tf so that

max
ω
|Fd(iω)|= λKff, λ > 1 (3.24)

and thereby limiting the largest frequency gain of the controller. The lower bound
on λ is introduced since the structure of the controller (3.18) does not allow the
maximum gain to be less than the stationary gain. The largest magnitude of the
frequency function has a peak, i.e., is larger than Kff for some frequencies, if Tz > Tp
and

0 < Tf < T̂f , (3.25)

where T̂f =

√
T 2

z −T 2
p

2 is the smallest filter time-constant for which maxω |Fd(iω)| ≥
Kff. For controllers with Tp = 0, an expression for how to choose Tf can be found
analytically whereas for Tp 6= 0 an approximate expression was derived in Paper IV.
The expressions for Tf are given by

Tf =


Tz√

2

√
1−
√

1− 1
λ 2 if Tp = 0

T̂f (1+λ )
2λ

√
1− 2λ (Tz−λTp)(Tz +Tp)

(1+λ )2T̂ 2
f

if Tp 6= 0.

(3.26)

Precompensation If Lu ≤ Ld , the ideal controller given in (3.12) inverts the sys-
tem dynamics and will completely attenuate any disturbance. However, this optimal
controller can also be sensitive to noise and have a large high-frequency gain, which
gives rise to aggressive actuation. The addition of a low-pass filter is therefore ad-
visable. To counteract the lag introduced by the filter the time-delay of the controller
can be adjusted so that the performance loss is small. Let the controller be given by
(3.18) and the time-delay in the controller be

Lff = Ld−Lu +δ (3.27)

where δ is a time-delay shift. Let y f (t) be the step-response obtained through (3.10)
and J f be the ISE obtained with this controller. Then J f is a convex function of δ
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since d2J f
dδ 2 ≥ 0. The optimal time-delay shift is thus given by the unique solution to

dJ f
dδ = 0, which is

δ ∗ = ln
(

2T 3
d (Td +Tz)

(Tf +Td)2(Tp +Td)(Tu +Td)

)
Td . (3.28)

For the nonfiltered controller, the optimal choice of parameters was Tp = Td and
Tz = Tu for which the optimal time-delay shift simplifies to

δ ∗ = 2ln
(

Td

Tf +Td

)
Td . (3.29)

The total time-delay (3.27) must be positive, which together with (3.29) gives an
upper bound

Tf ≤ Td

(
e(Ld−Lu)/2Td −1

)
(3.30)

on the time constant in the low-pass filter. This inequality states how much filtering
can be applied before the time delay in the controller is zero. Some of the perfor-
mance losses introduced by filtering can therefore be counteracted by reducing the
time-delay in the controller.

3.3 Set-Point Weighting

The control system should, apart from stabilizing and rejecting disturbances, also
track changes in the reference signal. A well-designed feedback controller can ac-
complish this, but to boost performance feedforward techniques should be applied.
In many available PID implementations, feedforward is included through set-point
weighting, which means that the reference is weighted in the P and D part of the
controller. In such a PID controller, the control signal is calculated as

u(t) = K

br(t)− y(t)+
1
Ti

t∫
0

e(t)dt +Td
d
dt

(cr(t)− y(t))

 (3.31)

where b and c are the set-point weights. Note that the standard PID controller (2.1)
is obtained for b = c = 1. By increasing the parameters, the controller will be more
aggressive when the reference changes and vice versa. A control system with the
control law (3.31) can be represented as depicted in Figure 3.5 where C(s) is the
transfer function of the standard PID controller defined in (2.2) and

Fr(s) = K
(
(b−1)+(c−1)Tds

)
(3.32)

is a feedforward controller related to the set-point weights.
A method for finding the optimal set-point weights is presented in Paper V. The

method is applied on a batch of processes to obtain tuning rules for how to tune the
b parameter. In this section, the method is described briefly and the tuning rules for
b are evaluated with PID controllers tuned using five different methods.
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Figure 3.5 Controller structure with feedforward from the reference to the control
signal.

Preliminaries
Given the system in Figure 3.5, the error and control signal are given by

E = S(1−PuFr)R (3.33)
U = S(C+Fr)R, (3.34)

respectively. The signals are affine in b and c since Fr is an affine function of the pa-
rameters. The time-domain signals, which can be calculated by the inverse Laplace
transformation of (3.33) and (3.34), can be expressed as

e(t) = e0(t)+Z(t)x (3.35)
u(t) = u0(t)+W (t)x, (3.36)

where x = [b c]T , Z(t) = L −1 (SPuKR [1 Tds]) and W (t) = L −1 (SKR [1 sTd ]).
The functions e0(t) and u0(t) denote the error and control signals for b = c = 0.

To be able to formulate a tractable optimization problem that can be solved by
a numerical solver, the time signals are sampled over a grid of N time instances. By
evaluating the functions (3.35) and (3.36) at the grid points, their sampled counter-
parts are obtained and given by

e = e0 +Zx (3.37)
u = u0 +Wx (3.38)

where e, e0, u and u0 are vectors of length N, and Z and W are N× 2 matrices.
These expressions allow formulations of a wide variety of optimization problems
where basically any convex function can be applied to e, u and be used to form cost
functions or constraints suitable for the application at hand. Examples of such for-
mulations include minimization of norms of the error with constraints on the mag-
nitude of the control signal. For convex optimization problems, a large number of
grid points can be used. The same method can be used for feedforward disturbance
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rejection and the control signal derivative could be derived in a similar fashion. This
is described in Paper V.

The method of expressing the error and control signals as linear functions of the
controller parameters and using that to formulate an optimization problem with a
quadratic cost function, which can be solved analytically, was presented in [Leva
and Bascetta, 2006].

Tuning rules for the proportional set-point weight
The method described in the previous section can be applied and tailored to fit
any process, provided that it is linear and time-invariant. However, an optimization
problem must be solved for every control loop in the plant. The aim has therefore
been to find simple tuning rules for the set-point weights that give close to optimal
performance.

For PI controllers, Td is zero and the derivative set-point c is therefore super-
fluous. For PID controllers, it was observed that the optimal c depended heavily on
the filtering of the derivative term. To avoid aggressive control action when the set-
point is changed, the parameter c is often set to zero [Åström and Hägglund, 2006].
Therefore, two rules for the proportional set-point weight has been developed, one
for PI control and another for PID control with c = 0.

The objective is to find the b that minimizes IAE for a given process Pu and
controller C, either a PI or PID with c = 0. The control error can be calculated by
(3.33)-(3.37) and used to formulate the optimization problem

minimize
b

‖e‖1 (3.39)

The AMIGO tuning rules [Åström and Hägglund, 2006] were derived by applying
the MIGO design method [Panagopoulos et al., 2002] on a large batch of processes.
Expressions that approximately described the optimal PID parameters in terms of
the parameters from a first-order time-delayed model were used to form the tuning
rules. Inspired by this work, (3.39) is solved for all processes in that batch and the
obtained optimal solutions will be used to derive tuning rules for b.

Tuning rules for the proportional set-point weight that reduces overshoot have
been presented in, e.g., [Chidambaram, 2000], where the analysis is restricted to
FOTD processes, and [Hang et al., 1991] where the rules are based on the product
of the steady-state gain and the ultimate gain. Tuning rules for b with the aim of
making the set-point response be that of a specified FOTD are presented in [Vi-
lanova, V. Alfaro, et al., 2012]. In [Taguchi and Araki, 2000] a batch of processes,
similar to the AMIGO batch, were used to derive separate tuning rules for all pro-
cess types.
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3.3 Set-Point Weighting

The AMIGO batch of processes. The batch used to derive the AMIGO tuning
rules is divided into the following nine process types

P1 :
e−s

1+ sT
, P4 :

1
(s+1)n , P7 :

T e−sL1

(1+ sT )(1+ sT1)
,

P2 :
e−s

(1+ sT )2 , P5 :
3
∏
i=0

1
(1+α is)

, P8 :
1−αs
(s+1)3 ,

P3 :
1

(s+1)(1+ sT )2 , P6 :
e−sL1

s(1+ sT1)
, P9 :

1
(s+1)((sT )2 +1.4sT +1)

where T , T1, L1, n and α take different values, adding up to 134 processes in total;
see [Åström and Hägglund, 2006] for a complete description of all the processes
used in the batch. The model orders range from one to eight and the batch includes
both integrating processes and processes with nonminimum phase-behavior. The
process types 1-7 have monotone step responses and 8-9 have an essentially mono-
tone step-response [Åström and Hägglund, 2006], which is defined as∫ ∞

0 g(t)dt∫ ∞
0 |g(t)|dt

> 0.8, (3.40)

where g(t) is the impulse response of the process.

Derivations of the tuning rules. The optimization problem (3.39) was solved for
all processes in the batch with a PI and PID controller tuned using the AMIGO
rules. The D-part is filtered with a first order low-pass filter with the time constant
Tf = 10−5 in order to obtain a proper PID controller. The optimal b parameters that
were obtained can be seen in Figure 3.6, where they are plotted against the product
of the proportional gain of the controller K and the static gain of the process P(0).
The integrating processes have infinite P(0) and are not plotted but are included
in the analysis. As can be seen in the figure, there is a clear trend that as KP(0)
increases, the optimal set-point weight decreases. Functions on the form

1
αKP(0)

+β (3.41)

were fitted to the data. The best fit for the PI case was α = 1.9 and β = 0.7. For
the integrating processes, the optimal b was approximately 0.745. Based on this and
favoring simplicity, the tuning rule for how to choose b for PI controllers is given
by

b∗PI =
1

2KP(0)
+0.75. (3.42)

For systems controlled by PID controllers, with c = 0, the best fit was obtained for
α = 2 and β = 0.55 and the tuning rule is given by

b∗PID =
1

2KP(0)
+0.55. (3.43)
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Figure 3.6 Optimal proportional set-point weights for all processes in the AMIGO
batch in blue and the tuning rules in red. The left plot shows the optimal b for PI
controllers and the right plot shows the parameter for PID controllers.

For a PID controller with a first order low-pass filter on the derivative term and
a unit step in the reference, the initial control signal will be

lim
t→0

u(t) = K
(
b+ cTd/Tf

)
(3.44)

where Tf is the filter time constant. The tuning rules for b are derived with either
Td or c equal to zero and hence, the initial control signal will be a factor b larger
compared with the default b = 1.

Allowing the b parameter to be larger than one could be perceived as unorthodox
and is in many cases not permitted in commercially available PID controllers [V. M.
Alfaro et al., 2010]. However, as reported in [V. M. Alfaro et al., 2009], it can be
needed in order to obtain good step-responses. For controllers where KP(0) is small,
a large b will decrease the IAE as will be shown in the next section.

Evaluation of the tuning rule
The tuning rules (3.42) and (3.43) were derived using PI(D) controllers tuned by
the AMIGO method. To evaluate how the tuning rules (3.42) and (3.43) influence
the performance and control signal activity, they are tested with PID controllers
tuned by four other methods. Two of the methods use FOTD models of the process
to calculate the PID parameters and two are optimization based methods. The next
sections briefly describes the feedback tuning methods.

Lambda tuning The first method is the well-known λ -method [Sell, 1995]. Based
on an FOTD model

Kp

1+ sT
e−sL (3.45)

48



3.3 Set-Point Weighting

of the process, the PI parameters are given by

K =
1

Kp

T
L+Tcl

Ti = T.
(3.47)

where Tcl is a design parameter that reflects the closed-loop time constant. The PID
parameters are given by

K =
1

Kp

L/2+T
L/2+Tcl

Ti = T +L/2

Td =
T L

L+2T
,

(3.49)

For all the processes in the batch, the closed-loop time constant is chosen as
Tcl = L+ T . This is a conservative choice, but the aim is to illustrate the effects
of the tuning rules for b rather than an evaluation of the lambda tuning method.
The integrating processes were excluded in the evaluation since the lambda tuning
method is based on FOTD models and hence does not provide PID parameters for
such processes.

SIMC The second method consists of variations of the SIMC tuning rules. For
processes that are not integrating, the PI controllers are tuned using the rules pre-
sented in [Skogestad and Grimholt, 2012] with the parameters given by

K =
1

Kp

L/3+T
L+Tcl

Ti = min{T +L/3, 4(Tcl +L)} .
(3.51)

The SIMC PID tuning rules based on FOTD models [Grimholt and Skogestad,
2015] are derived for PID controllers on serial or cascade form i.e.,

C(s) = K′
(

1+
1

sT ′i

)
(1+ sT ′d) (3.52)

with parameters given by

K′ =
1

Kp

T
L+Tcl

T ′i = min{T, 4(Tcl +L)}
T ′d = L/3.

(3.54)

These parameters were used for the nonintegrating processes in the batch. For the
integrating processes, type P6, the feedback controllers are tuned using the rule pre-
sented in [Skogestad, 2003]. The proportional and integral gains for both the PI and
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the PID controllers are given by

K′ =
1

Tcl +L
T ′i = 4(Tcl +L).

(3.56)

The derivative gain for the PID controllers is T ′d = T .
All PI and PID controllers were tuned with the same choice of Tcl as in the

Lambda method.

Convex-concave procedure The third method is the one presented in Paper I. PI
and PID controllers are obtained by solving an optimization problem that maximizes
integral gain subject to constraints on the maximum sensitivity functions. The op-
timization problem was formulated so that the obtained controllers gave maximum
sensitivities MS ≤ 1.4 and MT ≤ 1.4. It should be mentioned that for some processes
in the batch, the obtained controller gave oscillatory step responses. However, the
purpose of this section is to illustrate the benefits of using the set-point weighting
tuning rule and not to evaluate the feedback controller performances.

IAE optimal controllers The fourth method is the optimization based tuning pre-
sented in [Garpinger and Hägglund, 2008]. For each process, PI and PID controllers
are obtained by solving optimization problems with the objective of minimizing
IAE subject to constraints on the maximum sensitivities. The obtained controllers
have MS ≤ 1.4 and MT ≤ 1.4.

Results and summary of evaluation PI and PID feedback controllers were tuned
with each method for all processes in the batch. The performance, measured by the
IAE, defined in (2.4), with b chosen according to the tuning rules (3.42) and (3.43)
was then compared to the default value b = 1. The reference signal is a unit-step. In
order to verify that the control signals are not excessively amplified when using the
tuning rules, the control signal ratio

∆umax =
max

t
|ub=b∗(t)|

max
t
|ub=1(t)|

(3.57)

is calculated. The tuning rules are tested on 1320 control systems with an even split
of PI and PID feedback controllers.

The increase in performance for PI controllers can be seen in Figure 3.7. On
each box in the figure, the red mark is the median, the edges of the box are the 25th
and 75th percentiles and the whiskers extend to the most extreme data points. The
increase is as large as 45 % for controllers tuned with the AMIGO method. For 36
out of the 660 systems, the performance deteriorated when the tuning rule (3.42)
was used. The worst decrease in performance was a modest 0.5 %. The median
improvement was larger for the Lambda and SIMC methods than for the optimiza-
tion based methods. One reason for this is the conservative choice of the closed-loop
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Figure 3.7 Performance increase using the tuning rules (3.42) with PI controllers
tuned with five different methods. The performance is compared with the default
b = 1. In each box, the red mark is the median, the edges of the box are the 25th and
75th percentiles and the whiskers extend to the most extreme data points. CC de-
notes controllers obtained from the the convex-concave procedure and IAE denotes
controllers obtained from the IAE minimization.

time constant, Tcl = T +L, which implies that there is further room for improvement
compared to the optimization-based tuning methods.

The relative increase in control signal, ∆umax, can be seen in Figure 3.8.
The Lambda and SIMC method stand out with larger changes in ∆umax. This is
yet another result of the conservative tuning of the feedback controllers. For the
optimization-based design methods and the AMIGO method, the largest change in
control signal is within±25 %. This is to be considered a reasonable price to pay for
a possible 45 % increase in performance. For the controller tuned by the AMIGO
or optimization based techniques, approximately 25 % of the cases experienced a
decrease in the maximum control effort, but still achieved an improvement in per-
formance.

The performance increase and ∆umax for PID controllers, with c = 0, are shown
in Figure 3.9 and 3.10. As for the PI controllers, the increase in performance is up to
45 %. For 46 out of the 660 systems, the performance deteriorates when the tuning
rule (3.43) was used, with a worst case loss of 1.15 %. For the optimization-based
methods, approximately 75 % of the systems experienced a decrease in ∆umax.
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Figure 3.8 Increase in control signal peak when using the tuning rules (3.42) with
PI controllers tuned with five different methods. In each box, the central red mark is
the median, the edges of the box are the 25th and 75th percentiles and the whiskers
extend to the most extreme data points. CC denotes controllers obtained from the
the convex-concave procedure and IAE denotes controllers obtained from the IAE
minimization.

Extensions and variations
The method used for finding the optimal proportional set-point weight can be ex-
tended to any feedforward controller that is linear in the parameters i.e., the denom-
inator is fixed. Constraints on the control signal and its derivative could be included
in the optimization problem in which the cost functions and constraints could be
tailored with a vast number of possible formulations. The aim was to derive a sim-
ple tuning rule that provides a substantial increase in performance. The set-point
weights are often tuned so that there is no overshoot when doing step-changes in
the reference. Inclusion of this into the optimization problem is readily done since
such a constraint is convex in the set-point weights. Constraints that limit the con-
trol signal and its derivative could also easily be added. When deriving the tuning
rules, IAE was used as the performance measure, but any norm of the error (or
control signal) could have been used. The method could also be used for design of
feedforward controllers from measurable disturbances.

3.4 Contributions Overview

In Paper III, tuning rules that minimize the impact of measurable disturbances for
a system of FOTD processes are presented. The ISE-optimal controller is derived
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Figure 3.9 Performance increase using the tuning rules (3.43) with PID controllers
tuned with five different methods. The derivative set-point weight is c = 0. The per-
formance is compared with the default b= 1. In each box, the red mark is the median,
the edges of the box are the 25th and 75th percentiles and the whiskers extend to
the most extreme data points. CC denotes controllers obtained from the the convex-
concave procedure and IAE denotes controllers obtained from the IAE minimization.

for an open-loop setting and the optimal solution is used as a tuning rule. A con-
troller structure that decouples the feedforward and the feedback action allows not
only the controllers to be tuned individually, but also enables the open-loop optimal
controller to be used in closed-loop.

The optimal controller derived in Paper III can be sensitive to measurement
noise or not be realizable. In Paper IV, it is suggested that the optimal controller is
augmented with a second-order low-pass filter in order to cope with these deficien-
cies. Several guidelines and aspects regarding the choice of the filter time constant
are discussed. For controllers with time-delays, it was shown how to adjust the delay
when filtering is introduced.

In Paper V, it is shown how feedforward controllers that are linear in the param-
eters can be tuned by solving a convex optimization problem. Optimal proportional
set-point weights are obtained by solving an optimization problem in which IAE is
minimized for a large batch of processes. From the optimal parameters tuning rules
for PI and PID controllers were derived. The rule for PID controllers apply to con-
trollers with the derivative set-point weights equal to zero. The tuning rules were
evaluated on 1320 different systems with five different PI and PID tuning methods.
The evaluation shows that the tuning rules increase the performance by up to 45 %
with a modest increase in actuation.
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Figure 3.10 Increase in control signal peak when using the tuning rules (3.43) with
PID controllers tuned with five different methods. The derivative set-point weight is
c = 0. In each box, the central red mark is the median, the edges of the box are the
25th and 75th percentiles and the whiskers extend to the most extreme data points.
CC denotes controllers obtained from the the convex-concave procedure and IAE
denotes controllers obtained from the IAE minimization.
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4
Future Work

”The more you found, the less you’ve been around.”

— Josh Homme, The Bronze

The algorithm for design of SISO PID controllers presented in Paper I maximizes
the integral gain, which is equivalent to minimizing IE. Since this cost function does
not penalize oscillatory responses, it would be interesting to investigate if a similar
optimization routine could be used to minimize IAE instead. Especially when the
derivative term is used, it is known that the algorithm can produce controllers that
give oscillatory responses. Minimizing IAE the oscillations could be reduced and
thus the constraints of the curvature of the Nyquist curve could be removed.

The SISO design procedure is both fast and efficient and allows exploration
of controller behavior subject to different constraints. It would be interesting, and
straight-forward, to include constraints on the frequency function relating to the
impact of noise on the control signal. Along with this, it would be of use to in-
corporate the design of measurement filters. Since the PID design method is fast,
it could be used together with an iterative filter design, for instance the one pre-
sented in [Segovia et al., 2014], and thereby provide complete and useful controllers
with good disturbance attenuation. The method for finding good set-point weights
presented in Paper V could then be used to obtain a two-degree-of-freedom PID
controller with good reference tracking.

The design method for MIMO PID controllers could be used in a similar fashion
as its SISO counterpart. With an implementation that removes the relatively large
overhead when CVX parses the problem, the algorithm would be very fast, which
would allow for the same type of exploration as for the SISO PID. Additionally, the
method could be used to compare the achievable robustness and performance of dif-
ferent controller structures. This could be used to investigate when diagonal MIMO
controllers i.e., multiple SISO controllers, give comparable results to full structured
MIMO PID controllers. Furthermore, the impact of the structure of each element in
the MIMO PID controllers could be explored. Research related to the effects of, for
instance PD controllers in the off-diagonal elements, could be performed using the
presented method as a foundation.

It is much harder to design controllers for MIMO systems and it would therefore
be convenient to have tuning rules for these in the same way as for SISO systems.
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Developing such rules for a general MIMO plant is most definitely not tractable but
simple systems with two inputs and two outputs, where each element is a FOTD
model, could be a starting point. Another suggestion could be to use a batch of
different process types in order to develop tuning rules based on FOTD approxima-
tions. However, this would require that such a batch is available or is developed.

The two methods for PID tuning could be adapted so that the optimization prob-
lem is solved for a set of processes. This could be used to find a controller that
ensures robustness and has a reasonable performance for all the processes in the set.

