550 research outputs found

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    Multi-Robot Complete Coverage Using Directional Constraints

    Get PDF
    Complete coverage relies on a path planning algorithm that will move one or more robots, including the actuator, sensor, or body of the robot, over the entire environment. Complete coverage of an unknown environment is used in applications like automated vacuum cleaning, carpet cleaning, lawn mowing, chemical or radioactive spill detection and cleanup, and humanitarian de-mining. The environment is typically decomposed into smaller areas and then assigned to individual robots to cover. The robots typically use the Boustrophedon motion to cover the cells. The location and size of obstacles in the environment are unknown beforehand. An online algorithm using sensor-based coverage with unlimited communication is typically used to plan the path for the robots. For certain applications, like robotic lawn mowing, a pattern might be desirable over a random irregular pattern for the coverage operation. Assigning directional constraints to the cells can help achieve the desired pattern if the path planning part of the algorithm takes the directional constraints into account. The goal of this dissertation is to adapt the distributed coverage algorithm with unrestricted communication developed by Rekleitis et al. (2008) so that it can be used to solve the complete coverage problem with directional constraints in unknown environments while minimizing repeat coverage. It is a sensor-based approach that constructs a cellular decomposition while covering the unknown environment. The new algorithm takes directional constraints into account during the path planning phase. An implementation of the algorithm was evaluated in simulation software and the results from these experiments were compared against experiments conducted by Rekleitis et al. (2008) and with an implementation of their distributed coverage algorithm. The results of this study confirm that directional constraints can be added to the complete coverage algorithm using multiple robots without any significant impact on performance. The high-level goals of complete coverage were still achieved. The work was evenly distributed between the robots to reduce the time required to cover the cells

    New Results on Delay-Dependent Stability Analysis and Stabilization of Time-Delay Systems

    Get PDF
    The interconnection between physical systems is accomplished by flow of information, energy and material, alternatively known as transport or propagation. As such flows may take a finite amount of time, the reaction of real world systems to exogenous or feedback control signals, from automatic control perspective, are not instantaneous. This results time-delays in systems connected by real-world physical media. Indeed, examples of time-delay systems span biology, ecology, economy, and of course, engineering. To this end, it is known that an arbitrary small delay may destabilize a stable system whereas, a delay in the controller may be used to stabilize a system that is otherwise not stabilizable by using a delay-free controller. In general, the presence of time-delay in a system makes the system dynamics infinite-dimensional, and analysis of such systems is complex.This thesis investigates stability analysis and stabilization of time-delay systems. It proposes a delay-decomposition approach for stability analysis of systems with single delay that leads to a simple LMI condition using a Lyapunov-Krasovskii functional. Moreover, a static state feedback controller is designed for systems with state and input-delay using this delay-decomposition approach. Numerical comparison of the present results vis-`a-vis the existing ones for the systems with constant delay considered shows that the present ones are superior. Next, a PI-type controller is implemented for systems with input-delay to improve the tolerable delay bound. Other problems considered is to analyze the stability of systems with two delays. As the number of delays incorporated in the system dynamics increases, it becomes further complex for analysis

    Reitinsuunnittelu määrätyssä järjestyksessä tehtäville peltotöille usean työkoneen yhteistyönä

