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Abstract

The interconnection between physical systems is accomplished by flow of information, energy

and material, alternatively known as transport or propagation. As such flows may take a

finite amount of time, the reaction of real world systems to exogenous or feedback control

signals, from automatic control perspective, are not instantaneous. This results time-delays

in systems connected by real-world physical media. Indeed, examples of time-delay systems

span biology, ecology, economy, and of course, engineering. To this end, it is known that

an arbitrary small delay may destabilize a stable system whereas, a delay in the controller

may be used to stabilize a system that is otherwise not stabilizable by using a delay-free

controller. In general, the presence of time-delay in a system makes the system dynamics

infinite-dimensional, and analysis of such systems is complex.

This thesis investigates stability analysis and stabilization of time-delay systems. It

proposes a delay-decomposition approach for stability analysis of systems with single delay

that leads to a simple LMI condition using a Lyapunov-Krasovskii functional. Moreover, a

static state feedback controller is designed for systems with state and input-delay using this

delay-decomposition approach. Numerical comparison of the present results vis-à-vis the

existing ones for the systems with constant delay considered shows that the present ones are

superior. Next, a PI-type controller is implemented for systems with input-delay to improve

the tolerable delay bound.

Other problems considered is to analyze the stability of systems with two delays. As

the number of delays incorporated in the system dynamics increases, it becomes further

complex for analysis. However, most of the approaches treated such problems by handling



ii

the delay terms individually. A new approach is proposed to derive less conservative criteria

for nominal and uncertain systems by exploiting the overlapping feature of the delays.

Finally, stabilizing ability of artificial delays incorporated in dynamic state feedback con-

troller is investigated. A dynamic controller with state-delay is proposed to improve the

tolerable delay bound of the system than that achievable using static and simple dynamic

controller.

Key words: Time-delay systems, Lyapunov-Krasovskii functional, Discretization, Over-

lapping delay ranges, Static state feedback controller, PI-type state feedback controller,

Artificial delay, CPPT.
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C H A P T E R 1

Introduction

1.1 Background

A dynamical system, in general, is modelled as:

ẋ(t) = f (x(t), t) , t ∈ ℜ+, (1.1)

where x(t) ∈ ℜn are known as the state variables. Let xeq be an equilibrium state in the

sense that f(xeq, t) = 0, ∀t ≥ 0 and the differential equation (1.1) characterizes the evolution

of the state variables with respect to time. It is presumed that the future evolution of the

system is completely determined by the current value of the state variables. Simply, the

value of the state variables x(t), t0 ≤ t < ∞, for any initial time t0 can be found using the

initial condition x(t0) = x0.

In reality, systems exist for which evolution of state variables x(t) not only depends on the

present values of x(t), but also on their past values x (ξ), t−h ≤ ξ ≤ t, h ≥ 0. Such systems

are called time-delay system [38, 43, 44, 98, 115, 132]. Time-delay systems are also called

systems with after-effect or delay [136,137,139]. Broadly, the delay phenomenon appears in

almost all the dynamics, e.g. biology, chemistry, population, economics, mechanics, physics,

psychology, as well as in engineering. Some occurrences and effects of delay phenomenon in

various systems are presented in Table 1.1.

For time-delay systems, evolution of the states is represented in a finite Euclidean space or
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Table 1.1: Delay occurrences and effects in different processes
Processes Delay Occurrences Effects

Feedback Control
[43]

During actuation, sensing, gener-
ating control signal

Performance degradation and
instability.

Interconnected
power sys-
tems [21]

Communication channel for
sending area control error
(control signal)

Oscillation and instability.

Network con-
trol system
(NCS) [152]

Parallel computation and com-
puter networking

Performance degradation and
instability.

Supply-chain
management
system [140,151]

Decision making, transportation-
line delivery, manufacturing, etc.

Influence every stage of the
supply-demand chain, dete-
riorate inventory regulation
causing financial losses, ineffi-
ciencies, and reduces quality-
of-service.

Milling processes
[43]

At the interface of the metal
work-piece and the cutting tool

Undesirable vibrations,
known as regenerative chatter
instability, leads to increased
tool wear, undesirable sur-
face quality, and reduces
productivity.

Interconnected
and distributed
systems [116]

During sensing, actuation pro-
cess and transmission of control
signal

Performance degradation and
maybe instability.

Tele-operation
system [1]

During transmission of control
signal

Instability.

Tele-surgery [154] During transmission of control
signal

Accuracy is very important,
leads to death of the human
being.

Breathing process
[150]

Within the physiological circuit Uncontrolled carbon dioxide
level in the blood.

Population dy-
namics [83]

Maturity of offspring Uncontrolled population
growth.

in a functional space. The most widely used representation is by using functional differential

equation [8, 43,47,114,139]. A retarded functional differential equation takes the form

ẋ(t) = f(xt, t), t ∈ ℜ+, (1.2)

where x(t) ∈ ℜn is the state; xt = x(t + θ), −h ≤ θ ≤ 0, h > 0 is the time-delay; f(xt, t) :

C×ℜ → ℜn, where C is the set of continuous functions mapping from ℜn in the time-interval
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t − h ≤ φ ≤ t to ℜn. Clearly, if the evolution of x(t) is sought at time instant t ≥ t0, then

one must first know xt for −h ≤ θ ≤ 0, which therefore defines the initial condition and is

denoted as xt0 ∈ C. The above representation is used in this work.

1.2 Classification of time-delay systems

In this thesis, works on linear time-delay systems are presented. Hence, herefrom, we consider

only linear systems. According to commonly accepted denomination introduced by [8,74–76],

time-delay system can be classified based on how the delay affects the evolution of the states,

as the following.

1.2.1 Systems with discrete delays

For such systems, the state evolution depends on states at some specific past time-instants

and can be represented as:

ẋ(t) = Ax(t) +Ahx(t− hx) +Bu(t) +Bhu(t− hu),

y(t) = Chx(t− hy),

where x(t) is the state, u(t) is the input, y(t) is the output, hx is the state delay, hu is the

control input delay and hy is the output delay.

An example of systems with discrete delays is a chemical process described as follows.

The quantity of the product of an incomplete and non-instantaneous irreversible chemical

reaction which produces a product P from the reactant R, can be increased by streaming

process is an example of systems with discrete delays [8,117]. The whole process (i.e. reaction

plus streaming) can be modelled by a system of nonlinear delay differential equations with

discrete delays.

Ṙ(t) =
q

v
[λR0 + (1− λ)R(t− h)−R(t)]−K0e

−
Q

T R(t),

Ṫ (t) =
1

v
[λT0 + (1− λ)T (t− h)− T (t)]

∆H

Cρ
−K0e

−
Q

T R(t)−
1

V Cρ
U (T (t)− Tω) ,

where R(t) is the concentration of the component R; T (t) is the temperature; R0, T0 are

initial values at t = 0; λ ∈ [0, 1] is the recycle coefficient; (1− λ)q is the recycle flow rate of

the unreacted R; h is the transport delay and other terms are constants of the system.

Another example of such systems is in economics [8,117], where the interaction between
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consumer memory and price fluctuation on commodity market can be described by a func-

tional differential equation as

ẍ(t) +
1

S
ẋ(t) + ẋ(t− h) +

Q

S
x(t) +

1

S
x(t− h) = 0,

where x(t) denotes the relative variation of the market price of the commodity; Q, S are

parameters of the model; h is the time that must elapse before a decision to alter production

is translated into an actual supply.

Such models also arise in heat exchanger dynamics [15,181], traffic modelling [5,121], tele-

operation systems [1,149,169], biology [26,150,163], network control systems [160,168,170],

modelling of rivers [20,87], population dynamics [39,83], neural network [3,172], fuzzy system

[113], any systems with delayed measurement [101, 151, 152], system controlled by delayed

feedback [44,152] etc.

1.2.2 Systems with distributed delay

Here, the delays act on state x(t) or u(t) in a distributed fashion as shown below.

ẋ(t) = Ax(t) +

0
∫

−hx

Ah(θ)x(t+ θ)dθ +Bu(t) +

0
∫

−hu

Bh(θ)u(t+ θ)dθ.

Distributed delay systems are systems where the delay does not have a local effect as in

pointwise delay systems but acts in a distributed fashion over a delayed time interval. An

example of such systems is the SIR-model (S = number susceptible, I = number infectious,

and R = number recovered (immune)) [8, 57] in epidemiology, which is described as:

Ṡ(t) = −βS(t)I(t),

İ(t) = βS(t)I(t) − β

∞
∫

h

γ(τ)S(t− τ)I(t− τ)dτ ,

Ṙ(t) = β

∞
∫

h

γ(τ)S(t− τ)I(t− τ)dτ,

The distributed delay is the time spent by infectious people before recovering from the disease

and takes values over [−h,+∞]. This delay may be different from person to person but obeys

a probability density of γ(h), which tends to 0 at infinity and integral over [−h,+∞] equal
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to 1.

1.2.3 Neutral delay systems

In neutral time-delay systems, the delay is present in the state derivative terms and is

represented as :

ẋ(t) = f (xt, t, ẋt, ut) , (1.3)

or

Fẋ(t) = f (xt, t, ut) , (1.4)

where F :→ ℜn is a regular operator. The modeling of coupling between transmission lines

and population dynamics is done using neutral delay systems.

The evolution of forests [8,127] can be represented by neutral delay equation. The model

is based on a refinement of the delay-free logistic (or Pearl-Verhulst equation)

ẋ(t) = rx(t)

[

1−
x(t− h) + cẋ(t− h)

K

]

,

where x(t) is the population, r is the intrinsic growth rate and K is the environmental

carrying capacity.

As the delay appears in the system dynamics, the system becomes infinite dimensional

due to the infinite roots of its characteristics equation [43,139]. Due to the presence of this

delay, the control performance of the closed loop system degrades [43, 151]. Many times, it

causes instability of the system [8, 152]. Therefore, the stability analysis of such systems is

important for researchers. Next section briefly reviews the salient results available regarding

stability analysis of linear systems with time-delay. The presence of this delay degrades the

performance of the system.

1.3 Literature review on stability analysis of time-delay sys-

tems

Similar to developed theories for linear systems without time-delays, stability analysis of

time-delay systems follows two approaches: frequency domain and time domain. Frequency

domain approaches have been long in existence because of its simplicity and computational

ease, which can be checked efficiently by plotting graphically a certain frequency-dependent

measures. For example, frequency sweeping and matrix pencil tests give necessary and suf-
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ficient conditions for delay-dependent and delay-independent stability for systems with de-

lays [43]. Compared with frequency-domain approaches, the time-domain approaches have

some advantages: (i) non-linearities and time-varying uncertainties can more easily be han-

dled, (ii) easier to extend for controller synthesis and filter design irrespective of number of

inputs and outputs. In time-domain approach, the direct Lyapunov method is a powerful

tool for stability analysis and stabilization of time-delay systems [43,51]. The present work

is based on the latter approach and, hence, we emphasize the same.

1.3.1 Stability definitions [37, 43]

Defining a state norm as ||xt||c = max
t−h≤φ≤t

||x(φ)||, the stability definitions for (1.2) in the

sense of Lyapunov are as follows.

Definitions. 1. The system (1.2) is stable if for a ǫ > 0 there exists a δ = δ(t0, ǫ) > 0

such that ||xt0 ||c < δ implies ||xt||c < ǫ for all t ≥ t0.

2. It is uniformly stable if for a ǫ > 0 there exists a δ = δ(ǫ) > 0 such that ||xt0 ||c < δ

implies ||xt||c < ǫ for all t ≥ t0.

3. It is asymptotically stable if there exists a δ(t0) > 0 such that ||xt0 ||c < δ(t0) implies

lim
t→∞

x(t) = 0.

4. It is uniformly asymptotically stable if for every ǫ > 0 there exists a δ > 0 and a

T (ǫ) > 0 such that ||xt||c < ǫ for all t ≥ t0 + T (ǫ) whenever ||xt0 ||c < δ.

5. It is bounded if there exists a β > 0 such that ||xt||c < β, where β may depend on each

solution.

6. It is uniformly bounded if for any α > 0 there exists a β = β(α) independent of t0

such that if ||xt0 ||c < α, then ||xt||c < β for all t ≥ t0.

7. It is uniformly ultimately bounded if there exists a γ > 0 and if corresponding to

any α > 0 there exists a T (α) > 0 such that ||xt0 ||c < α implies ||xt||c < γ for all

t ≥ t0 + T (α).