An optimal controller is not necessarily the same as good a controller. This
is somewhat reflected in the ISE minimizing feedforward controller presented in
Paper III, which can be very aggressive. Some of that aggressiveness is counter-
acted by the filtering and considerations related to filtering that were presented in
Paper IV. When designing feedforward controllers, from both reference and distur-
bances, noise and the control signal activity should be taken into account. These
could be incorporated using the method presented in Paper V. Using a controller
structure for the disturbance attenuating feedforward controller, similar to set-point
weighting, these aspects could be investigated. The result would be simple feedfor-
ward controllers that have good noise rejection properties and reasonable actuation.

The work related to the tuning rules for the set-point weights have some apparent
next steps. Set-point weights are often tuned so that there is no overshoot in the step
response. Formulating and solving an optimization problem that minimizes IAE
with the constraints on the overshoot could be applied to the AMIGO batch. The
results could be used to formulate tuning rules that give small or no overshoot.

To find tuning rules for the derivative set-point weight c, the problem of how the
ideal PID controller should be filtered has to be solved first. For a specific process
with a given filtered PID controller, it is easy to find optimal set-point weights using
the method in Paper V but developing tuning rules in the general case is harder. It
was noticed during the work preceding that paper that the optimal c depends on the
both the type of filter and also on the time-constants of the filter.
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Tütüncü, R. H., K. C. Toh, and M. J. Todd (2003). “Solving semidefinite-quadratic-
linear programs using SDPT3”. Mathematical programming 95:2, pp. 189–217.

Vilanova, R., V. Alfaro, and O. Arrieta (2012). “Simple robust autotuning rules for
2-DoF PI controllers”. ISA transactions 51:1, pp. 30–41.

Vilanova, R. (2008). “IMC based robust PID design: tuning guidelines and auto-
matic tuning”. Journal of Process Control 18:1, pp. 61–70.

Vilanova, R. and A. Visioli (2012). PID Control in the Third Millennium: Lessons
Learned and New Approaches. Springer.

Wang, Q., B. Zou, T. Lee, and Q. Bi (1997). “Auto-tuning of multivariable PID
controllers from decentralized relay feedback”. Automatica 33:3, pp. 319–330.

60



Bibliography

Wood, R. and M. Berry (1973). “Terminal composition control of a binary distilla-
tion column”. Chemical Engineering Science 28:9, pp. 1707–1717.

Yuille, A. and A. Rangarajan (2003). “The concave-convex procedure”. Neural
Computation 15:4, pp. 915–936.

Zheng, F., Q.-G. Wang, and T. H. Lee (2002). “On the design of multivariable PID
controllers via LMI approach”. Automatica 38:3, pp. 517–526.

Zhou, K. and J. C. Doyle (1998). Essentials of robust control. Prentice-Hall.
Ziegler, J. and N. Nichols (1942). “Optimum settings for automatic controllers”.

Transactions of the A.S.M.E 5:11, pp. 759–768.

61





Paper I

PID Design by Convex-Concave
Optimization

Martin Hast Karl Johan Åström Bo Bernhardsson Stephen Boyd

Abstract

This paper describes how PID controllers can be designed by optimiz-
ing performance subject to robustness constraints. The optimization problem
is solved using convex-concave programming. The method admits general pro-
cess descriptions in terms of frequency response data and it can cope with many
different constraints. Examples are presented and some pitfalls in optimization
are discussed.

c© EUCA. Originally published in Proceedings European Control Conference,
pages 4460-4465, Zurich, July 2013. Reprinted with permission.
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1. Introduction

Controller design is a rich problem because it requires that many factors related to
performance and robustness are taken into account [Vilanova and Visioli, 2012].
Many features can be captured by formulating the design problem as a constrained
optimization problem [K. J. Åström and Hägglund, 2006; Garpinger, 2009; Karimi
and Galdos, 2010; Karimi, Kunze, et al., 2007; Panagopoulos et al., 2002; Sadegh-
pour et al., 2012].

Convex programming [Boyd and Vandenberghe, 2004] is a powerful optimiza-
tion technique, which has guaranteed convergence and efficient algorithms that have
been packaged in easy-to-use tools [Research, 2012; Grant and Boyd, 2008]. There
is a modification called convex-concave optimization which admits nonconvex cri-
teria and constraints [Boyd, 2013; Yuille and Rangarajan, 2003]. There is in general
no guarantee of convergence to a global minimum but the algorithms converge to a
saddle point or local minimum.

In this paper we will consider convex-concave programming for design of
PID controllers. Following the ideas in [K. J. Åström, Panagopoulos, et al., 1998;
Panagopoulos et al., 2002] we consider maximization of integral gain subject to
robustness constraints on the sensitivities and other constraints. Both disturbance
attenuation and response time are inversely proportional to integral gain. Uncon-
strained maximization of integral gain does not necessarily lead to good controllers
because the responses may be highly oscillatory.

PID controllers have been designed using optimization earlier with similar prob-
lem formulations [K. J. Åström and Hägglund, 2006; Garpinger, 2009; Panagopou-
los et al., 2002]. The proposed method is similar to M-constrained Integral Gain
Optimization, MIGO [Hägglund and K. Åström, 2002; Hägglund and K. Åström,
2004], but it admits more flexible constraints and the computations are simpler.
Similar approaches using linear programming can be found in [Karimi and Galdos,
2010; Karimi, Kunze, et al., 2007; Sadeghpour et al., 2012], and [Galdos et al.,
2010] for MIMO systems.

The advantages of convex-concave optimization are that the software package
CVX [Research, 2012; Grant and Boyd, 2008] allows for very compact programs,
and many different criteria and constraints can be accommodated. The technique
can also be extended to more complicated systems.

2. PID Design

Consider a closed loop system with PI or PID control. The process transfer function
is P(s), and controller transfer functions are

CPI(s) = kp +
ki

s
, CPID(s) = kp +

ki

s
+ kds,
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P(s) ΣΣΣΣC(s)ΣΣ

−1

ysp e u y

d n

Figure 1. Block diagram.

where kp, ki, and kd are the controller parameters. A block diagram of the system
is shown in Fig. 1. Measurement noise can be reduced by a second order filter with
the transfer function

G f (s) =
1

1+ sTf + s2T 2
f /2

, (1)

where Tf is the filter time constant. A first order filter may suffice for PI control but
a second order filter is required to ensure roll-off when derivative action is used; see
[K. J. Åström and Hägglund, 2006].

The combinations of the controllers and the filter transfer functions are denoted
by

C(s) =CPI(s)G f (s), C(s) =CPID(s)G f (s).

Using this representation ideal controllers can be designed for the augmented plant
P(s)G f (s).

A good controller should give a closed-loop system with a fast response to com-
mand signals ysp, load disturbances d should be well attenuated and measurement
noise should not generate too large control signals. In addition the closed-loop sys-
tem should be insensitive to variations in the dynamics of the process P(s).

Common criteria for control performance are the integrated error and the inte-
grated absolute error

IE =

∞∫
0

e(t)dt, IAE =

∞∫
0

|e(t)|dt,

where e is the control error due to a unit step load disturbance applied at the pro-
cess input or the process output or a unit step change in the command signal. The
quantities IE and IAE are good measures of load disturbance attenuation for con-
trollers with integral action. For systems that are well damped, the two criteria are
approximately the same. It can be shown [K. J. Åström and Hägglund, 2006] that

IE =
1
ki

(2)
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for a unit step disturbance and 1/(P(0)ki) for a set-point step. Minimizing IE does
not guarantee that the responses are satisfactory because the responses may be
highly oscillatory. Combined with robustness constraints, minimization of IE may,
however, give controllers with good properties [K. J. Åström and Hägglund, 2006].
That this is not always the case will be investigated in Example 4.

The sensitivity function and the complementary sensitivity functions are defined
as

S(s) =
1

1+L(s)
, T (s) =

L(s)
1+L(s)

(3)

where L(s) = P(s)C(s) is the loop transfer function. Robustness to process uncer-
tainty can be captured by constraints on the maximum sensitivities Ms and Mt

Ms = max
ω
|S(iω)| , Mt = max

ω
|T (iω)| . (4)

Such constraints have nice geometric interpretations in the Nyquist plot of the
loop transfer function. Requirements on the sensitivities mean that the Nyquist plot
is outside circles; see Figure 4.15 in [K. J. Åström and Hägglund, 2006]. Process
uncertainty can be represented by circles around the nominal loop transfer function.
These constraints are well captured by convex-concave programming as will be
shown in Sec. 4.1 and 4.2.

It is important that the control actions generated by measurement noise are not
too large. The fluctuations in the control signal can be computed from the transfer
functions of the process and the controller and a characterization of the measure-
ment noise, like its spectral density. Such detailed information is rarely available for
PI or PID control and we will therefore use simpler measures.

The transfer function from measurement noise n to controller output for the
closed loop system is

Gun(s) =C(s)S(s). (5)

The transfer function Gun can be characterized by its largest value

Mun = max
ω
|Gun(iω)| . (6)

To ensure that measurement noise does not generate too large control actions we
can introduce constraints on the transfer function Gun. For processes with P(0) 6= 0
and controllers with integral action we have Gun(0) = 1, and hence Mun ≥ 1.

An approximate expression for Mun is the high-frequency controller gain kd/Tf
where Tf is the parameter of the noise filter (1). The parameter Tf can be determined
as a compromise between noise injection and load disturbance attenuation. For a
given Tf the condition is then a constraint on the derivative gain kd which fits well
into convex-concave optimization.

The constraints on noise injection can also be dealt with in this framework, de-
sign of the filter time constant can be dealt with iteratively as described in [Romero
Segovia et al., 2013].
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3. Convex-concave Optimization

Convex-concave optimization [Boyd, 2013; Yuille and Rangarajan, 2003] is a pro-
cedure for problems where the optimization criterion and constraints are written as
a difference between two convex functions,

minimize f0(x)−g0(x)
subject to fi(x)−gi(x)≤ 0 i = 1, . . . ,m

where fi and gi are convex functions. This is not a convex problem since −gi is
concave. The convex functions are left unchanged and all concave functions are
replaced by linearizations around the current solution point xk, i.e., replace f (x)−
g(x) by

f̂ (x) = f (x)−g(xk)−∇g(xk)
T (x− xk). (7)

This convex approximation is an upper bound on the function being approximated.
It follows that the resulting convex constraints are more conservative than the orig-
inal: the feasible set will be a convex subset of the original feasible set. The new
problem can be solved efficiently to produce a new feasible point xk+1, and the
procedure is repeated. Since the approximation is conservative, the new iterate is
guaranteed to be feasible, and not to have larger objective value.

The iterative procedure converges to a saddle point or a local minimum [Yuille
and Rangarajan, 2003]. Even though there is no guarantee of convergence to a
global minimum, experience has shown the method to often be effective in pro-
ducing good solutions.

4. Optimization

The constraints presented in the following sections will be defined frequency-wise
and the considered optimization problems will have an infinite number of con-
straints. In order to obtain a tractable optimization problem, the problems are solved
over a grid of frequency points. Since the problem is convex, a large number of con-
straints can efficiently be handled and a fine grid can therefore be used.

Since the convex-concave procedure is iterative there is a need for an initial
controller. The initial controller needs to stabilize the system. For a stable plant it
will suffice to choose the initial controller parameters to be zero but care must be
taken if the process is open loop unstable; see Example 3.

The objective of the optimization is to minimize IE under robustness constraints.
From (2) it can easily be seen that minimizing IE is equivalent to

maximize ki. (8)
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4.1 Circle constraints
Consider a circle with center c and radius r. The constraint that the Nyquist plot
should lie outside the circle is equivalent to

r−|L− c|= r−g(α)≤ 0, (9)

where α =
(
kp ki kd

)T . The inequality constraint (9) is a convex-concave con-
straint since g(α) is a convex function. Using (7) on (9) we obtain

f̂ (α) = r−ℜ
(
(Lk− c)∗

|Lk− c| (L− c)
)
≤ 0

where ℜ and ∗, denotes the real part and complex conjugate respectively, and Lk, is
the open-loop transfer function with the controller parameters from the last iteration.

The classical robustness constraints given by the sensitivity functions imply that
L(iω) should be outside two circles with centres in cs =−1 and ct =−M2

t /(M
2
t −

1) and radii rs = 1/Ms and rt = Mt/(M2
t − 1) respectively; see [K. J. Åström and

Hägglund, 2006].

4.2 Process uncertainty
The robustness constraints can be generalized to settings with process uncertain-
ties. Consider a process P̃ with uncertainties such that for each frequency point the
Nyquist plot is known to lie within a circle with a frequency dependent, radius ρ ,
i.e.,

P̃(iω) = P(iω)+∆(iω), |∆(iω)| ≤ ρ(iω).

A constraint specifying that the Nyquist plot should lie outside a circle with centre
c and radius r is then

r−|PC+∆C− c| ≤ 0. (10)

Furthermore,

inf
|∆|≤ρ
{|1+PC+∆C|}= max(|1+PC|−ρ|C|,0)

where the equality follows from the triangle inequality and by choosing the mag-
nitude as |∆| = min

(
ρ, |1+PC|

|C|

)
and the phase as arg(∆) = arg(1+PC)− arg(C).

Hence, (10) can be formulated as

r−|L− c|+ρ|C| ≤ 0 (11)

for which the concave part can be approximated in the same way as the circle con-
straints.
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4.3 Curvature constraints
Minimization of IE may sometimes give Nyquist curves with very small curvature;
see Example 4. A constraint on the curvature can be expressed as a convex-concave
constraint. To obtain this constraint the loop transfer function is decomposed as
L(iω)= x(ω)+ iy(ω). Furthermore, let dots denote derivatives of the corresponding
variables with respect to ω . The curvature of L at a frequency point ω is then given
by

κ =
ẋÿ− ẏẍ

(ẋ2 + ẏ2)3/2 .

To avoid kinks in the Nyquist plot we introduce a constraint limiting its curvature
by γ . The constraint can then be formulated as ℑ(L̇∗L̈)− γ|L̇|3 ≤ 0, equivalent to

αT Qα− γ|Zα|3 ≤ 0 (12)

where Q is an indefinite, rank one matrix. Since Q is rank one, it has only one
eigenvalue different from zero, whose sign determines whether the matrix is posi-
tive semi-definite or negative semi-definite. Hence, the constraint given by (12) fits
nicely into the convex-concave framework and can be written as

αT Qpα−αT Qnα− γ|Zα|3 ≤ 0. (13)

where either Qp or Qn is zero and where the nonzero matrix is positive semi-definite.
Utilizing (7), a convex approximation of (13) is given by

f̂ (α) = αT Qpα +Akα +bk ≤ 0 (14)

Ak =−αT
k Qn−3γ|Zαk|αT

k ZHZ

bk = αkQnαk +2γ|Zαk|3

where H denotes the Hermitian transpose.

5. Examples

The proposed design method will be illustrated by four examples. The exam-
ples share some common features. In all examples the integral gain is maxi-
mized. The robustness constraints are Ms = Mt = 1.4 unless otherwise stated. A
grid of 1000 logarithmically spaced frequencies between ωmin = 10−2 [rad/s] and
ωmax = 102 [rad/s] is used in all examples. The initial controller parameters are zero
unless otherwise stated. For the examples provided, the optimization algorithm con-
verges to a solution within seven iterations excluding the optimization problem with
curvature constraints in Example 4, for which 11 iterations were needed.
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Example 1. Heat conduction
An advantage of the method is that it can be applied to processes where the transfer
function is only given as a frequency response or processes described by partial
differential equations. We illustrate with a simple example of a process representing
heat conduction where the process has the transfer function

P(s) = e−
√

s. (15)

Maximizing integral gain with constraints on the maximum values of the sensitiv-
ity functions using the convex-concave procedure gives the following PI and PID
controllers

CPI = 2.94+
11.54

s
, CPID(s) = 7.40+

48.25
s

+0.46s.

Some performance measures are given in Table 1. The Nyquist plots of the loop
transfer functions are shown in Fig. 2, red dashed lines for PI control and blue solid
lines for PID control. The unit step load disturbance responses are shown in Fig. 3.
Notice that IE is less than IAE because the responses are oscillatory. The criterion
IE does not penalize oscillatory responses, on the contrary, an oscillatory response
may give lower IE. The PID controller has significantly better performance than the
PI controller, which is not surprising because the process (15) has lag-dominated
dynamics.

−3 −2 −1

−3

−2

−1

ℜL(iω)

ℑL(iω)

Figure 2. Nyquist plots of the loop transfer functions for PI control (red dashed
lines) and PID control (blue solid lines) of the process P(s) = e−

√
s in Example 1.

The robustness constraints Ms = 1.4 and Mt = 1.4 are shown in red and black circles.
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Figure 3. Responses to a unit step load disturbances for PI (red dashed) and PID
control (blue solid) of the process P(s) = e−

√
s in Example 1.

Table 1. Controller parameters and performance measures for the system in Ex-
ample 1 and Example 2

Optimization ki IE IAE ymax

Ex. 1 PI 11.54 8.67e-2 9.98e-2 17.83e-2
Ex. 1 PID 48.25 2.07e-2 3.14e-2 8.84e-2

Ex. 2 PI 7.43 13.46e-2 14.92e-2 19.45e-2
Ex. 2 PID 26.81 3.73e-2 4.63e-2 10.57e-2

Example 2. Explicit Process Uncertainty
Process uncertainty can be accounted for explicitly as discussed in Sec. 4.2. To illus-
trate this we will consider the same system as in Example 1 but we will now assume
that the process transfer function has a relative uncertainty of 20%. Maximizing
integral gain with constraints on the maximum values of the sensitivity functions
using the convex-concave procedure gives the following PI and PID controllers

CPI = 2.37+
7.43

s
, CPID = 5.74+

26.81
s

+0.36s.

Some performance measures are given in Table 1. The Nyquist plots of the loop
transfer functions are shown in Fig. 4, red dashed lines for PI control and blue solid
lines for PID control. The unit step load disturbance responses are shown in Fig. 5.

Comparing the Nyquist plots in Fig. 2 and Fig. 4 we can see that adding un-
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Figure 4. Nyquist plots of the loop transfer functions for PI control (red dashed
lines) and PID control (blue solid lines) of the process P(s) = e−

√
s with 20% relative

uncertainty in Example 2. The robustness constraints Ms = 1.4 and Mt = 1.4 are
shown in red and black circles.
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Figure 5. Responses to a unit step load disturbances for PI (red dashed) and PID
control (blue solid) of the process P(s) = e−

√
s with 20% relative uncertainty in

Example 2.

certainties in the process model moves the Nyquist curve further away from the
robustness circles in such a way that the robustness constraints are satisfied for all
uncertainties in the uncertainty set. The resulting controllers obtained for the uncer-
tain processes are less aggressive, the time responses are more sluggish and hence,
the performance measures deteriorate compared with the controllers obtained in
Example 1.
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Example 3. Unstable Process
For unstable processes it is necessary to choose the initial controller parameters
so that the loop transfer functions has the correct winding number. If the initial
controller stabilizes the plant and satisfies the constraints, the winding number is
preserved in the iterations if the frequency points are sufficiently dense.

To illustrate this consider PI control of an unstable process with the transfer
function

P(s) =
1

(s−1)(1+0.1s)
.

The initial stabilizing controller is chosen as C0(s) = 6+ 1
s . This controller gives a

loop transfer function that satisfies the encirclement condition and the constraints
on the sensitivity functions as is shown in Fig. 6. The integrated error with the initial
controller is IE0 = 1. Maximizing integral gain with constraints on the maximum
values of the sensitivity functions using the convex-concave procedure gives the PI
controller

CPI(s) = 4.67+
1.76

s

with IE = 0.57. Responses of the closed-loop system to a unit load disturbance at
the process input are shown in Fig. 7. The responses are well damped and, hence,
IE is equal to IAE. The Nyquist plots for the loop transfer functions can be seen in
Fig. 6.

−6 −5 −4 −3 −2 −1
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Figure 6. Nyquist plots of the loop transfer functions for PI control of the unstable

process P(s) =
1

(s−1)(0.1s+1)
in Example 3. The robustness constraints Ms = 1.4

and Mt = 1.4 are shown in red and black circle respectively. The loop transfer func-
tion corresponding to the initial controller parameters kp = 6 and ki = 1 are shown
in dashed curve. The loop transfer function corresponding to the optimal controller
parameters kp = 4.67 and ki = 1.76 are shown in solid curves.
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Figure 7. Responses to a unit step load disturbances for PI control of the unstable

system P(s) =
1

(s−1)(1+0.1s)
in Example 3. The responses corresponding to the

initial controller parameters kp = 6 and ki = 1 are shown in dashed curves. The
responses corresponding to the optimal controller parameters kp = 4.67 and ki = 1.76
are shown in solid curve

Example 4. Nyquist plots with kinks
The previous examples show that minimization of IE subject to robustness con-
straints give controllers with good properties. However, minimizing IE does not,
in general, guarantee well-behaved closed loop system; see [K. J. Åström and
Hägglund, 2006]. The reason is that minimization of IE may result in closed loop
systems with poorly damped oscillations. Intuitively we may expect that the ten-
dency for oscillatory responses is counteracted by the robustness constraint. The
following example shows that difficulties may indeed occur. Consider a process
with the transfer function

P(s) =
1

(s+1)3 . (16)

Assuming that we only impose a constraint on the sensitivity function, maximizing
integral gain using the convex-concave procedure gives the PID controller

CIE(s) = 3.31+
6.62

s
+6.26s. (17)

The poles for the closed-loop system are located in s=−1.25±1.73i,−0.25±0.87i
which suggests that the step responses will be poorly damped. The blue curve in
Fig. 8 shows that the Nyquist plot of the loop transfer function has a kink and the
corresponding time responses in Fig. 9 are highly oscillatory. This behaviour is
counter-intuitive because we may expect that strong robustness constraints may in-
duce closed loop systems with good damping. This is indeed the case for PI control
but not for PID control [K. J. Åström, Panagopoulos, et al., 1998; Panagopoulos
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Figure 8. Nyquist plots of the loop transfer functions for PID control of the process
P(s) = (s+1)−3 in Example 4. All curves are obtained from optimization problems
where the sensitivity constraint was Ms = 1.4. The blue curve is obtained with no
additional constraints. The green curve is obtained with the additional constraint
kd ≤ 3.82. The red curve is obtained with the additional constraint that the curvature
of the Nyquist plot is less than Ms. The cyan curve is obtained by minimizing IAE
using the algorithm in [Garpinger and Hägglund, 2008].

et al., 2002]. The kink will be a little smaller with tighter robustness constraints
but it remains even if we require that sensitivities are less than 1.1. The problem is
discussed in [K. J. Åström and Hägglund, 2006] where it is labelled the derivative
cliff ; see Figure 6.24 in [K. J. Åström and Hägglund, 2006]. The problem can be
avoided in several different ways, one way is to change the criterion to IAE; see
[Garpinger and Hägglund, 2008]. Another is to constrain the optimization so that
the edges are avoided. In the MIGO design the edges are avoided by restricting the
derivative gain. Other attempts to constrain the controller have also been proposed,
the derivative gain has been restricted to the largest gain of a PD controller that
maximizes proportional gain [K. J. Åström and Hägglund, 2006] and the constraint
Ti = 4Td is proposed in [Wallén et al., 2002]. When using convex-concave optimiza-
tion the problem can be avoided by introducing a curvature constraint on the loop
transfer function.

