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ABSTRACT

Niklaus Emil Wirth introduced the innovative concept of Programming =

Algorithm+Data Structure [109]. Inspired by this, we advance the con-
cept to the next level by stating that Design = Algorithm+Architecture.
With a concurrent exploration of algorithm and architecture called al-
gorithm/architecture co-exploration, this paper provides an overview
of the leading paradigm shift in advanced visual and signal processing
system design from embedded systems to the cloud and edge. As al-
gorithms with high accuracy become exceedingly more complex and
edge or Internet-of-Things generated data become increasingly larger,
flexible parallel and reconfigurable processing are crucial in the design of
lightweight systems with low complexity and low power. Therefore, the
intelligent designs crossing levels of algorithm, system architecture, and
microarchitecture, based on algorithmic-intrinsic complexity assessments,
including efficient computation, data storage, data transfer, and poten-
tials for parallelism are crucial and are surveyed. In particular, at the
algorithmic level, this paper surveys state-of-the-art learned image and
video codecs and their low-complexity implementations. The analytics
architecture is also overviewed to explore the joint algorithmic and archi-
tecture co-design space. Furthermore, we survey intelligent technologies
to control the system temperature and power consumption under a safe
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computing environment for low-power design at the microarchitecture
level.

Keywords: Intelligent, low complexity, low power, learning-based codec, ana-
lytics architecture, thermal-aware control.

1 Introduction

Visual signal processing system1 (VSPS) based on artificial intelligence (AI)
and beyond 5G communication will constitute futuristic technologies to enable
next-generation SMARTECH. These include new emerging applications, such
as biotech, autonomous cars, etc. Algorithms with higher accuracies have
become exceedingly complex in the cloud. Recently, due to applications
requiring faster responses, decentralized cloud, having low communication
latency and low-complexity have gained popularity. Anticipating carbon
footprint reduction, low-power edge systems, are also in high demand. To
satisfy these design goals, lightweight intelligent systems have been introduced.

The developmental trend of VSPSs, with design of algorithms on architec-
tural platforms, is depicted in Figure 1. Traditional software design on general-
purpose central processing units (CPUs), although flexible for implementing
algorithmic changes, are inefficient and require high power consumption. In
contrast, in the early 1980s, application-specific integrated circuit (ASIC)
hardware designs have been introduced. Although having high performance
and low power, they required redesigning upon changes in the algorithm; thus,
they lacked flexibility. Hence, in the 1990s, the field-programmable gate array
(FPGA) was introduced with high-speed performance, medium flexibility owing
to reconfigurability, and medium power requirements. The programmable in-
struction set digital signal processor (DSP) and application-specific instruction
set processor, characterized by high flexibility, medium performance, and semi-
high-power consumption, were introduced in the 2000s. Embedded multicore
processors, graphics processing units (GPUs), and cloud computing platforms
characterizing highly flexible algorithm programmability, but requiring high
power, have also been introduced recently. Edge and neuromorphic computing
from the other end, characterized by high performance and low power, has
been introduced by trading off precision and low latency.

As AI algorithms requiring high accuracy become exceedingly more com-
plex and Edge/IoT-generated data become increasingly larger, cross-level-of-
abstraction processing is crucial in the design of efficient intelligent VSPSs
requiring low complexity and low power. Therefore, this requires design in-
formation from both algorithmic behavior and architectural aspects, which

1All acronyms and corresponding full names are tabulated in the Appendix.



Overview of Intelligent Signal Processing Systems 3

Figure 1: Trend for visual and signal processing systems.

include both software and hardware in cross-level design space exploration
(DSE), as illustrated in Figure 2.

DSE is a top-down design methodology originally introduced by Kienhuis
[59] to address the design challenges of large systems. Figure 2(a) depicts
the design space spanned by the design parameters or features, tabulated in
Figure 2(b), at different corresponding levels of abstraction, from application
to algorithms, system architecture, microarchitecture, circuits, and devices.
The abstraction of physical characteristics to higher levels within the design
space enables the design to be focused on pertinent parameters. Therefore,
this facilitates higher design efficiency of larger systems. The key essence of
top-down methodology is to gain insight into lower-level information, such

Figure 2: Trend for visual and signal processing systems.
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as software and hardware design parameters for the system, to make the
right decision during the early design phase from the top level. According
to the specification defined based on the corresponding application, a proper
design solution must be selected at each abstraction level. During exploration,
beginning from the algorithmic space, the selection of the right solution,
represented by the apex in Figure 2(a), should span the corresponding design
space or cone that encompasses all right solutions and design spaces at lower
abstraction levels. Making proper decisions as early as the algorithmic level is
crucial to avoiding design changes, which are more difficult during later design
stages at lower levels.

Joint exploration of co-design spaces, as depicted in Figure 2(a), facilitates
a systematic mechanism by which design spaces are crossed or traversed from
top to bottom levels. Algorithm/architecture co-exploration (AAC) explores
the joint algorithmic and architecture co-design space, where algorithmic
functionality or behavior is mapped onto the system architecture design
parameters, as described in Figure 2(b), through a transaction-level model
(TLM) or dataflow model (DFM). Software/hardware co-design (SHC) maps
the system architecture design parameters onto the microarchitecture or very
large scale integration (VLSI) level. Recently, the joint exploration of circuit
and device design spaces in mapping physical characteristics to electronic
levels, or circuit/device co-design (CDC), has also gained popularity.

The abstraction of the design space, with corresponding design features,
at different levels facilitates more efficient and especially feasible designs of
larger systems. As depicted in Figure 2(b), physical features such as resistance,
capacitance, and inductance at the circuit level are abstracted into the “timing
delay” feature at the microarchitecture level, which characterizes the time
required to achieve a sinusoidal steady state. For very large systems, design
parameters are further abstracted into algorithmic-intrinsic complexity metrics,
including the number of operations, data storage, data transfer rate, and the
degree of parallelism, which models the transaction or flow of data at the
system architecture level. This TLM or DFM can be mapped onto any of
the platforms outlined in Figure 1 and is therefore platform-independent.
Similar to the abstraction of physical characteristics from the circuit level
(Figure 2(b)) to the microarchitecture level in VLSI system designs via SHC
[103], AAC was introduced by Lee et al. [69] to provide an analytics architecture
for abstraction at the system level. AAC provides information on both the
software and hardware requirements of VSPS platforms during the early design
phase, beginning from algorithms at the top level, which mitigates the potential
pitfalls of system integration failure.

AAC addresses the challenges for system design for various scenarios. Tra-
ditional VSPS designs were based on either algorithmic or architectural works
that have been explored or developed independently. A frequently encountered
scenario involves mapping highly complex algorithms under exploration onto
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existing architectural platforms as outlined (Figure 1), which may either be chal-
lenging or unfeasible. As depicted in Figure 2(a), this corresponds to the choice
of either the left or middle dot representing the solution at the algorithmic
level, which is outside the design space or scope framed by the cone, with the
apex dot representing the appropriate solution. A second scenario may require
the mapping of a fully specified algorithm onto a non-existing platform with
design parameters to be explored accordingly. As shown in Figure 2(a), having
fully specified the right solution at the algorithmic level, architectural solutions
within the framed cone should be selected to ensure or efficiently design the com-
putational platform selected from Figure 1. In the third scenario, having the
highest degree of freedom, both algorithms and architectures can be developed
freely. In all three design scenarios, proper mapping of algorithms onto archi-
tectural platforms could be assured, by joint AAC space exploration, to avoid
either over- or under-designing at both algorithmic and architectural levels.