1.3.2 Lyapunov stability theorems [37, 43]

Based on the stability definitions in §1.3.1, stability of (1.2) can be ascertained using the

extensions of classical Lyapunov theorem. There are two different ways of interpreting the
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stability of the considered system: as an evolution in a functional space (Lyapunov-Krasovskii

functionals) [80–82] or as an evolution in the Euclidean space (Lyapunov-Razumikhin func-

tions) [138]. It is well known that LK approach yields less conservative results than LR

approach [43,46,101]. Next, we describe LK approach and some stability criteria developed

in literature based on this.

Lyapunov-Krsovskii theorem [37,43]. The system (1.2) is uniformly stable if there exists

a continuous differentiable function V (xt), V (0) = 0, such that

z(||x(t)||) ≤ V (xt) ≤ v(||xt||c), (1.5)

and

V̇ (xt) ≤ −w(||x(t)||), (1.6)

where z, v, w are continuous nondecreasing scalar functions with z(0) = v(0) = w(0) = 0 and

z(r) > 0, v(r) > 0, w(r) ≥ 0 for r > 0. If w(r) > 0 for r > 0, then it is uniformly asymptot-

ically stable and if, in addition, lim
r→∞

z(r) = ∞, then it is globally uniformly asymptotically

stable.

Let us consider a Linear Time-Invariant (LTI) system with time-delay as:

ẋ(t) = Ax(t) +Ahx(t− h), (1.7)

where x(t) ∈ ℜn is the state and h ∈ ℜ+ represents the time-delay and satisfies 0 ≤ h ≤ h̄;

A ∈ ℜn×n and Ah ∈ ℜn×n are matrices governing the influence of the instantaneous state and

the delayed state respectively. Unlike the initial condition for ordinary differential equation,

here, the system requires past state information over a time-segment as the initial condition,

i.e., φ = x(t), t ∈ [ −h̄ 0 ].

Suppose system (1.7) is nominally stable for h = 0, i.e., all the roots of the characteristic

equation are on the left half of the complex plane. It is also well known that these roots

are continuous in the delay argument h [43]. Then, one may gradually increase h from its

zero value to obtain an upper bound of time-delay h̄, up to which the system is stable [46].

Depending on the size of the delay (h̄) (i.e finite or infinite), one may classify the system as:

• delay-independently stable if h̄→ ∞,

• delay-dependently stable if h̄ is finite.

It may be noted that
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• For system (1.7) to be stable, it is necessary that [A+Ah] must be Hurwitz,

• For system (1.7) to be delay-independently stable, it is further necessary that A also

be Hurwitz.

Methods available for delay-independent and delay-dependent stability analysis of (1.7) are

now presented. Depending on whether stability and stabilization criteria include information

of time-delays, those are classified into two classes: delay-independent criteria and delay-

dependent criteria. The later one is of more practical importance due to the fact that the

delay present in a system is always finite and hence exhibits more physical significance. These

criteria are usually less conservative than the former one, especially when the time-delay is

small [68, 147].

1.3.3 Delay-independent stability analysis

This section presents the methods for delay-independent stability analysis of (1.7) using

Lyapunov-Krasovskii theorem.

An energy functional for (1.7) may be chosen following [43] as:

V = xT (t)Px(t) +

∫ t

t−h

xT (θ)Qx(θ)dθ, P > 0, Q > 0. (1.8)

Note that, the above is a Lyapunov-Krasovskii functional since it satisfies

λmin(P )||x(t)||
2 ≤ V ≤ λmax(P )||x(t)||

2 + τλmax(Q)||xt||
2
c . (1.9)

The V̇ then becomes

V̇ = 2xT (t)PAx(t) + 2xT (t)PAhx(t− h) + xT (t)Qx(t)− xT (t− h)Qx(t− h). (1.10)

Now, to separate the x(t) and x(t − h) factors in the second term of the above, one may

obtain

2xT (t)PAhx(t− h) ≤ xT (t)PAhQ
−1AT

hPx(t) + xT (t− h)Qx(t− h). (1.11)

Using (1.11) in (1.10) and then to satisfy (1.6) one obtains the resulting stability criterion

as

PA+ATP +Q+ PAhQ
−1AT

hP < 0. (1.12)

One may now check for existence of P > 0 and Q > 0 that satisfy (1.12) in order to ascertain
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stability of (1.7) [37, 43]. This may be carried out by converting (1.12) into an equivalent

LMI.

The stability criterion (1.12) may also be suitably modified to design static state-feedback

stabilizing controllers for LTI systems [37]. Stabilization criterion may also be derived in

similar way if the system has delay in the input of the system [30, 31, 37]. Such delay-

independent static state-feedback stabilization of systems with both state and input delays

has been developed in [52,69].

1.3.4 Delay-dependent stability analysis

If the available information on size of the delay can be utilized to obtain stability analysis re-

sults of time-delay system then it is called as delay-dependent stability analysis. It is obvious

that delay-dependent stability analysis is less conservative than that of delay-independent

ones [8, 15,31,51,61,77,93,96,103,164,176].

Delay-dependent stability analysis based on Lyapunov-Krasovskii theorem appears to

have first been used in [159] to estimate the tolerable delay bound for linear uncertain

systems. An improved estimate of the same was obtained in [158] by optimizing the bounding

inequalities used. Several developments have been made since then over the last two decades

or so that we discuss next.

1.3.4.1 Using Lyapunov-Krasovskii theorem

A. Complete type LK functional and discretization approaches:

The necessary and sufficient conditions for stability of time-delay systems of type (1.7) are

ascertained by using a complete type LK functional [29,43].

V (φ) = xT (t)Px(t) + 2xT (t)

0
∫

−h

Q(ξ)x(t+ ξ)dξ +

0
∫

−h

xT (t+ ξ)S(ξ)x(t + ξ)dξ

+

0
∫

−h

0
∫

−h

xT (t+ ξ)R(ξ, η)x(t+ η)dηdξ,

(1.13)

where P = P T ∈ ℜn×n, continuous differentiable matrix functions Q(ξ) : [−h, 0] → ℜn×n,

R(ξ, η) = RT (ξ, η) with R(ξ, η) : [−h, 0]2 → ℜn×n, S(ξ) = ST (ξ) : [−h, 0] → ℜn×n.

However, numerical solution for such a functional is not computationally tractable. One

way to take care of this is by discretizing the functional into a number of delay intervals
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(integral intervals) so that with increase in number of intervals the numerical solution ap-

proaches the analytical one [40,43,51]. The discretization approach proposed in [43] is based

on dividing the domain of definition of matrix function Q, R and S into smaller region and

the matrix functions are chosen to be continuous piecewise linear which reduces the choice of

LK functional into choosing a finite number of parameters with larger number of parameters

and improved approximation with larger number of intervals.

The delay interval h is divided into N segments hp = [θp, θp−1], p = 1, 2, . . . , N of equal

length δ = h�N . Then

θp = −pδ = −
ph

N
, p = 1, 2, . . . , N. (1.14)

This also divides the square matrix function S = [−h, 0]× [−h, 0] into N ×N small squares

Spq = [θp, θp−1]× [θp, θp−1]. Each square is further divided into two triangles

T u
pq =

{

(θp + αδ, θq + βδ)

∣

∣

∣

∣

∣

0 ≤ β ≤ 1,

0 ≤ α ≤ β

}

,

T l
pq =

{

(θp + αδ, θq + βδ)

∣

∣

∣

∣

∣

0 ≤ α ≤ 1,

0 ≤ β ≤ α

}

.

The continuous matrix functions Q(ξ) and S(ξ) are chosen to be linear within each segment

hp, and the continuous function R(ξ, η) is chosen to be linear within each triangular region

T u
pq or T l

pq. Let Qp = Q(θp), Sp = S(θp), Rpq = R(θp, θq). These Functions are piecewise

linear, they can be expressed in terms of their values at the dividing points using linear

interpolation formula i.e., for 0 ≤ α ≤ 1, p = 1, 2, . . . , N .

Q(θp + αh) = Q(p)(α) = (1− α)Qp + αQp−1,

S(θp + αh) = S(p)(α) = (1− α)Sp + αSp−1.

And for 0 ≤ α ≤ 1, 0 ≤ β ≤ 1, p = 1, 2, . . . , N , q = 1, 2, . . . , N .

R(θp + αδ, θq + βδ) = R(pq)(α, β) =

{

(1− α)Rpq + βRp−1,q−1 + (α− β)Rp−1,q, α ≥ β.

(1− β)Rpq + αRp−1,q−1 + (β − α)Rp,q−1, α < β.

Thus, the Lyapunov-Krasovskii functional is completely expressed with P , Qp, Sp, Rpq,

p, q = 0, 1, . . . , N .

However, such methods are difficult to adopt for control and filtering problems [40,43,51].
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Also, the number of decision variables increases almost exponentially with increase in number

of intervals leading to computational burden for higher-order systems.

To resolve the complexity of integrated quadratic factors which are dependent on dis-

cretized values of the state in [43], an alternate delay decomposition technique is proposed

in [40]. This can generate an infinite sequence of Lyapunov functionals and associated delay-

dependent criterion which are dependent on the number of decomposition of the delay in-

terval. As the number of decomposition grows, the derived criterion in [40] shows the con-

servatism reduction properties. A stability criterion is proposed in [40], by discretizing r

times the interval h, r ∈ I+, h0 = 0, hi =
ih
r
, where h is the delay of system (1.7), with the

following property hr = h, hi+j = hi + hj , ∀ (i, j) ∈ {1, 2, · · · , r}. The following stability

criterion is based on the above delay decomposition technique proposed in [40].

Theorem 1.1. [40] System (1.7) is stable for any h such that 0 ≤ h ≤ hmr if there exist

Pr > 0, Qri > 0, Rri > 0, ∀i ∈ {1, 2, · · · , r} ∈ Rrn×rn satisfying following LMI:

B⊥T
r µr (hm)B⊥

r < 0, (1.15)

where B⊥T
r is the orthogonal component of Br,

Br =











































1 −Ad0 −Ad1 −Ad2 · · · −Adr 0 0 · · · 0

0 −1 1 0 · · · 0 1 0 · · · 0

0 −1 0 1 · · · 0 0 1 · · · 0
...

...
...

...
. . .

...
...

...
. . .

...

0 −1 0 0 · · · 1 0 0 · · · 1

0 Er1 −Er2 0 · · · · · · · · · · · · · · · 0

0 0 Er1 −Er2 0 · · · · · · · · · · · · 0
...

... 0
. . .

. . . 0 · · · · · · · · ·
...

0 0 0 0 Er1 −Er2 0 0 0 0











































,

and

Er1 =
[

0(r−1)n,n 1(r−1)n,n

]

, Er2 =
[

1(r−1)n,n 0(r−1)n,n

]

,



12 Introduction

µr (h) =



















r
∑

i=1
hiRri Pr 0 0

Pr

r
∑

i=1
Qri 0 0

0 0 −Qr 0

0 0 0 −Rr



















,

Qr = diag (Qr1, · · · , Qrr) , Rr = diag

(

1

h1
Rr1, · · · ,

1

hr
Rrr

)

.

Remark 1.1. The features of the above approach in [40] are: (i) it can be extended to robust

stability analysis. (ii) the LK functional does not depend on the uncertain parameters and

(iii) the developed criterion takes the advantage of parameter-dependent Lyapunov function-

als. One of the major drawbacks of the same approach is that it can not be easily extended

to stabilization problem.

Another discrete delay-decomposition approach has been proposed in [51] by constructing

a new simple quadratic LK functional which consist of two parts. First part of the functional

is proposed in [49, 50] by avoiding the quadratic factor in the functional. The first part of

the functional is given as follows:

V1stPart (x, xt) = xT (t)Px(t) +

t
∫

t−h

xT (ξ)Qx(ξ)dξ +

t
∫

t−h

(h− t+ ξ) ẋT (ξ) (hR) ẋ(ξ)dξ.

The second part of the functional in [51] holds the quadratic factors which has been claimed

to fill the gap between the computational result and the analytical result. The second part

of the functional is as follows:

V2ndPart (x, xt) =

t
∫

t− h
N

zT (ξ)Sz(ξ)dξ +

t
∫

t− h
N

(

h

N
− t+ ξ

)

ẋT (ξ)

(

h

N
W

)

ẋ(ξ)dξ

where zT (t) =
[

xT (t) xT
(

t− h
N

)

· · · xT
(

t− (N−1)h
N

)]

. Using such quadratic LK func-

tional the following theorem is proposed in [51] for which computational result approaches

the analytical one with increasing number of delay decomposition.