The Nyquist plots in Fig. 8 and the time responses in Fig. 9 also show results
for two modified controllers. The green curve shows a PID controller where the
derivative gain is restricted to the derivative gain of a PD controller that maximizes
proportional gain with the robustness constraint. The red curve shows results where
the curvature of L(iω) is restricted to Ms.

Controller parameters and performance criteria are summarized in Table 2. It is
clear that the controller obtained by minimizing IE subject to robustness constraints
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Figure 9. Responses to unit step load disturbances for the process P(s) = (s +
1)−3 in Example 4. All curves are obtained from optimization problems where the
sensitivity constraint was Ms = 1.4. The blue curve is obtained with no additional
constraints. The green curve is obtained with the additional constraint kd ≤ 3.82.
The red curve is obtained with the additional constraint that the curvature of the
Nyquist plot is less than Ms. The cyan curve is obtained by minimizing IAE using
the algorithm in [Garpinger and Hägglund, 2008].

Table 2. Controller parameters and performance measures for the systems Exam-
ple 4.

Optimization kp ki kd IE IAE ymax

IE-min. 3.31 6.62 6.26 0.15 0.74 0.126
kd-limit 3.71 4.49 3.82 0.22 0.61 0.161
κ-limit 3.61 3.20 3.34 0.31 0.57 0.178
IAE-min. 3.81 3.33 4.25 0.30 0.53 0.159

gives oscillatory and unsatisfactory behaviour. By limiting the derivative part the
oscillations are damped and IAE is reduced. The drawback with this approach is
that two optimizations need to be performed. However, the performance, in terms
of IAE, is better for the controller obtained by limiting the curvature of the Nyquist
plot. The approach in which the curvature is limited, renders a controller whose
performance is close to the controller obtained using the algorithms from [Garpinger
and Hägglund, 2008] which minimizes IAE subject to constraints on the sensitivity
functions.
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6. Conclusions

We have shown that design of PID controllers can be captured in a format that
is well suited for convex-concave optimization. The criterion is to minimize IE or
equivalently to maximize integral gain subject to robustness constraints. To avoid
oscillatory responses we have also introduced a constraint on the curvature of the
Nyquist curve of the loop transfer function. The optimization problems are conve-
niently solved using CVX, the code is very compact and additional convex-concave
constraints can be included.

Since the PID controller only has three parameters the design problem can be
solved by gridding. This approach [Nordfeldt and Hägglund, 2005] has the advan-
tage that any criteria and constraints can be used. However, the complexity of grid-
ding increases dramatically with the number of controller parameters. Convex op-
timization does not suffer from this difficulty and it can therefore also be applied
to other controller structures such as multi-variable PID or fixed higher-order con-
trollers.
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Åström, K. J., H. Panagopoulos, and T. Hägglund (1998). “Design of PI controllers
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Paper II

MIMO PID Tuning via Iterated LMI
Restriction

Stephen Boyd Martin Hast Karl Johan Åström

Abstract

We formulate multi-input multi-output (MIMO) proportional-integral-
derivative (PID) controller design as an optimization problem that involves
nonconvex quadratic matrix inequalities. We propose a simple method that re-
places the nonconvex matrix inequalities with a linear matrix inequality (LMI)
restriction, and iterates to convergence. This method can be interpreted as a ma-
trix extension of the convex-concave procedure, or as a particular majorization-
minimization (MM) method. Convergence to a local minimum can be guaran-
teed. While we do not know that the resulting controller is globally optimal,
the method works well in practice, and provides a simple automated method
for tuning MIMO PID controllers. The method is readily extended in many
ways, for example to the design of more complex, structured controllers.

Submitted to the International Journal of Robust and Nonlinear Control.
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1. Introduction

Single-input single-output (SISO) proportional-integral-derivative (PID) control is
the automatic control scheme most widely used in practice, with a long history go-
ing back at least 250 years; see [Åström and Hägglund, 2006, §1.4]. It has only three
parameters to tune, and achieves reasonable or good performance on a wide variety
of plants. The effect of the tuning parameters (or gains) on the closed-loop perfor-
mance are well understood, and there are well known simple rules for tuning these
parameters; see, e.g., [Åström and Hägglund, 2006, Chap. 6] or [Luyben, 1986].
Systems for automatically tuning SISO PID controllers have been developed, and
are available in commercial controllers [Åström and Hägglund, 2006; Garpinger
and Hägglund, 2008; Garpinger, Hägglund, and Åström, 2012; Vilanova and Vi-
sioli, 2012]. The authors of this paper recently developed yet another SISO PID
tuning method in [Hast et al., 2013], which is a precursor for the method described
in this paper.

SISO PID controllers have been used for multiple-input multiple-output
(MIMO) plants for many years. This is generally done by pairing inputs (actua-
tors) and outputs (sensors), and connecting them with SISO PID controllers. These
SISO PID controllers can be tuned one at a time (in ‘successive loop closure’) using
standard SISO PID tuning rules. For MIMO plants that are already reasonably well
decoupled, multi-loop SISO PID design can work well. Unlike SISO PID design,
however, MIMO PID design is more complex; the SISO loops have to be chosen
carefully, and then tuned the correct way in the correct order.

An alternative to multi-loop SISO PID control is to design one MIMO PID con-
troller, which uses matrix coefficients, all at once. Such a controller potentially uses
all sensors to drive all actuators, but it is possible to specify a simpler structure by
imposing a sparsity constraint on the controller gain matrices. Like SISO PID con-
trollers for SISO plants, MIMO PID controllers can achieve very good performance
on a wide variety of MIMO plants, even when the plant dynamics are quite coupled.
The challenge is in tuning MIMO PID controllers, which require the specification
of three matrices, each with a number of entries equal to the number of plant in-
puts times the number of plant outputs. For example, a MIMO PID controller for a
plant with 4 inputs and 4 outputs requires the specification of up to 48 parameters.
This would be very difficult, if not impossible, to tune by hand one parameter at a
time. Hand tuning a MIMO PID controller with 10 inputs and 10 outputs would be
impossible in practice.

In this paper we describe a method for designing MIMO PID controllers.
The method is based on solving a small number of convex optimization prob-
lems, specifically semidefinite programs (SDPs), which can be done efficiently.
Our method is a local optimization method, and we cannot guarantee that it finds
the globally optimal controller parameter values. On many examples, however, the
method seems to work very well.

We first describe a basic form for the method. We impose constraints on the sen-

80



2 Model and Assumptions

sitivity and complementary sensitivity transfer functions, which guarantees closed-
loop stability and a MIMO stability margin, and also a limit on actuator effort. The
objective is to minimize the low-frequency sensitivity of the closed-loop system,
which is a MIMO analog of maximizing the integral gain in the SISO case. In a
later section we describe a number of generalizations of the method.

There is an enormous literature on automated SISO PID tuning, and a very large
literature on MIMO PID tuning (see, e.g., [Åström, Panagopoulos, et al., 1998] and
its references, or [Panagopoulos et al., 2002; Saeki, Kashiwagi, et al., 2007]) in-
cluding some methods that are very close to the one we describe, and others that
are close in spirit. We give a more detailed technical analysis of other methods in
§6.4, after describing the details of our method. But we mention here some ear-
lier work that is very closely related to ours. In [C. Lin et al., 2004], the authors
also form a linear matrix inequality (LMI) based restriction of a problem with non-
convex quadratic matrix inequalities, and iterates to convergence. Another previous
work that is close in spirit to ours is [Bianchi et al., 2008], which formulates the
design problem as one involving bilinear matrix inequalities (BMIs), which are in
turn solved (approximately) by iteratively solving a set of SDPs. (The connection
between our method and BMI formulations will be discussed in §6.4.) The closest
prior work appears in [Saeki, Ogawa, et al., 2010], which takes a very similar ap-
proach to ours. The authors consider MIMO PID design, using frequency-domain
specifications, and their algorithm involves LMI restrictions of nonconvex matrix
inequalities, as our method does. We will discuss some of the differences in §6.4.

2. Model and Assumptions

2.1 Plant
The linear time-invariant plant has m inputs (actuators) and p outputs (sensors), and
is given by its transfer function P(s) ∈ Cp×m, or more specifically by its frequency
response P(iω), for ω ∈ R+. We do not assume that P is rational; it can, for exam-
ple, include transport delay. We assume that the entries of the plant input u(t) ∈Rm

are measured in appropriate units (or scaled), so their sizes are (roughly) the same
order. We make the same assumption about the plant output y(t) ∈ Rp. These as-
sumptions justify the use of the (unweighted) `2-norm to measure the actuator effort
and deviation of the plant outputs from the reference signal, and more generally, it
justifies the use of (unweighted) matrix norms to measure closed-loop gains.

We make several assumptions about the plant. We assume that p≤m, i.e., there
are at least as many actuators as plant outputs, and that P(0) is full rank. This makes
it possible to achieve perfect reference tracking at DC (s = 0). We will also assume
that the plant is stable and strictly proper, i.e., P(s)→ 0 as s→ ∞. Most of our
assumptions can be relaxed or extended to more general settings, but our goal is to
keep the ideas simple for now. We will discuss various ways these assumptions can
be relaxed in §7.
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Figure 1. Classical feedback interconnection.

2.2 PID controller
The controller is a proportional-integral-derivative (PID) controller, given by

C(s) = KP +
1
s

KI +
s

1+ τs
KD,

where KP,KI,KD ∈ Rm×p are the proportional gain matrix, integral gain matrix,
and derivative gain matrix, respectively. The 3mp entries in these matrices are the
design parameters we are to choose. The constant τ > 0 is the derivative action time
constant, and is assumed to be fixed and responsibly chosen, for example, a modest
fraction of the desired closed-loop response time.

The plant and controller are connected in the classical loop shown in figure 1,
described by the equations

e = r− y, u =Ce, y = P(u+d),

where r is the reference input, e is the error, and d is an input-referred plant distur-
bance. The signals u and y are the plant input and output, respectively.

2.3 Closed-loop transfer functions
We will be interested in several closed-loop transfer functions that we describe here.

Sensitivity. The transfer function from reference input r to error e is the sensitiv-
ity S = (I +PC)−1. The size of S gives a measure of the tracking error; for low fre-
quencies S should be small. When S(0) = 0 (a constraint we will impose), we have
perfect static tracking. The maximum size of S, which occurs near the crossover
frequency, is closely related to closed-loop damping and system stability.

Q-parameter. The transfer function from r to u is denoted Q, defined as Q =
C(I +PC)−1. Its size is a measure of the actuator effort. (We use Q to match the
notation often used in Youla’s parametrization of closed-loop transfer functions;
see [Boyd and Barratt, 1991].)

82



3 Design Problem

Complementary sensitivity function. The complementary sensitivity function is
T = PC(I +PC)−1. It is the closed-loop transfer function from r to y. It is near the
identity for low frequencies, and will be small for high frequencies; its maximum
size is also related to closed-loop damping.

These three closed-loop transfer functions are sufficient to guarantee a sensible
controller design (since P is assumed stable). They are related in various ways; for
example, we have

S+T = I, T = PQ, Q =CS.

Other closed-loop transfer functions. Several other closed-loop transfer func-
tions can also be considered. For example, the closed-loop transfer function from
the plant disturbance d to the tracking error e is R =−(I +PC)−1P. It will be clear
how our approach extends to other transfer functions.

2.4 Notation
For a complex matrix Z ∈ Cp×q, Z∗ is its (Hermitian) conjugate transpose, ‖Z‖
denotes the spectral norm, i.e., the maximum singular value. For full rank Z, we let
σmin(Z) denote its minimum singular value. A square matrix is Hermitian if Z = Z∗.
Between Hermitian matrices the symbol � 0 is used to denote matrix inequality, so
Z � 0 means that Z is Hermitian and positive semidefinite. We use the notation
Z−∗ = (Z∗)−1.

For a p×q transfer function H, ‖H‖∞ is its H∞-norm, ‖H‖∞ = supℜs≥0 ‖H(s)‖,
which can be expressed as

‖H‖∞ = sup
ω≥0
‖H(iω)‖

when H is stable (i.e., H ∈Hp×q
∞ ).

3. Design Problem

3.1 Objective and constraints
Sensitivity and complementary sensitivity peaking. We require ‖S‖∞ ≤ Smax,
where Smax > 1. Reasonable values of Smax are in the range 1.1 to 1.6; lower values
give a more damped closed-loop system. This constraint ensures closed-loop sta-
bility. We also require ‖T‖∞ ≤ Tmax, with Tmax > 1. Reasonable values of Tmax are
similar to those for Smax.

Static and low frequency sensitivity. Assuming that P(0)KI is nonsingular, we
have S(0) = 0, which means that we have zero error for constant reference signals.
The next term in the expansion of the sensitivity near s= 0 is S(s)≈ s(P(0)KI)

−1 for
|s| small. Our objective will be to attain the best possible low-frequency sensitivity,
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which means we will minimize ‖(P(0)KI)
−1‖. This objective indirectly imposes

the condition that we achieve perfect tracking since when it is finite we have P(0)KI
nonsingular.

Actuator authority limit. We require that ‖Q‖∞ ≤ Qmax. This sets a maximum
value for the size of the closed-loop actuator signal in response to the reference
signal. Since the plant is stable, this constraint ensures that the closed-loop system
is stable; see [Boyd and Barratt, 1991].

We can determine a reasonable value for Qmax as follows. Any controller that
has a finite objective value (i.e., achieves perfect reference tracking at s= 0) satisfies
T (0) = I = P(0)Q(0); this has the simple interpretation that at s = 0, the controller
inverts the plant. It follows that ‖Q(0)‖ ≥ 1/σmin(P(0)), from which we conclude
‖Q‖∞ ≥ 1/σmin(P(0)). Thus we must have Qmax ≥ 1/σmin(P(0)). The righthand
side can be interpreted as the minimum actuator effort (measured by ‖Q‖∞) required
to achieve static tracking. A reasonable value for Qmax is therefore a modest multiple
of 1/σmin(P(0)), say, three to ten.

Design problem. Putting it all together we obtain the problem

minimize ‖(P(0)KI)
−1‖

subject to ‖S‖∞ ≤ Smax,
‖T‖∞ ≤ Tmax,
‖Q‖∞ ≤ Qmax.

(1)

The variables to be chosen are the coefficient matrices KP,KI,KD; the problem data
are the plant transfer function P, the controller derivative time constant τ , and the
design parameters Smax, Tmax, and Qmax. This problem is not convex. Note that the
objective contains the implied constraint that P(0)KI is invertible, which implies
that perfect static tracking is achieved for constant reference inputs.

3.2 Sampling semi-infinite constraints
The constraints on the closed-loop transfer functions can be expressed as, for exam-
ple,

‖S(iω)‖ ≤ Smax, ∀ω ≥ 0.

This is a so-called semi-infinite constraint, since it consists of an infinite number of
constraints, one for each ω ≥ 0. Semi-infinite constraints such as these (with one
parameter, ω) are readily handled by choosing a reasonable finite (but large) set of
frequency samples 0 < ω1 < · · · < ωK , and replacing the semi-infinite constraints
with the finite set of constraints at each of the given frequencies. For example, we
replace the constraint ‖S‖∞ ≤ Smax with ‖S(iωk)‖ ≤ Smax, k = 1, . . . ,N. Our opti-
mization method has a computational complexity that grows linearly with N, so we
can choose a large enough value of N (say, several hundred or more) that this sam-
pling has no practical effect. By ‘reasonable’ we mean that the frequency sampling
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is fine enough to catch any rapid changes in the closed-loop transfer function with
frequency, and also cover an appropriate range; in particular, we assume that at ω1
and ωN the transfer functions are near their asymptotic values,

S(0) = 0, T (0) = I, Q(0) = KI(P(0)KI)
−1,

and
S(∞) = I, T (∞) = 0, Q(∞) = KP +(1/τ)KD,

respectively.
We will use subscripts to denote a transfer function evaluated at the frequency

s = iωk. For example, Pk = P(iωk), which is a (given) complex matrix. Note that the
quantity Ck = C(iωk) is a complex matrix, and is an affine function of the design
variables KP,KP,KD.

The sampled problem is then

minimize ‖(P(0)KI)
−1‖

subject to ‖Sk‖ ≤ Smax,
‖Tk‖ ≤ Tmax,
‖Qk‖ ≤ Qmax,

k = 1, . . . ,N.

(2)

This problem has 3N constraints, each of which has the form of a matrix norm
inequality. The arguments of the matrix norm inequalities, however, are complex
functions of the design variables KP,KI,KD, given by the various formulas for the
closed-loop transfer functions.

4. Quadratic Matrix Inequality Form

In this section we show how the (frequency sampled) design problem (2) can be cast
in a simple form in which every constraint has the same quadratic matrix inequality
(QMI) form

Z∗Z � Y ∗Y, (3)

where both Z and Y are affine functions of the variables.
We start with the objective. First we note that we can just as well maximize

σmin(P(0)KI) = 1/‖(P(0)KI)
−1‖. We introduce a new scalar variable t, which we

maximize subject to σmin(P(0)KI) ≥ t. (This is the standard epigraph transforma-
tion; see [Boyd and Vandenberghe, 2004, §4.2.4].) We then observe that

σmin(P(0)KI)≥ t⇔ (P(0)KI)
∗(P(0)KI)� t2I,

which has the form (3) with Z = P(0)KI and Y = tI, both of which are affine func-
tions of the variables.
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Now consider the sensitivity peaking limit ‖Sk‖ ≤ Smax. As above, we have

‖Sk‖ ≤ Smax ⇔ (I +PkCk)
−∗(I +PkCk)

−1 � S2
maxI

⇔ (I +PkCk)
∗(I +PkCk)� (1/S2

max)I,

where in the second line we have multiplied the left and right sides by (I +PkCk)
∗

and by (I +PkCk), respectively. This has the QMI form (3) with Z = I +PkCk and
Y = (1/Smax)I.

For the complementary sensitivity constraint ‖Tk‖ ≤ Tmax, we have

‖Tk‖ ≤ Tmax ⇔ (I +P∗k C∗k )
−1C∗k P∗k PkC(I +PkCk)

−1 � T 2
maxI

⇔ (I +PkCk)
∗(I +PkCk)� (1/T 2

max)(PkCk)
∗(PkCk).

This has the QMI form (3) with Z = I +PkCk and Y = (1/Tmax)PkCk.
In a similar way we have

‖Qk‖ ≤ Qmax⇔ (I +PkCk)
∗(I +PkCk)� (1/Q2

max)C
∗
kCk,

which has QMI form with Z = I +PkCk and Y = (1/Qmax)Ck.
We arrive at a problem with the form

maximize t
subject to Z∗k Zk � Y ∗k Yk, k = 1, . . . ,M,

(4)

with variables t, KP,KI,KD. (Here we have M = 3N +1.) This is the PID controller
design problem in QMI form.

5. Linear Matrix Inequality Restriction

We first show how to form a (convex) linear matrix inequality (LMI) restriction for
the QMI Z∗Z �Y ∗Y . (See [Boyd, El Ghaoui, et al., 1994] for background on matrix
inequalities.) The QMI is already convex in Y , so we can focus on Z. We start with
the simple matrix inequality

0� (Z− Z̃)∗(Z− Z̃) = Z∗Z−Z∗Z̃− Z̃∗Z + Z̃∗Z̃,

valid for any matrices Z and Z̃. Re-arranging we get

Z∗Z � Z∗Z̃ + Z̃∗Z− Z̃∗Z̃.

The lefthand side is a quadratic function of Z; the righthand side is an affine function
of Z. It follows that the matrix inequality

Z∗Z̃ + Z̃∗Z− Z̃∗Z̃ � Y ∗Y,
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× z̃ = z×z̃ = z

Figure 2. LMI restriction (shown in red) of QMI (shown in blue) for simple case
when Z and Y are scalar and real.

which is convex in (Z,Y ), implies Z∗Z � Y ∗Y ; that is, it is a convex restriction of
the QMI. We can write this convex quadratic matrix inequality as an LMI[

Z∗Z̃ + Z̃∗Z− Z̃∗Z̃ Y ∗

Y I

]
� 0. (5)

(Here Z and Y are the variables; Z̃ is an arbitrary matrix.) For any matrix Z̃, the
LMI (5) implies the QMI Z∗Z � Y ∗Y . We call it the LMI restriction of the QMI,
obtained at the point Z̃.