Section 2 surveys the analytics architecture based on AAC, with Sections 3
and 4 serving as case studies, at the algorithmic and architectural levels
respectively. Section 3 provides an overview of learning-based image and video
codecs to address recent advances in end-to-end learned image and video
compression based on the four complexity metrics. Section 4 investigates the
technologies used to control system temperature and power consumption in a
safe computing environment.

2 Algorithm/Architecture Co-Design

In AI, analytics algorithms are typically used to analyze speech, image, video
data, etc. In AAC, different algorithmic realizations are analyzed in the form
of DFM to further increase efficiency and flexibility in constituting “analytics
architecture”. Former Architecture-C model and TLM, which consist of both
algorithmic behavior and architectural implementation information, have been
developed into DFM that is widely used to model algorithms and architecture
concurrently [3, 10, 41, 42, 61]. Each dataflow contains a different processing
scheduling or order at a specific data granularity and can be considered a
different architecture instantiation or realization for the same algorithm. AAC
explores the joint algorithm and architecture co-design space. It provides
guidance in exploring various DFMs of an algorithm. With quantitative
analysis based on complexity metrics, the most suitable DFM is chosen to be
mapped onto an optimal architectural design. As such, the DFM serves as a
bridge in mapping algorithms onto architectural platforms.

A graph in conjunction with dataflow, or dataflow graph (DFG) provides
an efficient and systematic formalism for modeling algorithmic realizations
together with architectural information on computation [68, 70]. In addition,
having information on both algorithmic behavior and architectural informa-
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tion including software and hardware, the DFG provides a mathematical
representation which better models the underlying computational platform
for systematic analysis, and thus providing flexible and efficient management
of the computing resources. Traditional linear difference equation, however,
describes only algorithmic behavior.

Section 2.1 provides an overview on algorithmic-intrinsic complexity metrics.
Intelligent signal processing for parallel and reconfigurable computing systems
are discussed in Section Section 2.2. Section 2.2 further provides overview on
emerging cross-level system.

2.1 Metrics and Assessment of Algorithmic Intrinsic Complexity

Complexity assessment of signal processing algorithms, in accommodating
versatile scenarios and platforms, poses a major challenge in system design.
Conventional assessment of the computer algorithm’s complexity was per-
formed via software execution times based on an ideal single-thread machine
with infinite memory and bandwidth. However, advanced VSPS designs re-
quire highly precise complexity measures, that are platform independent, and
could be used for both software and/or hardware. As such, Lee et al. [69]
introduced four metrics to measure the algorithmic intrinsic complexity of
different algorithmic realizations or DFGs: (I) number of operations, (II) data
storage (III) data transfer rate, and (IV) degree of parallelism.

The number of operations characterizes the number of arithmetic operations
in a DFG. This is a factor that was traditionally assessed as instruction execu-
tion time, without distinguishing different types of arithmetic operations, which
are, in reality, characterized by very different complexities. A multiplication,
for example, should be more complex than an addition because the underlying
cost of multiplication is composed of multiple additions. Subtraction may be
assessed as almost the same complexity with addition, as it could be imple-
mented as addition of 2’s complement. Division is the most complex arithmetic
operation and hence requires the highest power consumption. Complexity
for constant or variable arithmetic operations should also be differentiated.
For instance, constant addition is less complex than variable addition because
it might be optimized in advance. Furthermore, precision of the arithmetic
operations should be considered for low power designs, even at the algorithmic
level, as this affects the potential wiring layout for the datapath. Therefore,
based on the assessment in [69], the number of operations is more transparent
in actual scenarios as opposed to timing complexity.

Data storage, as estimated from the DFG, is the buffer size required owing
to data lifetime. This is affected by data causality, whereby some necessary data
must be maintained for a certain period for subsequent processing. In digital
systems, data lifetime is a general method of estimating the minimum storage
requirement [91]. Nonetheless, this metric is highly dependent on the data
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granularity and processing order in different DFGs. By exploring different
data granularities and processing orders of DFGs [5], the system might achieve
lower requirements for data storage. This data storage metric constitutes
the second highest power consumption factor among the four complexity
metrics.

The data transfer rate is the amount of data communicated between
modules and when estimated from DFG, characterizes average bandwidth
which is algorithmic-intrinsic. The peak bandwidth is measured when the
targeted platform is specified. For different storage hierarchies, the transfer
speed and cost differ significantly according to the data access pattern, e.g.,
burst access is more complex than discrete access. Generally, the average
data transfer rate is measured as a baseline, followed by refinements using
the precise characteristics of the targeted platform [69]. The data trans-
fer metric constitutes the highest power consumption factor in complexity
analysis.

The degree of parallelism, at the data level, is the potential of a DFG to
be parallelized to increase the throughput. This feature enables a reduction
in power consumption by lowering the working frequency or shortening the
working speed while providing the same throughput. If an algorithm requiring
high computations can be parallelized easily, its complexity should not be
considered high because many platforms, such as SIMD, MIMD, VLIW, and
SIMT, provide multiple approaches to parallelize the tasks. Reconfigurability
may also be used to extract commonalities in maximizing software and/or
hardware utilization, and which similar to parallelism, should also reduce
design complexity and lower power consumption.

It is noteworthy that these four metrics must be considered wholistically for
precise algorithmic complexity assessment. Previous algorithms, for example,
have been designed to reduce the number of operations which are, however,
under the cost of higher data storage and hence requires higher power con-
sumptions. Multiple pass algorithms would also increase data transfer rate and
hence complexity with correspondingly higher power. These algorithm intrinsic
metrics, although providing quantitative measurements in a proportionate
sense, should render sufficient insight into comparative complexity and power
analysis at the algorithmic level, as will be surveyed in the case studies in
Section 3.

In DSE as illustrated in Figure 2(a), these four algorithmic intrinsic metrics,
depicted in Figure 2(b), facilitate complexity assessment of algorithms which are
independent of, and could be mapped onto, all platforms as outlined in Figure 1.
Upon progression to later system level design stages, parameters corresponding
to selected platform for targeted applications, would be incorporated. As such,
the system is further optimized via SHC towards embedded software and/or
VLSI hardware design at the microarchitecture level.
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2.2 Intelligent and Emerging Cross-Level Systems

Intelligent signal processing has gained high popularity in the last decade. In
the recent introduction of analytics architecture, parallel and reconfigurable
computing has been formulated via DFG which are analogous to the analysis
and synthesis equations of the well-known Fourier transform pair [67]. In par-
allel computing, a connected component is eigen-decomposed to unconnected
components for concurrent processing. For computation resource saving, com-
monalities in DFGs are analyzed for reuse when synthesizing or reconfiguring
the VSPS platform.

Based on spectral graph theory, Lee et al. [70] eigen-decomposed connected
DFGs to spectrum of eigenvalues. The linearly independent eigenvectors
corresponding to zero eigenvalues are unconnected graph components which
could then be processed in parallel. This analytic spectrum of unconnected
components, as in machine learning, serves as information or features extracted
from the original connected DFG signal. In addition to quantification of paral-
lelization via eigenvalues, the eigenvectors should further facilitate instruction
set architecture design of the underlying computational platform. Decision
making is performed via the bi-partite or k-partitioning based on the principle
axis theorem optimized for data independency. In reconfigurable computing,
commonalities are analyzed on DFGs for reuse. Chen et al. [23] introduce
an efficient and flexible architecture with algorithmic convolution for CNN
which are eigen-transformed to matrix operations with higher symmetry which
facilitates fewer operations, lower data transfer rate and storage anticipating
lower power when synthesizing or reconfiguring the eigenvectors for the com-
putational platform. As such, recent advancement in analytics architecture
has enabled “AI in designing AI”.