Theorem 1.2. [51] The system (1.7) is stable for h > 0 and N ≥ 2, if there exist real

n × n matrices P > 0, Q > 0, R > 0, W ≥ 0, and Sii = ST
ii (i = 1, 2, · · · , N), Sij(i > j; i =
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1, 2, · · · , N − 1; j = 2, · · · , N), such that

S = ST =















S11 S12 · · · S1N

∗ S22 · · · S2N
...

...
. . .

...

∗ ∗ ∗ S1N















,

and

Ξ =









Ξ(1) Ξ(2) Ξ(3)

∗ −W 0

∗ ∗ −R









< 0,

Ξ(1) =

























Ξ
(1)
11 Ξ

(1)
12 S13 · · · S1N PB +R

∗ Ξ
(1)
22 Ξ

(1)
23 · · · S2N − S1N−1 −S1N

∗ ∗ Ξ
(1)
33 · · · S3N − S2N−1 −S2N

...
...

...
. . .

...
...

∗ ∗ ∗ ∗ Ξ
(1)
NN −SN−1N

∗ ∗ ∗ ∗ ∗ Ξ
(1)
N+1N+1

























,

Ξ
(1)
11 = ATP + PA+Q−W −R+ S11,Ξ

(1)
22 = S22 − S11 −W,Ξ

(1)
33 = S33 − S22,

Ξ
(1)
NN = SNN − SN−1N−1,Ξ

(1)
N+1N+1 = −SNN −Q−R,Ξ

(1)
12 = S12 +W,Ξ

(1)
13 = S23 − S12,

Ξ(2) =
[

h
N
W TA 0 0 · · · 0 h

N
W TB

]T

,Ξ(3) =
[

hRTA 0 0 · · · 0 hRTB
]T

.

The above discussed discretization technique of [43] and the delay-decomposition tech-

niques of [40,51] have two major drawbacks. First, the number of decision variables increases

with increase in number discretizations. This increases the computational complexity of the

stability criterion. The next major drawback is that the filter and controller design are

difficult using these decomposition techniques.

On the other hand, simple LK functionals are used to obtain sufficient conditions. The

motivation for using such functionals are: (i) these are easily extendable to control and

filtering problems, and (ii) they reduces the computational burden invariably. A body of

research publications have been made on reducing conservativeness of such analysis in the
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past decade [33, 53, 56, 111, 145, 146]. In all these attempts, progressively less conservative

stability criterion have been obtained by suitably approximating either an integral term

and/or the factors involving delay term in the derivative of LK functional. It is shown in [86]

that several of such stability criterion are in fact equivalent and later in [8,9] that several of

the integral inequalities used in such approaches are also equivalent, but suitable one based

on their affineness on the delay term may be used to obtain less conservative convex stability

criterion. Next, we discuss some available approaches based on simple LK functional.

B. Simple type LK functional approaches:

It is a challenging issue to obtain a less conservative result by using simple type LK

functional by avoiding integral terms in the derivative of the energy functional. A very

commonly used simple LK functional is presented as follows:

V = xT (t)Px(t) +

t
∫

t−h

xT (θ)Qx(θ)dθ +

t
∫

t−h

t
∫

t+θ

ẋT (s)Rẋ(s)dsdθ. (1.16)

Then, computing the derivative of the functional (1.16),

V̇ = 2xT (t)Pẋ(t)+xT (t)Qx(t)−xT (t−h)Qx(t−h)+hẋT (t)Rẋ(t)−

t
∫

t−h

ẋT (t)Rẋ(t)dt. (1.17)

A huge literature are available [28,43,70,71,112,134,135,146,147] on stability analysis and

stabilization results using simple type LK functional. Some of important approaches are

discussed in the following.

• Model-transformation approach Model-transformation approaches have been in-

troduced early in the stability analysis of time-delay systems. They transform a time-

delay system into a new system, which is referred to as a comparatively similar system.

Finally, the stability of the original system is determined through the stability analysis

of the transformed model. The transformed model may be of different types, (uncer-

tain) finite dimensional linear systems [8,43,70,71,177], time-delay systems [8,27,32,43].

Model-transformation approach type 1 has been used by [43, 56, 72, 76, 117, 158,

159] For the purpose, the Leibnitz-Newton formula has been used to provide the
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difference between the instantaneous state and the delayed state as

x(t)− x(t− h) =

∫ t

t−h

ẋ(θ)dθ. (1.18)

Using the above, one may replace the x(t− h) term in (1.7) to obtain

ẋ(t) = (A+Ah)x(t)−Ah

∫ t

t−h

ẋ(θ)dθ. (1.19)

The above clearly reflects the necessary condition for delay-dependent stability

that [A+Ah] is Hurwitz. Further, replacing ẋ(θ) in the last term of (1.19) using

(1.7), one obtains

ẋ(t) = (A+Ah)x(t)−Ah

∫ t

t−h

(Ax(θ) +Ahx(θ − h))dθ. (1.20)

Clearly, the initial condition corresponding to (1.20) must now be φ1 = x(θ), θ ∈

[−2τ̄ , 0]. Note that, the initial condition involved in system (1.7) is a subset of

the one in (1.20). Therefore, ensuring stability of (1.20) ensures that of (1.7) but

the reverse is not true [44]. The transformation from (1.7) to (1.20) is called a

first order transformation and, in a similar way, higher order transformations may

also be obtained [45,73].

The model transformation approach is conservative as it may introduce additional

poles which are not present in the original system, and one of these additional

poles may cross the imaginary axis before any of the poles of the original system

do as the delay increases from zero [44,48].

Model-transformation approach type 2 This model transformation [75, 120] im-

proves the result obtained from the Leibniz-Newton formula by introducing a free

parameter C to be chosen adequately:

Cx(t− h) = Cx(t)− C

t
∫

t−h

ẋ(θ)dθ. (1.21)

Cẋ(t) = (A+ C)x(t)+(Ah − C)x(t−h)−C

t
∫

t−h

[Ax(s) +Ahx(s− h)]ds. (1.22)

For C = 0: Original System is recovered. For C = Ah: the system obtained from
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Leibnitz Newton formula is recovered as

[

I 0

0 0

][

ẋ(t)

ẏ(t)

]

=

[

0 I

A+Ah −I

][

x(t)

y(t)

]

+

t
∫

t−h

[

0 0

0 −Ah

][

x(s)

y(s)

]

ds. (1.23)

Descriptor model transformation This model transformation has been introduced

in [27,32]. It does not introduce any additional dynamics.

ε

[

ẋ(t)

ẏ(t)

]

= A

[

x(t)

y(t)

]

+Ah

t
∫

t−h

[

x(s)

y(s)

]

ds, (1.24)

where

ε =

[

I 0

0 0

]

, A =

[

0 I

A+Ah −I

]

, Ah =

[

0 0

0 −Ah

]

.

This approach is based on a bounding technique of cross terms involving a positive

matrix. Involving Parks bounding technique leads to less conservative stability

conditions coupled with complete LK functional [29]. Although this method is

interesting and leads to quality results, it still leads to cross terms which are

difficult to bound and result in conservative conditions.

• Park’s bounding approach A more accurate bounding of cross terms in the deriva-

tive of the LK functional has been introduced in [124,125]. The following lemma is the

stability criterion using Park’s bounding approach.

Lemma 1.1. [124,125] Assume that a(α) ∈ ℜnx and b(α) ∈ ℜny are given for α ∈ Ω.

Then, for any positive definite matrix X ∈ ℜnx×nx and any matrix M ∈ ℜny×ny , the

following holds

−2

∫

Ω

bT (α)a(α)dα ≤

∫

Ω

[

a(α)

b(α)

]T

Ψ

[

a(α)

b(α)

]

dα,

where Ψ =

[

X XM

MTX (MTX + I)X−1(XM + I)

]

.

The above lemma is able to provide a tighter bound on the cross term which improves

conservatism.
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• Jensen’s inequality approach Jensen’s inequality has been used in [40,49] to avoid

the cross terms. The following lemma is the extension of the Jensen’s Inequality

Lemma 1.2. [179] For any constant matrix 0 < R, 0 ≤ α < β and 0 < γ = β − α

the following bounding inequality holds:

−

t−α
∫

t−β

ẋT (θ)Rẋ(θ)dθ ≤ γ−1

[

x(t− α)

x(t− β)

]T [

−R R

∗ −R

] [

x(t− α)

x(t− β)

]

. (1.25)

Note that, RHS of the above is nonconvex in γ and may require approximation while

deriving a convex criterion involving uncertain γ. An equivalent representation that

may be used with benefit for such cases is using free variable matrices and expressed

as:

−

t−α
∫

t−β

ẋT (θ)Rẋ(θ)

≤

[

x(t− α)

x(t− β)

]T






[

M +MT −M +NT

∗ −N −NT

]

+ γ

[

M

N

]

R−1

[

M

N

]T






[

x(t− α)

x(t− β)

]

,

(1.26)

where M and N are free weighting matrices of appropriate dimensions. Note that, with

the choice M =MT = −N = −NT = −γ−1R in (1.26), one obtains (1.25).

The following Theorem presents a delay-dependent stability condition in the line of the

result in [145] for (1.7) using Lemma 1.2.

Theorem 1.3. [145] System (1.7) is asymptotically stable if there exists matrices,

P > 0, Q > 0 and R > 0, satisfying the following LMI condition:









PA+ATP +Q+ hATRA PAh + hATRAh 0

∗ −Q+ hAT
hRAh 0

∗ ∗ h−1R









< 0, (1.27)

Proof. Let us consider a suitable L-K functional as (1.16). Then, computing the deriva-

tive of the functional (1.16) as (1.17). To get a tighter solution, the bound for the
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integral term i.e.

−

t
∫

t−h

ẋT (t)Rẋ(t)dt ≤ −h−1





t
∫

t−h

ẋ(s)ds





T

R





t
∫

t−h

ẋ(s)ds





using inequality (1.25) can be used to replace the integral term from (1.17) and re-

placing ẋ(t) by system dynamics. Then, above condition is derived by considering the

states as

[

xT (t) xT (t− h)
t
∫

t−h

ẋT (s)ds

]

.

The inequality (1.25) of Lemma 1.1 can be directly used to derive the following stability

criterion.

Theorem 1.4. [145] System (1.7) is asymptotically stable if there exists matrices,

P > 0, Q > 0 and R > 0, satisfying the following LMI condition:

[

Θ11 Θ12

∗ Θ22

]

< 0, (1.28)

where

Θ11 = PA+ATP − h−1R+Q+ hATRA,Θ12 = PAh − h−1R+ hATRAh,

Θ22 = −Q− h−1R+ hAT
hRAh.

Proof. Let us consider the same L-K functional as (1.16). Then, computing the deriva-

tive of the functional. To get a tighter solution, the Jensen’s inequality (1.25) can be

used to replace the integral term from the derivative of the functional and replacing

ẋ(t) by system dynamics. Then, condition (1.28) is derived by considering the states

as
[

xT (t) xT (t− h)
]

.

To obtain less conservative criterion, matrix variables are involved to obtain an equiv-

alent representation of Jensen’s inequality as (1.26) of Lemma 1.2. The following

stability condition is derived using (1.26) of Lemma 1.2.

Theorem 1.5. [145] System (1.7) is asymptotically stable if there exists matrices,

P > 0, Q > 0, R > 0 and arbitrary matrices M , N satisfying the following LMI
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condition:








Θ11 Θ12 0

∗ Θ22 0

∗ ∗ −h−1R









< 0, (1.29)

where

Θ11 = PA+ATP − h−1R+Q+ hATRA+ (M +MT ),

Θ12 = PAh + hATRAh + (−M +NT ),Θ22 = −Q+ hAT
hRAh + (−N −NT ).

Proof. The proof is similar to the proof of Theorem 1.4. One can use (1.26) of Lemma

1.2 to obtain the criterion (1.29).

• Free weighted matrices approach In this approach, some weighted matrices are

introduced in order to add some degree of freedom as result of which the additional

constraints are included in the LMI [56]. These matrices are included by some zero

equality expressions governed by the system dynamics. The following conditions hold

for any Gi and Ti , i = 1, 2, 3 corresponding to (1.7).

2
[

xT (t)G1 + xT (t− h)G2 + ẋT (t)G3

]



x(t)− x(t− h)−

t
∫

t−h

ẋT (θ)dθ



 = 0, (1.30)

2
[

xT (t)T1 + xT (t− h)T2 + ẋT (t)T3
]

[ẋ(t)−Ax(t)−Ahx(t− h)] = 0, (1.31)

The following theorem is the delay-dependent condition using the above zero equality

expression and Jensen’s inequality.