The LMI restriction of the QMI is illustrated in figure 2, for the simple case of
real scalar Z and Y . In this case the QMI is z2 ≥ y2, which gives the two lightly
shaded cones in the figure, with blue boundary. The LMI restriction at z̃ is given
by 2z̃z− z̃2 ≥ y2, shown as the shaded region bounded by the parabola, with red
boundary. The two boundaries touch at the point where z = z̃.

Now consider the QMI form PID controller design problem (4). Given any ma-
trices Z̃1, . . . , Z̃M , we can form the LMI restricted problem

maximize t

subject to
[

Z∗k Z̃k + Z̃∗k Zk− Z̃∗k Z̃k Y ∗k
Yk I

]
� 0, k = 1, . . . ,M.

(6)

This problem has linear objective and LMI constraints, and so is a semidefinite
program (SDP) [Vandenberghe and Boyd, 1996]. It is readily solved (globally).
Note that any solution of the LMI restriction is feasible for the QMI problem. The
LMI restriction, however, need not be feasible; this depends on the choice of Z̃k.

Simplifications. In the inequalities associated with Sk, the matrix Yk does not de-
pend on the controller parameters (i.e., is constant). In this case we can work directly
with the smaller (equivalent) LMIs

Z∗k Z̃k + Z̃∗k Zk− Z̃∗k Z̃k � Y ∗k Yk,

87



Paper II. MIMO PID Tuning via Iterated LMI Restriction

which can give a modest computational advantage.
Another simplification is to maximize the variable w = t2; in this case the single

inequality associated with the objective can be handled as the smaller LMI

Z∗1 Z̃1 + Z̃∗1Z1− Z̃∗1 Z̃1 � wI,

where Z1 = P(0)KI. This simplification leads to slightly faster convergence, since
t is only an upper bound on ‖(P(0)KI)

−1‖, whereas w−1/2 is actually equal to the
objective, after optimization.

6. The Method

6.1 Controller initialization
We first initialize the controller with

KP = 0, KI = εP(0)†, KD = 0,

where ε is small and positive, and P(0)† = P(0)T (P(0)P(0)T )−1 is the pseudo-
inverse of the DC gain. For small enough ε , this controller is feasible. Indeed, as
ε → 0, we have

S(s)→ s
ε + s

I, T (s)→ ε
ε + s

I, Q(s)→ ε
ε + s

P(0)†,

from which it follows that the constraints ‖S‖∞ ≤ Smax, ‖T‖∞ ≤ Tmax, and ‖Q‖∞ ≤
Qmax are feasible for small enough ε (assuming Smax > 1, Tmax > 1, and Qmax >
1/σmin(P(0))). Note that ‖Q‖∞ finite implies closed-loop stability of this initial
controller.

6.2 Iteration
We then repeat the following steps. We form the LMI restriction (6), using Z̃k =
Zcurr

k , where Zcurr
k is the current value of Zk. This choice guarantees the LMI restric-

tion is feasible. We solve this SDP to get the updated values of the design variables.
These are feasible, since they were constrained by the restrictions, and the objective
t (which is an upper bound on the original objective ‖(P(0)KI)

−1‖) cannot decrease.

6.3 Convergence
The iterates are all feasible (and we have closed-loop stability since ‖Q‖∞ is finite),
and the objective is nonincreasing. Since it is nonnegative, the objective converges.
We can stop when not much progress is being made, which is typically after ten
or fewer iterations. At convergence, the optimal value of t, which is in general an
upper bound on the original objective ‖(P(0)KI)

−1‖, is actually equal to this value.
(When we optimize with the variable w, it is directly equal to the objective.)
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6.4 Connections, interpretations, and prior work
Our method is similar to, but not the same as, the convex-concave method for the
SISO case described in [Hast et al., 2013]. In that paper we linearize a scalar in-
equality of the form |Z| ≥ |Y |, which is not the same as linearizing (as we do here)
the quadratic inequality |Z|2 ≥ |Y |2. The idea of linearizing concave terms in an
otherwise convex optimization problem, which gives a convex restriction, is an old
one that has been (re-)invented many times, for many applications; see, e.g., the
references in [Lipp and Boyd, 2014] or [Yuille and Rangarajan, 2003]. The idea of
linearizing a matrix inequality is given in [Lipp and Boyd, 2014].

The convex-concave procedure is in turn a special case of a very general method
for finding a local minimum of a nonconvex optimization problem. In each iteration
we replace the objective function and each constraint function by a convex ma-
jorization that is tight at the given point, and solve the resulting convex problem.
This idea traces back at least to 1970 [Ortega and Rheinboldt, 1970], and has been
widely used since then; see [Lipp and Boyd, 2014].

There is also a very close connection of our method to BMIs and methods for
them, such as alternating minimization over the two groups of variables. The con-
nection is easiest to see and state when Z and Y have the same dimensions (in
general the inequality Z∗Z � Y ∗Y implies they have the same number of columns).
Define

U = (1/2)(Z +Y ), V = (1/2)(Z−Y ),

so Z =U +V and Y =U−V . Then we have

Z∗Z � Y ∗Y ⇔ (U +V )∗(U +V )� (U−V )∗(U−V )

⇔ U∗U +V ∗U +U∗V +V ∗V �U∗U−V ∗U−U∗V +V ∗V

⇔ V ∗U +U∗V � 0,

which we recognize as a BMI in U and V . Thus our quadratic matrix inequality can
be expressed as an equivalent BMI. MIMO PID design via BMIs is discussed in
[Bianchi et al., 2008].

The closest prior work is [Saeki, Ogawa, et al., 2010], which contains many of
the ideas we use in the present paper. The authors develop quadratic matrix inequal-
ities similar to the ones we use here, and derive a method for MIMO PID design that
uses LMI restrictions, as we do. While the two methods are clearly closely related,
we are unable to derive our exact algorithm from theirs. We can identify several dif-
ferences in the approach. First, we consider separate closed-loop transfer functions
(e.g., S, T , Q), where they lump them together into one block closed-loop transfer
function. One advantage of considering these closed-loop transfer functions sepa-
rately is that we can give simple and universal choices for the upper bound (such as
1.4, for example, for S). Second, we consider stable plants, which allows us to give
a simple low gain PID initialization. Finally, we consider a generic quadratic matrix
inequality, and develop a simple universal LMI restriction.
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7. Extensions and Variations

In this section we list various extensions and variations on the MIMO PID controller
design problem, starting with simple ones and moving to more complex ones. While
the basic iteration will work in all of these variations, the design must start from
a feasible initial controller, which may be a challenge to find, depending on the
variation. (We make more specific comments about this below.)

Exchanging objectives and constraints. As always, we can exchange constraints
and objective; for example, we could impose a constraint on ‖(P(0)KI)

−1‖, and
instead minimize another objective, such as ‖Q‖∞. In this example, we would be
minimizing actuator effort for a given fixed limit on the low-frequency sensitivity.

Frequency-dependent bounds. The bounds Smax,Tmax,Qmax could be functions
of frequency. This could be used to shape the various closed-loop transfer functions
in more sophisticated ways than described here.

Other closed-loop transfer functions. The same approach works for other
closed-loop transfer functions. For example, consider R = −(I +PC)−1P, which
is the closed-loop transfer function from disturbance to error. A limit on R, say,
‖R‖∞ ≤ Rmax, can be expressed as a QMI as follows:

‖Rk‖ ≤ Rmax⇔ (I +PkCk)(I +PkCk)
∗ � (1/R2

max)PkP∗k ,

which has QMI form with Z =(I+PkCk)
∗ and Y =(1/Rmax)P∗k . (Note the Hermitian

conjugates in this case.)

Low frequency disturbance optimization. We can optimize low-frequency val-
ues of R instead of S. At low frequencies we have

R(s) =−S(s)P(s)≈−s(P(0)KI)
−1P(0),

and we arrive at a very similar problem, which is also easily expressed in our QMI
form.

High frequency roll-off. Our method relies only on the fact that C(s) is a linear
function of the design variables KP,KI,KD. This allows us to use many other varia-
tions on the PID controller. As an example of simple variation that is very useful in
practice, we can use the controller

C(s) =
(

1
1+ sτ +(sτ)2/2

)(
KP +

1
s

KI + sKD

)
,

where τ > 0 is a (fixed) time constant. Here we have an ideal PID controller, with a
second-order high frequency roll-off.
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Unstable plants. The method can be extended to handle unstable plants, but in
this case the initial controller must be stabilizing and also satisfy the constraints;
see, e.g., [Hast et al., 2013] for an example. (To satisfy the constraints, they can
initially be relaxed.) When initialized this way, all iterates (and the final controller
design) will be stabilizing.

More outputs than actuators. We can handle the case when p > m (more out-
puts than actuators), so perfect static tracking cannot be achieved. In this case we
cannot have zero sensitivity at s = 0, but we can optimize over the value of S(0), for
example, minimize or limit its norm.

Convex constraints on controller parameters. Any convex constraints on the
controller parameters can be imposed. For example, we can limit the values of any
of the coefficients. A very interesting option here is to limit the sparsity pattern of
C by requiring some entries to be zero. This gives structured MIMO PID controller
design [Saeki, 2006].

The simple initialization method described in §6.1 will generally not work when
the controller parameters are constrained, for example, when a specific sparsity pat-
tern is imposed.

Convex cost terms. We can add any convex function of the controller parameters
to the objective. For example we can add regularization to the objective, i.e., a func-
tion that encourages the controller parameters to be small. The classical example is
the sum of squares term

λ ∑
i j

(
(KP)

2
i j +(KI)

2
i j +(KD)

2
i j
)
,

where λ > 0 is a parameter used to trade off low-frequency rejection and the size
of the controller parameters (measured by the sum of squares).

A very interesting regularization is one that encourages sparsity in the controller
parameters, such as

λ ∑
i j

max{(KP)i j,(KI)i j,(KD)i j}.

This regularization will encourage sparsity in C(s); for similar work, see, e.g., [F.
Lin et al., 2012] (for sparse controller design) and [Zou and Hastie, 2005] (for spar-
sity of blocks of regressors in statistics).

Closed-loop convex constraints. We can also add any contraint or objective term
that is convex in the closed-loop transfer functions; see the book [Boyd and Barratt,
1991]. For example, we could include time-domain constraints such as a maximum
step response settling time. The very same method (with some added terms to han-
dle the added constraints) will work.
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Robustness to plant variations. We can wrap robustness to plant variations into
the method. A particularly simple (but very effective) method that gives robustness
is to require that the constraints hold not just for one plant, but for several or many
plausible values of the plant transfer function. This leads to a bigger problem to
solve, but the same method works.

More general controllers. Finally, it should be clear that the method works for
any linearly parametrized controller, and not just the simple PID structure that we
have focussed on here. For more general structures the design initialization can
become a challenge, however.

8. Examples

In this section we describe numerical results for a classic MIMO plant, the 2-input 2-
output Wood-Berry binary distillation column described in [Wood and Berry, 1973].
The computations were carried out using CVX [Research, 2012; Grant and Boyd,
2008].

The plant transfer function is

P(s) =

 12.8e−s

16.7s+1
−18.9e−3s

21.0s+1
6.6e−7s

10.9s+1
−19.4e−3s

14.2+1

 .
Each entry is a first order system with a time delay. The dynamics are quite coupled,
so finding a good MIMO PID controller is not simple. Several design methods and
actual designs for this plant have been proposed in the literature, including [Dong
and Brosilow, 1997; Wang et al., 1997; Tan et al., 2002]. Our method produced quite
similar results, with the same or better metrics judged by our objectives (naturally).

We used design parameters

Smax = 1.4, Tmax = 1.4, Qmax = 3/σmin(P(0)) = 0.738.

The derivative action time constant is chosen to be τ = 0.3. The semi-infinite con-
straints are sampled using N = 300 logarithmically spaced frequency samples in
the interval

[
10−3,103

]
. The initial design uses the method described in §6.1 with

ε = 0.01.
The algorithm converges in 7 iterations (which takes a few minutes to run in our

simple implementation) to the values

KP =

[
0.1750 −0.0470
−0.0751 −0.0709

]
, KI =

[
0.0913 −0.0345
0.0402 −0.0328

]
,

KD =

[
0.1601 −0.0051
0.0201 −0.1768

]
,
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Figure 3. Closed-loop transfer function singular values versus frequency, with
constraints shown in red.

which achieves objective value ‖(P(0)KI)
−1‖ = 2.25. The resulting closed-loop

transfer function singular values are plotted versus frequency in figure 3, along with
the imposed limits.

To demonstrate one simple extension, we also carry out MIMO PID design with
the additional constraint that the controller is diagonal, i.e., consists of two SISO
PID loops. We initialize the algorithm with low gain PI control from y1 to u1 and
from y2 to u2, using the (diagonal) controller

KP = 10−3
[

1 0
0 −1

]
, KI = 10−3

[
1 0
0 −1

]
, KD = 0.

(The minus sign in the 2,2 entry is due to the negative 2,2 value of the 2,2 entry of
P(0).) The algorithm converges in 8 iterations (taking a few minutes in our simple
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Figure 4. Closed-loop transfer function singular values versus frequency, with
constraints shown in red, for diagonal PID design.

implementation) to the controller

KP =

[
0.1535 0

0 −0.0692

]
, KI =

[
0.0210 0

0 −0.0136

]
,

KD =

[
0.1714 0

0 −0.1725

]
,

which achieves objective value ‖(P(0)KI)
−1‖= 13.36, considerably worse than the

objective value obtained with a general MIMO PID controller. The resulting closed-
loop transfer function singular values are plotted in figure 4. We can see that low
frequency sensitivity is considerably worse than that achieved by the full MIMO
controller, for example by noting the value of ‖S(ω)‖2 for ω = 10−2.
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Figure 5. Closed-loop step response from r to y for the MIMO PID controller
(blue) and the diagonal PID controller (red).

The step responses of T , the transfer function from r to y, are plotted in figure 5,
for both the full MIMO PID controller and the diagonal PID controller. Here too
we can observe the worse low frequency rejection for the diagonal PID design, for
example in the larger off-diagonal entries of the step response. The step responses
of Q, the transfer function from r to u, are plotted in figure 6, for both the full MIMO
PID controller and the diagonal PID controller.

9. Conclusions

In this paper we have described a simple method for effectively designing MIMO
PID controllers for stable plants given by transfer function (at an appropriate set of
frequencies). The method relies on solving a short sequence of SDPs (typically 10
or fewer), and although it cannot guarantee finding the globally optimal design, it
appears to find very good designs in practical problems. The method is related to
several other methods for MIMO PID design, and relies on ideas that have been used
in several other contexts in optimization, such as the convex-concave procedure, and
iterative convex restriction.
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Figure 6. Closed-loop step response from r to u for the MIMO PID controller
(blue) and the diagonal PID controller (red).
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Paper III

Design of Optimal Low-Order Feedforward
Controllers

Martin Hast Tore Hägglund

Abstract

Design rules for optimal feedforward controllers with lead-lag structure in
the presence of measurable disturbances are presented. The design rules are
based on stable first-order models with time delays, FOTD, and are optimal in
the sense of minimizing the integrated-squared error. The rules are derived for
an open-loop setting, considering a step disturbance. This paper also discusses
a general feedforward structure, which enables decoupling in the design of
feedback and feedforward controllers, and justifies the open-loop setting.

c© IFAC. Originally published in Proceedings of the IFAC Conference on Advances
in PID, 2012, Brescia, Italy. Reprinted with permission.
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1. Introduction

Feedforward is an efficient way to reduce control errors both for reference track-
ing and disturbance rejection, given that the disturbances acting on the system are
measurable. This paper treats the subject of disturbance rejection. Due to model
uncertainties, feedforward cannot eliminate the disturbance and it is therefore often
used along with feedback control.

For the design of feedback controllers a large number of design methods exists.
For design of PID-controllers there exists a large number of analytical methods for
choosing the control parameters, see e.g., [Åström and Hägglund, 2004], [Skoges-
tad, 2003] or [Ziegler and Nichols, 1942]. However, there seems to be a lack of
simple methods for tuning feedforward controllers.

The design of low-order feedforward controllers has previously been addressed
by e.g., [Isaksson et al., 2008] and [Guzmán and Hägglund, 2011]. [Isaksson et al.,
2008] proposes an iterative design procedure, to minimize a system norm in the
frequency domain, that takes the feedback controller into account. [Guzmán and
Hägglund, 2011] provides simple tuning rules for feedforward controllers, taking
the feedback controller into account, in order to reduce the integrated absolute error,
IAE.

This paper presents an analytic solution to the problem of designing a feedfor-
ward lead-lag filter which minimizes the integrated square error when the system is
subjected to a measurable step disturbance. The design rules are derived for FOTDs.
The resulting feedforward controller is optimal in an open-loop setting. In general,
feedforward controllers should be designed taking the feedback controller into ac-
count since they interact.

In [Brosilow and Joseph, 2002] a feedforward structure that separates the feed-
back and feedforward control design, was presented. This idea has been adopted in
this paper and justifies that the designed controller, while optimal in the open-loop
case, gives good performance when used in conjunction with feedback control. This
structure makes use of the same process models that is used for the design of the
feedforward controller. The structure have similarities with Internal Model Control,
IMC, see [Garcia and Morari, 1982]. Robust feedforward design within the IMC
framework has addressed by [Vilanova et al., 2009].

2. Feedforward Structure

This section describes different structures for feedforwarding from measurable dis-
turbances. Firstly, the most common open-loop and closed structures are discussed.
Secondly, a feedforward structure that separates the design of feedforward and feed-
back controllers, as presented in [Brosilow and Joseph, 2002] is discussed.
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2 Feedforward Structure
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Figure 1. Open-loop structure.

2.1 Open-Loop Behavior
Consider the open-loop structure in Fig. 1 where d is the measurable disturbance, y
is the system output and u is the system input. The transfer function from d to y is
given by

Go(s) = P2(s)
(
P3(s)−P1(s)Gff(s)

)
. (1)

In order to eliminate the effect of the disturbance d the feedforward controller
should be chosen as G f f (s) = P3(s)P−1

1 (s). This controller is not always possible or
desirable to realize, as e.g., the order of P1(s) is greater than the order of P3(s), the
time delay of P1(s) is greater than the time delay of P3(s) or if P1(s) has zeros in the
right-half plane.

2.2 Feedforward - Feedback Interaction
Compensating for a measurable disturbance using only an open-loop feedforward
structure is seldom desirable. Due to model errors and unmeasurable disturbances
a feedback controller is needed. Connecting a feedback controller C(s), see Fig. 2,
renders the following transfer function from d to y,

Gcl(s) =
P2(s)(P3(s)−P1(s)Gff(s))

1+P2(s)P1(s)C(s)
. (2)

When it is possible to realize perfect feedforward Gff = P3(s)P−1
1 (s) no problems

will arise since (2) will be zero. However, when the perfect feedforward is not re-
alizable the closed-loop behavior will differ from the open-loop behavior given by
(1). Ways of modifying the feedforward controller in order to get a satisfying sys-
tem response from the closed-loop system has been presented in [Isaksson et al.,
2008] and [Guzmán and Hägglund, 2011].

2.3 Non-Interacting Feedforward Structure.
In [Brosilow and Joseph, 2002] a feedforward structure, equivalent to the one in
Fig. 3, was presented. Dropping the argument s, the transfer function from d to y is
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Figure 2. Closed-loop structure.

given by

Gcl =
P2P3 +P2P1(CH−Gff)

1+P2P1C
. (3)

Choosing H as
H = P2P3−P2P1Gff, (4)

the closed loop transfer function (3) then equals

Gcl = P2(P3−P1Gff) = Go.

The closed-loop response from a disturbance d will thus be the same as the response
in the open-loop case in (1) and the feedback controller, C, will not interact with the
feedforward controller, Gff. By using the structure in Fig. 3 with H chosen as (4)
it is possible to design the feedforward controller by just considering the open-
loop response from d. If the feedback controller has integral action the steady-state
response will be y = r+H(0)d. Therefore it is desirable to choose H(0) = 0.

The method of subtracting the feedforward response from the controller input is
common when improving system response from reference signals, cf. [Åström and
Hägglund, 2006].

3. Optimal Feedforward Control

In this section optimal feedforward controller parameters, based on stable FOTDs,
in the case of a step disturbance d, will be derived. Using the structure in Fig. 3
with H chosen in accordance with (4) we consider optimization over the structure in
Fig. 1. The rules are derived for the case P2 = 1. In applications where this is not the
case, P2 can be incorporated into P1 and P3 followed by first-order approximations,
cf., [Åström and Hägglund, 2006]. The optimality measure is the integrated square
error,

ISE = ‖e‖2
2 =

∫ ∞

0
e2(t)dt. (5)
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−
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Figure 3. Modified closed-loop feedforward structure.

A vast number of other optimality criteria could be considered, cf., [Åström and
Hägglund, 2006]. The ISE measure is an established performance measure and was
chosen since it enables analytical solutions for finding the minimal cost for the
setting considered in this paper. The drawbacks with the ISE is that it may yield
large control signals and prolonged time for steady state.

The processes Pi(s) are assumed to be FOTDs, i.e.,

Pi(s) =
Ki

1+ sTi
e−Lis, i = 1,3

Li ≥ 0, Ti > 0
P2(s) = 1.

(7)

The feedforward controller has the following structure

Gff(s) = Kff
1+ sTz

1+ sTp
e−sLff . (8)

There are in total four parameters to be determined in order to minimize (5). We
require that Tp should be non-negative since negative values of Tp would give an
unstable system response. For the case of L1 ≤ L3 perfect feedforward, i.e., no con-
trol error, is obtained with the following choice of parameters:

Gff(s) =
K3

K1

1+ sT1

1+ sT3
e−(L3−L1)s.