The deep learning algorithm can be highly parallelized because of the
characteristics of tensor operations; however, for different tensor configurations,
reconfiguring processing elements is required to maximize throughput, i.e.,
increasing utilization [99]. More studies have been dedicated to designing
Edge AI chips to increase the degree of parallelism and reconfigurability to
enhance hardware utilization [26, 45, 90]. NVIDIA provides the NVIDIA Deep
Learning Accelerator (NVDLA) with efforts to standardize the architecture
for an inference engine for deep neural networks [117]. More case studies on
intelligent multicore systems are provided in Section 4.

Cross-level embedded systems designed based on AAC constitutes another
significant trend in intelligent lightweight signal processing. Cassidy and
Andreou [11] introduced Amdahl’s law-based optimization function for crossing
parallel computing at the algorithmic and system levels to the microarchitecture
level, targeting low power and low delay. Kung et al. [64] demonstrated
the feasibility of lowering the power consumption during the acceleration
of convolutional neural network (CNN) inferencing. This was facilitated by
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the systolic array and CNN algorithm to reduce the wire length, which was
also optimized at the microarchitecture and physical layers during layout
and upon mapping the design onto a 3D integrated circuit. Chen et al. [27]
introduced Eyeriss, a cross-level algorithm and microarchitecture co-design-
based accelerator for deep CNNs via optimal row stationary dataflow, to
minimize the data transfer rate and hence achieve high power efficiency. Yu et
al. [115] introduced a neuromorphic visual system to cross the system, circuits,
and device levels to achieve low power consumption. A computing-in-memory
edge AI system at 65 nm was provided by Chen et al. [25] to reduce data
transfer and data storage requirements with convolution operations performed
on analog circuitry fabrics and achieve low power consumption. Intelligent
thermal systems case studies are further provided in Section 4.

3 Learned Image and Video Compression Systems: Design and
Implementation

In this section, we review recent advances in end-to-end learned image and video
compression at application and algorithmic levels. The fact that image and
video compression is the underpinning technology of many ICT applications and
has proven commercial value motivated our study. This AI-enabled technology
has significant potential in many emerging applications, such as perceptual
compression for realism, extreme low-rate compression, application-specific
image/video compression, and compression for hybrid human and machine
vision. Its high flexibility to different objectives distinguishes it from traditional
codecs, attracting considerable interest from both academia and industry. In
particular, we provide insight into its algorithm-intrinsic complexity aspects
by surveying and comparing state-of-the-art learned video codecs. We also
provide pointers for some recent low-complexity implementations.

Discrete cosine transform (DCT)-based image and video coding techniques
have been adopted by international standards, such as the Joint Photo-
graphic Experts Group (JPEG), International Telecommunication Union (ITU)
H.261/264/265/266, and Moving Picture Experts Group (MPEG)-2/4/H, for
nearly 30 years. Although researchers are still attempting to improve its
efficiency by fine-tuning its components and parameters, its basic structure
has not changed in the past two decades. The arrival of deep learning has
recently spurred a new wave of development in end-to-end learned image
and video compression. This fast-growing research area has attracted more
than 100+ publications in the literature, with state-of-the-art end-to-end
learned image compression exhibiting comparable compression performance to
H.266/versatile video coding (VVC) intra-coding in terms of peak-signal-to-
noise-ratio-RGB (PSNR-RGB) and much better multi-scale structural similar-
ity (MS-SSIM) results. End-to-end learned video coding is also catching up
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quickly. Some preliminary studies have reported comparable PSNR-RGB re-
sults to H.265/high-efficiency video coding (HEVC) or even H.266/VVC under
a low-delay setting. These interesting results have resulted in intense activity
in international standards organizations, such as JPEG AI [58], and various
challenges, such as the Challenge on Learned Image Compression (CLIC)
[31]at the IEEE/CVF Computer Vision and Pattern Recognition Conference
(CVPR) and Grand Challenge on Neural Network-based Video Coding at the
IEEE International Symposium on Circuits and Systems (ISCAS) [43].

3.1 Advances in Learned Image and Video Compression Systems

This section presents an overview of the recent advances in end-to-end learned
image and video compression systems.

3.1.1 End-to-End Learned Image Compression Systems

The variational autoencoder (VAE)-based compression framework with the
hyperprior [7] has become the de facto standard for end-to-end learned image
compression. As shown in Figure 3, such an image compression framework fea-
tures three major components: the encoder transform, decoder transform, and
hyperprior autoencoder. The encoder transform converts a three-component
RGB raw image x ∈ R3×W×H of size W ×H through a convolutional neural
network into a compact set of feature maps y ∈ R320×W

16 × H
16 . The components

in y are uniformly quantized as ŷ before entropy coding. In particular, every
component in y is often modeled as a distinct Gaussian distribution, with its

Figure 3: Illustration of the variational autoencoder (VAE)-based image compression
framework with hyperprior [7]. Q, AE, AD refer to quantizer, arithmetic encoding, and
arithmetic decoding, respectively. M, N are the channel numbers of the convolutional layers.
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own mean and variance determined by the hyperprior autoencoder. Collec-
tively, these distributions are exploited to evaluate the coding probabilities for
ŷ to entropy-encode ŷ into a bitstream. The hyperprior autoencoder takes y as
the input and produces another layer of latents z ∈ R192×W

64×
H
64 , known as the

hyperprior, which is the side information for deriving the coding probabilities
of ŷ. The hyperprior z itself must be quantized and packed into the bitstream,
often representing a small portion of the entire bitstream. The decoding pro-
cess begins by decoding the quantized hyperprior ẑ, followed by decoding the
main latents ŷ. The training of the three components is performed end-to-end
with an objective that aims to balance the distortion and rate.

Since the advent of the VAE-based coding framework with the hyperprior
[7], extensive research effort has focused on (I) enhancing the expressiveness
of the main encoder and decoder and (II) improving the entropy coding of y
to demonstrate the full potential of end-to-end learned codecs. Examples in
the first category include the introduction of importance maps [102], non-local
attention modules [24], Swin transformer [121], block-based autoencoders [110],
and recurrent neural networks [73]. The second category includes a variety of
hyperprior variants, such as combining the hyperprior with the auto-regressive
context model [84], the checkerboard context model [46], the channel-wise
hyperprior [85], the coarse-to-fine hyperprior [49], and the use of Gaussian
mixture models [28].

In addition to the VAE-based coding framework, flow-based models exist
[47, 82]. One problem faced by the VAE-based framework is that the main
encoder and decoder are generally lossy. Even without quantizing the main
latents y, the perfect reconstruction of the input image x on the decoder
side is not feasible. However, flow-based models, have the desirable property
that the mapping between input x and its latent representation y is bijective
and reversible, a property that is also shared by DCT or discrete wavelet
transform in traditional codecs. Among the flow-based models, the one
adopting augmented normalizing flows (ANF) [47] has the additional benefit
of being able to incorporate any VAE-based method to improve its model
expressiveness.

Figure 4 shows the rate-distortion comparison between the state-of-the-art
learning-based image coding methods and the conventional coding methods,
e.g., VVC [9], BPG [8], in terms of PSNR-RGB, and MS-SSIM. The best end-
to-end learned codecs achieve similar PSNR-RGB results to VVC intra-coding
while exhibiting much better MS-SSIM results.