Theorem 1.6. [8] System (1.7) is asymptotically stable if there exists matrices P > 0,

Q > 0, R > 0 and arbitrary matrices Gi, i = 1, 2., satisfying the following LMI

condition:









Υ PAh + hATRAh −G1 +GT
2 −G1 +GT

3

∗ −Q+ hAT
hRAh −G2 −GT

2 −G2 −GT
3

∗ ∗ h−1R−G3 −GT
3









< 0, (1.32)

where Υ = PA+ATP +Q+ hATRA+G1 +GT
1 .

Proof. Let us consider a suitable L-K functional as (1.16). Then, computing the deriva-
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tive of the functional which is same as (1.17). To get a tighter solution, the Jensen’s

inequality (1.25) can be used to replace the integral term and zero equality constraint

(1.30) is added to the derivative term to get tighter result. Then, the above condition

(1.32) is derived by considering the states as

[

xT (t) xT (t− h)
t
∫

t−h

ẋT (s)ds

]

.

• Stability analysis of systems with interval-delay As delay appears in ranges, it

will vary from a non-zero lower bound to a upper bound, i.e. h1 ≤ h ≤ h2. Usually, the

lower bound of the delay is considered to be zero in many literature [27,29,31–33], but

in some special cases such as networked control systems which are basically feedback

control systems with feedback loop closed through real-time communication channels,

considers non-zero lower bound [131, 133]. Such systems are referred as an interval-

delay systems. To investigate the delay-dependent stability of systems with interval-

delay, the comparison theorem and matrix measure are employed in [98]. On the front

of using LK functional based approaches, a stability result for systems with interval-

delay is proposed in [62] by introducing some relaxation matrices in the derivative of

the LK functional. By proposing an appropriate LK-functional without ignoring some

useful terms stability result is obtained in [54]. In [171], Newton-Leibniz formula is

used to obtain delay-independent and delay-dependent stability criteria for systems

with interval-delay. However, in this analysis, some useful terms are neglected while

dealing with the time-derivative of the LK functional which leads to a conservative

result. By introducing free-weighted matrices and bounding technique in the delay

range-dependent stability criterion, a stability result is derived in [84]. To obtain a less

conservative result, further modifications in the choices of LK functional is considered in

[131,133] which takes delay-range information into account appropriately, and a tighter

bounding condition is used in time-derivative of the functional. By implementing a

tighter bound in the derivative of the LK functional and weighted matrix variable

approach, a less conservative result is obtained in [147].

The above discussion gives a brief idea about the stability analysis of time-delay systems.

Another challenging objective of this thesis is to design less conservative stabilization con-

troller for time-delay systems. Next section presents a discussion on existing stabilization

approaches for time-delay systems.
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1.4 Literature review on stabilization of time-delay systems

Stabilization problem is referred to as designing controller while ensuring stability of the

system. As it is discussed earlier about the challenges on stability issue involved in time-

delay system, control design for such systems to stabilize becomes tedious job for researchers.

Most of the literature on stabilization of time-delay systems are mere extension of stability

analysis approaches. Here also, the stabilization results are broadly classified as delay-

independent and delay-dependent. The delay-independent stabilization provides a controller

which can stabilize a system irrespective of the size of the delay. On the other hand, delay-

dependent stabilization is concerned with size of the delay and usually provides an upper

bound of the delay such that the closed loop system is stable for any delay less than the upper

bound. Stabilization problem for time-delay systems can be classified as (i) stabilization of

systems with state delay, and (ii) stabilization of systems with input delay, according to the

association of delay term in the state or input of the system.

1.4.1 Stabilization of systems with state delay

A state delay system can be represented as

ẋ(t) = A0x(t) +A1x(t− h) +B2u(t), (1.33)

where h is the delay associated with the state of the system, u(t) is the control input to the

system.

In studies of stabilization problem of state delay system, Riccati equation and Lyapunov

approaches adopted in [16, 60, 148] to obtain delay-dependent results. An LMI approach

is employed to tackle stabilization problem of time-delay systems in [11, 12, 88]. The LMI

approach has two advantages. First, it needs no tuning of parameters and/or matrix. Second,

it can be efficiently solved numerically using interior-point algorithms. For developing the

stabilization criterion for time-delay systems, the model transformation approach is used

in [44, 67]. In this approach, a delay-dependent criterion is developed for the delay free

transformed model of the time-delay system. As the transformed model is not equivalent

model of the time-delay system, this delay-dependent stabilization condition is conservative.

Another reason for conservative result is the bounding method used to derive the bounds

on weighted cross products of the state and its delayed version while trying to secure a

negative value to the derivative of the corresponding LK functional. To take care both these

issues, a descriptor model transformation technique proposed in [27,31,33] and the bounding
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technique proposed in [111] are combinedly used in [34]. An integral inequality approach

is proposed in [179] to obtain delay-dependent stabilization criteria for systems with state

delays. The state transformation approach is introduced to describe the delay-dependence

dynamics and some control design scheme based on H2 performance, H∞ and simultaneous

H2/H∞ criteria are established in [100,103]. A new state transformation approach is reported

in [100] to facilitate the control design problem and reduce the conservatism. To reduce the

conservatism numerous approaches such as free-weighted matrix variable approach [53,92,95],

introducing slack variables [37], using tighter bounds, adding triple integral terms on the LK

functional [161] are available in literature.

1.4.2 Stabilization of systems with input delay

A input delay system can be represented as

ẋ(t) = A0x(t) +B1u(t) +B2u(t− h), (1.34)

where h is the delay associated with the input to the system.

Input-delay occurs due to the transmission of measured information [100,173], to acquire

the information needed for decision-making, to generate the control decisions and to execute

these decisions [152]. This type of delay is common in all feedback control systems, e.g.

network control systems, biological systems, power systems etc. The control design for such

systems are challenging issues. In [24, 25], a feedback controller is designed to stabilize the

systems with state delay by transforming it into an ordinary delay-free system and using

the concept of spectral stabilizability. The methods used in [24,25] is difficult to implement

for time-varying delays or uncertainties as they require the unstable poles of the system be

known exactly and also resulting controller is distributed in nature. In [17,52,69], methods

are proposed to directly design memoryless stabilizing controller for uncertain systems with

state and input delays. Since this controller is independent of the delay, it tends to be

unduly conservative, especially when the actual delay is small. The results are available in

the literature [14,34,173,179] on stabilization problem using static state feedback controller

(i.e. memoryless controller). In [110, 111], a reduction method is proposed and the robust

stabilization criterion is developed in the form of LMI. To fill the gap of reduction method

in [110], a new state transformation approach is proposed in [173]. Under the new state

transformation, the controller design only require to know the change of interval of the input

delays rather than the exact values. Apart from the approaches discussed above, based on
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the state transformation, a descriptor system approach is applied in [14] to design robust

controller. Though the stabilization criterion developed in [14] is less conservative but the

controller structure includes integral control action which is difficult to implement.

1.4.3 Stabilization of systems using artificial delay

A stable feedback system without delay may become unstable with some delays [107]; whereas

judicious introduction of delay may stabilize an unstable system [117,152,155]. For example,

in metal milling machines, spindle speed is appropriately adjusted to achieve chattering

stability [152] and in supply chain management, by adding delays for decision-making may

be benefitted for purchasing and stocking decision [157]. The approach is otherwise known

as wait-and-act control strategy [156].

The above discussions on existing approaches leads to the below motivations for this

thesis.

1.5 Motivations of the present work

The review undertaken leads to some open problems that appears not to have been addressed

so far in literature. These are as follows.

• The existing discretization/decomposition techniques (Section 1.3.4.1.A) are based on

infinite-dimensional quadratic LK functional which leads to large-dimensional LMI with

increasing intervals in discretizations.

• The available discretization/decomposition approaches (Section 1.3.4.1.A) for system

with single delay can not be easily extended for control and filtering problems.

• Existing attempts for stability analysis of systems with multiple time-delays are mere

extensions of single delay approaches as the delays are treated individually in analysis.

The number of decision variables increases in the LMI with involvement of the number

of delays in the system description.

• Robust Controller design for input-delay system is a challenging issue. Available tech-

niques such as reduction technique, descriptor system approach using static state feed-

back controller are conservative.

• Use of delay in the controller for improving stabilizing ability is less investigated.
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1.6 Scope of the thesis

The thesis covers the below issues.

• This work proposes a new stability criterion for systems with single delay using a simple

delay-decomposition criterion.

• A new approach is proposed to investigate the stability analysis of systems with two-

delays by exploiting overlapping information on them.

• The simple delay-decomposition approach is used to design a stabilizing controller for

systems with single delay.

• A simple P-and PI-type stabilization criteria are developed for systems with input-

delay.

• Stabilizing ability of a delayed dynamic state feedback controller is investigated.

• This thesis does not include any work on time-varying delay systems because the pro-

posed approaches (delay-discretization approach for single delay and overlapping ap-

proach for two-delay system) in this thesis for time-delay systems are only applicable

for constant delay cases.

1.7 Organization of the thesis

The present chapter briefly presents a review on stability and stabilization of time-delay

systems. Remaining of the thesis is organized as follows.

• In Chapter 2, a delay-dependent stability criterion is proposed for systems with single

delay by decomposing the delay interval. By defining a simple Lyapunov-Krasovskii

functional for each of the decomposed intervals, a criterion is derived in such a way

that a single one satisfies stability requirements of all the intervals. The same approach

is extended to robust stability analysis problem.

• A delay-dependent stability criterion for systems with two constant delays is proposed

in Chapter 3. As the delays are very small in nature, their ranges may overlap each

other. This overlapping feature of the delays is exploited to derive a less conservative

stability criterion. The same approach is extended to robust stability analysis as well.
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• In Chapter 4, the delay-decomposition based approach using simple LK-functional

proposed in Chapter 2 for stability analysis is used for developing static state-feedback

stabilization criterion for systems with constant delay. During the development of the

stabilization criterion in form of an LMI, non-linear terms comes up due to unknown

controller parameter (K). To linearize such non-linear terms, a simple linearization

approach is used. The simple stabilization criterion is further extended to robust

stabilization criterion.

• Chapter 5 deals with the stabilization of systems with input-delay using state-feedback

controllers. First, a simple static state-feedback controller is used to derive stabilizing

condition in the form of LMI. To formulate the LMI condition, a suitable LK functional

is chosen and free-weighted matrix variable approach is employed. Next, to obtain a

less conservative stabilization criterion using a simple static state-feedback controller,

the delay-decomposition approach proposed in Chapter 2 is used. Finally, a PI-type

controller is used to improve delay bound for the systems with input-delay.

• In Chapter 6, stabilizing ability of a class of delayed dynamic feedback controllers is

investigated. A study is made on the improvement of the maximum tolerable delay

bound by adding dynamicness in the controller and delay in controller state. To design

such stabilizing controllers, a continuous pole placement technique (CPPT) for time-

delay systems is used.

• Chapter 7 concludes the thesis and proposes some future research directions led by

the present work.





C H A P T E R 2

Stability analysis for systems with

single delay

Stability analysis is a major issue for a time-delay system. This chapter considers the problem

of stability analysis of a system with single delay. A new simple delay-dependent stability

criterion is proposed for stability analysis of linear time-delay systems with constant delay by

decomposing the delay interval. On defining simple Lyapunov-Krasovskii functional for each

of the decomposed intervals, a criterion is derived in such a way that a single one satisfies

stability requirements of all the intervals. The development yields a simple, computationally

efficient yet less conservative criterion than existing results. The same approach has also

been extended for robust stability analysis. Numerical examples are presented to show the

effectiveness of the development.
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2.1 Introduction

The problem of reducing conservatism entails in finite-dimensional techniques to asses the

stability of linear system with single delay has got a lot of attention in past decades [65,66,

145–147]. Numerical discretization of infinite-dimensional complete quadratic LK functional

exists whose numerical solution tracks the analytical result [43]. On the other hand, simple

LK functional based approaches are more numerically attractive and easily extendable to

control and filtering problems. However, such approaches are conservative due to use of

simple LK functional and approximating certain integral terms while obtaining stability

criterion. One way of reducing conservatism in such simple delay-dependent analysis is

by decomposing the delay interval for reducing the so called gap in bounding the integral

terms [9]. This behavior has already been exploited in [40] to obtain less conservative results

while some extensions to control and filtering problems have been attempted in [8]. However,

similar to the discretized approach of [43], the number of decision variables in this approach

increases with increasing number of delay-decomposition.