The following will therefore focus on the case when L1 > L3 and hence, perfect
disturbance rejection is not possible. The time delays in the process models can,
without loss of generality, be shifted so that L = L̂1 = L1 − L3 > 0 and L̂3 = 0,
Furthermore the reference signal r can, without loss of generality be regarded to be
zero.
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Given a unit step disturbance d the output of the system is given by

Y (s) = (P3(s)−P1(s)Gff(s))D(s) (9)

where D(s) is the Laplace transform of a unit step. Denote the output response by
inverse Laplace transform of (9), y(t) =L −1(Y (s)). The optimization problem can
be formulated as

minimize J =
∫ ∞

L
y2(t)dt (10a)

s.t. Tp ≥ 0 (10b)
Lff ≥ 0. (10c)

(10b) and (10c) are included in the optimization formulation to ensure a stable and
causal feedforward controller.

3.1 Optimal Feedforward Time Delay
Assume that the time delays are such that perfect disturbance rejection is not pos-
sible. Adding time delay in the feedforward controller would increase the time in
which there is no control action and thus increase the ISE. The time delay should
therefore be chosen as

Lff = max(0,L3−L1). (11)

3.2 Optimal Stationary Gain
In order to ensure that H(0) = 0 and for the integral (10a) to converge the gain in
the feedforward controller has to be chosen as

Kff =
K3

K1
. (12)

3.3 Optimal Tz

Evaluating (10a) yields an expression with the following structure

J(Tp,Tz) = q1T 2
z +q2Tz +q3. (13)

Introducing

a =
T1

T3
(14a)

b = a(a+1)e
L

T3 , (14b)
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the expressions for q1, q2 and q3 can be seen in Appendix, (39). Since (39a) is
positive, by the assumptions in (7), (13) has a unique minimum with respect to Tz
which can be determined by completion of squares:

J(Tp,Tz) = q1(Tz +
q2

2q1
)2− q2

2
4q1

+q3

for which the minimum occurs at

Tz(Tp) =−
q2

2q1
=

(b−2a)T3 +bTp

b(T3 +Tp)
(Tp +aT3). (15)

The optimal Tz can also be expressed as

Tz(Tp) = (Tp +T1)

1− 2T 2
3

(T1 +T3)(T3 +Tp)e
L

T3

 .

By using the optimal Tz, (13) reduces to

J(Tp,Tz(Tp)) = Ĵ(Tp) = q3−
q2

2
4q1

, (16)

see (40) for complete expression, from which the last controller parameter, Tp, is to
be determined. Since Tz is dependent of Tp it is not clear at this moment that Tz > 0,
i.e., that the controller will be minimum-phase. This will be shown in Sec. 3.8.

3.4 Optimal Tp

Differentiating (16) yields

dĴ
dTp

=
K2

3 a2T 2
3

2b2(T3 +Tp)3(aT3 +Tp)2

×
(
(4a2−2a−b)T 2

3 +2Tp T3(3a−1−b)− (b−2)T 2
p
)

×
(
(2a+b)T3− (b−2)Tp

)
. (17)

Equating (17) to zero to find the stationary points yields the following three:

T ∗p1
=

3a−1−b+
√

(a−1)2 (1+4b)

b−2
T3 (18a)

T ∗p2
=

3a−1−b−
√

(a−1)2 (1+4b)

b−2
T3 (18b)

T ∗p3
=

2a−b
b−2

T3. (18c)
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The optimal choice for Tp will either be one of the three stationary points or the
boundary, Tp = 0.

The boundary point as Tp → ∞ is in practice the same as no feedforward and
will therefore be discarded as a possible solution since

lim
Tp→+∞

J =+∞.

The following subsections are devoted to finding which of the solutions that is op-
timal. A summary of the resulting, optimal, algorithm can be found in Sec. 4.

3.5 Conditions for Positive Stationary Points
To fulfill (10b) we only consider a stationary point (18) as a candidate for optimality
if it is positive.

Case I: T ∗p1
> 0. From (18a), we can conclude that the denominator is positive if

b > 2. Note that e
L

T3 > 1⇔ b > a(a+1). Denote the numerator of (18a) by n1 i.e.,

n1 = 3a−1−b+
√
(a−1)2(1+4b).

In order to determine the sign of T ∗p1
we first examine when n1 changes its sign.

n1 = 0⇔

b+1−3a =
√
(a−1)2(1+4b)⇔

b2−2
(
2a2−a+1

)
b+4a(2a−1) = 0⇒

b1 = 2
b2 = a(4a−2).

Assume a < 1. Then a(4a−2)< a(a+1). Hence, both numerator and denominator
of T ∗p1

can only change signs at b = 2. By evaluating n1 for a < 1 and for arbitrary
b 6= 2 we can conclude that T ∗p1

is negative for a < 1.
Assume instead a > 1. Then a(a+ 1) > b1 and n1 can only change its sign for

b= b2. Furthermore, the denominator is positive for a> 1 since b> 2. By evaluation
of n1 for arbitrary a > 1 and b < a(4a−2) we can conclude that n1 > 0. Since the
denominator is positive for a > 1, T ∗p1

is positive if

b < a(4a−2)⇔ e
L

T3 <
4a−2
a+1

.

This means that T ∗p1
is positive when

T1 > T3 and L < T3 ln
(

4a−2
a+1

)
. (19)
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Case II: T ∗p2
> 0. Denote the numerator and denominator in (18b) by n2 and d2

respectively. The numerator is negative since

n2 = 3a−1−b−
√
(a−1)2(1+4b)< 3a−1−a(a+1)−

√
(a−1)2(1+4b)

=−(a−1)2−
√
(a−1)2(1+4b)< 0.

The sign of T ∗p2
is thus only dependent on d2. Since b > a(a+1), d2 will be positive

for a > 1. For a < 1,

T ∗p2
> 0⇔ d < 0⇔ b < 2⇔ e

L
T3 <

2
a(a+1)

.

To summarize, T ∗p2
is positive when

T1 < T3 and L < T3 ln
(

2
a(a+1)

)
. (20)

Case III: T ∗p3
> 0. By inspection of (18c) we can conclude that T ∗p3

is positive if
and only if a < 1 and

2
a+1

< e
L

T3 <
2

a(a+1)
.

T ∗p3
is positive when

T1 < T3 and T3 ln
(

2
a+1

)
< L < T3 ln

(
2

a(a+1)

)
. (22)

3.6 Conditions for Optimal Tp

A stationary point, T ∗pi
, is a local minimizer if and only if the second derivative of

(16) with respect to Tp is positive, i.e., d2 Ĵ
dT 2

p
> 0. Since the cost function (16) has

three stationary points and approaches infinity when Tp approaches infinity, the cost
function can have no more than two local minima.

Solution 1. From the inequalities (19), (20) and (22) we can conclude that if a> 1,
T ∗p1

is the only positive stationary point. Since (19) is the only stationary point for
a > 1, this stationary point cannot be a maximum since (10a) approaches infinity
when Tp approaches infinity. Furthermore,

dĴ
dTp

(0) = K2
3
(b−2a)(b+2a−4a2)

2b2 . (23)

If a > 1, then b > 2a and subsequently

dĴ
dTp

(0)< 0⇔ b+2a−4a2 < 0⇔ e
L

T3 <
4a−2
a+1

. (25)

From (19) and (25) we therefore conclude that T ∗p1
, given by (18a), is optimal when

it is positive.
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Solution 2 From (19) and (20) we can conclude that T ∗p1
and T ∗p2

cannot simul-
taneously be positive. Furthermore, when T ∗p2

is positive, T ∗p3
is either negative or

corresponds to a maximum, see the next section.
In order to determine when Tp = T ∗p2

is a better solution than Tp = 0, take the
difference between the corresponding costs as

Ĵ(T ∗p2
)− Ĵ(0) = 2aK2

3
n
d

Ĵ(T ∗p2
)< Ĵ(0)⇔ 2aK2

3
n
d
< 0

where expressions for n and d can be found in the Appendix, (41). From these
expressions we conclude that d > 0. Since T ∗p2

is negative for a > 1, consider only
the case a < 1. Whether T ∗p2

is better than Tp = 0 or not is determined by the sign of
n. Solving the equation n = 0 gives the following solutions for b

b∗ = a+
√

a. (26)

Hence, n can only change its sign for b = b∗. By evaluation of n with a < 1 and
both b < b∗ and b > b∗ we can conclude that J(T ∗p2

)< J(0) if a < 1 and b < a+
√

a.
Hence, Tp = T ∗p2

is the optimal solution when

a < 1 and e
L

T3 <

√
a+a

a(a+1)
⇔ L < T3 ln

√
a+a

a(a+1)
.

Solution 3 Inserting T ∗p3
given by (18c) into (15) yields Tp = Tz i.e., the static

feedforward controller
Gff(s) =

K3

K1
. (27)

The second derivative of (16) with respect to Tp evaluated in Tp = T ∗p3
is

d2Ĵ
dT 2

p
(T ∗p3

) =−K2
3 (b−2)5 a2

4(a−1)3 b3
. (28)

T ∗p3
is a minimum point if (28) is greater than zero. For a > 1 this is equivalent to

a(a+1)e
L

T3 −2 < 0⇔

e
L

T3 <
2

a(a+1)
< 1.

Since both L and T3 are positive this condition is never fulfilled.
For a < 1 we can conclude that in order for T ∗p3

to be a minimum point the
following condition must hold

L > T3 ln
(

2
a(a+1)

)
.
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The feedforward strategy given by (27) does not give a lower cost than the strategy
given by the controller with Tp = 0 since

Ĵ(T ∗p3
)− Ĵ(0) =

K2
3 (b−2a)2

2b2 aT3 ≥ 0.

3.7 Special Cases
Two cases have been disregarded in the analysis above. Firstly, the case when a = 1,
i.e., the process time constants are equal, and secondly, the case where b = 2, i.e.,
when the denominators of (18) are zero.

Case I: Equal time constants, T1 = T3. In the case of equal time constants in the
processes, a = 1 and (16) simplifies to

Ĵ(Tp) = K2
3

Tp T3

(
e

L
T3 −1

)2

2(Tp +T3)e
2L
T3

from which we conclude that Tp = 0 is the optimal solution since L > 0 by assump-
tion.

Case II: b = 2. If b = 2, (17) reduces to

∂ Ĵ
∂Tp

= K2
3 T 4

3

(
(2a+1)T3 +3Tp

)
(a−1)2

2(T3 +Tp)3(aT3 +Tp)2 a2

for which there is only one stationary point,

T ∗p =− (2a+1)
3

T3,

which is less than zero. Hence, if b = 2, Tp = 0 is the optimal solution.

3.8 Optimal Tz Revisited
Since the optimal Tz, given by (15), depends on Tp it is unclear whether Tz for some
set of parameters can be negative or not. We here set out to prove that it for all
process parameters will be positive. Introducing (14) in (15) yields

Tz =
(b−2a)T3 +bTp

b(T3 +Tp)
(aT3 +Tp). (29)

Since Tp ≥ 0 and b > a(a+1) we can conclude that Tz > 0 if a > 1.

If a< 1, Tz will be positive when e
L

T3 > 2
a+1 . When e

L
T3 < 2

a+1 , T ∗p2
is the optimal

solution since
2

a+1
<

√
a+a

a(a+1)
.

109



Paper III. Design of Optimal Low-Order Feedforward Controllers

The sign of Tz is determined by the sign of

(b−2a)T3 +bTp (30)

Inserting Tp = T ∗p2
in (30) yields

T3

b−2

(
−(3−a)b−4a−b

√
(a−1)2 (1+4b)

)
.

Recalling that

e
L

T3 <
a+
√

a
a(a+1)

⇒ b−2 < a+
√

a−2 < 0

we can conclude that when T ∗p2
is the optimal solution Tz will be positive and thus

Tz will be positive for all values on the process parameter.

4. Design Summary

Below follows a summary of how to choose the parameters in the feedforward con-
troller in order to minimize the integrated square error (10a).

1. Kff =
K3

K1
.

2. Lff = max(0,−L), L = L1−L3.

3. • Introduce a =
T1

T3
and b = a(a+1)e

L
T3

• If a > 1 and b < 4a2−2a

Tp =
3a−1−b+

√
(a−1)2 (1+4b)

b−2
T3.

• If a < 1 and b <
√

a+a

Tp =
3a−1−b−

√
(a−1)2 (1+4b)

b−2
T3.

• Else, Tp = 0.

4. Tz(Tp) = (Tp +T1)

1− 2T 2
3

(T1 +T3)(T3 +Tp)e
L

T3

 .

Note that even though a small Tp can be optimal, it is not necessarily practical or
possible to realize such a controller. The high-frequency gain is given by

Kff
Tz

Tp
.

If the high-frequency gain is too large, choose a larger Tp and recalculate Tz until
the high-frequency gain is satisfying.
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5. Design Examples

EXAMPLE 1—OPEN-LOOP FEEDFORWARD CONTROL
Consider the open-loop in Fig. 1 with

P1(s) =
1

1+ s
e−0.5s, P2(s) = 1, P3(s) =

1
1+2s

(31)

and unit step d disturbing the system at t = 1. Using the design rule from Sec. 4
gives the following optimal feedforward controller

GISE
ff (s) =

1+2.35s
1+3.02s

. (32)

For comparison, two other feedforward controllers are simulated. The second con-
troller is tuned in accordance with the rule presented in [Guzmán and Hägglund,
2011]. This rule sets Tz = T1 and tunes Tp in order to reduce the IAE. The IAE-
reducing feedforward controller is given by

GIAE
ff (s) =

1+ s
1+1.71s

. (33)
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Figure 4. Output and control signals for Example 1.
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Table 1. Performance measures. Ex. 1.

Strategy ISE IAE

GISE
ff 0.022 0.267

GIAE
ff 0.034 0.313

Gnaive
ff 0.058 0.502

Table 2. Performance measures. Ex. 2.

Strategy ISE IAE

GISE
ff 0.013 0.260

GIAE
ff 0.021 0.346

Gnaive
ff 0.037 0.452

No ff 1.13 3.158

The third controller is given by

Gnaive
ff (s) =

1+T1s
1+T3s

=
1+ s

1+2s
, (34)

which is the optimal controller if the time delay is disregarded. The output signals
along with the control signals can be seen in Fig. 4. The performance measures from
the simulation can be seen in Table 1. The ISE-minimizing feedforward controller
out-performs the two other controllers, not only in terms of ISE but also in IAE. 2

EXAMPLE 2—CLOSED-LOOP WITH FOTD APPROXIMATIONS.
To examine how the design-rules handle high-order dynamics, consider the same P1
and P3 as in the previous example but with

P2(s) =
1

0.5s+1
.

Incorporating P2 into P1 and P3 with subsequently FOTD approximations, [Åström
and Hägglund, 2006], renders the following approximations

P̂1 =
1

1+1.31s
e−0.69s, P̂2 = 1, P̂3 =

1
1+2.25s

e−0.25s (35)

Based on these approximations a feedback controller, C(s), has been tuned using
the AMIGO method. The resulting PI controller is

C(s) = 0.38
(

1+
1

1.21s

)
.

The optimal feedforward controller for the process approximations (35) is given by

GISE
ff (s) =

1+2.82s
1+3.46s

. (36)

H was based on the first-order approximations, i.e.,

H = P̂2P̂3− P̂2P̂1GISE
ff
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Figure 5. Output and control signals for Example 2.

As before, for comparison, the two other feedforward controllers given by

GIAE
ff (s) = 0.99

1+1.31s
1+1.84s

(37)

and
Gnaive

ff (s) =
1+1.31s
1+2.25s

, (38)

where (38) was used with the same structure as (36) with H as

H = P̂2P̂3− P̂2P̂1Gnaive
ff .

For simulation of (37) the structure given in Fig. 2 was used. The result from simu-
lations can be seen in Fig. 5 and the performance measures in Table 2. 2

6. Conclusions

In this paper we present design rules for a lead-lag feedforward controller that min-
imizes the integrated squared error in the case of stable first-order process models
with time delay, affected by a measurable step disturbance in an open-loop setting.
A control structure that separates feedback and feedforward design has been dis-
cussed.
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Åström, K. J. and T. Hägglund (2006). Advanced PID Control. Instrumentation,
Systems, and Automation Society.

Brosilow, C. and B. Joseph (2002). Techniques of Model-Based Control. Prentice
Hall PTR, pp. 221–239.

Garcia, C. and M. Morari (1982). “Internal model control. A unifying review and
some new results”. Industrial & Engineering Chemistry Process Design and
Development 21:2, pp. 308–323.
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A. Miscellaneous equations

q1 =
1
2

K2
3

Tp +aT3
(39a)

q2 = K2
3
(2a−b)T3−bTp

b(T3 +Tp)
(39b)

q3 =
K2

3
2b2(T3 +Tp)(Tp +aT3)

·
((

a(a+1)2 +b(b−4a)
)
a2T 3

3

+
(
a(a+1)3 +b2(a+3)−4ab(a+2)

)
aTpT 2

3

+
(
(a(a+1)−2b)2 +3b2(a−1)

)
T 2

p T3 +b2T 3
p

)
(39c)
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Ĵ(Tp) =
K2

3 T3a
2b2(T3 +Tp)2(Tp +aT3)

((
a(a+1)2 +b(b−4a)

)
T 3

p +a2(a−1)2T 3
3

+
(
a(a+2)(a+1)2−4ba2−4a(b+1)+2b2)T3T 2

p

+
(
(2a2−b)2−a(a−1)2(2a−1)

)
T 2

3 Tp

)
(40)

Ĵ(T ∗p2
)− Ĵ(0) =

2K2
3 aT3

(1−a)(b+1+
√

1+4b)(3+
√

1+4b)2b2

×
[(
−(16+10b)a3 +(16+26b+10b2)a2

− (4+17b2 +10b+2b3)a+4b2 +5/2b3)√1+4b

− (4b2 +38b+16)a3 +(42b2 +54b+16+4b3)a2

− (33b2 +4+18b+19b3)a+(b2 +19/2b+4)b2
]

(41)
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Paper IV

Low-Order Feedforward Controllers:
Optimal Performance and Practical

Considerations

Martin Hast Tore Hägglund

Abstract

Feedforward control from measurable disturbances can significantly im-
prove the performance in control loops. However, tuning rules for such con-
trollers are scarce. In this paper design rules for how to choose optimal low-
order feedforward controller parameter are presented. The parameters are cho-
sen so that the integrated squared error, when the system is subject to a step
disturbance, is minimized. The approach utilizes a controller structure that de-
couples the feedforward and the feedback controller. The optimal controller can
suffer from undesirable high-frequency noise characteristics and tuning meth-
ods for how to filter the control signal are also provided. For scenarios where
perfect disturbance attenuation in theory is achievable but where noise-filtering
is needed, the concept of precompensation is introduced as a way to shift the
controller time-delay to compensate for the low-pass filtering.

c© Elsevier. Originally published in Journal of Process Control, Volume 24, Issue
9, September 2014, pages 1462-1471, reprinted with permission.
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1. Introduction

Feedforward is an efficient way to reduce control errors both for reference track-
ing and disturbance rejection, given that the disturbances acting on the system are
measurable. This paper addresses tuning of feedforward controllers for rejection of
measurable disturbances. The use of feedforward alone often cannot eliminate the
disturbance completely and it is therefore often used along with feedback control.

For design of PID-controllers there exists a large number of tuning methods for
choosing the control parameters, see e.g., [Åström and Hägglund, 2004; O’Dwyer,
2009; Skogestad, 2003; Ziegler and Nichols, 1942]. However, there is a lack of
methods for how to tune feedforward controllers in order to efficiently attenuate
disturbances.

The design of low-order feedforward controllers has previously been addressed
by e.g., [Guzmán and Hägglund, 2011; Hast and Hägglund, 2012; Isaksson et al.,
2008; Rodrı́guez et al., 2013]. In [Isaksson et al., 2008] an iterative design procedure
is proposed that minimizes a system norm in the frequency domain, taking the feed-
back controller into account. In [Guzmán and Hägglund, 2011] simple tuning rules
for feedforward controllers, that reduces the integrated absolute error, are provided.
An overview of low-order feedforward from both references and load disturbances
are discussed in [Vilanova and Visioli, 2012].

In [Brosilow and Joseph, 2002] a feedforward structure that separates the feed-
back and feedforward control design, was presented. This idea has been adopted in
this paper and justifies that the designed controller, while optimal in the open-loop
case, gives good performance when used in conjunction with feedback control. This
structure makes use of the same process models that are used for the design of the
feedforward controller. The structure has similarities with Internal Model Control,
IMC, see [Garcia and Morari, 1982]. Robust feedforward design within the IMC
framework was addressed by [Vilanova, Arrieta, et al., 2009]. The method of sub-
tracting the feedforward response from the controller input is common when im-
proving system response from reference signals, cf. [Åström and Hägglund, 2006].

This paper presents an analytic solution to the problem of designing a feedfor-
ward lead-lag filter which minimizes the integrated square error when the system is
subjected to a measurable step disturbance. The design rules are derived for stable
process with dynamics described by first-order plants with dead time, (FOTD). The
paper also discusses how a feedforward controller should be filtered in order to re-
duce the effect of measurement noise and aggressive controller actions. Lastly, tun-
ing rules for reducing the control signal activity by precompensation is presented.