On the industrial side, ISO/IEC and ITU recently launched a new standard-
ization project, known as JPEG AI [58], with the aim of standardizing by 2024
a learning-based coding technology that can efficiently compress images and
demonstrate effective performance for compressed-domain image processing
and computer vision tasks. Their call for proposals [40] issued in early 2022
attracted 10 responses from academia and industry. These responses were
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Figure 4: Rate-distortion performance evaluation [47] on Kodak image dataset [62], including
OJCAS’21 [47], TPAMI’20 [82], CVPR’20 [28], TIP’21 [24], TPAMI’21 [50], ICLR’19 [50],
NIPS’18 [84], ICLR’18 [7], VTM [9], BPG [8]. Except for TPAMI’21 [50], which adopts the
same model for both quality metrics, the other learned image compression methods train
separate models for different quality metrics. Moreover, all the learned methods achieve
variable-rate compression with distinct models, i.e., one model for each rate point.
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Figure 5: Subjective quality evaluation of JPEG AI Call-for-Proposals responses, where the
performance of team 14 [4] and team 24 [37], and VVC [9] are highlighted.

evaluated both objectively and subjectively against several anchors, including
VVC, HEVC, JPEG 2000, and JPEG XL. In terms of technologies, most
proposals adopted the VAE-based scheme (Figure 3), whereas one used the
ANF-based coding structure [47]. Interestingly, the top performers (team 14 [4]
and team 24 [37]) exhibited better subjective quality in terms of the differential
mean opinion score (DMOS) than VVC in several test cases (Figure 5). At the
time of writing, JPEG AI was creating the first working draft of the standard.

3.1.2 End-to-End Learned Video Compression Systems

The success of end-to-end learned image compression has motivated a new
wave of development in end-to-end learned video compression. Most learned
video compression systems follow the traditional, hybrid-based coding archi-
tecture, namely, temporal prediction followed by transform-based residual
coding. Figure 6 shows the differences between traditional and learned video
compression frameworks. Several key components in the traditional codec
have been replaced with end-to-end learnable neural networks. For example,
block-based motion estimation and compensation modules can be replaced
with an optical flow estimation network and a motion compensation network,



14 Chen et al.

Figure 6: Comparison between (a) traditional and (b) learned hybrid-based video coding
frameworks [80].

respectively. Both networks typically operate at the frame level rather than
at the block level. Moreover, the learned flow and residual coding networks,
which share a similar architecture to VAE-based image compression, are used
instead of block-based motion vector and block-based transform coding.

Figure 7 further presents a taxonomy of end-to-end learned video compres-
sion. In terms of timeline, DVC [80] was the first work to incorporate temporal
predictive coding in an end-to-end learning framework. It follows the traditional
concept of estimating motion between consecutive video frames, followed by
residual coding. Along this line of research, termed inter-frame residual coding,
several follow-up studies have been conducted [48, 53, 74] to improve and/or
extend DVC in several significant aspects. For example, to account for motion
uncertainty, the scale-space flow (SSF) [2] creates a frame predictor by signaling
a spatially varying Gaussian kernel for blurring the reference frame. HLVC
[112] forms a multi-hypothesis prediction by using neural networks to fuse
information from multiple reference frames. To reduce motion overhead, RaFC
[51] borrows the classical concept of variable block-size motion compensation to
adapt the resolution of the flow map features both locally and globally. MLVC
[74] adopts predictive motion coding by extrapolating a flow map predictor from
the decoded flow maps. Similarly, ELF-VC [97] signals an incremental flow map
between the target frame and a motion-compensated frame derived from the ex-
trapolated flow map. To better extrapolate flow maps from multiple reference
frames, VLVC [39] models the pixel-based motion trajectory using a polynomial
function. Taking a different approach, RLVC [113] propagates causal temporal
information using a recurrent neural network to formulate a temporal prior
for entropy coding and adapt the autoencoder to every residual frame. While
some studies [2, 39, 48, 51, 74, 97, 112, 113] conducted motion compensation
in the pixel domain, others, such as NVC [77] and FVC [53], indicated that
feature-domain motion compensation can result in better prediction efficiency.
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Figure 7: Taxonomy of end-to-end learned video coding methods, including MLVC [74],
ELF-VC [97], VLVC [39], RLVC [113], DVC [80], SSF [2], HLVC [112], RaFC [51], NVC
[77], FVC [53], Ladune et al. [66], DCVC [56], TCM [100], and CANF-VC [48].

More recently, a new school of thought [66], known as (inter-frame) con-
ditional coding, has emerged (Figure 8). The concept of conditional cod-
ing involves encoding a target frame xt conditionally based on the motion-
compensated frame xc without explicitly evaluating the prediction residual
xt − xc. [66] demonstrated that the entropy rate H(xt − xc) of the prediction
residual is greater than or equal to the conditional entropy H(xt|xc). This
refutes the traditional inter-frame residual coding from being optimal in the
information-theoretic sense. Some early attempts [56, 66, 100] addressed this
problem by learning a conditional variational autoencoder (CVAE) to approach
conditional entropy (Figure 8). In [66], this was achieved by concatenating xc

and xt for encoding and their latent representations for decoding. DCVC [56]
further uses the latent representation extracted from xc as the conditioning
variable. For its improved version (TCM) [100], the authors advocated that the
conditioning variable should result from the decoded features from which the
RGB frame is reconstructed, rather than the reconstructed RGB frame itself,
arguing that the decoded features frequently contain more information than
the decoded RGB frame. However, this comes at the cost of a significantly
larger decoded picture buffer size. CANF-VC [48] presents a purely conditional
coding framework using conditional ANF for both interframe and motion
coding. Nevertheless, conditional coding presents promising compression re-
sults, taking end-to-end learned video codecs to a new level of compression
performance. This also leaves sufficient room for further investigation.

Figure 9 presents the rate-distortion comparison among the state-of-the-art
learning-based video codecs, the test model of HEVC (HM) [1], and ×265
(in very slow mode) [111] in terms of PSNR-RGB and MS-SSIM. The best
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Figure 8: Illustration of (a) inter-frame residual coding and (b) inter-frame conditional
coding based on conditional VAE, where xt denotes an input frame, x̂t is its reconstructed
version, xc is the motion-compensated frame, ft is the optical flow map between xt and
x̂t−1, and f̂t is the reconstructed optical flow map.

end-to-end learned codecs achieve better PSNR-RGB results than HM while
exhibiting much better MS-SSIM results.