To this end, along with the delay-dependent stability analysis, a delay-interval-dependent

approach has been developed that appears to guarantee stability when the delay ranges in

an interval [53]. This appears to be delay-interval like, since the stability criteria are derived

using the information of non-zero lower bound of the uncertain delay term, and the tolerable

delay upper bound increases with increase in lower bound. However, it is apparent that even

the maximum tolerable delay bound achievable using such approaches for all possible lower

limits is yet conservative to the analytical results available for constant delay case and, also,

such criteria do not work on systems that are not stable for zero delay.

In this chapter, an improved delay-dependent stability criterion using a new multiple

LK based approach is developed for stability analysis of linear time-delay systems. Simple

LK functionals similar to delay-interval like analysis are defined over arbitrary number of

decomposed delay intervals and it is shown that the criterion for the highest interval satisfies

the stability requirement of all its sub-intervals leading to a single criterion that satisfies

stability requirement for all the intervals in a shot. The criterion obtained this way is having

same number of decision variables as that of considering single interval and hence is invariant

to the number of intervals. Moreover, being based on the simple LK approach, the analysis

may be easily extended to other problems involving time-delays. Such an extension to the

robust analysis of time-delay systems is also presented. Numerical examples are presented

demonstrating less conservativeness of this approach as well.
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2.2 System description and preliminaries

Consider a linear time-delay system given by

ẋ(t) = Ax(t) +Ahx(t− h), (2.1)

where x(t) ∈ ℜn is the system state. A and Ah are appropriate dimensional matrices, h is

a constant delay satisfying 0 ≤ h1 ≤ h ≤ h2 and h̄ = h2 − h1. Let us define xt = {x(t) :

t ∈ [−h̄ 0]}. The initial condition for system (2.1), x0 is first order differentiably smooth

so that ẋ0 exists and continuous.

Such a system is very much common in feedback control system, network control system,

physiological system, economical system and so on. As it is well known that the delay

has an effect on stability of the above systems, the stability analysis of such systems has

got a lot of emphasis among the control communities. In view of lot of results available

[9, 29, 31–34, 43, 44, 51, 63, 64, 164] on the stability analysis of system of type (2.1), some

stability results are provided in the following sections. Before presenting the main result

using proposed delay-decomposition approach, a simple delay-dependent stability criterion

is proposed without using any delay-decomposition approach.

The following lemmas are required for the derivation of the results presented in this

chapter.

Lemma 2.1 (Schur complement [6]). For given constant matrices X1, X2 and X3 of appro-

priate dimensions with invertible X2, where X
T
1 = X1 and XT

2 = X2, then

X1 +XT
3 X

−1
2 X3 < 0, (2.2)

if and only if

[

X1 XT
3

X3 −X2

]

< 0 or

[

−X2 X3

XT
3 X1

]

< 0.

Lemma 2.2 ( [130]). For appropriate dimensional matrices X, Y and invertible matrix

Z > 0, the following inequality holds:

XTY + Y TX ≤ XTZX + Y TZ−1Y.

2.3 Simple stability criterion

In this section, a simple LK functional based delay-dependent stability criterion is presented.

To obtain the criterion, a tighter integral inequality condition i.e. Lemma 1.2 is used. Such

results are already available in literature, e.g. please see [21].
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Theorem 2.1. System (2.1) is stable if there exists P > 0, Qk > 0, Rm > 0, where

k = 1, . . . , 4, m = 1, 2, and arbitrary matrices Mj , Nj, satisfying the following LMI:

[

Π h̄Φj

∗ −R2

]

< 0, j = 1, 2, (2.3)

where

Φ1 =
[

0 NT
1 MT

1 0
]T

,Φ2 =
[

0 MT
2 0 NT

2

]T

,Π = [Πij ]i,j=1,...,4,

Π11 = PA+ATP +AT
{

h21R1 + h̄2R2

}

A+

3
∑

k=1

Qk −R1,

Π12 = PAh +AT
{

h21R1 + h̄2R2

}

Ah,Π13 = R1,Π14 = 0,

Π22 = AT
h

{

h21R1 + h̄2R2

}

Ah − (Q3 +Q4) + h̄
(

M2 +MT
2 −N1 −NT

1

)

,

Π23 = h̄(−MT
1 +N1),Π24 = h̄(−M2 +NT

2 ),Π33 = Q4 −Q2 −R1 + h̄(M1 +MT
1 ),

Π34 = 0,Π44 = −Q1 − h̄(N2 +NT
2 ).

Proof. Consider a simple LK functional [146] as:

V (xt, ẋt) = xT (t)Px(t) +

t
∫

t−h2

xT (θ)Q1x(θ)dθ +

t
∫

t−h1

xT (θ)Q2x(θ)dθ

+

t
∫

t−h

xT (θ)Q3x(θ)dθ +

t−h1
∫

t−h

xT (θ)Q4x(θ)dθ + h1

t
∫

t−h1

t
∫

θ

ẋT (φ)R1ẋ(φ)dφdθ

+h̄

t−h1
∫

t−h2

t
∫

θ

ẋT (φ)R2ẋ(φ)dφdθ.

(2.4)

The time-derivative of V (xt, ẋt) along the state trajectory of (2.1) is

V̇ (xt, ẋt) = 2xT (t)PAx(t) + 2xT (t)PAhx(t− h) +

3
∑

k=1

xT (t)Qkx(t)

−xT (t− h1)(Q2 −Q4)x(t− h1)−
4

∑

k=3

xT (t− h)Qkx(t− h)− xT (t− h2)Q1x(t− h2)

+ẋT (t)
{

h21R1 + h̄2R2

}

ẋ(t)− h1

t
∫

t−h1

ẋT (θ)R1ẋ(θ)dθ − h̄

t−h1
∫

t−h2

ẋT (θ)R2ẋ(θ)dθ.

(2.5)
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Following Lemma 1.2, the integral term in (2.5) satisfies

− h1

t
∫

t−h

ẋT (θ)R1ẋ(θ)dθ ≤

[

x(t)

x(t− h1)

][

−R1 R1

∗ −R1

] [

x(t)

x(t− h1)

]

. (2.6)

Last term in (2.5) may be written as:

− h̄

t−h1
∫

t−h2

ẋT (θ)R2ẋ(θ)dθ = −h̄

t−h1
∫

t−h

ẋT (θ)R2ẋ(θ)dθ − h̄

t−h
∫

t−h2

ẋT (θ)R2ẋ(θ)dθ. (2.7)

One may approximate the above terms following Lemma 1.2 as:

−

t−h1
∫

t−h

ẋT (θ)R2ẋ(θ)dθ ≤

[

x(t− h1)

x(t− h)

]T {[

M1 +MT
1 −M1 +NT

1

∗ −N1 −NT
1

]

+h̄ρ

[

M1

N1

]

R−1
2

[

M1

N1

]T






[

x(t− h1)

x(t− h)

]

. (2.8)

−

t−h
∫

t−h2

ẋT (θ)R2ẋ(θ)dθ ≤

[

x(t− h)

x(t− h2)

]T {[

M2 +MT
2 −M2 +NT

2

∗ −N2 −NT
2

]

+h̄(1− ρ)

[

M2

N2

]

R−1
2

[

M2

N2

]T






[

x(t− h)

x(t− h2)

]

. (2.9)

Substituting (2.6), (2.8) and (2.9) into (2.5), one may write

V̇ (xt, ẋt) ≤ ξT (t)(Π + ρh̄2Φ1R
−1
2 ΦT

1 + (1− ρ)h̄2Φ2R
−1
2 ΦT

2 )ξ(t), (2.10)

where

ξ(t) =
[

xT (t) xT (t− h) xT (t− h1) xT (t− h2)
]T

; ρ =
h− h1
h̄

, 0 ≤ ρ ≤ 1;

and Φ1, Φ2 are as given in (2.3). Therefore, the stability requirement for (2.1) is

Π + ρh̄2Φ1R
−1
2 ΦT

1 + (1− ρ)h̄2Φ2R
−1
2 ΦT

2 < 0. (2.11)
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The above is a polytope of matrices on ρ and is always negative definite if its two certain

vertices are negative definite. Then, (2.11) can be written as:

Π + h̄2ΦjR
−1
2 ΦT

j < 0, j = 1, 2. (2.12)

One can write, (2.12) as:

Π + (h̄Φj)R
−1
2 (h̄Φj)

T < 0, j = 1, 2. (2.13)

Following Lemma 2.1, and taking Schur complement once, one obtains (2.3). This completes

the proof.

Theorem 2.1 presents a delay-interval-dependent stability criterion for system (2.1) with-

out decomposing the delay interval in line of work [21, 146]. In the next section, a delay-

decomposition approach is used to derive an improved stability criterion for (2.1).

2.4 Stability criterion using delay-decomposition

Stability criteria using the existing delay-decomposition approaches results in infinite-dimensional

LMI condition which are difficult to solve with available tools [43, 51]. Being motivated to

fill the gap of the available delay-decomposition techniques, a new technique is proposed in

which the tolerable delay range h̄ divided into N number of δ intervals of equal measure so

that one may define

hi =















0 for i = 0,

iδ for i = 1, 2, . . . , N − 1,

h̄ for i = N.

(2.14)

The main objective of this work is to derive a stability criterion for (2.1) by adopting a new

multiple LK functional approach based on decomposition of the total delay interval. The

following theorem presents an LMI based stability criterion for analyzing stability of system

(2.1).

Theorem 2.2. System (2.1) with h1 = 0, with given h2 and δ conforming (2.14), is stable

if there exists P > 0, Qk > 0, Rm > 0, where k = 1, . . . , 4, m = 1, 2 and arbitrary matrices
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Mj , Nj , satisfying the following LMI:

[

Θ δΦj

∗ −R2

]

< 0, j = 1, 2, (2.15)

where

Φ1 =
[

0 NT
1 MT

1 0
]T

,Φ2 =
[

0 MT
2 0 NT

2

]T

,Θ = [Θij ]i,j=1,...,4,

Θ11 = PA+ATP +AT
{

(h̄− δ)2R1 +δ2R2

}

A+

3
∑

k=1

Qk −R1,

Θ12 = PAh +AT
{

(h̄− δ)2R1 + δ2R2

}

Ah,Θ13 = R1,Θ14 = 0,

Θ22 = AT
h

{

(h̄− δ)2R1 + δ2R2

}

Ah − (Q3 +Q4) + δ
(

M2 +MT
2 −N1 −NT

1

)

,

Θ23 = δ(−MT
1 +N1),Θ24 = δ(−M2 +NT

2 ),Θ33 = Q4 −Q2 −R1 + δ(M1 +MT
1 ),

Θ34 = 0,Θ44 = −Q1 − δ(N2 +NT
2 ).

Proof. Considering the ith interval that h ∈ [h(i−1), hi], a simple LK functional is defined

as [146]:

Vi(xt, ẋt) = xT (t)Px(t) +

2
∑

j=1

t
∫

t−h(i+1−j)

xT (θ)Qjx(θ)dθ +

t
∫

t−h

xT (θ)Q3x(θ)dθ

+

t−h(i−1)
∫

t−h

xT (θ)Q4x(θ)dθ + h(i−1)

t
∫

t−h(i−1)

t
∫

θ

ẋT (φ)R1ẋ(φ)dφdθ

+δ

t−h(i−1)
∫

t−hi

t
∫

θ

ẋT (φ)R2ẋ(φ)dφdθ.

(2.16)

Differentiating Vi(xt, ẋt) with respect to time along the state trajectory of (2.1) yields

V̇i(xt, ẋt) = 2xT (t)PAx(t) + 2xT (t)PAhx(t− h) +

3
∑

k=1

xT (t)Qkx(t)

−xT (t− h(i−1))(Q2 −Q4)x(t− h(i−1))−

4
∑

k=3

xT (t− h)Qkx(t− h)− xT (t− hi)Q1x(t− hi)

+ẋT (t)
{

h2(i−1)R1 + δ2R2

}

ẋ(t)− h(i−1)

t
∫

t−h(i−1)

ẋT (θ)R1ẋ(θ)dθ − δ

t−h(i−1)
∫

t−hi

ẋT (θ)R2ẋ(θ)dθ.