2. Feedforward Control

Feedforward control from measurable disturbances has usually been treated and
solved as an open-loop problem. For a system described by Figure 1 the transfer
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ΣPu(s)Σ

Pd(s)

y

d

−F(s)

u

Figure 1. Open-loop structure for disturbance rejection using feedforward control.

function from the measurable disturbance d to system output y is

Go(s) = Pd(s)−Pu(s)F(s). (1)

In order to completely eliminate the effect of the disturbance d the feedforward
controller should be chosen as

F(s) =
Pd(s)
Pu(s)

. (2)

This controller is not realizable for instance if the time-delay in Pu(s) is longer than
that of Pd(s) or if Pu(s) has zeros in the right-half plane. If the controller is realizable
it might give rise to larger control signals than what is desirable. Common remedies
for this is to use a low-order approximation of (2) or even just the static gain [Åström
and Hägglund, 2006]. Due to model errors, uncertainties and other disturbances
than the measurable acting on the system, feedforward controllers are often used
together with feedback controllers. By combining a feedforward controller with an
output feedback controller with the structure in Figure 2 the transfer function from
d to y becomes

Gyd(s) =
Pd(s)−Pu(s)F(s)

1+Pu(s)C(s)
. (3)

Using this structure, and the controller given by (2), perfect disturbance rejection
is possible although the same remarks as above regarding realizability apply. It can
be seen from (3) that the effect of the disturbance is now dependent on both the
feedforward and the feedback controller. Thus, if perfect disturbance rejection is
not possible the responses from the open- and the closed loop will differ. With the
closed-loop structure, the controllers will interact which might lead to a deteriora-
tion in performance compared to the open-loop structure. The remedies for this can
be divided into two categories. Firstly, the feedforward controllers can be tuned,
taking the feedback controller into account. Ways of modifying the feedforward
controller in order to get satisfying response from the closed-loop system has been
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Figure 2. Closed-loop structure commonly used when combining feedforward and
feedback control.

presented in [Guzmán and Hägglund, 2011] and [Isaksson et al., 2008]. The draw-
back with these kind of approaches is that if the feedback controller is retuned,
the feedforward controller needs to be retuned as well. Secondly, the effect of the
interaction can be decreased or even eliminated by yet another feedforward to the
feedback controller input, see Figure 3. The advantage with this method is that the
feedforward and the feedback controllers can be tuned individually. A drawback is
the increased overall complexity of the controller. A feedforward control structure,
equivalent to the one in Figure 3, that achieves the desired decoupling was presented
in [Brosilow and Joseph, 2002]. Dropping the argument s, the transfer function from
d to y is given by

Gcl =
Pd−Pu(F−CH)

1+PuC
. (4)

Choosing H as
H = Pd−PuF, (5)

the closed loop transfer function (4) then equals

Gcl = Pd−PuF = Go.

The closed-loop response from a disturbance d will thus be the same as the response
in the open-loop case in (1) and the feedback controller, C, will not interact with the
feedforward controller, F . By using the structure in Figure 3 with H chosen as (5)
it is possible to design the feedforward controller by just considering the open-loop
response from d.

3. Optimal Feedforward Control

Tuning rules for both feedback and feedforward controllers are often based on pro-
cess models with low complexity, see e.g., [Åström and Hägglund, 2006; Guzmán
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Figure 3. Controller structure that decouples the response, and design, of the feed-
back and feedforward controllers.

and Hägglund, 2011; Rodrı́guez et al., 2013; Sell, 1995]. In this section, feedfor-
ward controller parameters will be derived in the same spirit. The parameters will
be obtained as the solution to an optimization problem that ensures that the system
has good disturbance attenuation.

The considered feedforward controller is a lead-lag filter, or equivalently, a low-
pass filtered PD-controller, with possibly a time delay i.e.

F(s) = Kff
1+ sTz

1+ sTp
e−sLff (6)

with in total four parameters to choose. Deriving simple analytic tuning rules that
are optimal for more advanced feedforward controllers are not tractable.

By using the controller structure in Figure 3, the feedforward controller can be
designed for the open-loop case depicted in Figure 1.

Let the processes Pu and Pd be described by

Pu(s) =
Ku

1+ sTu
e−sLu , Pd(s) =

Kd

1+ sTd
e−sLd . (7)

In the analysis and derivation of optimal controller parameters the disturbance d is
assumed to be a unit step. The time response of the system subject to the disturbance
can be calculated as y(t) = L −1

(
Go(s) 1

s

)
. The reference signal can without loss of

generality be disregarded and for the remainder of this paper r is zero.
The performance is measured by the integrated squared error

ISE =

∞∫
0

e2(t)dt. (8)

A large number of other measures could be considered, cf., [Åström and Hägglund,
2006]. The ISE measure is an established performance measure and is chosen since
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it enables the derivation of analytical solutions for finding the minimal cost for the
setting considered in this paper. The drawbacks of using the ISE as the performance
measure is that it penalizes large deviations from the reference hard which gives op-
timal controllers that may yield large control signals and overshoot in the measured
variable.

In the case of Lu ≤ Ld perfect feedforward, i.e., no control error, is obtained with
the, realizable, controller given by (2). The remainder of this section will therefore
focus on the case when Lu > Ld and hence, perfect disturbance rejection is not
possible. The time delays in the process models can then, without loss of generality,
be shifted so that Ld = 0 and the delay in Pu becomes

L = Lu−Ld . (9)

Optimal feedforward controller parameters that give good disturbance attenua-
tion can be found by solving the nonconvex optimization problem

minimize
Kff,Lff,Tz,Tp

J =

∞∫
L

y2(t)dt

subject to Tp ≥ 0
Lff ≥ 0

(10)

where the constraints are included to ensure that the controller is stable and causal.
The remainder of this section contains the derivation of the optimal controller

parameters. A summary of the result can be found in Sec. 4.

3.1 Optimal Stationary Gain
Using the decoupling structure and provided that the feedback controller has inte-
gral action, the steady-state response is y = r+H(0)d. It is therefore desirable to
ensure that H(0) = 0. Furthermore, the integral in (10) converges if and only if the
controller’s stationary gain is

Kff =
Kd

Ku
. (11)

From (5) it then follows that H(0) = 0.

3.2 Feedforward Time Delay
If the time delays are such that perfect disturbance rejection is not possible, the ISE
will increase if there is time-delay in the controller. The time delay should therefore
be chosen as

Lff = max(0,−L). (12)
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3.3 Optimal Tz

Using the optimal static gain (11) and time delay (12) it was shown in [Hast and
Hägglund, 2012] that J is a convex quadratic function in the parameter Tz. The ex-
pression for J can be found in the Appendix, see (84). The unique global minimizer
can be found by completion of squares and it is given by

T ∗z = (Tu +Tp)

(
1− 2Tu

b(Td +Tp)

)
(13)

where

a =
Tu

Td
(14a)

b = a(a+1)e
L

Td . (14b)

Since the optimal choice of Tz is a function of Tp it is not obvious that T ∗z > 0, i.e.
that the controller will be minimum-phase. That this is in fact the case will be shown
in Sec. 5.2.

3.4 Optimal Tp

Denote the cost function evaluated at the optimal Kff, Lff and Tz by

Ĵ(Tp). (15)

The expression for Ĵ(Tp) can be found in the Appendix, see (85). The optimal choice
of feedforward time constant Tp will either be one of the stationary points of (15)
or the boundary point, Tp = 0. From an optimization point of view this will be
considered to be a feasible solution. This corresponds to the feedforward controller
being an ideal PD-controller. The limit as Tp → ∞ is practically the same as no
feedforward and will therefore be discarded as a possible solution.

The stationary points to (15) are given as the solutions to

dĴ
dTp

= 0 (16)

and are

T ∗p1
=

3a−1−b+
√

(a−1)2 (1+4b)

b−2
Td (17a)

T ∗p2
=

3a−1−b−
√

(a−1)2 (1+4b)

b−2
Td (17b)

T ∗p3
=

2a−b
b−2

Td . (17c)
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Substituting (17c) in (13) gives T ∗z = T ∗p , i.e. static feedforward compensation. De-
fine the cost difference between an arbitrary choice of Tp and the boundary con-
troller as

D(Tp) = Ĵ(Tp)− Ĵ(0). (18)

The expression for the cost difference can be found in the Appendix, see (87). The
static controller gives a higher cost than the PD-controller since

D(T ∗p3
) =

K2
d (b−2a)2

2b2 Tu ≥ 0 (19)

unless Tu = Td and L = 0 i.e. the scenario where the process dynamics allows for
perfect disturbance rejection. Therefore, the stationary point T ∗p3

can be excluded as
the optimal solution.

Conditions for Nonnegative Stationary Points. To ensure a stable feedforward
controller the time constant Tp must be nonnegative. It was shown in [Hast and
Hägglund, 2012] that T ∗p1

is nonnegative if and only if

a > 1, b < 4a2−2a (20)

and that T ∗p2
is nonnegative if and only if

a < 1, b < 2. (21)

Simplification of stationary point Tp. Since T ∗p1
and T ∗p2

are nonnegative for a > 1
and a < 1 respectively, the expressions given by (17a) and (17b) can be simplified
to the single expression

T ∗p =
3a−1−b+(a−1)

√
1+4b

b−2
Td . (22)

Conditions for Optimal Tp. The reduced cost function, (15), has three stationary
points and approaches infinity when Tp approaches infinity. The cost function can
therefore have no more than two local minima. According to (19), T ∗p3

renders a
higher cost than the boundary Tp = 0 and is therefore excluded. Only one of T ∗p1
and T ∗p2

is positive for any set of process parameters. The optimal solution must
therefore be T ∗p or Tp = 0.

By determining for which positive Tp that (16) changes its sign, conditions for
when T ∗p is optimal can be derived. The difference function can be expressed as

D(Tp) = K̃(Tp)
(
T 2

p + c1Tp + c0
)

Tp (23)

where K̃(Tp) is positive. The expressions for the K̃, c1 and c0 can be found in the
Appendix, see (88). The positive solution to D(Tp) = 0 is

Tp =−
c1

2
+

√
c2

1
4
− c0. (24)
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Inserting (22) and solving for b gives the following values for which the difference
function can change its sign

b∗ =

 4a2−2a
a+
√

a
a−√a.

(25)

The last of the three solutions can be disregarded since a−√a < b for all values of
a and L.

For a < 1, the first solution can also be disregarded since 4a2−2a < b. Further-
more, since

dD(T ∗p )
db

∣∣∣∣
b=a+

√
a
> 0 (26)

the difference function changes sign from negative to positive. The choice of Tp if
a < 1, is hence,

Tp =

{
T ∗p if b < a+

√
a

0 if b≥ a+
√

a.
(27)

For a > 1, the second solution can be disregarded since a+
√

a < b and since

dD(T ∗p )
db

∣∣∣∣
b=4a2−2a

> 0, (28)

the sign of the difference function changes from negative to positive for b = 4a2−
2a. The optimal choice of Tp if a > 1 is

Tp =

{
T ∗p if b < 4a2−2a
0 if b≥ 4a2−2a.

(29)

The magnitude of the two conditions on b in (27) and (29) are related as

4a2−2a < a+
√

a⇔ a < 1. (30)

Therefore the optimal choice can be expressed as

Tp =

 T ∗p if b <

{
4a2−2a or
a+
√

a
0 otherwise.

(31)

3.5 Special cases
There are three parameter combinations that are not treated in the analysis above.
The first is the case when Td = 0. In this case, the ISE defined in (8) is equal to

J = K2
d

T 2
u +(3Tp−2Tz)Tu +(Tp−Tz)

2

2(Tu +Tp)
. (32)
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It can easily be verified that the ISE is zero if the controller parameter are chosen as
Tp = 0 and Tz = Tu.

The second and third overlooked parameter combinations are when the time
constants are equal, that is Tu = Td and subsequently a = 1, and when b = 2. It has
been shown in [Hast and Hägglund, 2012] that the optimal controller parameters
are given by Tp = 0 and Tz chosen as (13).

4. Design Summary

Below follows a summary of how to choose the feedforward controller parameters
so that they minimize the ISE and are the solution to the optimization problem
formulated in Sec. 3. Calculate the delay difference

L = Lu−Ld . (33)

If it is negative, perfect disturbance rejection is possible with the controller

F =
Kd

Ku

1+ sTu

1+ sTd
e−s(Ld−Lu). (34)

If the delay difference is positive, the optimal ISE controller is obtained by choosing
the controller parameters as

1. Kff =
Kd

Ku
.

2. Lff = 0.

3. • Calculate a = Tu/Td and b = a(a+1)e
L

Td .

• If b < 4a2−2a or b < a+
√

a

Tp =
3a−1−b+(a−1)

√
1+4b

b−2
Td .

• Otherwise, Tp = 0.

4. Tz = (Tp +Tu)

(
1− 2Tu

b(Td +Tp)

)
.

Note that even though a small Tp can be optimal, it is not necessarily practical or
possible to realize such a controller. Considerations related to the controllers noise
characteristics and realizability are presented in Sec. 6.

5. Optimal Feedforward Controller Characteristics

This section will provide an illustration of how the optimal controller parameters
depend on the process parameters.
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0 1 2 3 4

0

1

2

L

Tz,Tp

Figure 4. Controller parameters as functions of the delay difference L for Tu =
1.8, Td = 1. The solid lines correspond to the optimal controller parameters and the
dashed lines correspond to the common controller (35). Tp and Tz in black and gray
respectively.

5.1 Lead-lag characteristics
The optimal controller will be compared with the commonly used feedforward con-
troller given by (2), where the non-realizable part is discarded i.e.

F0 =
Kd

Ku

1+Tus
1+Tds

. (35)

By not taking the delay difference into account, the time constants alone determine
if this controller will have lead or lag characteristics. A feedforward controller will
have lead characteristics if Tz > Tp and a lag characteristics if Tz < Tp. It is apparent
from (35) that this controller switches from a lead- to a lag-filter for a = 1. For the
optimal controller it is straight-forward, using (13) and (31), to show that Tz < Tp if
and only if a < 1 and b < a+

√
a. Examples of the optimal controller parameters

as functions of the process parameters can be seen in Figure 4 and Figure 5. These
figures show how the optimal controller parameters depend on the the time-delay
difference L.

For L = 0 it is easily verified, using (14) and (22) that T ∗p = Td . Furthermore, its
derivative with respect to L is

dT ∗p
dL

= (1−a)

(
2b+5+3

√
1+4b

)
b

√
1+4b(b−2)2 , (36)

from which it, together with (31), can be concluded that T ∗p > Td if and only if a < 1
and b <

√
a+a. This can be seen in Figure 4 and Figure 5.
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Figure 5. Controller parameters as functions of the delay difference L for Tu =
0.4, Td = 1. The full lines correspond to the optimal controller parameters and the
dashed lines correspond to the common controller (35). Tp and Tz in black and gray
respectively.

5.2 Nonnegativity of the optimal Tz.
It follows from (13) that T ∗z , is nonnegative if and only if

(b−2a)Td +bTp ≥ 0. (37)

Furthermore, from the definition of b (14) it also follows that

a≥ 1⇒ b≥ 2a (38)

and thus, the optimal Tz is positive for a≥ 1.
For time-constant ratios a < 1 and long time delay differences L, the optimal

value of Tp is zero according to (31). In this case Tz is nonnegative since

b >
√

a+a > 2a (39)

and the inequality (37) is satisfied.
For the last case, a < and b <

√
a+a, the optimal Tz is positive since

(b−2a)Td +bTp > a(a+1)(Td +Tp)−2aTd > 0 (40)

where the first inequality follows from the definition of b and that L is positive. The
second inequality holds since, T ∗p > Td . Using T ∗p will therefore give an optimal Tz
that is positive.
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Asymptotic Controller Parameters
If the delay difference L is zero, the expressions for the optimal controller parame-
ters simplify Tp = Td and Tz = Tu i.e. the controller given by (2) is realizable and the
disturbance will not give rise to any control error. The design rules for the optimal
controller behaves as expected for L = 0. This is also true for the case of very large
time-delay difference.

According to the definition of b, (14), and optimal choice of Tp, (31), Tp = 0
is optimal if the time-delay difference L is sufficiently large. From (13) it can be
shown that

lim
L→∞

Tz = Tu. (41)

This means that if the time-delay difference is large no additional lag is introduced
by the feedforward controller and the pole in Pu is canceled. This can be seen in the
figures 4 and 5.

6. Control Signal Considerations

The optimal controller proposed minimizes the integrated-squared error but can be
sensitive to high-frequency noise and give rise to large control signals. The high-
frequency gain of the controller is

Kff
Tz

Tp
(42)

and using the optimal controller parameters can give too large, or even infinite,
high-frequency gain. The unit step response of the controller is

u(t) =−Kff

(
1+

(Tz−Tp)e−t/Tp

Tp

)
(43)

from which it can be concluded that the largest magnitude of the signal is equal
to the high-frequency gain given by (42). A large ratio between Tz and Tp can be
undesirable for two reasons; it yields large control signals and, can amplify and feed
measurement noise into the feedback loop.

To limit the effect of high-frequency noise and to get a smoother control signal,
the feedforward controller (6) is augmented with a second-order low-pass filter;

Ff (s) = Kff
1+ sTz

(1+ sTp)

1(
1+ sTf

)2 e−sLff . (44)

We propose that the parameters Kff, Lff, Tz and Tp are chosen in accordance to what
is optimal for a controller such as (6). The filter time constant Tf is then chosen so

129



Paper IV. Low-Order . . . Optimal Performance and Practical Considerations
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Figure 6. Open-loop structure with measurement noise, n, on the controller input.

that the noise propagation through the controller and control signal activity is satis-
factory. The order of the low-pass filter is chosen so that the feedforward controller
has roll-off also when Tp is zero.

With the added high-frequency roll-off, control action will be smoother and the
wear on the actuator will decrease.

Assuming additive white noise corruption, n, on the controller input, see Fig-
ure 6, the variance of controller output is

var(u) =
Kff

4Tf

(
1+

T 2
z −T 2

p(
Tf +Tp

)2

)
. (45)

This can be shown, using methods from [Åström, 1970], to be equal to

∞∫
0

(
du(t)

dt

)2

dt (46)

which is a measure of the actuator movement during a unit-step disturbance. By
increasing Tf , the control signal will be smoother and less aggressive, possibly at
the expense of decreased performance.

According to (31), the optimal choice of Tp is zero if b is large which is implied
if the delay difference is large. For Tp = 0, two approaches to chose Tf are presented
below. Firstly, it will be shown how to choose Tf to limit the peak in the control
signal. The tuning rule is derived, as were the ISE-optimal tuning rules, for a unit
step-disturbance. Secondly, it will be shown how to choose Tf to limit the peak in
the controller’s Bode magnitude plot.

High-frequency noise, arising from the measurements of the disturbance, will be
attenuated if H is strictly proper. However, if this noise is not sufficiently attenuated
by H, the feedback controller should have roll-off to prevent the noise from being
amplified and fed into the feedback system. For PID-controllers the necessity of
filtering and how the filter should be designed have been treated in [Larsson and
Hägglund, 2011].
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The introduction of the low-pass filter also makes it meaningful to address the
problem of noise when perfect feedforward is possible. This will be treated in Sec. 7.

6.1 Filter choice for Tp = 0.
The design rules for an optimal lead-lag feedforward controller given in Sec.4 will
for long time delays state that Tp is zero. The feedforward controller is then an ideal
PD-controller and a special case of (44) given by

F0(s) = Kff
1+ sTz(

1+ sTf
)2 e−sLff . (47)

For this controller, considerations regarding the control signal characteristics can be
derived without approximations. This is also the worst case scenario from a control
signal perspective since

|F0(iω)| ≥
∣∣Ff (iω)

∣∣ . (48)

Limiting the control signal peak The filter time constant can be chosen such that
the control signal peak when the system is subject to a step disturbance is smaller
than some user-specified value. The control signal, using (47), subject to a unit-step
disturbance is

u(t) =−Kff

(
1−

T 2
f − τ(Tz−Tf )

T 2
f

e
− τ

Tf

)
(49)

where τ = t−Lff. Differentiating by, and solving for τ , the control signal peak can
be be shown to be obtained at

tpeak =
TzTf

Tz−Tf
+Lff. (50)

The peak in the control signal is

u
(
tpeak

)
=−Kff

(
1+

Tz−Tf

Tf
e

Tz
Tf−Tz

)
. (51)

By introducing x = Tf /(Tz−Tf ), the expression for the peak being ∆ times larger
than Kff, can be expressed by

u
(
tpeak

)
=−Kff

(
1+

1
x

e−(x+1)
)
=−Kff∆. (52)

The equation can be rewritten as

xex =
e−1

∆−1
(53)
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Figure 7. The ratio between Tf and Tz as a function of the desired control signal
peak magnitude ∆.

for which the solution is given by the Lambert W-function i.e.

x =W
(

e−1

∆−1

)
, ∆ > 1. (54)

By assumption, ∆ is larger than one and the argument to the Lambert W-function is
therefore positive and real, and the solution to (53) is therefore given by the principal
branch W0 of the W function. See [Corless et al., 1996] for an introduction to, a brief
history, and computational aspects of the Lambert W-function. To obtain a control
signal with a peak ∆ the filter time-constant should be chosen as

Tf =
Tz

1+ 1
W0

(
e−1
∆−1

) . (55)

The ratio between the filter time-constant and Tz is thus a function of the desired
control signal peak magnitude ∆. This function is displayed in Figure 7. It can be
seen in the figure that for example choosing the filter time constant as a fifth of Tz
yields a control signal peak approximately twice as large as the static gain.

6.2 Bode magnitude peak reduction
The filter time-constant can also be chosen such that the largest value of the Bode
magnitude-plot is equal to or lower than a desired value. The maximum of the Bode
magnitude is

γ0 = max
ω
|F0(iω)| (56)

and the maximum occurs at the frequency

ω∗ =

√
T 2

z −2T 2
f

TzTf
, (57)
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Figure 8. The ratio between Tf and Tz as a function of the desired Bode peak
magnitude γ0/Kff.

which means that ω∗ is the only positive real solution to

dF0(iω)

dω
= 0. (58)

The magnitude of the Bode plot peak at the frequency ω∗ is

γ0 = Kff
T 2

z

2Tf

√
T 2

z −T 2
f

. (59)

Solving this equation for Tf gives

Tf =
Tz√

2

√
1−
√

1− K2
ff

γ2
0
, γ0 > Kff, (60)

which can be used as a design rule to choose the filter time-constant. The condition
that γ0 should be larger than Kff is necessary since if Tf > Tz/

√
2 the maximum will

be Kff and occur at ω = 0. Figure 8 shows how the ratio between Tf and Tz depends
on the desired Bode peak magnitude.