    Get PDF
    Coverage path planning is the task of finding a collision free path that passes over every point of an area or volume of interest. In agriculture, the coverage task is encountered especially in the process of crop cultivation. Several tasks are performed on the field, one after the other, during the cultivation cycle. Cooperation means that multiple agents, in this case vehicles, are working together towards a common goal. Several studies consider the problem where a single task is divided and assigned among the agents. In this thesis, however, the vehicles have different tasks that are sequentially dependent, that is, the first task must be completed before the other. The tasks are performed simultaneously on the same area. The literature review suggests that there is a lack of previous research on this topic. The objective of this thesis was to develop an algorithm to solve the cooperative coverage path planning problem for sequentially dependent tasks. A tool chain that involves Matlab, Simulink and Visual Studio was adapted for the development and testing of the solution. A development and testing architecture was designed including a compatible interface to a simulation and a real-life test environment. Two different algorithms were implemented based on the idea of computing short simultaneous paths at a time and scheduling them in real-time. The results were successfully demonstrated in a real-life test environment with two tractors equipped with a disc cultivator and a seeder. The objective was to sow the test area. The test drives show that with the algorithms that were developed in this thesis it is possible to perform two sequentially dependent agricultural coverage tasks simultaneously on the same area.Kattavassa reitinsuunnittelussa yritetään löytää polku, jonka aikana määritelty ala tai tilavuus tulee käytyä läpi niin että alueen jokainen piste on käsitelty. Maataloudessa tämä tehtävä on merkityksellinen erityisesti peltoviljelyssä. Useita peltotöitä suoritetaan yksi toisensa jälkeen samalla alueella viljelyvuoden aikana. Useissa tutkimuksissa käsitellään yhteistyönä tehtävää reitinsuunnittelua, jossa yksi tehtävä on jaettu osiin ja osat jaetaan useiden tekijöiden kuten robottien kesken. Tässä diplomityössä peltotyökoneilla on kuitenkin omat erilliset tehtävänsä, joilla on määrätty järjestys, eli niiden suorittaminen riippuu työjärjestyksestä. Työkoneet työskentelevät samanaikaisesti samalla alueella. Diplomityössä tehty kirjallisuuskatsaus viittaa siihen, että vastaavaa aihetta ei ole aiemmin tutkittu. Tämän diplomityön tavoitteena on kehittää algoritmi, jolla voidaan toteuttaa reitinsuunnittelu määrätyssä järjestyksessä tehtäville peltotöille usean peltotyökoneen yhteistyönä. Algoritmikehitystä ja testausta varten suunniteltiin yhtenäinen rajapinta, jolla algoritmia voitaisiin testata sekä simulaatiossa että todellisessa testitilanteessa. Algoritmikehityksessä käytettiin työkaluina Matlab, Simulink ja Visual Studio -ohjelmia. Työssä toteutettiin kaksi algoritmia, jotka perustuvat samaan ideaan: suunnitellaan kerrallaan kaksi lyhyttä samanaikaista polkua, jotka ajoitetaan reaaliajassa. Algoritmeja testattiin todellisessa testiympäristössä kahden työkoneen yhteistyönä, kun tavoitteena on kylvää koko testialue. Ensimmäinen työvaihe suoritettiin lautasmuokkaimella ja toinen kylvökoneella. Testiajot osoittavat, että diplomityössä kehitetyillä algoritmeilla voidaan ohjata kahden toisistaan riippuvaisen peltotyön toteutus samanaikaisesti samalla peltoalueella

    Petri net model decomposition - a model based approach supporting distributed execution

    Get PDF
    Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Electrotécnica, Especialidade de Sistemas Digitais, pela Universidade Nova de Lisboa, Faculdade de Ciências e TecnologiaModel-based systems development has contributed to reducing the enormous difference between the continuous increase of systems complexity and the improvement of methods and methodologies available to support systems development. The choice of the modeling formalism is an important factor for success-fully increasing productivity. Petri nets proved to be a suitable candidate for being chosen as a system specification language due to their natural support of modeling processes with concurrency, synchronization and resource sharing, as well as the mechanisms of composition and decomposition. Also having a formal representation reinforces the choice, given that the use of verification tools is fundamental for complex systems development. This work proposes a method for partitioning Petri net models into concurrent sub-models, supporting their distributed implementation. The IOPT class (Input-Output Place Transition) is used as a reference class. It is extended by directed synchronous communication channels, enabling the com- munication between the generated sub-models. Three rules are proposed to perform the partition, and restrictions of the proposed partition method are identified. It is possible to directly compose models which result from the partitioning operation, through an operation of model addition. This allows the re-use of previously obtained models, as well as the easy modification of the intended system functionalities. The algorithms associated with the implementation of the partition operation are presented, as well as its rules and other procedures. The proposed methods are validated through several case studies emphasizing control components of automation systems

    State Feedback Sliding Mode Control of Complex Systems with Applications

    Get PDF
    This thesis concerns the development of robust nonlinear control design for complex systems including nonholonomic systems and large-scale systems using sliding mode control (SMC) techniques under the assumption that all system state variables are accessible for design. The main developments in this thesis include: 1). The concept of generalised regular form and design of a novel sliding function. The mathematical definition of generalised regular form is proposed for the first time. It is an extension of the classical regular form, which makes SMC applicable to a wider class of nonlinear systems. A novel sliding function design, which is based on the global implicit function theorem, is proposed to guarantee unique sliding mode dynamics. 2). The development of decentralised SMC for large-scale interconnected systems. For systems with uncertain interconnections which possess the superposition property, a decentralised control scheme is presented to counteract the effect of the uncertainty by using bounds on uncertainties and interconnections. The bounds used in the design are nonlinear functions instead of constant, linear or polynomial functions. The design strategy has also been expanded to a fully nonlinear case for interconnected systems in the generalised regular form. 3). Robust decentralised SMC for a class of nonlinear systems with uncertainties in input distribution. A system with uncertainties in input distribution is full of challenges. A novel method is proposed to deal with such uncertainties for a class of nonlinear interconnected systems. The designed decentralised SMC enhances the robustness of the controlled systems. This thesis also provides case studies of three applications for the proposed approaches. The existence of the generalised regular form is verified in the trajectory tracking control of a wheeled mobile robot (WMR) system. Both simulations and experiments on the WMR are given to demonstrate the validity and effectiveness of the generalised regular form-based SMC design. A continuous stirred tank reactor (CSTR) system and a longitudinal vehicle-following system are used to test the proposed decentralised SMC schemes. An expanded vehicle-following system with both longitudinal and lateral controllers has been developed to demonstrate the robust control design for system with uncertainties in input distribution
    corecore