3.2 Complexity Characterization for Learned Video Compression
Systems

This section presents the complexity characterization of learned video compres-
sion systems in terms of intrinsic algorithmic complexity metrics. As discussed
in Section 2.1, these metrics are (I) kilo-multiply-accumulate-operations per
pixel (KMAC/pixel), (II) the number of network parameters (i.e., the model
size in millions of parameters), (III) the decoded picture buffer size (measured
in the equivalent number of full-resolution reference frames), and (IV) the peak
memory requirement (measured in the equivalent number of full-resolution
feature maps). KMAC/pixel is an indication of the required number of al-
gorithmic operations per pixel, whereas the other metrics reflect the storage
requirements. In terms of the decoded picture buffer size (III), some methods
require storing only the decoded video frames as reference frames, whereas
others may additionally require storing feature maps, optical flow maps, etc.
In comparison, the peak memory requirement (IV) is closely related to the
neural network design. Some architectures may generate more feature maps to
be stored than others do. Notably, both metrics (III) and (IV) have implica-
tions for memory bandwidth requirements when the reference frames and/or
feature maps must be stored in the external memory. The numbers shown in
Figure 10 correspond to the complexity characteristics of P-frame encoding,
which also include the operations required for P-frame decoding owing to their
closed-loop coding architecture. We plot Bjøntegaard-delta (BD) rate savings
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Figure 9: Rate-distortion performance evaluation [48] on UVG dataset [83], including CANF-
VC [48], C2F [52], DCVC [56], FVC [53], RaFC [51], M-LVC [74], DVC_Pro [81], HM [1],
and ×265 [111]. All the competing methods are evaluated with full-sequence encoding and
a group-of-picture (GOP) size of 12. Note that the intra-frame codec may vary by method.
Following common practice, all the learned methods achieve variable-rate compression with
distinct models, i.e., one model for each rate point. Moreover, separate models are trained
for different quality metrics.
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Figure 10: Complexity characterization of several learned video compression systems,
including DVC [80], DVC_Pro [81], DCVC [56], TCM [100], CANF-VC Lite [48], CANF-VC
[48], Li et al. [72], FVC [53], Hu et al. [52], M-LVC [74], and FVC [53]. The BD-rate savings
of these methods are visualized as functions of (a) KMAC/pixel, (b) model size, (c) decoded
picture buffer size, and (d) peak memory requirement. The data are provided for P-frame
coding only.

relative to HM Test Model Version 16.20 [1] as functions of these complexity
measurements to visualize the complexity-performance trade-offs of different
competing methods.

Figure 10(a) shows the trend that the BD-rate saving increases as KMAC/
pixel increases, suggesting that better compression can typically be achieved
at the expense of more arithmetic operations. Notably, we can roughly deduce
the KMAC/pixel of the decoder by dividing the numbers shown in the figure
by a factor of 1.5. This scaling factor is derived from analyzing DVC [80] and
is meant for a rough estimation. Consequently, the KMAC/pixel of the learned
video decoder is approximately two to three orders of magnitude higher than
the typical single-digit KMAC/pixel of the traditional decoder.

As shown in Figure 10(b), the model size does not share the same trend
as that of KMAC/pixel. Although larger-sized models frequently yield bet-
ter compression performance than smaller ones, in some cases, reasonably
good compression performance is achieved with relatively small models, e.g.,
CANF-VC Lite [100] and TCM [100]. This result is attributed to the effort
placed into optimizing the model size. Note that while the model size can



Overview of Intelligent Signal Processing Systems 19

be a good indicator of model capacity, it may not accurately reflect model
complexity.

Figure 10(c) and (d) show that, in terms of the buffer size and peak
memory requirement, these competing methods present a completely different
landscape. In particular, both schemes in [100] and [72], although benefiting
from using high-resolution feature maps for more efficient conditional coding,
demand large buffers to store these feature maps. Moreover, their peak memory
requirements are much higher than those of the other works. These observations
have implications for their practicality and the type of computational platform
that can be utilized for their implementation.

In summary, we note that these complexity aspects have not yet gained suf-
ficient attention. Most studies in this area are still attempting to demonstrate
the full potential of learned video compression. We stress that understand-
ing these aspects of algorithmic intrinsic complexity is the key to ensuring
the practicality and efficiency of the algorithm, particularly when selecting a
specific computation platform to implement the algorithm.

Please refer to [55] for the complexity characterization of learned image
compression systems and [55, 75] for the runtime analyses of the learned image
and video compression. Caution must be exercised when interpreting encoding
and decoding runtimes as they are highly platform-dependent.

3.3 Some Notable Low-Complexity Implementations

Several paths of research have been dedicated to the low-complexity implemen-
tation of learning-based image and video compression. This section overviews
some recent publications in which more related works can be found.

Among the problems of low-complexity learned image compression, the
spatial auto-regressive context model has been discussed the most. Its highly
sequential operation owing to the sample-based query of the autoregressive
model makes it easily the computational bottleneck of the decoder. He et al.
[46] introduced a checkerboard context model to break the strong dependen-
cies between spatially adjacent image latents. Similarly, Minnen and Singh
[85] proposed a channel-wise autoregressive-entropy model. Generally, these
methods sacrifice compression performance for lower complexity. In contrast,
Esenlik et al. [37] and Alshina et al. [4] leveraged data parallelism to implement
an autoregressive context model based on wavefront parallel processing, which
exhibited only a slight impact on compression performance.

Following the same concept of wavefront parallel processing, Wu et al. [110]
presented a block-based learned image compression system that divides an
image into rows of non-overlapping blocks and processes the blocks in different
rows simultaneously. For better compression, they introduced inter-block
prediction from the neighboring blocks, which are to the left of and above
the current coding block. Another block-based system was described in [73].
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It divides an image into macroblocks, each of which contains several sub-blocks
of pixels coded using a spatial recurrent neural network.

Recently, techniques have been developed to reduce the complexity of
analysis and synthesis transforms. Zhu et al. [121] used a swin transformer [78]
to replace the convolutional layers, achieving not only improved compression
performance but also lower complexity. Kim et al. [60] introduced an asymmet-
ric autoencoder that adopts a larger network for the analysis transform and a
smaller network for the synthesis transform. They argued that the analysis
transform must satisfy both the rate and distortion requirements, thereby
justifying the use of a more capable network.

Another path of research addresses the precision problems of the autoen-
coder and hyperprior. Ballé et al. [6] showed that the use of floating-point
arithmetic, particularly in the hyperprior autoencoder, can cause decoding
to fail catastrophically when the encoding and decoding are performed on
platforms that process floating-point arithmetic differently. Thus, they pro-
posed the use of integer networks. Sun et al. [104] presented an effective
method for quantifying network weights for fixed-point arithmetic. Jia et al.
[57] showcased an FPGA implementation of a learned video-coding system
that adopts integer networks as the backbone.

Achieving variable-rate compression using a single model is another focal
point of research. Separate autoencoders are generally trained to optimize the
compression performance at different rate points. This approach is prohibitively
expensive and impractical for real-world applications. Jia et al. [57] addressed
this problem by introducing affine feature transformation layers to adapt
feature maps to multiple rate points, along with adaptive quantization. The
concept was extended to make feature transformation spatially adaptive [29].

Finally, the reader is referred to [57, 119], and [105] for real-time implemen-
tations of learned image and video compression. We note that Sun et al. [105]
proposed a fine-grained processing pipeline that performs row-wise convolution
for different CNN layers in a fully synchronized manner. The synchronization
is achieved via a ping-pong row buffer to transfer data from one CNN layer to
the next. Consequently, the size of the ping-pong buffer critically determines
the granularity at which the CNN layers are processed simultaneously. While
their work is more of the implementation of an existing learned image codec,
it touches upon several design considerations that can potentially be further
optimized from the perspective of algorithm and architecture co-design.

4 Thermal-aware Low-complexity and Low-power Manycore Sys-
tem Designs

Regarding system architecture design, running the involved parallel computing
algorithm on a manycore system is a popular method of accelerating signal
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processing. However, owing to the high demands of complex applications in
manycore systems, a large workload increases the operating temperature of
the system and results in significant thermal and power problems. In this
section, we investigate the technologies used to control system temperature and
power consumption in a safe computing environment. We first survey some
low-computing-cost methods using thermal sensors to monitor the transient
temperature. Thus, we can reduce the thermal impact during full-system
temperature estimation. Because some overheated computing units may be
throttled, we further introduce data delivery methods using game theory or
AI algorithms. Finally, we review the design methodology to save computing
energy from architectural design perspectives, which aims to reduce the on-chip
memory (e.g., buffer) and off-chip memory (e.g., DRAM) size.