Filter choice for Tp > 0. For the lead-lag feedforward controller (6), the high-
frequency gain (42) is finite if Tp > 0 but it can still be too large. If Tz > Tp the high
frequency gain will be larger than Kff. Deriving an analytic solution to the problem
of limiting the Bode magnitude is not tractable and therefore an approximation is
derived and presented in this section.

The magnitude of the controller’s Bode plot is

∣∣Ff
(
iω,Tf

)∣∣= Kff

√
1+ω2T 2

z

1+ω2T 2
p
· 1

1+ω2T 2
f
. (61)
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A necessary condition for the Bode plot to have a peak larger than Kff is that Tz > Tp.
The peak will be located at the positive real solution to

d
∣∣Ff
(
iω,Tf

)∣∣
dω

= 0. (62)

Straight-forward but tedious calculations give that a positive real solution exists if
and only if

0 < Tf <

√
T 2

z −T 2
p

2
= T̂f . (63)

If noise conditions or constraints on the control signals aggressiveness are such that
the filter time constant has to be chosen larger than this upper bound, the benefit
of using the optimal parameter values diminishes to a level where a second order
low-pass filter should be considered as the feedforward controller.

Denote the peak of the Bode magnitude plot

γ
(
Tf
)
= max

ω

∣∣Ff
(
iω,Tf

)∣∣ (64)

which has the the following boundary conditions

γ(0) = Kff
Tz
Tp
, γ ′(0) =−Kff

2T̂f
T 2

p
,

γ(T̂f ) = Kff, γ ′(T̂f ) = 0.
(65)

As an approximation of the peak consider the function

γ̃ = Kff
b1Tf +b2

T 2
f +b3Tf +b4

(66)

where the parameters bi are determined so that the approximation has the same
boundary conditions as (65). This results in

γ̃ = Kff
T̂f Tf +

1
2 Tz(Tz +Tp)

T 2
f − T̂f Tf +

1
2 Tp(Tz +Tp)

. (67)

Denote the peak magnitude relative to the static gain by λ , i.e. λ = γ̃/Kff. By solving
(67) for Tf , the filter time-constant can be determined by

Tf =
T̂f (1+λ )

2λ

√
1− 2λ (Tz−λTp)(Tz +Tp)

(1+λ )2T̂ 2
f

. (68)

An example of the true Bode magnitude peak and its approximation can be seen in
Figure 9 where Tz = 1, Tp = 0.5. The approximation is close to the true value of the
Bode magnitude peak.
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Figure 9. The true Bode peak magnitude (gray) and the approximation (black)
given by (68) as functions of the filter time constant Tf . The controller parameters
are Kff = 1, Tz = 1 and Tp = 0.5.

7. Precompensation

Without the noise-reducing filter, perfect disturbance rejection is possible with the
controller (2) if Lu ≤ Ld . However, this controller can suffer from noise sensitivity
and aggressive control action. Adding the low-pass filter will reduce these problems
but it will also deteriorate the performance.

With the introduction of the low-pass filter to the optimal controller, additional
lag is introduced. However, if the optimal controller contains a time delay, this can
be adjusted in order to reduce the lag from the filter. Consider the controller (44)
with the time delay

Lff = Ld−Lu +δ (69)

where δ denotes the time-delay shift. Denote the integrated-squared error (8) ob-
tained with this controller J f . This is a convex function of δ since

d2J f

dδ 2 =
2K2

d T 2
d (Td +Tz)

e
δ
Td (Tp +Td)

(
Tf +Td

)2
(Tu +Td)

≥ 0

and hence the unique minimizer is given by the only stationary point J f i.e.

δ ∗ = ln
(

2T 3
d (Td +Tz)

(Tf +Td)2(Tp +Td)(Tu +Td)

)
Td . (70)

By using the Tp and Tz that are optimal in the case without the low-pass filter, this
expression simplifies to

δ ∗ = 2ln
(

Td

Tf +Td

)
Td . (71)
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This indicates that the delay in the controller should be decreased when filtering is
introduced. The time delay Lff in the controller must be positive and it follows from
(69) that

δ ≥ Lu−Ld . (72)

Hence, there exists a bound on the filter time-constant Tf for which the controller
delay will be zero. Introducing (71) into the inequality (72) and solving for the filter
time constant gives

Tf ≤ Td

(
e

Ld−Lu
2Td −1

)
. (73)

For reasonable amounts of filtering, the time-delay shift rules provided in (70) and
(71) reclaims some of the performance lost by the introduction of the low-pass filter.

8. Design Examples

In this section two examples are presented to illustrate that the ideas presented in this
paper also work well in a closed-loop setting where the process models differ from
the actual processes. The first examples compares the different control structures as
well as makes use of the design considerations from Sec. 6. The last example shows
that the concepts of precompensation is an easy way to increasing performance
when the closed-loop decoupling structure is used.

EXAMPLE 1—CLOSED-LOOP PERFORMANCE
This example illustrates how the feedforward structure presented in Figure 3 and the
design rules presented in this paper performs in a setting with noise and uncertain
process models . It also shows the benefits of feedforward control and especially
feedforward control using the decoupling structure.

Consider the controller structure in Figure 3 with the processes given by

Pu(s) = 1
(1+s)3 , Pd(s) = 1

(1+0.1s)2 (74)

and their FOTD-approximations

P∗u (s) =
1

1+2.45s e−0.81s, P∗d (s) =
1

1+0.19s e−0.03s.

To simulate a scenario where the process knowledge is limited, the controllers will
be designed based on the approximations.

The feedback controller is a PI controller, where the controller parameters are
found using the method in [Hast, Åström, et al., 2013], given by

C(s) = 0.55+
0.27

s
. (75)

Using the design rules in Sec. 4 yields the, nonrealizable, feedforward controller

F0 = 1+2.44s. (76)
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To obtain a realizable controller that doesn’t suffer from high-frequency noise
amplification, a filter is augmented to the feedforward controller. The filter time-
constant is chosen so that the control signal peak is ∆ = 5 using (55). The feedfor-
ward controller with low-pass filter is

F =
1+2.44s

(1+0.19s)2 . (77)

Assuming that perfect process knowledge is not available, the decoupling filter is
based on the approximations i.e.

H = P∗u −P∗d F. (78)

The system is simulated using the processes (74) with band-limited white noise
added to the measurements of the disturbance d. The noise power is 5 ·10−9 and the
sample time is 10−4 units. The disturbance is a unit-step entering at t = 1. In order
to compare the performance of the controller and the structures, the results from
three simulations can be seen in Figure 10. The gray curves correspond to pure
feedback control, i.e. F = 0 and H = 0 and are provided for reference. The black
dash-dotted curves correspond to feedforward control using the controller (77) with
H = 0, i.e. no control action decoupling. Finally, the black solid curves correspond
to a simulation where both the feedforward controller (77) and the decoupler (78)
was used. The measurement noise on the feedforward controller input is effectively
attenuated to such a degree that it is not visible in the control signal, Figure 10.

As can be seen from Table 1, the introduction of feedforward action increases
the ability to reject the disturbance in measures of ISE but not integrated absolute
error, IAE. Although the feedforward controller would perform well in an open-
loop setting, in closed-loop the interaction with the feedback controller yields large
control signals and a significant undershoot in the disturbance response. The de-
coupling filter increases performance as well as makes it possible to re-tune either
the feedforward and feedback controllers without the need to re-tune the other. The
output from the feedback controller can be seen in Figure 11. Comparing the black
curves, it can be concluded that the introduction of the decoupler reduces the con-
trol action from the feedback controller. With the decoupling filter, the feedback
controller only acts on the mismatch between the model and the process. 2

Table 1. Performance measures for the control strategies in Example 1.

Scenario ISE IAE upeak

FB only 1.75 2.91 1.49
FB and FF 1.30 2.95 5.62
FB, FF and decoupling 0.86 1.91 4.99
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Figure 10. Output (upper) and control signals (lower) for the scenarios in Exam-
ple 1. The solid gray curves correspond to only feedback control, the dash-dotted
black curves to feedback and feedforward control using the conventional controller
structure, Figure 2, and the solid black to feedback and feedforward control using
the decoupling structure, Figure 3.

0 5 10 15

−1

−0.5

0

t

v(t)

Figure 11. Feedback controller output for the scenarios in Example 1. The solid
gray curves correspond to only feedback control, the dash-dotted black curves to
feedback and feedforward control using the conventional controller structure, Fig-
ure 2, and the solid black to feedback and feedforward control using the decoupling
structure, Figure 3.
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EXAMPLE 2—CLOSED-LOOP PERFORMANCE USING PRECOMPENSATION
This example will show that the concept of precompensation works well in a closed-
loop setting where the process’ dynamics are not fully known. Consider a system
with the structure as in Figure 3 with the same process dynamics as the Example 1
except for an added time delay of two time units in the disturbance dynamics i.e.

Pu(s) = 1
(1+s)3 , Pd(s) = 1

(1+0.1s)2 e−2s (79)

with their FOTD-approximations

P∗u (s) =
1

1+2.45s e−0.81s, P∗d (s) =
1

1+0.19s e−2.03s.

The same feedback controller, (75), that was used in Example 1 can be used since Pu
is unchanged. Using the design rules presented in Sec. 4, the feedforward controller
is

F0 =
1+2.45s
1+0.19s

e−1.22s. (80)

The high-frequency gain of this controller is 12.9, which will be the amplification
of high-frequency measurement noise. To limit the noise amplification, low-pass
filtering is introduced. To limit the largest value of the Bode magnitude to approxi-
mately λ = 5, (68), is used to calculate a suitable filter time-constant as Tf = 0.22.
The filtered controller is thus given by

Ff =
1+2.45s

(1+0.19s)(1+0.22s)2 e−1.22s. (81)

To counter-act the additional lag introduced by the low-pass filter, the time delay
may be shifted according to (70), i.e. δ =−0.27 the delay-shifted controller is then
given by

Fδ =
1+2.45s

(1+0.19s)(1+0.22s)2 e−0.94s. (82)

The three controllers were tested in simulation with the same measurement noise
as in the previous example with a unit-step disturbance entering at t = 0. In each
simulation the decoupling filter was chosen according to (5) as

H = P∗d −P∗u F. (83)

The processes used in the simulations are the ones given by (79). The results from
the simulations can be seen in Figure 12 where the gray curves correspond to the
nonfiltered controller, the dash-dotted to the filtered and the black solid to the fil-
tered and delay-shifted controller. The performance measures associated with the
simulations can be seen in Table 2. Introducing the low-pass filter reduces the noise-
amplification significantly as well as the initial peak in the control signal. However,
this comes at the expense of lost performance both in terms of ISE and IAE. By
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Figure 12. Output (upper) and control signals (lower) using the three controllers
presented in Example 2. The gray solid curves correspond to the controller without
filtering (80), the dash-dotted black curves to the low-pass filtered controller (81),
and the solid black curves to the low-pass filtered controller with precomensation,
(82).

Table 2. Performance measures for the control strategies in Example 2.

Controller ISE IAE upeak

F0(s) 0.18 1.13 13.3
Ff (s) 0.37 1.38 3.5
Fδ (s) 0.23 1.20 3.5

shifting the time-delay in the controller, the performance loss can be reduced while
the good noise-properties of the filtered controller remain. This example shows that
the method of precompensation works well also in scenarios where the process
knowledge is limited and feedback is used together with feedforward. 2

9. Conclusions

This paper describes how to tune low-order feedforward controllers in order to
minimize the integrated squared error for measurable step disturbances. The de-
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Figure 13. Bode diagram for the three feedforward controllers in Example 2. The
gray solid curves correspond to the controller without filtering (80), the dash-dotted
black curves to the low-pass filtered controller (81), and the solid black curves to the
low-pass filtered controller with precomensation, (82).

sign rules are derived for an open-loop structure with FOTD plant models. The
open-loop controller structure is motivated by the use of a decoupling structure that
enables the feedforward and the feedback controllers to be tuned separately. The
resulting response to measurable disturbances is that of the open-loop. The paper
also describes the characteristics of the optimal controller parameters as functions
of the plant model parameters. The optimal feedforward controller can suffer from
large high-frequency gain and noise sensitivity which can result in large unwanted
control action. To reduce the control action and noise amplification it is proposed
that the optimal feedforward controller is low-pass filtered. The filter proposed is
a second order filter that assures that the controller has roll-off and thus attenuates
high-frequency noise that arises for example from measurement noise.

A number of design methods for choosing the filter time-constant is also pro-
posed. Design rules to limit the peak in both the Bode magnitude or in control signal
are provided. Examples show that the controller structure used and the design rules
provided gives good performance also in settings with process uncertainties. By
filtering the ISE-optimal controllers the control signal characteristics can be signif-
icantly improved in terms of variance and aggressiveness with a reasonable loss in
performance.

For situations were the disturbance can be completely rejected, design rules for
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how the time-delay can be shifted in order to compensate low-pass filtering, was
provided. This approach of precompensation was shown in examples to give signif-
icant performance improvements in open-loop settings in scenarios where filtering
of the measurable disturbance was needed. The approach was also tested in simu-
lations in closed-loop with uncertain processes, where it also gave an increase in
performance.
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A. Supplementary Equations

Equations that are related to the analysis of the optimal feedforward controller are
presented here for completeness.

With Kff = Kd/Ku and Lff = 0 the cost function (10) can be expressed as

J =

∞∫
L

y2(t)dt = K2
d
(
α2T 2

z +α1Tz +α0
)

(84)

where the coefficients

α0 =
Td

2e
2L
Td

+
T 2

p +3TuTp +T 2
u

2(Tu +Tp)
−2a

TpTu +Td(Tp +Tu)

b(Tp +Td)

α1 =
2Tu

b(Tp +Td)
−1

α2 =
1

2(Tu +Tp)
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are functions of Tp. The cost function is minimized with respect to Tz by Tz =− α1
2α2

.
With this choice of Tz the cost function reduces to

Ĵ(Tp) = K2
d

(
α0−

α2
1

4α2

)
. (85)

The cost for the boundary controller, Tp = 0, is

Ĵ(0) =
K2

d a2 (a−1)2 Td

2b2 . (86)

The difference function (18) is given by

D(Tp) = K̃(Tp)
(
T 2

p + c1Tp + c0
)

Tp (87)

where

K̃(Tp) =
K2

d Tu(b−2a)2

2b2(Tu +Tp)(Tp +Td)2

c1 =
4Td
(
a3 +(2−b)a2− (b+1)a+ 1

2 b2
)

(b−2a)2

c0 =
T 2

d

(
8a3−4a2 +b2−4a2b

)
(b−2a)2 .

(88)
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Paper V

Feedforward controller design using convex
optimization and tuning rules for
proportional set-point weighting

Martin Hast Tore Hägglund

Abstract

In this work we present a method for design of low-order feedforward con-
trollers from both reference signal and measurable disturbance. The feedfor-
ward controllers from reference are equivalent to the use of a PID controller
with set-point weighting. The design problem is formulated as a convex opti-
mization problem and then solved for a batch of process models. The optimal
proportional set-point weights are then used to derive tuning rules that min-
imize the integrated absolute error. Examples illustrate the usefulness of the
proposed method and tuning rules.

Submitted to IET Control Theory & Applications.
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1. Introduction

Tracking of reference and attenuation of disturbances are the core in the control of
a system. Because of uncertainties in the model describing the process and distur-
bances this is most conveniently handled using a feedback controller. The tracking
and disturbance rejection can be improved without sacrificing robustness by intro-
ducing filters or controllers that has an open-loop impact on the control system.
Ideally those feedforward controllers should invert the process dynamics so that we
obtain perfect tracking and disturbance rejection. This is unfortunately not possible
in general due to e.g., nonminimum-phase behavior, time delays and saturation in
the actuators. This paper describes a method for designing feedforward controllers
by solving a suitable convex optimization problem that will handle also those cases.
The same optimization problem will be solved for a batch of processes and the
results will be used to formulate tuning rules for how to chose the proportional
set-point weight for PI and PID controllers.

In the literature concerning design of low-order feedforward controllers in-
tended for use in connection to PID controllers there seem to a bias towards feed-
forward action from the reference signal. This is most probable due to the fact that
the reference signal, in contrast to disturbances in general, is measurable and feed-
forward therefore is possible.

Convex optimization has evolved into a mature branch in the tree of optimiza-
tion disciplines, see [Boyd and Vandenberghe, 2004] and its many references. The
book [Boyd and Barratt, 1991] provides a thorough analysis of linear controller
design and different specifications that could be considered. It also provides a treat-
ment of controller design with connections to convex optimization.

A variety of easy-to-use tools are available for a number of different platforms
and in several programming languages, for instance the MATLAB toolboxes CVX,
[Research, 2012; Grant and Boyd, 2008] and YALMIP [Lofberg, 2004], and the
Python software package CVXOPT [M. Andersen et al., 2011; M. S. Andersen et
al., 2013].

The design of feedforward compensators, assuming that the process is described
by a first-order model plus dead-time, FOTD, has been addressed in an number of
papers. In [Visioli, 2004] a nonlinear feedforward reference control scheme is used
to obtain good tracking followed by a PID design that ensures good robustness.
A tuning rule for a low-order controller that gives optimal rejection of measurable
disturbances is derived in [Hast and Hägglund, 2014]. The method presented there
is independent on the feedback controller but relies on first-order plus dead-time
(FOTD) process models. That paper also discusses some of the practical issues that
noise filtering introduce and how these can be solved. Optimal low-order feedfor-
ward from measurable disturbance, taking the feedback controller into account, is
presented in [Isaksson et al., 2008]. Low-order feedforward from measurable distur-
bances, for processes described by FOTD models, has been addressed in [Guzmán
and Hägglund, 2011]. The tuning rule presented there cancels the process pole and
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the remaining parameters are chosen so that the integrated absolute error is mini-
mized. In [Vilanova and Visioli, 2012] another method for tuning feedforward con-
trollers based on low-order process models is presented. Our method, presented in
this paper, does not rely on a specific model structure.

The use of feedforward control in order to increase performance in the scope of
model predictive control was examined in [Carrasco and Goodwin, 2011].

Inversion-based feedforward methods, where the reference signal is altered so
that the transition between to set-points behaves in an optimal fashion, have been
presented, for example, in the case of linear minimum-phase systems [Piazzi and
Visioli, 2001b], linear nonminimum-phase systems [Piazzi and Visioli, 2001a] and
nonlinear systems [Graichen et al., 2005].

Methods for feedforward controller design for multiple-inputs multiple-outputs
(MIMO) plants have been addressed by e.g, [Prempain and Postlethwaite, 2001]
where controllers are designed using Youla parameterizations in the robustness H∞-
framework. The method presented there also applies to gain-scheduled feedforward
controllers for linear parametric varying plants. In [Piccagli and Visioli, 2009] an
optimal feedforward control design, from the reference signal, for MIMO-plants
described by FOTD models was presented. The feedforward signals are determined
so that the system outputs achieve predefined transition times. Our method aims
at providing a simple optimization method that minimizes IAE that also can take
constraints on error and control signal into account as well as to provide tuning
rules for how to chose the set-point weights.

The problem of designing robust feedforward controllers using convex opti-
mization when the poles of the controllers are fixed has been presented in [Giusto,
Neto, et al., 1996] where they minimize the H∞ and H2 norms. This result was ex-
tended to the case of uncertainties in [Giusto and Paganini, 1999]. Design of robust
feedforward controllers where the poles of the controllers are part of the optimiza-
tion can be found in [Scorletti and Fromion, 2006] and [Kose and Scherer, 2007].
These papers focus on minimization of H∞ and H2 norms and do not take the con-
troller signal into account.

Set-point weighting for MIMO plants by formulating and solving an optimiza-
tion problem with bilinear matrix inequalities has been addressed by [Bianchi et al.,
2008]. Their design method relies on transformation of the problem to a problem
of static output feedback and minimization of H∞ and H2 norms. Our method min-
imizes the integrated absolute error and admits constraints on both the error and
control signal responses.

A similar method as the one presented here, in the case for reference feedfor-
ward controller design using a quadratic cost function has been addressed in [Leva
and Bascetta, 2007]. Our method admits any convex cost function and provides
tuning rules for the proportional set-point weight.

The paper is organized as follows. In Section 2 we define the controller structure,
models, controllers and relevant signals. In Section 3 aspects of error minimization
is discussed and how signals can be sampled to obtain a tractable optimization prob-
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Figure 1. Control structure.

lem. In Section 4 we discuss how design specifications can be turned into a convex
optimization problem and give an example of how the problem of finding optimal
set-point weights can be formulated. The AMIGO process batch is presented in Sec-
tion 5. The optimal solution to the problem of minimizing IAE for all 134 processes
in the batch are presented and tuning rules are derived. The tuning rules are also
verified and discussed. In the last section we provided some conclusions.

2. Plant Models, Controllers and Signals

We denote the system output by y(t), the control signal by u(t), the set-point or
reference by r(t) and the measurable disturbance by d(t). The error is given by
e(t) = r(t)− y(t). The feedback controller C(s), the feedforward controllers Fr(s)
and Fd(s), the process Pu(s) and disturbance dynamics Pd(s) are connected as in
Figure 1. We assume that all processes and controllers are described by single-input
single-output, linear time-invariant models.

