35 research outputs found

    High Performance Multiview Video Coding

    Get PDF
    Following the standardization of the latest video coding standard High Efficiency Video Coding in 2013, in 2014, multiview extension of HEVC (MV-HEVC) was published and brought significantly better compression performance of around 50% for multiview and 3D videos compared to multiple independent single-view HEVC coding. However, the extremely high computational complexity of MV-HEVC demands significant optimization of the encoder. To tackle this problem, this work investigates the possibilities of using modern parallel computing platforms and tools such as single-instruction-multiple-data (SIMD) instructions, multi-core CPU, massively parallel GPU, and computer cluster to significantly enhance the MVC encoder performance. The aforementioned computing tools have very different computing characteristics and misuse of the tools may result in poor performance improvement and sometimes even reduction. To achieve the best possible encoding performance from modern computing tools, different levels of parallelism inside a typical MVC encoder are identified and analyzed. Novel optimization techniques at various levels of abstraction are proposed, non-aggregation massively parallel motion estimation (ME) and disparity estimation (DE) in prediction unit (PU), fractional and bi-directional ME/DE acceleration through SIMD, quantization parameter (QP)-based early termination for coding tree unit (CTU), optimized resource-scheduled wave-front parallel processing for CTU, and workload balanced, cluster-based multiple-view parallel are proposed. The result shows proposed parallel optimization techniques, with insignificant loss to coding efficiency, significantly improves the execution time performance. This , in turn, proves modern parallel computing platforms, with appropriate platform-specific algorithm design, are valuable tools for improving the performance of computationally intensive applications

    Transformées basées graphes pour la compression de nouvelles modalités d’image

    Get PDF
    Due to the large availability of new camera types capturing extra geometrical information, as well as the emergence of new image modalities such as light fields and omni-directional images, a huge amount of high dimensional data has to be stored and delivered. The ever growing streaming and storage requirements of these new image modalities require novel image coding tools that exploit the complex structure of those data. This thesis aims at exploring novel graph based approaches for adapting traditional image transform coding techniques to the emerging data types where the sampled information are lying on irregular structures. In a first contribution, novel local graph based transforms are designed for light field compact representations. By leveraging a careful design of local transform supports and a local basis functions optimization procedure, significant improvements in terms of energy compaction can be obtained. Nevertheless, the locality of the supports did not permit to exploit long term dependencies of the signal. This led to a second contribution where different sampling strategies are investigated. Coupled with novel prediction methods, they led to very prominent results for quasi-lossless compression of light fields. The third part of the thesis focuses on the definition of rate-distortion optimized sub-graphs for the coding of omni-directional content. If we move further and give more degree of freedom to the graphs we wish to use, we can learn or define a model (set of weights on the edges) that might not be entirely reliable for transform design. The last part of the thesis is dedicated to theoretically analyze the effect of the uncertainty on the efficiency of the graph transforms.En raison de la grande disponibilité de nouveaux types de caméras capturant des informations géométriques supplémentaires, ainsi que de l'émergence de nouvelles modalités d'image telles que les champs de lumière et les images omnidirectionnelles, il est nécessaire de stocker et de diffuser une quantité énorme de hautes dimensions. Les exigences croissantes en matière de streaming et de stockage de ces nouvelles modalités d’image nécessitent de nouveaux outils de codage d’images exploitant la structure complexe de ces données. Cette thèse a pour but d'explorer de nouvelles approches basées sur les graphes pour adapter les techniques de codage de transformées d'image aux types de données émergents où les informations échantillonnées reposent sur des structures irrégulières. Dans une première contribution, de nouvelles transformées basées sur des graphes locaux sont conçues pour des représentations compactes des champs de lumière. En tirant parti d’une conception minutieuse des supports de transformées locaux et d’une procédure d’optimisation locale des fonctions de base , il est possible d’améliorer considérablement le compaction d'énergie. Néanmoins, la localisation des supports ne permettait pas d'exploiter les dépendances à long terme du signal. Cela a conduit à une deuxième contribution où différentes stratégies d'échantillonnage sont étudiées. Couplés à de nouvelles méthodes de prédiction, ils ont conduit à des résultats très importants en ce qui concerne la compression quasi sans perte de champs de lumière statiques. La troisième partie de la thèse porte sur la définition de sous-graphes optimisés en distorsion de débit pour le codage de contenu omnidirectionnel. Si nous allons plus loin et donnons plus de liberté aux graphes que nous souhaitons utiliser, nous pouvons apprendre ou définir un modèle (ensemble de poids sur les arêtes) qui pourrait ne pas être entièrement fiable pour la conception de transformées. La dernière partie de la thèse est consacrée à l'analyse théorique de l'effet de l'incertitude sur l'efficacité des transformées basées graphes