As mentioned previously, the thermal problem becomes more severe owing
to the high power density in the manycore system. To mitigate the thermal
problem, we investigate the relationship between the phenomena of thermal
and power on a manycore system in Section 4.1. Subsequently, we introduce
techniques for managing the power and temperature of the system in Section 4.2.
In Section 4.3, routing methods are introduced to migrate the power and
temperature distribution on the manycore system to reduce the negative
impact caused by thermal problems. Finally, we investigate the techniques
from the hardware architecture perspective to mitigate the thermal problems
in Section 4.4.

4.1 Introduction of Thermal and Power Problems in Manycore Systems

In physics, heat is defined as the transfer of thermal energy across a well-defined
boundary around a thermodynamic system. The fundamental methods of heat
transfer in engineering include conduction, convection, and radiation. Physical
laws describe the behavior and characteristics of each of these methods. Real
systems often exhibit complex combinations of variables. A thermodynamic
system is defined as a portion of the mass of the universe selected for ther-
modynamic analysis. The system is separated from its surroundings by a
boundary that encloses all the characteristics of this system. Therefore, the
thermodynamic system has a fixed mass, and all matter is either in the system
or in the surroundings. Exchanges in the work or heat between the system and
surroundings occur across this boundary. In thermodynamics, the objective
is to determine the energy (or heat) transfer and the change in the state of
the system. The boundary of the manycore system is defined as a package.
Moreover, no mass transfer occurs between the system and the surroundings
when crossing the boundary of the manycore system (i.e., the package). Hence,
a manycore system is primarily solid and fits the definition of a thermodynamic
system.
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The analysis of the correlation between the thermal and traffic in a manycore
system can be performed macroscopically with a constant-volume constant-
pressure case of the work process. According to the first law of thermodynamics,
thermal energy is a portion of the internal energy, which is known as the system
temperature. The sources of thermal energy are frequently data processing in
each processing element (PE) or data transmission between each PE. Among
the various manycore interconnections, network-on-chip (NoC) is an emerging
on-chip interconnection for efficient data transmission. Therefore, the packet
switching at each router of the NoC and the packet delivery between each
router also contribute thermal energy to the manycore system. Therefore, the
traffic behaviors in the NoC-based manycore system directly affect its thermal
behaviors.

4.2 Thermal and Power Management

4.2.1 Techniques of Temperature Monitoring

Owing to the high demand for complex applications in manycore systems, a
large workload increases the operating temperature of a system and results
in significant thermal problems. Many dynamic thermal management (DTM)
methods have been developed in recent decades to regulate the system temper-
ature at a safe value [14, 18, 19, 32, 94, 98, 114]. DTM methods are used to
control the temperature based on the sensing temperature of on-chip thermal
sensors. Owing to the manufacturing cost, the number of on-chip thermal
sensors is frequently restricted. For example, Intel’s Sky Lake 64-core processor
embeds seven thermal sensors on the chip [30]. Consequently, it is important
to determine the appropriate locations for placing number-limited thermal
sensors. However, the problem of thermal sensor placement has been proven
to be NP-hard [96]. The search for a good thermal sensor distribution has
become a design challenge in manycore system designs and has received much
interest in recent years.

To determine the proper locations for thermal sensors under low searching
complexity, many researchers have proposed placing them based on information
about temperature behaviors [79, 120] or power dissipation [63, 116]. Zhu et al.
[121] employed the entropy theory to evaluate the uncertainty of the on-chip
temperature variation, which was used to estimate the placement of thermal
sensors. Wu et al. [110] evaluated the distribution of thermal energy on a chip
to determine the optimal location of thermal sensors. Prior to positioning
the involved thermal sensors, Ranieri et al. [95] utilized principal component
analysis and the correlation of the reference thermal maps. Mukherjee et al.
[88] divided the platform and selected the sensor placement method depending
on the sensing coverage of the included thermal sensors. Long et al. [79] used
a grid-based approach for the placement of thermal sensors and utilized the
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obtained sensing information to predict the locations of hotspots on the chip
using the interpolation method. In contrast, temperature information can be
considered long-term information regarding power accumulation (i.e., thermal
energy) [12]. Hence, Zhang et al. utilized the correlation of the power density
of each location to estimate the temperature distribution on the chip, which
was used to locate the placements of the thermal sensors [116]. Küflüoglu
et al. [63] defined certain power vectors to represent the various functional
groups on a chip and identified hot cells, which are the optimal locations for
thermal sensors. Although the aforementioned methods may minimize the
search complexity required to identify areas for thermal sensor placement, the
installation of thermal sensors is time-consuming because of the necessity to
gather information based on previous knowledge. In addition, conventional
methods have limited applications. This is because the current approaches
can determine the proper locations for thermal sensor placement when the
on-chip workload is fixed. However, the temperature-changing behavior of
on-chip devices is often dynamic and unexpected [101]. Therefore, it is still
difficult to determine appropriate locations for thermal sensor placement when
the on-chip workload is unpredictable (i.e., when the application on the chip
is not fixed or the on-chip temperature behavior is time-varying).

As mentioned previously, determining the optimal thermal sensor placement
method to obtain precise estimates of the full-chip temperature distribution
without prior information is difficult. Therefore, some studies have aimed
to determine the proper locations for thermal sensor placement without any
prior knowledge and to achieve accurate estimation results of the full-chip
temperature distribution during runtime. To achieve this, Chen et al. used
the compressive sensing (CS) theory to place thermal sensors and dynamically
estimate the full-chip temperature distribution [15]. CS theory has been demon-
strated to be an effective technique for recovering the original signals from a
less-information-packed signal without any offline processing [33]. However,
owing to the high computational complexity of the adopted reconstruction
approach, it is unsuitable for full-chip temperature monitoring in real-time
multicore systems. Additionally, this technique emphasizes the floorplan of
the NoC system, which does not consider the placement of thermal sensors in
the current popular multicore system platform. To leverage thermal sensor
placement on a non-NoC manycore system, Chen et al. suggested a grid-based
thermal sensor placement approach, which enables the installation of thermal
sensors on abstract multicore system platforms. Moreover, the authors further
applied the matrix inversion bypass (MIB) property to reduce the compu-
tational complexity of the full-chip temperature distribution estimation at
runtime. Because the MIB has been demonstrated to be an effective method to
implement hardware [54], the MIB-based full-chip temperature reconstruction
method can aid in estimating the full-chip temperature distribution in real
time.
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4.2.2 Techniques of Temperature Control

To make NoC-based manycore systems thermally safe, DTM has become
increasingly popular, and many different types of DTM have been proposed in
the past few years. Generally, DTM can be divided into two types: reactive
DTM (RDTM) and proactive DTM (PDTM) [19]. When the operating
temperature of the NoC system reaches the warning level, RDTM is activated
to manage the system temperature, as defined by Chao et al. [14]. In contrast,
PDTM controls the temperature of potential thermally emergent computing
units in advance based on temperature prediction [18].

Temperature control methodologies employing DTM can be subdivided
into temporal and spatial DTM [18, 114]. Temporal DTM approaches attempt
to regulate the processing speed of thermally emerging NoC nodes [14, 98]. The
benefit of temporal DTM is that temperature can be regulated in a short period.
As a result of the reduced processing speed of thermal-emergent computing
units, an NoC system with a temporal DTM mechanism often experiences a
significant performance reduction. In contrast, spatial DTM techniques utilize
power migration to manage the system temperature of a 3D NoC system [32,
94, 114]. Spatial DTM redirects packets away from thermally emergent NoC
nodes using specific routing algorithms. Thus, it is not essential to reduce
the processing speed of thermally emergent NoC nodes, which mitigates the
performance effect during the temperature management phase. Because the
interlayers and intralayers of NoC systems do not have heterogeneous thermal
conductivities, the thermal conduction of each NoC layer is different. This
means that cooling takes longer than with temporal DTM approaches.