We assume that the process Pu(s) is controlled by a PID controller with set-point
weighting i.e., that the control signal is given by the transfer function

U(s) = kp (bR(s)−Y (s))+
ki

s
(R(s)−Y (s))+ kdsD f (s)(cR(s)−Y (s)) .

where s denotes the Laplace operator and kp, ki and kd are the proportional, integral,
and derivative gain, respectively. The derivative term is filter by a filter D f (s). The
filter is assumed to be fixed and responsibly chosen to give desired high-frequency
gain. The disturbance dynamics Pd(s) is assumed to be asymptotically stable. The
set-point weighted PID controller equivalently can be represented by the block dia-
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gram depicted in Figure 1 where the feedback controller

C(s) = kp +
ki

s
+ kdsD f (s) (1)

is a PID controller without set-point weighting and

Fr(s) = kp(b−1)+ kd(c−1)sD f (s) (2)

is a reference feedforward filter. We define the disturbance feedforward controller
as

Fd(s) = k̃p + k̃dsD f (s). (3)

The feedforward controllers are PD-controllers. Their simple structure is motivated
by the simplicity of the feedback controller. For a process where PID-control is
chosen as the feedback controller it is reasonable to use feedforward controllers of
the same complexity. The use of an integrating part in the feedforward controllers
would cause the magnitude of the control signal to grow infinitely large for steps
in reference or disturbances. PD controllers can be implemented in any modern
programmable logic controller (PLC) and distributed control system (DCS) and can
be considered the standard feedforward controller in process industry.

The error, e(t) = r(t)− y(t) and the control signal are given by Laplace trans-
formations as

E(s) = Ger(s)R(s)+Ged(s)D(s) (4)
U(s) = Gur(s)R(s)+Gud(s)D(s) (5)

where

Ger = S(1−PuFr), Ged =−S(Pd−PuFd) (6a)
Gur = S(C+Fr) Gud =−S(CPd +Fd) (6b)

where the sensitivity function and the complementary sensitivity function are de-
noted by S = 1/(1+PuC) and T = PuCS, respectively. The signals above are func-
tions of the Laplace operator that has been omitted in order to avoid cluttering.

A disadvantage with this structure is that the feedforward controller from the
measurable disturbance Fd and the feedback controller are coupled. If the feed-
back controller is retuned then the feedforward controller also has to be appropri-
ately retuned. There exist controller structures that decouple the two controllers see
e.g., [Brosilow and Joseph, 2002] and the work building upon that idea [Hast and
Hägglund, 2014; Hast and Hägglund, 2012].

We assume that the feedback controller, C, has been designed so that the result-
ing feedback loop is asymptotically stable and has good robustness.
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From (6) we see that perfect tracking and disturbance attenuation are obtained
if the feedforward controllers are chosen as

Fr = P−1
u , Fd = P−1

u Pd (7)

These controllers need not be realizable or stable. If for instance Pu has zeros in the
right half-plane, the feedforward controllers are unstable or, if Pu has a time-delay
larger than that of Pd the Fd controller would not be realizable. In cases when the
inversion of the process is possible the controller could give rise to large control
signal and the performance could deteriorate if the process dynamics change.

It follows from (2), (3) and (6) that if the measurable disturbance acts on the
process output i.e., Pd = 1 the transfer functions from r to e and from d to e are
equal, apart from the sign. Hence, if the reference tracking problem is solved and
optimal b and c are obtained, the optimal solution for k̃p and k̃d are readily obtained
as

k̃p = kp(b−1)

k̃d = kd(c−1).
(9)

3. Error Minimization

It is common to measure the performance of control systems by some appropriate
norm of the error for some reference and disturbance that the system is likely to
be subjected to. The aim of this article is to present the problem of choosing the
set-point weights and the disturbance feedforward controller that minimizes the er-
ror measured in some norm subject to appropriate constraints that can be solved by
solving a convex optimization problem [Boyd and Vandenberghe, 2004]. For sim-
plicity we will illustrate the method using the integrated absolute error, which is
common in process control, defined by

IAE =

∞∫
0

|e(t)|dt (10)

as the performance measure. It is also common that there are limitations on the con-
trol signal that should be used to track the reference or to attenuate the disturbance.
Using the controllers (2) and (3) in (4) and (5), with (6), we see that the error and
control signals are affine expressions of the feedforward controller parameters.

REMARK 1
We focus on IAE as the performance measure in this article. However, any con-
vex function could be used to measure the performance. Special cases include the
integrated-square-error defined as

ISE =

∞∫
0

e(t)2dt, (11)
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which is equivalent to the minimizing ‖e(t)‖L2 and therefore equivalent to ‖e(t)‖2.
Furthermore, the maximum-absolute-error

emax = max
t
|e(t)| (12)

is a special case of the Lp-norm for p = ∞. 2

The error can be computed as functions of the parameters by inverse Laplace
transformation of (4) and be expressed as

e(t) = L −1(E(s)) = er(t)+ ed(t) (13)

where the influence of the reference feedforward is given by

er(t) = L −1(S(1+Pu
(
kp + kdsD f

))
R−SPR

[
kp kdsD f

]
xr
)
= e0

r (t)+Zr(t)xr
(14)

where xr =
[
b c

]T and the influence of the disturbance is given by

ed(t) = L −1(−SD−SP
[
1 sD f

]
xd
)
= e0

d(t)−Zd(t)xd. (15)

In a similar way the control signal can be expressed as

u(t) = L −1(U(s)) = ur(t)+ud(t) (16)

where
ur(t) = L −1(SCR+SR

[
kp kdsD f

]
xr
)
= u0

r +Wr(t)xr (17)

where xd =
[
k̃p k̃d

]T and

ud(t) = L −1(−SCD+SD
[
1 sD f

]
xd
)
= u0

d +Wd(t)xd (18)

where u0(t) is the control signal if feedforward control is not used.
As can be seen in (14), (15), (17) and (18) all four responses are linear in the

controller variables. Splitting the error and control signal into two parts, one de-
pendent only on the reference and one on the disturbance, allows us to formulate
one optimization problem that simultaneously and independently designs the two
feedforward controllers.

Note that also the derivative of the control signal can be obtained in a similar
fashion by multiplying the expression (16) by s and performing the partitioning of
the signal into the different parts corresponding to the feedforward parameters.

REMARK 2
Since the transfer functions in Equation (6) are affine in xr and xd the optimization
problems can also be defined in the frequency domain where some suitable norm
of (6a) is minimized. Mixes of the time responses and the frequency responses are
also possible. 2

151



Paper V. Feedforward . . . tuning rules for proportional set-point weighting

3.1 Sampling
To obtain a tractable optimization problem, that can be solved by a numerical solver,
the cost function and constraints need to be sampled. The sampled problem will be
convex so a large number of sampling points, say several thousands, can be used.

To sample the responses we first define a set of N time samples at which the
response functions should be evaluated. Let the set of time-samples be

t = {t1, t2, . . . , tN} (19)

where the time-samples are monotonically increasing i.e., ti < ti+1 for i =
1,2, . . . ,N − 1. The samples should be chosen dense enough so that all relevant
information in the time-responses are captured. This implies that the last sample, tN
has to be sufficiently large so that all the signals that are sampled has converged.

By evaluating the error functions (14) and (15) at the samples in t we obtain
their sampled counterparts

er = e0
r +Zrxr (20a)

ed = e0
d−Zdxd (20b)

where er, ed , e0
r and e0

d are vectors of length N and, Zr and Zr are N×mr matrices.
By evaluating the control signals (17) and (18) at the same time-instances we

obtain the sampled control signals

ur = u0
r +Wrxr (21a)

ud = u0
d +Wdxd (21b)

Using the sampled versions of the error, minimization of IAE is equivalent to min-
imizing the 1-norm of er + ed. Furthermore, the response of set-point changes and
disturbances are independent so that the minimization can be performed on each
term individually.

REMARK 3
The presented method for designing feedforward controllers is dependent on the
fixed denominator in the feedforward controllers. Fortunately, the controller poles
are fixed when set-point weighting is used. The method is readily extendable to any
feedforward controller that has fixed denominator. By specifying an asymptotically
stable prefilter with relative degree n and allowing the numerator polynomial coef-
ficients to be optimization parameters the optimization problem is convex and can
easily be solved. 2
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4. Feedforward Design

Feedforward is usually introduced to improve the system’s response to an exoge-
nous input signal. The applicability of the two feedforward controllers in Figure 1
is highly application dependent. If the system operates at a fixed set-point at all
times there is no need for Fr and if there are no measurable disturbances, Fd can-
not be used. As mentioned in Sec. 2, inverting the system’s dynamics is usually
not possible in the general case. Utilizing the set-point weighted PID controller and
PD feedforward controller from a measurable disturbance where the poles are fixed
we can formulate a great variety of convex optimization problems that give sound
feedforward controllers and that significantly improve the overall system behavior.
We only optimize the numerator, or zeros, of the feedforward controller and there
is therefore no guarantees that the feedforward controller is globally optimal.

4.1 Convex constraints
Designing a controller by just minimizing an appropriate norm of the error will
not necessarily produce a ”good” controller. Quantifying what means by a good
controller can be hard and is highly dependent on the type of application. In this
section we will present a number of convex constraints that can help the designer to
obtain a better controller. A convex constraint is one on the form

f (x)≤ 0 (22)

where the function f : Rn→ R has a convex domain and for all x,y in that domain
satisfies

f (θx+(1−θ)y)≤ θ f (x)+(1−θ) f (y) (23)

for 0≤ θ ≤ 1.
The functions (20), (21) are affine in the parameters which implies that con-

straints on the form
l(x)≤ f (x)≤ q(x) (24)

are convex if l(x) is convex and q(x) is concave i.e., −q(x) is convex and f (x) is
interpreted as one of the five functions.

This will prove useful since we can constrain the time-responses by specify-
ing upper and lower bounds on them for each time sample. This is done using the
constraint

emin ≤ e≤ emax (25)

where emin and emax are vectors of the same size as e and where they, element-wise,
satisfy emin ≤ emax. This means that we can constrain the error, for a given input
signal, to lie within an envelope.

As a special, and useful, case of (24) we could specify that the magnitude of the
error or control signals, arising from a disturbance, should be no larger than some
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value α , by including the constraints

|v| ≤ α (26)

where v is interpreted as either er, ed , ur or ud . This is of course a convex constraint
since the absolute value of an affine expression is a convex function.

Note that the norms also can be used as constraints i.e.,

‖v(t)‖ ≤ α (27)

where α is a positive scalar.

Control signal activity Good tracking and disturbance attenuation often comes at
the expensive of large control signals. In most applications however large control
signals is undesirable. Therefore it can be important to include constraints or terms
in the cost functions that penalize the use of large control signals in the optimization.

Saturation is easily handled within the proposed framework. By calculating the
control signals components using the method in Sec. 3.1 we can constrain the con-
trol signal by introducing

umin ≤ u≤ umax (28)

where u should be interpreted as either ur or ud and umin and umax are the lower and
upper bound on the control signal respectively. Of course, the umin and umax can be
time-dependent in the same way that was done in the constraint (25).

In a similar way as the control signal was calculated, the derivative of the control
signal can be calculated as

u̇(t) = L −1(sU(s)
)

(29)

provided that U is strictly proper. This derivative can then be sampled using the
procedure in Sec. 3.1. Once we have obtained a sampled version of the control
signal derivative it can be used to impose rate-constraints. Denoting the sampled
derivative by u̇ the rate constraint can be formulated as

α ≤ u̇≤ β . (30)

Another way to limit the control signal activity is to measure the control signal
activity by one appropriate norm ‖u̇(t)‖.

EXAMPLE 1—IAE MINIMIZATION
We illustrate the how the method can be used to design feedforward controllers from
both set-point and measurable disturbance.

Consider the control structure in Figure 1 and let the processes be defined as

Pu(s) =
e−s

(0.5s+1)4 , Pd(s) =
e−0.3s

0.3s+1
(31)
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To ensure roll-off and thus attenuating measurement noise entering the system the
PID controller C(s) = kp + ki/s+ kds is filtered with the low-pass filter G f (s) =
1/(0.1s+1)2. The feedback controller is tuned using the method presented in [Hast,
K. J. Åström, et al., 2013] which minimizes the integrated error subject to robustness
constraints on the maximum values of the sensitivity and complementary sensitivity
function should be less than 1.4. The filter is taken into account when the feedback
controller is designed, i.e., the controller is tuned for the process P̃u(s)=Pu(s)G f (s).
The resulting PID controller is

C(s) = 0.46+
0.39

s
+0.51s. (32)

The feedforward controllers are PD-controllers equivalent to the set-point weighting
in accordance with (2) and (3) with the same filters as the feedback controller. The
feedforward controllers are thus

Fr(s) =
kp(b−1)+ kds(c−1)

(0.1s+1)2 , Fd(s) =
k̃p + k̃ds

(0.1s+1)2 . (33)

We let the external inputs r and d be unit-steps and want to minimize the IAE error
with the constraints that the magnitude of the control signals that arises are less than
5. Furthermore we impose constraints on the overshoot of the responses. For the set-
point case we allow less than 5 per cent overshoot and for the disturbance case we
allow the overshoot to be the same as it were when no feedforward was used. By
using N = 2000 uniform samples in the time interval t = [0, 20], and applying them
to the equations (14), (15), (17) and (18) we obtain the vectors and matrices in (20)
and (21). The optimization problem can be formulated as

minimize
xr ,xd

‖e0
r +Zrxr‖1 +‖e0

d−Zdxd‖1

subject to e0
r +Zrxr ≥−0.05

e0
d−Zdxd ≤ 0.138
|u0

r +Wrxr| ≤ 5
|u0

d +Wdxd | ≤ 5

The optimization problem was solved using CVX in MATLAB and took less than
2 seconds to solve on an ordinary desktop computer. The optimal solution is

b∗ = 1.35, c∗ = 2.56, k̃∗p = 0.16, k̃∗d = 0.80. (34)
2

Responses to unit-step changes in both reference and disturbance can be seen in Fig-
ure 2. The performance is increased by using feedforward but at the cost of a more
aggressive control signal. Using the optimal feedforward controllers the IAE is de-
creased by 32 and 49 per cent for a step change in the set-point and the disturbance,
respectively.
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Figure 2. Responses for the control system with (red) and without (blue) feedfor-
ward. The upper plots show the errors when a unit-step is applied at the reference
(left) and at the measurable disturbance (right). The lower plots show the correspond-
ing control signals.

5. Tuning Rules for Set-Point Weighting

When deriving tuning rules two approaches are common; analytic based on sim-
ple, often first-order processes with time-delay (FOTD), models, or rules based on
conclusions drawn for a large set of processes. We will adapt to the latter and use
the same batch of processes that where used to derive the AMIGO PI and PID
tuning rules [K. Åström and Hägglund, 2004]. The batch consists of nine process
types, see (36), with various parameters, in total 134 processes. See [K. J. Åström
and Hägglund, 2006], p.227 for the complete description of the processes with all
parameter values. The batch consists of processes ranging form order 1 to 8, in-
cluding integrating processes and processes with nonminimum phase behavior. All
processes are characterized by having essentially monotone step-response i.e.,

∫ ∞
0 g(t)dt∫ ∞

0 |g(t)|dt
> 0.8 (35)

where g(t) is the impulse response of the process. We let the feedback parameters
of the controller be determined by the AMIGO-tuning rules. These were derived so
that the controller have good robustness and good disturbance rejection. The set-
point response is given by er (20).
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P1 :
e−s

1+ sT
, P4 :

1
(s+1)n , P7 :

Te−sL1

(1+ sT )(1+ sT1)
,

P2 :
e−s

(1+ sT )2 , P5 :
3
∏
i=0

1
(1+α is)

, P8 :
1−αs
(s+1)3 ,

P3 :
1

(s+1)(1+ sT )2 , P6 :
e−sL1

s(1+ sT1)
, P9 :

1
(s+1)((sT )2 +1.4sT +1)

.

(36)

5.1 IAE-minimization for PI controllers.
We first consider the problem of choosing the set-point parameter b so that it min-
imizes IAE subject to a unit step in the reference signal for a PI controller, i.e.,
kd = 0. The error is given by

E(s) = S(s)(1−P(s)Fr(s))
1
s

(37)

with C(s) given by Equation 1 that is tuned using the AMIGO-rules for each process
in the batch. The error function is inversely Laplace transformed and sampled with
N = 1000 sample points in appropriate time intervals. Minimization of IAE is then
equivalent to

minimize
b

‖er‖1 (38)

where er is defined as in Equation 20a. The optimal b parameters are plotted against
the product of the stationary gain of the processes and the proportional gain in the
feedback controller in Figure 3, where the integrating processes are excluded since
their stationary gain are infinitely large. As can be seen from the figure the optimal
set-point weight b∗ decreases for large kpP(0). By fitting a function on the form

b∗ =
1

αkpP(0)
+β (39)

we obtain α = 1.90 and β = 0.7. For the integrating process we obtain b∗ in the
range of [0.732, 0.7532]. We see that the tuning rule

b∗PI =
1

2kpP(0)
+3/4 (40)

capture also the integrating process. The left plot in Figure 4 shows the increase in
performance when using set-point weighting designed using the tuning rule (40) to
the IAE obtained when set-point weighting is not used, i.e., b= 1. We see that for 32
of the 134 processes in the batch the performance increase is less than 10 percent.
These correspond to the processes for which b∗ is close to one, i.e., the PI-controller
without set-point weighting is optimal.
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Figure 3. Optimal b parameter for PI controllers as function of the product of the
static gain of the process and the controller proportional gain. The red curve is the
one that best fits the obtained optimal solutions and the black curve is the simple
tuning rule.

The control signal at the time instance where the reference changes can be
shown to be

lim
t→0

u(t) = kpb. (41)

Thus, using the tuning rule the initial control signal is u(0) = 1
2P(0) + 0.75kp. The

proportional gain kp is, in most tuning rules for PID controllers, inversely propor-
tional to the static gain of the process. For processes with small static gain the initial
control signal becomes large. A sound course of action in those cases would be to
include the control signal in the optimization problem and solve it for that specific
process. In order to verify that the control signals is not excessively magnified when
using the tuning rule consider the control signal ratio

∆umax =
max

t
|u(t)|

max
t
|u0(t)|

(42)

where u0(t) is the control signal without set-point weighting i.e., b = 1. The right
plot in Figure 4 shows the control signal ratio for all processes in the AMIGO batch.
As can be seen in the figure, the largest magnitude of the control signal does not
change more than 25 per cent when the tuning method is used. For most processes,
the largest magnitude of the control signal increases.

5.2 IAE-minimization for PID controllers
When using set-point weighting in PID controllers both the b and c parameters
need to be taken into account. Alas, the choice of the necessary derivative filter will
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Figure 4. Left: Performance increase when using the tuning rule for PI controllers
for the proportional set-point weight. Right: Change in largest control signal when
using the tuning rule for PI controllers compared to control without set-point weight-
ing.

influence the choice of both parameters. However, optimal set-point weights can be
obtained by solving the optimization problem

minimize
b,c

‖er‖1 (43)

where er is defined as in Equation 20a using a PID controller.
For many plants in process industry the set-point is changed in steps and the

therefore the c parameter is set to zero in order to avoid unnecessarily large tran-
sients in the control signal. Using the tuning rule in (40) for PID control with c = 0
unfortunately does not give satisfactory results. Consider therefor a same optimiza-
tion problem as the one stated in (38) but with er calculated for a PID controller
and c = 0. For numerical reasons a fast first-order filter D f (s) = 1/(10−5s+1) was
used for the derivative part.

Figure 5 shows the optimal b parameter plotted against the product of the sta-
tionary gain of the process and the proportional gain of the feedback controller.
The red curve shows the best fit for a function on the form (39) to the optimal b
parameters and it is given by

b∗PID =
1

2kpP(0)
+0.55 (44)

The performance increase yielded when using the the tuning rule can be seen in
the right plot of Figure 6. Using the tuning rule the performance for all processes
increase but for 43 of them the increase in performance is less than 5 per cent. The
peak values of the control signal decreases for most processes as can be seen in
the right plot of Figure 6, which shows the change in control signal when using the
tuning rule.
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Figure 5. Optimal b parameter for PID controllers,with c = 0, as function of the
product of the static gain of the process and the controller proportional gain. The red
curve is the one that best fits the obtained optimal solutions.
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Figure 6. Left: Performance increase when using the tuning rule for PID con-
trollers, with c = 0, for the proportional set-point weight. Right: Change in largest
control signal when using the tuning rule for PID controllers compared to set-point
weights b = 1 and c = 0.
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5.3 Summary of the tuning rules
The tuning rules for how to choose the proportional set-point weight for PI and PID
controllers with c = 0 can be summarized as

b∗PI =
1

2kpP(0)
+0.75, b∗PID =

1
2kpP(0)

+0.55. (45)

For the batch of processes that they were derived from they increase the perfor-
mance with up to 45 per cent. The largest magnitude of the control signal is at most
increased by 25 per cent.

The tuning rules can also be used to tune static feedforward controllers from a
measurable disturbance if the disturbance dynamics Pd = 1. It can be seen from the
equations in (6a), that the errors arising in this case only differs by the sign of the
transfer functions. From this fact and Equation (9) we see that static controllers that
minimizes IAE are

k̃PI
p =

1
2P(0)

− kp

4
, k̃PID

p =
1

2P(0)
−0.45kp (46)

for PI and PID feedback controllers, respectively.

6. Conclusions

In this paper we presented a method for finding the set-point weights in a PID con-
troller by using convex optimization techniques. The problem of finding the propor-
tional set-point weight that minimizes the integrated absolute error was solved for
a batch of 134 processes. An approximate expression for how the optimal set-point
weight depend on the stationary gain of the process and the proportional gain in the
PI(D) controller was found and used as tuning rule. The tuning rules were evalu-
ated for all processes in the batch and the resulting performance and control signal
activity was discussed.

Acknowledgement

This work was supported by the Swedish Research Council through the LCCC Lin-
naeus Center, the ELLIIT Excellence Center and by the Swedish Foundation for
Strategic Research through PICLU.

References

Andersen, M. S., J. Dahl, and L. Vandenberghe (2013). “CVXOPT: a Python pack-
age for convex optimization, version 1.1.6”. Available at cvxopt. org.

161



Paper V. Feedforward . . . tuning rules for proportional set-point weighting

Andersen, M., J. Dahl, Z. Liu, and L. Vandenberghe (2011). “Interior-point methods
for large-scale cone programming”. Optimization for machine learning, pp. 55–
83.
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