(2.17)
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Following Lemma 1.2, the first integral in (2.17) satisfies

− h(i−1)

t
∫

t−h(i−1)

ẋT (θ)R1ẋ(θ)dθ ≤

[

x(t)

x(t− h(i−1))

][

−R1 R1

∗ −R1

][

x(t)

x(t− h(i−1))

]

. (2.18)

Last term in (2.17) may be written as:

− δ

t−h(i−1)
∫

t−hi

ẋT (θ)R2ẋ(θ)dθ = −δ

t−h(i−1)
∫

t−h

ẋT (θ)R2ẋ(θ)dθ − δ

t−h
∫

t−hi

ẋT (θ)R2ẋ(θ)dθ. (2.19)

One may approximate the above terms following Lemma 1.2 as:

−

t−h(i−1)
∫

t−h

ẋT (θ)R2ẋ(θ)dθ ≤

[

x(t− h(i−1))

x(t− h)

]T {[

M1 +MT
1 −M1 +NT

1

∗ −N1 −NT
1

]

+δρ

[

M1

N1

]

R−1
2

[

M1

N1

]T






[

x(t− h(i−1))

x(t− h)

]

. (2.20)

−

t−h
∫

t−hi

ẋT (θ)R2ẋ(θ)dθ ≤

[

x(t− h)

x(t− hi)

]T {[

M2 +MT
2 −M2 +NT

2

∗ −N2 −NT
2

]

+δ(1− ρ)

[

M2

N2

]

R−1
2

[

M2

N2

]T






[

x(t− h)

x(t− hi)

]

. (2.21)

Substituting (2.18), (2.22) and (2.21) into (2.17), one may write

V̇i(xt, ẋt) ≤ ξT (t)(Ψ + h2(i−1)Ωi + ρδ2Φ1R
−1
2 ΦT

1 + (1− ρ)δ2Φ2R
−1
2 ΦT

2 )ξ(t), (2.22)

where

ξ(t) =
[

xT (t) xT (t− h) xT (t− h(i−1)) xT (t− hi)
]T

; Ψ = [Ψij]i,j=1,...,4,

Ψ11 = PA+ATP +

3
∑

k=1

Qk −R1 + δ2ATR2A,Ψ12 = PAh + δ2ATR2Ah,

Ψ13 = R1,Ψ14 = 0,Ψ22 = − (Q3 +Q4) + δ
(

M2 +MT
2 −N1 −NT

1

)

+ δ2AT
hR2Ah,

Ψ23 = δ(−MT
1 +N1),Ψ24 = δ(−M2 +NT

2 ),Ψ33 = Q4 −Q2 −R1 + δ(M1 +MT
1 ),
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Ψ34 = 0,Ψ44 = −Q1 − δ(N2 +NT
2 );

Ωi =















ATR1A ATR1Ah 0 0

∗ AT
hR1Ah 0 0

∗ ∗ 0 0

∗ ∗ ∗ 0















, ρ =
h− hi−1

δ
, 0 ≤ ρ ≤ 1;

and Φ1, Φ2 are as given in (2.15). Therefore, the stability requirement for the ith interval is

Ψ + h2(i−1)Ωi + ρδ2Φ1R
−1
2 ΦT

1 + (1− ρ)δ2Φ2R
−1
2 ΦT

2 < 0. (2.23)

Then, (2.23) can be equivalently written as:

Ψ + h2(i−1)Ωi + δ2ΦjR
−1
2 ΦT

j < 0, j = 1, 2. (2.24)

To this end, note that, Ωi ≥ 0 and the term h2(i−1)Ωi is maximum when h ∈ [h(N−1), h̄], the

N th interval. Therefore, irrespective of h lies in any of the intervals, the following condition

always ensures stability of (2.1):

Ψ + h2(N−1)ΩN + δ2ΦjR
−1
2 ΦT

j < 0, j = 1, 2. (2.25)

Finally, taking Schur complement for the last term in (2.25), one obtains (2.15).

Remark 2.1. Unlike conventional discretization/decomposition approaches of [43, 51, 104],

the number of decision variables and size of the LMI in Theorem 2.2 does not increase with

N . It appears that no approximation is used in obtaining (2.25) from (2.24) to fetch this

benefit. However, approximation of two integral inequalities are involved in the derivative of

LK functional (2.17). Although the conservativeness of the approximation in the second one

decreases with increase in number of delay decomposition (N), but the first one doesn’t. This

is because the final stability criterion is corresponding to the N th interval of delay, for which

the integral limit of the first integral in (2.17) is the largest compared to other cases. This

introduces conservatism with large N . However, one may easily search over N to obtain the

maximum tolerable h̄.

The stability criterion developed in Theorem 2.2 may be conservatively (for specific sys-

tems) simplified by eliminating the free-variables and reducing the dimension of the LMI.

The following corollary presents this result.
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Corollary 2.1. System (2.1) with h1 = 0 with given h2 and δ conforming (2.14), is stable

if there exist P > 0, Qk > 0, Rj > 0, k = 1, . . . , 4, j = 1, 2, satisfying the following LMI

condition:














Θ11 Θ12 R1 0

∗ Θ̄22 R2 R2

∗ ∗ Θ̄33 0

∗ ∗ ∗ Θ̄44















< 0, (2.26)

where Θ11 and Θ12 are as defined in (2.15) and

Θ̄22 = − (Q3 +Q4) +AT
h

{

(h̄− δ)2R1 + δ2R2

}

Ah − 2R2,

Θ̄33 = Q4 −Q2 −R1 −R2, Θ̄44 = −Q1 −R2.

Proof. Since the last term in (2.23) is positive definite, one may reduce the stability condition

in the form of a single matrix inequality as:

Ψ + h2(N−1)ΩN + δ2Φ1R
−1
2 ΦT

1 + δ2Φ2R
−1
2 ΦT

2 < 0. (2.27)

one may write (2.27) as:

Θ + δ2Φ1R
−1
2 ΦT

1 + δ2Φ2R
−1
2 ΦT

2 < 0. (2.28)

Separating the M1, N1, M2 and N2 terms from Θ, one obtains

Υ + (δΦ1)I
T
1 + I1(δΦ1)

T + (δΦ1)R
−1
2 (δΦ1)

T + (δΦ2)I
T
2 + I2(δΦ2)

T + (δΦ2)R
−1
2 (δΦ2)

T < 0,

(2.29)

where

Υ = [Υij ]i,j=1,...,4,Υ11 = PA+ATP +

3
∑

k=1

Qk −R1 +AT
{

(h̄− δ)
2
R1 + δ2R2

}

A,

Υ12 = PAh +AT
{

(h̄− δ)
2
R1 + δ2R2

}

Ah,Υ13 = R1,Υ14 = 0,

Υ22 = −

4
∑

k=3

Qk +AT
h

{

(h̄− δ)
2
R1 + δ2R2

}

Ah,Υ23 = 0,Υ24 = 0,Υ33 = −(Q2 −Q4)−R1,

Υ34 = 0,Υ44 = −Q1, I1 =
[

0 −I I 0
]T

, I2 =
[

0 I 0 −I
]T

.

One can write (2.29) as:



2.4 Stability criterion using delay-decomposition 37

Υ+(δΦ1 + I1R2)R
−1
2 (δΦ1 + I1R2)

T−I1R2I
T
1 +(δΦ2 + I2R2)R

−1
2 (δΦ2 + I2R2)

T−I2R2I
T
2 < 0.

(2.30)

Further, following Lemma 1.2, substituting the free variables as Mi = Mi
T = −Ni =

−Ni
T = −δ−1R2, the above stability condition yields (2.26).

Remark 2.2. Although the above criterion may be conservative in comparison with Theorem

2.2 due to the approximations incorporated, the gap between the two criteria decreases with

decreasing the integral limit δ (increasing N) and hence more useful for larger N since it

involves lesser no. of variables.

To validate the above criteria, some well-known numerical examples are used for stability

analysis, which are presented next:

2.4.1 Numerical examples

Two numerical examples are now considered to illustrate the effectiveness of the proposed

approach.

Example 2.1. Consider system (2.1) with

A =

[

−2 0

0 −0.9

]

, Ah =

[

−1 0

−1 −1

]

.

The variation of delay bound h̄ with number of interval N obtained using the Theorem 2.2

and Corollary 2.1 is shown in Fig. 2.1 ( they overlap each other as they respond equally).

It can be seen that, the maximum h̄ obtained for N = 2 using the present approach is same

as that obtained using available decomposition based approaches with two decompositions

[8,40,51,128]. With further increase in N , the computed h̄ decreases. Such a behavior can be

followed from Remark 2.1. The derivative of the LK functional (2.17) involves two integral

inequalities. At N = 2, integral limits of both the integral inequalities in (2.17) is halved

and so the bounding gap reduces for both, leading to improved result. As N increases the

conservativeness of the approximation in the second one decreases with increase in number

of delay-decomposition (N), but the first one doesn’t. Rather the conservativeness increases

with increase in number of delay-decomposition. Therefore, one always gets maximum delay

value at N = 2.
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The maximum h̄ obtained using Theorem 2.2 and Corollary 2.1 are tabulated in Table

2.1, along with some cursory existing results which shows that the present result considerably

improves the computed h̄.

Note that, in this example, eigenvalues of non-delayed state matrix (A) are -2 and -0.9

Table 2.1: Comparison of delay bound (h̄) for Example 2.1

Methods h̄
[33], [53], [145], [146], [147],Theorem 2.1 4.472
[2] 5.120
Theorem 2.2 (N = 2) 5.717
Corollary 2.1 (N = 2) 5.717
Analytical 6.172

10
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10
2

10
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2

3
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h̄

 

 

Example 2.1
Example 2.2

Figure 2.1: Variation of N w.r.t number of interval for Example 2.1 and 2.2

and eigenvalues of delayed state matrix (Ah) are -1 and -1. Hence, both the matrices are

stable. The proposed delay-decomposition approach is used to obtain the delay margin for
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the system. Another example is considered that is having Ah with a positive real eigenvalue

but the system is again delay-dependently stable.

Example 2.2. Consider another example of (2.1) with

A =

[

−3 −2.5

1 0.5

]

, Ah =

[

1.5 2.5

−0.5 −1.5

]

.

For this system, maximum h̄ obtained using Theorem 2.2 and Corollary 2.1 is tabulated in

Table 2.2 and the variation h̄ with number of interval N is shown in Fig. 2.1. It can be

observed that in this case also maximum delay bound is obtained at N = 2 as expected.

Table 2.2: Comparison of delay bound (h̄) for Example 2.2

Methods h̄
[145], [146] 1.9998
[147],Theorem 2.1 2.0050
Theorem 2.2 (N = 2) 2.3094
Corollary 2.1 (N = 2) 2.3094
Analytical 2.4184

For this example, non-delayed state matrix (A) are -2 and -0.5 and eigen values of system

delayed state matrix (Ah) are 1 and -1. The delayed states are unstable. For this case also,

the approach is observed to be less conservative than that existing results. Both the examples

demonstrate that the proposed method yields quite less conservative results compared to the

existing ones. It may also be noted that computational complexity is similar to those existing

approaches since the result is based on a simple LMI that corresponds to complexity involved

with considering the whole delay as a single interval.

2.5 Robust analysis using delay-decomposition

Parametric variations exist in physical systems due to approximation, ignored factors, pres-

ence of disturbance or noise and so on. Therefore, stability analysis for nominal system may

not work for the corresponding actual system. At the same time, the presence of delay makes

the analysis more difficult and challenging. This motivates the researcher to work on robust
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stability analysis of time-delay systems. A considerable number of results are available on

such analysis. Some major contributions are highlighted here. The robust stability analysis

of time-delay systems with norm-bounded uncertainty is considered in [89,90] using LR ap-

proach. The delay-dependent robust stability condition is investigated in [68] where bounded

inequalities are used. A descriptor model transformation is introduced in [32] for robust

stability analysis. To obtain less conservative criteria, the idea of relaxation with free-slack

matrices is introduced in [167]. A free-weighted matrix approach is proposed in [55] to obtain

a less conservative criterion. The same approach is widely used to obtain less conservative

results [94, 97]. The stability problem of uncertain system using complete quadratic Lya-

punov functional is investigated in [41,42]. The decomposition technique proposed in [41,42]

generates a infinite-dimensional LMI condition for robust analysis. To handle such issue, the

decomposition technique using simple LK functional proposed in the previous section can be

extended for the case of robust analysis.

Consider an uncertain time-delay system with norm-bounded uncertainties described as:

ẋ(t) = Ā(t)x(t) + Āh(t)x(t− h), (2.31)

where Ā(t) = (A+∆A(t)), Āh(t) = (Ah +∆Ah(t)), A and Ah are constant matrices of

appropriate dimensions, ∆A(t) and ∆Ah(t) are unknown matrices representing time-varying

norm-bounded uncertainties and can be decomposed as:

∆A(t) = DaFa(t)Ea,∆Ah(t) = DhFh(t)Eh, (2.32)

where Fa(t) and Fh(t) are time-varying matrices satisfying

F T
a (t)Fa(t) ≤ I, F T

h (t)Fh(t) ≤ I, (2.33)

and Da, Dh, Ea and Eh are constant matrices.