4.2.3 Techniques of Power and Thermal Management

In an NoC-based manycore system, power and temperature can be managed in
several ways: 1) configuring distinct power modes for each router to control the
network’s total power usage; clock-gating modes can be used to deactivate idle
ports; 2) regulating voltage-frequency islands to enable power to be distributed
throughout the network without exceeding the power budget; 3) adopting
congestion-aware routing to prevent the creation of hotspots in high-traffic
areas of networks.

Power and temperature management in NoCs frequently emphasizes
congestion-aware routing algorithms to distribute the traffic load among the
platform’s available resources. Several papers on 2D NoCs have been presented
[5, 36]. However, attempts are significantly more restricted in 3D NoCs owing
to the difficulty of developing deadlock-free routing algorithms in wormhole
switching networks. [108] focused on power optimization for 3D regular NoCs,
whereas [13] optimized performance with temperature considerations. In this
study, to optimize performance, the routing algorithm propagated power to the
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bottom layer and adjusted traffic levels to prevent packet congestion. However,
the proposed approach is static and has a limited capacity for traffic load
balancing. Although power consumption was not explicitly addressed in [13],
we may deduce that lower traffic congestion and improved thermal distribution
result in reduced power consumption. However, the majority of previous
research focused on addressing latency, power, and temperature challenges in
homogeneous networks.

Several learning-based algorithms and methods have been proposed for
interconnection networks [36, 93, 118]. A reinforcement learning (RL) technique
was used in [118] to increase the energy efficiency of NoCs by automatically
learning an optimal control policy. In Bi-LCQ [38], the Q-routing method is
applied to a cluster-based NoC. A different attempt from routing was presented
in [93], called SVR-NoC. Using support vector regression, this strategy attempts
to forecast the traffic flow delay and average channel waiting time. In [108], a
Q-leaning-based technique was used to regulate power in irregular NoCs via
deflection routing. HARAQ [36] blends Q-routing with non-minimal routing to
provide a high-performance wormhole switching network. Generally, by using
optimal or near-optimal routes between each pair of source and destination
nodes, the latency, power, or temperature can be automatically modified using
a flexible routing scheme, such as that suggested by EbDa [34, 35], and by
utilizing a Q-learning mechanism similar to HARAQ [36, 108]. This comprises
both minimal and non-minimal pathways, which are necessary for balancing
the network traffic. To implement the learning approach in NoC, we must
describe the cost functions that may target latency, power consumption, or
temperature. This approach can be extended to regular and irregular NoCs.

4.3 Thermal- and Power-aware Routing Method

4.3.1 Design Challenges of Traffic- and Thermal-aware Routing

Based on the aforementioned analysis in Section B.2, both temporal and spatial
DTM approaches have a negative impact on system performance owing to the
scenario of heterogeneous temperature and traffic behavior in an NoC-based
manycore system. Consequently, to integrate the benefits of temporal and spa-
tial DTM techniques, information about traffic and temperature behavior must
be examined simultaneously during NoC operation. To achieve these objectives,
several researchers have proposed thermal-and traffic-aware packet routing
algorithms in recent years [16, 65]. Generally, these routing approaches deliver
packets away from thermally controlled NoC nodes depending on certain real-
time information on the NoC system. Among them, [16] and [17] transported
packets by referencing traffic information. Although the traffic distribution be-
comes balanced, the temperature distribution may become imbalanced. In con-
trast, some approaches [65, 76] consider only the temperature information while
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Table 1: Full case of the relationship between temperature and traffic load information.

Temperature Information
High Low

Traffic Load
Heavy Case 1: Case 2:

Consecutively heavy Traffic block
traffic load

Light Case 3: Case 4:
Highly historical Small traffic load

traffic load

delivering the packets, but they may result in heavy traffic congestion problems.
This is because the rates of change for temperature and traffic are different
(i.e., the rate of change in temperature is much slower than that of traffic).

Clearly, managing the traffic load and temperature distribution solely based
on traffic or temperature information is inefficient. The scenarios resulting from
various combinations of the temperature and traffic information are listed in
the Appendix. Traditional traffic and thermal-aware adaptive routing methods
assume that a heavy traffic load implies a high-temperature scenario and a
light traffic load causes a low-temperature scenario. Nonetheless, temperature
is a phenomenon of a protracted traffic scenario. In other words, the rates
of change in temperature and traffic load are significantly different (i.e., the
rate of change in temperature is low, and that of traffic is high). Therefore,
the traditional approaches do not consider Cases 2 and 3 in Table 1, which
are the design problems of the current traffic and temperature-aware routing
approaches. Furthermore, the objective of this field’s design is to synchronize
the temperature and traffic information throughout the thermal control period,
which aids in solving Cases 2 and 3 in Table 1.

4.3.2 Techniques of Thermal-aware Routing

Because of the thermal management involved, the topology of the NoC-based
manycore system varies over time [19]. The time-varying topology change is
defined as a nonstationary irregular mesh (NSI-mesh). The NSI-mesh topology
may render the conventional routing method inefficient. This is because the
packets may be blocked in the throttled router and cause significant traffic
congestion in the NoC.

To deliver data successfully in the NSI-mesh, Chao et al. proposed the
transport layer-assisted routing (TLAR) scheme [14]. Because the transport
layer information includes the topology information from the source node to
the destination node, TLAR is used to deliver packets based on the topology
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information in the transport layer of NoC systems. Before injecting a packet
into the network, the selected routing mechanism is determined based on the
topology information of the route from the source node to the destination node.
Thus, the packets are detoured from the inactive router in advance, which
prevents the problem of traffic congestion surrounding the inactive routers. By
extending the TLAR scheme, Chen et al. proposed a topology-aware adaptive
routing (TAAR) method [21] to consider a cascaded routing mechanism, which
increases routing flexibility. To increase the routing path diversity, Chen et
al. further considered the non-minimal routing path and proposed traffic- and
thermal-aware adaptive beltway routing (TTABR) to partially detour packets
through non-minimal routing paths [17].

TLAR-based routing methods are used to deliver packets based on infor-
mation regarding instant topology and traffic load on paths. In contrast, some
routing methods have been proposed to consider the temperature information
during packet delivery. Liu et al. [76] proposed a dynamic thermal-balancing
routing algorithm and aimed to adaptively select the routing path to deliver
packets based on the thermal conditions of neighboring nodes. Thus, the tem-
perature distribution in the NoC-based many-core system can be balanced. In
contrast, Kuo et al. proposed the use of information on the mean time to throt-
tle (MTTT) of each NoC node to determine the routing paths and proposed a
proactive thermal-budget-based beltway routing (PTB3R) method [65].