    Efficient HEVC-based video adaptation using transcoding

    Get PDF
    In a video transmission system, it is important to take into account the great diversity of the network/end-user constraints. On the one hand, video content is typically streamed over a network that is characterized by different bandwidth capacities. In many cases, the bandwidth is insufficient to transfer the video at its original quality. On the other hand, a single video is often played by multiple devices like PCs, laptops, and cell phones. Obviously, a single video would not satisfy their different constraints. These diversities of the network and devices capacity lead to the need for video adaptation techniques, e.g., a reduction of the bit rate or spatial resolution. Video transcoding, which modifies a property of the video without the change of the coding format, has been well-known as an efficient adaptation solution. However, this approach comes along with a high computational complexity, resulting in huge energy consumption in the network and possibly network latency. This presentation provides several optimization strategies for the transcoding process of HEVC (the latest High Efficiency Video Coding standard) video streams. First, the computational complexity of a bit rate transcoder (transrater) is reduced. We proposed several techniques to speed-up the encoder of a transrater, notably a machine-learning-based approach and a novel coding-mode evaluation strategy have been proposed. Moreover, the motion estimation process of the encoder has been optimized with the use of decision theory and the proposed fast search patterns. Second, the issues and challenges of a spatial transcoder have been solved by using machine-learning algorithms. Thanks to their great performance, the proposed techniques are expected to significantly help HEVC gain popularity in a wide range of modern multimedia applications

    Enhancing the broadcasted TV consumption experience with broadband omnidirectional video content

    Full text link
    [EN] The current wide range of heterogeneous consumption devices and delivery technologies, offers the opportunity to provide related contents in order to enhance and enrich the TV consumption experience. This paper describes a solution to handle the delivery and synchronous consumption of traditional broadcast TV content and related broadband omnidirectional video content. The solution is intended to support both hybrid (broadcast/broadband) delivery technologies and has been designed to be compatible with the Hybrid Broadcast Broadband TV (HbbTV) standard. In particular, some specifications of HbbTV, such as the use of global timestamps or discovery mechanisms, have been adopted. However, additional functionalities have been designed to achieve accurate synchronization and to support the playout of omnidirectional video content in current consumption devices. In order to prove that commercial hybrid environments could be immediately enhanced with this type of content, the proposed solution has been included in a testbed, and objectively and subjectively evaluated. Regarding the omnidirectional video content, the two most common types of projections are supported: equirectangular and cube map. The results of the objective assessment show that the playout of broadband delivered omnidirectional video content in companion devices can be accurately synchronized with the playout on TV of traditional broadcast 2D content. The results of the subjective assessment show the high interest of users in this type of new enriched and immersive experience that contributes to enhance their Quality of Experience (QoE) and engagement.This work was supported by the Generalitat Valenciana, Investigacion Competitiva Proyectos, through the Research and Development Program Grants for Research Groups to be Consolidated, under Grant AICO/2017/059 and Grant AICO/2017Marfil-Reguero, D.; Boronat, F.; López, J.; Vidal Meló, A. (2019). Enhancing the broadcasted TV consumption experience with broadband omnidirectional video content. IEEE Access. 7:171864-171883. https://doi.org/10.1109/ACCESS.2019.2956084S171864171883

    Visual Distortions in 360-degree Videos.

    Get PDF
    Omnidirectional (or 360°) images and videos are emergent signals being used in many areas, such as robotics and virtual/augmented reality. In particular, for virtual reality applications, they allow an immersive experience in which the user can interactively navigate through a scene with three degrees of freedom, wearing a head-mounted display. Current approaches for capturing, processing, delivering, and displaying 360° content, however, present many open technical challenges and introduce several types of distortions in the visual signal. Some of the distortions are specific to the nature of 360° images and often differ from those encountered in classical visual communication frameworks. This paper provides a first comprehensive review of the most common visual distortions that alter 360° signals going through the different processing elements of the visual communication pipeline. While their impact on viewers' visual perception and the immersive experience at large is still unknown-thus, it is an open research topic-this review serves the purpose of proposing a taxonomy of the visual distortions that can be encountered in 360° signals. Their underlying causes in the end-to-end 360° content distribution pipeline are identified. This taxonomy is essential as a basis for comparing different processing techniques, such as visual enhancement, encoding, and streaming strategies, and allowing the effective design of new algorithms and applications. It is also a useful resource for the design of psycho-visual studies aiming to characterize human perception of 360° content in interactive and immersive applications
    corecore