As it is observed in previous section that, despite being approximate and simple, Corollary

2.1 yields almost same results as obtained using Theorem 2.2 with larger N, Corollary 2.1 is

used for obtaining stability criteria for (2.31) since less number of free-variables involved in

it.

Theorem 2.3. System (2.31) with h1 = 0 with given h2 and δ is stable conforming (2.14), if

there exist P > 0, Qk > 0, Rj > 0, where k = 1, . . . , 4, and j = 1, 2, satisfying the following
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LMI:
[

Σ Γ

∗ ε

]

< 0, (2.34)

where

Σ = [Σij ]i,j=12...6.,Σ11 = PA+ATP +

3
∑

i=1

Qi −R1 + ε1E
T
a Ea,Σ12 = PAh,Σ13 = R1,

Σ14 = 0,Σ15 = (h̄− δ)ATR1,Σ16 = δATR2,Σ22 = −Q3 −Q4 − 2R2 + ε2E
T
h E

T
h ,Σ23 = R2,

Σ24 = R2,Σ25 = (h̄− δ)AT
hR1,Σ26 = δAT

hR2,Σ33 = Q4 −Q2 −R1 −R2,Σ34 = 0,Σ35 = 0,

Σ36 = 0,Σ44 = −Q1 −R2,Σ45 = 0,Σ46 = 0,Σ55 = −R1,Σ56 = 0,Σ66 = −R2,

Γ =

[

DT
a P 0 0 0 (h̄− δ)DT

a R1 δDT
aR2

DT
hP 0 0 0 (h̄− δ)DT

hR1 δDT
hR2

]T

, ε = diag{−εaI,−εhI}.

Proof. Following Corollary 2.1, stability of (2.31) can be ensured if the following is satisfied:

Σ(t) < 0, (2.35)

where

Σ(t) =















Σ11(t) Σ12(t) R1 0

∗ Σ22(t) R2 R2

∗ ∗ Θ̄33 0

∗ ∗ ∗ Θ̄44















,

Σ11(t) = PĀ(t) + ĀT (t)P +

3
∑

i=1

Qi + ĀT (t)R̄Ā(t)−R1,Σ12(t) = PAh(t) + ĀT (t)R̄Āh(t),

Σ22(t) = −Q3 −Q4 + ĀT
h (t)R̄Āh(t)− 2R2, R̄ =

{

(

h̄− δ
)2
R1 + δ2R2

}

.

Taking Schur complement twice, in order to linearize the quadratic uncertain terms in Σ11(t),

Σ12(t) and Σ22(t) above, (2.35) may be written as:
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Σ̃(t) =

























Σ̃11(t) Σ̃12(t) R1 0 Σ̃15(t) Σ̃16(t)

∗ Σ̃22 R2 R2 Σ̃25(t) Σ̃26(t)

∗ ∗ Θ̄33 0 0 0

∗ ∗ ∗ Θ̄44 0 0

∗ ∗ ∗ ∗ −R1 0

∗ ∗ ∗ ∗ ∗ −R2

























< 0, (2.36)

where

Σ̃11(t) = PĀ(t) + ĀT (t)P +
3

∑

i=1

Qi −R1, Σ̃12(t) = PĀh(t), Σ̃15(t) = (h̄− δ)ĀT (t)R1,

Σ̃16(t) = δĀT (t)R2, Σ̃22 = −Q3 −Q4 − 2R2, Σ̃25(t) = (h̄− δ)Āh
T
(t)R1, Σ̃26(t) = δĀh

T
(t)R2.

Separating the uncertain terms, (2.36) can be written as:

Σ̃(t) = Σ̄ + Σ̂(t) < 0, (2.37)

where

Σ̄ =

























Σ̄11 PAh R1 0 Σ̄15 Σ̄16

∗ Σ̃22 R2 R2 Σ̄25 Σ̄26

∗ ∗ Θ̄33 0 0 0

∗ ∗ ∗ Θ̄44 0 0

∗ ∗ ∗ ∗ −R1 0

∗ ∗ ∗ ∗ ∗ −R2

























,

Σ̂(t) =

























Σ̂11(t) Σ̂12(t) 0 0 Σ̂15(t) Σ̂16(t)

∗ 0 0 0 Σ̂25(t) Σ̂26(t)

∗ ∗ 0 0 0 0

∗ ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ 0

























,

Σ̄11 = PA+ATP +

3
∑

i=1

Qi −R1, Σ̄15 = (h̄− δ)ATR1, Σ̄16 = δATR2,

Σ̄25 = (h̄− δ)AT
hR1, Σ̄26 = τAT

hR2, Σ̂11(t) = P∆A+∆ATP, Σ̂12(t) = P∆Ah,

Σ̂15(t) = (h̄− δ)∆ATR1, Σ̂16(t) = δ∆ATR2, Σ̂25(t) = (h̄− δ)∆AT
hR1, Σ̂26(t) = δ∆AT

hR2.
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In view of (2.33), the uncertain matrix Σ̂(t) may be decomposed as

Σ̂(t) = XT
a F

T
a (t)Ya + Y T

a Fa(t)Xa +XT
h F

T
h (t)Yh + Y T

h Fh(t)Xh, (2.38)

where

Xa =
[

Ea 0 0 0 0 0
]

,Xh =
[

0 Eh 0 0 0 0
]

,

Ya =
[

DT
a P 0 0 0 (h̄− δ)DT

a R1 δDT
a R2

]

,

Yh =
[

DT
hP 0 0 0 (h̄− δ)DT

hR1 δDT
hR2

]

.

By following Lemma 2.2, one can easily obtain

XT
a F

T
a (t)Ya + Y T

a F
T
a (t)Xa ≤ εaX

T
a Xa + ε−1

a Y T
a Ya,

XT
h F

T
h (t)Yh + Y T

h F
T
h (t)Xh ≤ εhX

T
hXh + ε−1

h Y T
h Yh.

From the above inequalities, one obtains

εaX
T
a Xa + εhX

T
hXh + ε−1

a Y T
a Ya + ε−1

h Y T
h Yh ≥ Σ̂(t). (2.39)

Then, (2.37) can be written as

Σ + ε−1
a Y T

a Ya + ε−1
h Y T

h Yh < 0, (2.40)

where Σ is defined in (2.34). Finally, taking Schur complement, one obtains (2.34).

In some cases, the uncertainty is described in (2.32) may be decomposed in simple fashion

with Da = Dh = D and Fa(t) = Fh(t) = F (t). In such cases, the above analysis may be

conservative due to individual treatment of uncertain terms in the analysis. For the case

Da = Dh = D and Fa(t) = Fh(t) = F (t), some benefits may be extracted by treating two

uncertain terms ∆A and ∆Ah conjugatively. The following corollary utilizes this treatment.

Corollary 2.2. The system (2.31) with h1 = 0 with given h2 and δ is stable conforming

(2.14), if there exist P > 0, Qk > 0, Rj > 0, where k = 1, . . . , 4, and j = 1, 2, satisfying the

following LMI:
[

Σ̆ Γ̆

∗ −εI

]

< 0, (2.41)
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where

Σ̆ = [Σ̆ij ]i,j=12...6., Σ̆11 = PA+ATP +
3

∑

i=1

Qi −R1 + εET
a Ea, Σ̆12 = PAh + εET

a Eh,

Σ̆13 = R1, Σ̆14 = 0, Σ̆15 = (h̄− δ)ATR1, Σ̆16 = δATR2, Σ̆22 = −Q3 −Q4 − 2R2 + εET
h E

T
h ,

Σ̆23 = R2, Σ̆24 = R2, Σ̆25 = (h̄− δ)AT
hR1, Σ̆26 = δAT

hR2, Σ̆33 = Q4 −Q2 −R1 −R2,

Σ̆34 = 0, Σ̆35 = 0, Σ̆36 = 0Σ̆44 = −Q1 −R2, Σ̆45 = 0, Σ̆46 = 0, Σ̆55 = −R1, Σ̆56 = 0,

Σ̆66 = −R2, Γ̆ =
[

DTP 0 0 0 (h̄− δ)DTR1 δDTR2

]T

.

Proof. In view of (2.33), the uncertain matrix Σ̂(t) may be decomposed as

Σ̂(t) = XTF T (t)Γ̆ + Γ̆TF (t)X, (2.42)

where

X =
[

Ea Eh 0 0 0 0
]

, Γ̆ =
[

DTP 0 0 0 (h̄− δ)DTR1 δDTR2

]

.

Then, (2.37) can be written as

Σ̆ + ε−1Γ̆T Γ̆ < 0, (2.43)

where Σ is defined in (2.34). Taking Schur complement, one obtains (2.41).

To inspect the strongness of the above robust stability criteria, some numerical examples

are considered in the next section.

2.5.1 Numerical examples

Two numerical examples are presented in this section to validate the robust stability criteria

derived in the previous section using proposed delay-decomposition technique.

Example 2.3. Consider system (2.31) with

A =

[

−0.5 −2

1 −1

]

, Ah =

[

−0.5 −1

0 0.6

]

,Da = Dd = I,Ea = Eh = diag{0.2, 0.2}.

Using Corollary 2.2, the delay bound h̄ obtained for varying N is shown in Fig. 2.2. For

this perturbed system, it can also be observed that the delay bound is maximum at N = 2.

The reason is same as the case of linear time-delay system of the form (2.1). As the delay
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interval for both the integral inequalities in (2.17) is halved. The bounding gap reduces for

both, leading to improved result. But with further increase in N , the gap in bounding the

first integral term increases as that particular integral interval increases leading to decrease

in h̄ even though gap in the bounding of the second integral decreases. Therefore, one always

gets maximum delay value at N = 2. The delay bound (h̄) is found to be 0.9021 at N = 2.

Numerical comparison with existing results are presented in Table 2.3.

Example 2.4. Consider another example of system (2.31) with

A =

[

−2 0

0 −1

]

, Ah =

[

−1 0

−1 −1

]

,Da = Dh = I,Ea =

[

1.6 0

0 0.05

]

, Eh =

[

0.1 0

0 0.3

]

.

The variation of h̄ for different N obtained using Corollary 2.2 is shown in Fig. 2.2. It is

reported in [126] that for this system considering a certain F (= I), the analytical limit of

h̄ is 1.3771. The result obtained using Corollary 2.2 is 1.3594, which is quite close to this

analytical limit. A comparison of the Corollary 2.2 results with the existing ones is made in

Table 2.3.

It can be seen that the present result is quite less conservative than the existing ones for

both the examples.

Table 2.3: Comparison of delay bound (h̄) for Example 2.3 and 2.4

Methods h̄
[68] 0.3513
[111] 0.5799
[34] 0.6812

Example 2.3 [167] 0.8435
[126] 0.8542
Corollary 2.2 0.9021 (N=2)
[175] 0.2412
[68] 0.2412
[111] 0.7059

Example 2.4 [34] 1.1490
[167] 1.1490
Corollary 2.2 1.3594 (N=2)



46 Stability analysis for systems with single delay

10
0

10
1

10
2

10
30.8

0.9

1

1.1

1.2

1.3

1.4

1.5

N

h̄

 

 

Example 2.3
Example 2.4

Figure 2.2: Variation of delay bound with no. of intervals for Example 2.3 and 2.4

2.6 Chapter summary

In this chapter, the following presentations have been made:

• A new less conservative criterion for stability analysis for systems with single delay has

been proposed.

• The proposed delay-decomposition technique does not require a infinite-dimensional

quadratic LK functional to derive the stability criterion.

• A sufficient stability criterion is derived by decomposing the whole delay range into

several intervals and drawing a single one out of them by defining a simple multiple

LK functional.

• The resulting criterion is independent of the number of decomposition of the delay

interval as a result of which a finite-dimensional LMI is formulated.

• The complexity of the stability criterion does not increase with increase in number of

delay decomposition.
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• The stability analysis of the nominal system has been extended for robust analysis.

• Several numerical examples are presented to show the effectiveness of the proposed

criterion, which show that the proposed criteria are less conservative than the existing

ones while being computationally efficient for using lesser LMI variables.





C H A P T E R 3

Stability analysis for systems with

two delays

This chapter considers simple delay-dependent stability criterion for systems with two con-

stant delays. Considering delays are small in nature, their ranges may overlap each other.