Although the routing methods introduced above can mitigate the perfor-
mance impact during the temperature control period, they assume that the
information on temperature change and traffic load change is almost the same
(i.e., they only consider Cases 1 and 4 in Table 1). However, as mentioned
earlier, the rate of change in the temperature behavior is much slower than that
of the traffic behavior. Therefore, these methods cannot process the scenarios
of Cases 2 and 3 in Table 1 and still suffer from heavy traffic congestion. To
solve this problem, Chen et al. applied game theory to propose a game-based
thermal-delay-aware adaptive routing (GTDAR) mechanism. GTDAR employs
a voting game model to perform dynamic buffer length adjustment to those
based on current and historical temperature-traffic information. Thus, the
long-term temperature information can be transferred to short-term traffic
information, which is beneficial for routing path selection. To further balance
the traffic load distribution, the authors further applied the Nash equilibrium
to distribute the packet delivery. Thus, the GTDAR can consider the traffic
and temperature information simultaneously to determine the proper routing
direction and achieve a balanced traffic and temperature distribution.

4.4 Architectural-level Design to Mitigate Thermal and Power Problems

Because of its highly flexible interconnection and topology, NoC-based on-chip
interconnection has become an emerging method for constructing manycore
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systems. Conventional NoC systems are used to deliver packets via packet
switching with routers. Regarding router design, designers frequently use
several input buffers to leverage high-performance packet switching. Neverthe-
less, these buffers typically consume significant amounts of power and circuit
areas [44]. As mentioned earlier, the power problem may eventually become a
thermal one, which counteracts the benefits of flexible NoC interconnections.

Bufferless NoC designs have become a promising development trend for
mitigating thermal and power problems. The design concept of bufferless NoCs
is to leave buffers out of the traditional router architecture design. Because
there is no buffer to store packets, we must guarantee that packet routing and
flow control are both contention-free. Otherwise, a large number of packets
may be dropped, resulting in dramatic computing accuracy loss. To solve
this problem, many studies have utilized time division multiplexing (TDM)
information to schedule packet routing to prevent packet contention. Mirza et
al. [87] first analyzed the packet flow information between each task of a specific
application. Subsequently, they scheduled packet flows to match the bandwidth
requirements of the target application. However, this approach frequently
requires a slot table to record the exact real-time bandwidth requirement,
which results in a large-area overhead. In contrast, Picornell et al. considered
the worst-case route to schedule packet routing, which aids in simplifying the
complexity of TDM scheduling. However, the performance may be degraded
owing to worst-case considerations [92].

Because the TDM-based bufferless NoC design suffers from large-area
overhead and performance degradation, Venkataramani et al. proposed a
bufferless software-defined NoC called ASCENT [107]. ASCENT adopts a
synchronous dataflow (SDF) model of computation to represent the input
streaming applications. Through an offline analysis, information on the task
execution time and inter-task communication time is represented precisely
in the SDFs. With precise timing information regarding task execution and
communication, a deterministic schedule of the tasks and packets can be
generated for runtime execution. At runtime, a finite-state machine (FSM)
can be used to reconfigure the router based on schedule information. Because
the ASCENT NoC uses a software scheduler to perform packet routing, the
router hardware does not require specific logic circuits to compute routing and
flow control, which increases the control flexibility and reduces the hardware
overhead. Compared with the conventional TDM-based bufferless NoCs, the
ASCENT NoC can improve the throughput with better hardware efficiency.

As mentioned earlier, because of the dramatically large off-chip memory size
for the input image data, the system throughput and energy consumption are
both dominated by off-chip memory access. Regarding contemporary machine-
learning accelerator designs, minimizing the off-chip memory reduction is a
design challenge, which would not only improve the system throughput but
also reduce the system energy consumption [89]. By reusing the data through



Overview of Intelligent Signal Processing Systems 29

the memory hierarchy, the characteristics of data locality are involved and data
movement is reduced, thereby significantly reducing energy consumption [106].
In contrast, NoC interconnection has become a potential method to construct
DNN accelerators and has gained much interest [20]. Through multicasting
routing technology, designers can leverage input-reuse or weight-reuse methods
on the NoC platform and significantly reduce the off-chip memory. Mirmahaleh
et al. [86] proposed a method for distributing data on the NoC platform and
considered the memory access mechanism in some modern DNN models, such
as AlexNet, VGG, and GoogleNet. Chen et al. [22] proposed a weight-wise
convolution processing mechanism and introduced a hybrid data-reuse method
to support data-reuse and weight-reuse methods simultaneously. Moreover,
the authors used a multicast routing method to significantly reduce off-chip
memory access. Thus, the energy consumption of the data movement between
the off-chip memory and DNN accelerator can be reduced.

5 Conclusion

Cross-level abstraction designs have become the leading paradigm for complexity-
aware and power-aware VSPS designs. In addition to the traditional soft-
ware/hardware co-design, algorithm/architecture co-design has become a main-
stream system design methodology. Circuit/device co-exploration has recently
gained popularity. As we move from circuits to systems, linear differential
and difference equations are used to model lumped and logic circuits, respec-
tively. They are now escalated to stochastic dataflow graphs in modeling
cross-level systems, e.g., system-on-chip, edge, cloud, IoT, neuromorphic, and
even quantum computing platforms.

We provide an overview of recent advances in learned image and video
compression systems. Learned image compression is becoming more mature,
with technologies converging to the VAE-based coding framework with hy-
perpriors. In contrast, learned video compression remains an active area of
research. Conditional coding, which originates from traditional codecs and
is widely used in many learned video compression systems, is emerging as
an attractive solution to residual-based predictive coding. In particular, we
profile the complexity of several learned video compression systems based
on four intrinsic complexity metrics. The results reveal a growing trend in
which more computations and/or higher buffering requirements are traded for
higher compression performance. However, the caveat is that most learned
video compression systems encounter practical problems. To determine an
efficient microarchitecture design, we explore a design methodology to mit-
igate the performance, energy, and thermal impact of memory access and
on-chip data delivery. This paper aims to open up research opportunities for
algorithm/architecture co-design to enable low-complexity implementations.



30 Chen et al.

Financial Support

This work was supported by the National Science and Technology Council
(grant numbers 110-2221-E-110-026-MY3 and 109-2221-E-006-191-MY2).

Appendix

acronyms Full name
VSPS visual signal processing system
AI artificial intelligence
CPU central processing unit
ASIC application-specific integrated circuit
FPGA field-programmable gate array
DSP digital signal processor
GPU graphics processing unit
AAC algorithm/architecture co-exploration
TLM transaction-level model
DFM dataflow model
SHC software/hardware co-design
VLSI very large scale integration
CDC circuit/device co-design
DFG dataflow graph
CNN convolutional neural network
DCT discrete cosine transform
JPEG Joint Photographic Experts Group
ITU International Telecommunication Union
MPEG Moving Picture Experts Group
VVC versatile video coding
PSNR-RGB peak-signal-to-noise-ratio-RGB
MS-SSIM multi-scale structural similarity
VAE variational autoencoder
HEVC high-efficiency video coding
CLIC Challenge on Learned Image Compression
CVPR IEEE/CVF Computer Vision and Pattern Recognition

Conference
ISCAS IEEE International Symposium on Circuits and Systems
ANF augmented normalizing flows
SSF scale-space flow
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acronyms Full name
DMOS differential mean opinion score
CVAE conditional variational autoencoder
BD Bjøntegaard-delta
NoC network-on-chip
DTM dynamic thermal management
RDTM reactive DTM
PDTM proactive DTM
NSI-mesh nonstationary irregular mesh
TLAR transport layer-assisted routing
TAAR topology-aware adaptive routing
TTABR traffic- and thermal-aware adaptive beltway routing
MTTT mean time to throttle
PTB3R proactive thermal-budget-based beltway routing
GTDAR game-based thermal-delay-aware adaptive routing
TDM time division multiplexing
SDF synchronous dataflow
FSM finite-state machine
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