Rather than treating the delays individually while defining Lyapunov-Krasovskii function-

als, it may be advantageous if the overlapping feature of the delays can be exploited in the

delay-dependent analysis for such systems. By extracting the overlapping feature of the two

delays, a less conservative stability criterion is proposed in this chapter and the same is

compared with the criterion derived by treating the delays individually. The same approach

is used to derive a robust stability criterion for uncertain systems. Numerical examples are

presented that validates the less-conservativeness of the proposed criteria.
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3.1 Introduction

Often multiple delays are encountered in practical systems [120]. For example, a feedback

control loop may introduce additional delays while another delay embedded into the plant

model itself [78,179]. Multiple delay example is also found in networked control systems with

both sensor to controller and controller to actuator delay [86,152,179]. The stability analysis

of such systems with multiple delays is more complicated than that of systems with single

delay. This motivates the stability analysis problem for systems affected by time delays. It

may be noted that such multiple constant delays may have overlapping ranges due to their

limited nature.

Existing attempts for stability analysis of systems with multiple time-delays [38, 78, 92,

179] are mere extensions of single delay approaches as the delays are treated individually in

analysis [33,36,44]. Some stability criteria (delay-independent or delay-dependent) are pro-

posed in [91] using LMI approach for system with multiple delays. The same LMI approach

is used to derive less conservative robust stability condition in [122]. By making use of the

characteristic equation of the system, [58] derives a delay-independent stability criterion in

terms of the matrix measure and spectral norm of the matrix. To reduce the conservatism

further, [58,166] propose a new delay-independent criterion in terms of the spectral radius of

modulus matrices. To improve the conservatism, [178] uses a method to obtain new delay-

independent stability criteria in terms of the spectral radius of modulus matrices based on

characteristic equation of the system.

The robust stability analysis of time-delay systems with multiple delays is considerably

investigated in literature. In order to obtain a less conservative criterion, a slack variable

approach is used in [99]. A robust stability condition is derived in [13] in terms of LMIs by

using a descriptor model transformation of the system and by applying Moon’s inequality

for bounding cross terms for a class of systems with input delay. In [55], a free matrix

variable approach is used to obtain a less conservative robust stability result. Using the

characteristic function of linear time-delay system with multiple delays, a stability criterion

has been proposed to guarantee α-stability in [10]. In [122,123], robust stability criteria for

systems with multiple delays are derived in the form of LMIs.

To this end, it may be possible that suitable analysis by exploiting overlapping infor-

mation of the delays may yield better results. Such an attempt is made in this chapter by

considering delay-dependent stability analysis of systems with two constant delays.

In this chapter, two delay-dependent stability criteria have been proposed, the first of

which is just an extension of simple delay-dependent analysis shown in §3.2.2 by treating
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the delays individually and the latter one is the analysis made by exploiting the overlapping

information of the two delays. As the overlapping information is concerned, four different

overlapping conditions do arise for defining the Lyapunov-Krasovskii functional. Consider-

ing such multiple functional for different overlapping situations, a single stability criterion

is derived that satisfies stability requirement of all such situations. On consideration of nu-

merical examples, it is observed that the approach exploiting the overlapping feature yields

less conservative result compared to the individual treatment of the delays.

3.2 Stability analysis

This section investigates the stability analysis of linear systems with two delays. For the

completeness of this work, this section includes stability analysis of linear systems with two

delays by treating the delays individually. Then, a stability criterion is developed for the

same system by exploiting the overlapping feature of the delays. To extract this feature a

special type of simple LK functional is constructed.

3.2.1 System description and preliminaries

Consider a linear system with two constant delays

ẋ(t) = Ax(t) +A1x(t− h1) +A2x(t− h2), (3.1)

where x(t) ∈ ℜn is the state; A, A1 and A2 are known real constant matrices; the time delays

h1 and h2 are constant satisfying

0 ≤ hm1 ≤ h1 ≤ hM1, 0 ≤ hm2 ≤ h2 ≤ hM2. (3.2)

To this end, as noted in the introduction section, the analysis for systems with single

delay can easily be extended for systems with two delays. The following theorem presents

such a result.

3.2.2 Stability criterion when delays treated individually

Theorem 3.1. System (3.1) is stable if there exist P > 0, Qij > 0, Rik > 0, i = 1, 2 and

j = 1, 2, . . . , 4, and arbitrary matrices Mik, Nik, k = 1, 2 satisfying these LMIs









Θ h̄1Φl h̄2Φm

∗ −h̄1R12 0

∗ ∗ −h̄2R22









< 0, l = 1, 2 and m = 3, 4, (3.3)
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where

Φ1 =
[

0 MT
11 NT

11 0 0 0 0
]T

,Φ2 =
[

0 0 MT
12 NT

12 0 0 0
]T

,

Φ3 =
[

0 0 0 0 MT
21 NT

21 0
]T

,Φ4 =
[

0 0 0 0 0 MT
22 NT

22

]T

,

h̄i = (hMi − hmi), i = 1, 2,Θ = [Θij]i,j=1,...,7, with

Θ11 = PA+ATP +

2
∑

i=1

3
∑

j=1

Qij +ATΠA−R11 −R21,Θ12 = R11,Θ13 = PA1 +ATΠA1,

Θ14 = 0,Θ15 = R21,Θ16 = PA2 +ATΠA2,Θ17 = 0,Θ22 = −Q12 +Q14 −R11 + (M11 +MT
11),

Θ23 = −M11 +NT
11,Θ24 = 0,Θ25 = 0,Θ26 = 0,Θ27 = 0,

Θ33 = −Q13 −Q14 +AT
1 ΠA1 + (M12 +MT

12) + (−N11 −NT
11),Θ34 = −M12 +NT

12,Θ35 = 0,

Θ36 = AT
1 ΠA2,Θ37 = 0,Θ44 = −Q11 + (−N12 −NT

12),Θ55 = −Q22 +Q24 −R21 + (M21 +MT
21),

Θ56 = −M21 +NT
21,Θ57 = 0,Θ66 = −Q23 −Q24 +AT

2 ΠA2 + (M22 +MT
22) + (−N21 −NT

21),

Θ67 = −M22 +NT
22,Θ77 = −Q21 + (−N22 −NT

22),Π = Π1 +Π2,Π1 =
[

h2m1R11 + h̄1R12

]

,

Π2 =
[

h2m2R21 + h̄2R22

]

.

Proof. Consider a Lyapunov-Krasovskii functional as:

V (xt, ẋt) = xT (t)Px(t) +
2

∑

i=1







t
∫

t−hMi

xT (θ)Qi1x(θ)dθ +

t
∫

t−hmi

xT (θ)Qi2x(θ)dθ

+

t
∫

t−hi

xT (θ)Qi3x(θ)dθ +

t−hmi
∫

t−hi

xT (θ)Qi4x(θ)dθ + hmi

t
∫

t−hmi

t
∫

θ

ẋT (ω)Ri1ẋ(ω)dωdθ

+

t−hmi
∫

t−hMi

t
∫

θ

ẋT (ω)Ri2ẋ(ω)dωdθ






.

(3.4)

Taking the time derivative of the energy functional along the trajectory of system (3.1) yields

V̇ (xt, ẋt) = 2xT (t)PAx(t) + 2xT (t)PA1x(t− h1) + 2xT (t)PA2x(t− h2) +
2

∑

i=1




3
∑

j=1

xT (t)Qijx(t) − xT (t− hMi)Qi1x(t− hMi)− xT (t− hmi) (Qi2 −Qi4)x(t− hmi)



3.2 Stability analysis 53

−

4
∑

j=3

xT (t− hi)Qijx(t− hi) + ẋT (t)(h2miRi1 + h̄iRi2)ẋ(t)

−hmi

t
∫

t−hmi

ẋT (θ)Ri1ẋ(θ)dθ −

t−hmi
∫

t−hMi

ẋT (θ)Ri2ẋ(θ)dθ






.

(3.5)

Following Lemma 1.2, one may approximate the first integral term of (3.5) as

− hmi

t
∫

t−hmi

ẋT (θ)Ri1ẋ(θ)dθ ≤

[

x(t)

x(t− hmi)

] [

−Ri1 Ri1

∗ −Ri1

][

x(t)

x(t− hmi)

]

. (3.6)

The last integral term of (3.5) may be written as

−

t−hmi
∫

t−hMi

ẋT (θ)Ri2ẋ(θ)dθ = −

t−hi
∫

t−hMi

ẋT (θ)Ri2ẋ(θ)dθ −

t−hmi
∫

t−hi

ẋT (θ)Ri2ẋ(θ)dθ. (3.7)

Following Lemma 1.2, the above terms may be approximated as

−

t−hi
∫

t−hMi

ẋT (θ)Ri2ẋ(θ)dθ ≤

[

x(t− hi)

x(t− hMi)

]T {[

Mi1 +MT
i1 −Mi1 +NT

i1

∗ −Ni1 −NT
i1

]

+h̄iρi

[

Mi1

Ni1

]

R−1
i2

[

Mi1

Ni1

]T






[

x(t− hi)

x(t− hMi)

]

,

(3.8)

and

−

t−hmi
∫

t−hi

ẋT (θ)Ri2ẋ(θ)dθ ≤

[

x(t− hmi)

x(t− hi)

]T {[

Mi2 +MT
i2 −Mi2 +NT

i2

∗ −Ni2 −NT
i2

]

+h̄i(1− ρi)

[

Mi2

Ni2

]

R−1
i2

[

Mi2

Ni2

]T






[

x(t− hmi)

x(t− hi)

]

,

(3.9)

where ρi = (hi − hmi)/h̄i, 0 ≤ ρi ≤ 1.
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Substituting (3.6), (3.8) and (3.9) in (3.5), one may write

V̇ (xt, ẋt) ≤ ξT (t)
{

Θ+ h̄1ρ1Φ1R
−1
12 Φ

T
1 + h̄1(1− ρ1)Φ2R

−1
12 Φ

T
2

+h̄2ρ2Φ3R
−1
22 Φ

T
3 + h̄2(1 − ρ2)Φ4R

−1
22 Φ

T
4

}

ξ(t),
(3.10)

where

ξ(t) =
[

xT (t) xT (t− hm1) xT (t− h1) xT (t− hM1) x
T (t− hm2) xT (t− h2) xT (t− hM2)

]T

.

The above equation (3.10) is polytope of matrices and is always negative definite if the

following conditions are satisfied:

Θ +
(

h̄1Φl

) {

h̄1R12

}−1 (
h̄1Φl

)T
+

(

h̄2Φm

) {

h̄2R22

}−1 (
h̄2Φm

)T
< 0, (3.11)

where l = 1, 2 and m = 3, 4.

Applying Schur complement twice on (3.11), one obtains (3.3). Hence, the theorem is

proved.

This section provides us results on stability analysis of systems with two delays by treating

the delays individually. Next, the stability analysis of (3.1) by extracting the overlapping

feature of the delays is presented.

3.2.3 Stability criterion exploiting overlapping delay ranges

In this section, a delay-dependent criterion is developed by using the overlapping information

of the delays. For systems with two delays, four different situations may arise based on the

delay values taken in different sub-intervals generated from the overlapping feature of the

two delay ranges as shown in Fig. 3.1. Particular delay values (h1, h2) lying in different

sub-intervals are shown in the plot (identified by the dotted line) and the value of the delay

ranges are identified at the bottom along the x-axis of the graph. These situations are

further exploited to define a suitable Lyapunov-Krasovskii functional for obtaining a less

conservative criterion. This result is presented next.

Theorem 3.2. System (3.1) is stable if there exist P > 0, Qij > 0, Rik > 0, i = 1, 2 and
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Figure 3.1: Situations arising out of overlapping nature of delays

j = 1, 2, . . . , 4, and arbitrary matrices Mjk, Njk, k = 1, 2 satisfying these LMIs:









Θ̄ σ1φl σ2φm

∗ −σ1R12 0

∗ ∗ −σ2R22









< 0, where l = 1, 2 and m = 3, 4, (3.12)

where

φ1 =
[

0 αMT
11 NT

11 0 ᾱMT
11 0 0

]T

, φ2 =
[

0 0 MT
12 ᾱNT

12 αNT
12 0 0

]T

,

φ3 =
[

0 0 0 β̄MT
21 βMT

21 NT
21 0

]T

, φ4 =
[

0 0 0 βNT
22 0 MT

22 β̄NT
22

]T

,

σ1 = α(hm2 − hm1) + ᾱ(hM1 − hm2), σ2 = β(hM1 − hm2) + β̄(hM2 − hM1),
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Θ̄ = [Θ̄ij]i,j=1,...,7, withΘ̄11 = PA+ATP −R11 −R21 +

2
∑

i=1

3
∑

j=1

Qij +ATΞA,

Θ̄12 = αR11, Θ̄13 = PA1 +ATΞA1, Θ̄14 = β̄R21, Θ̄15 = ᾱR11 + βR21, Θ̄16 = PA2 +ATΞA2,

Θ̄17 = 0, Θ̄22 = −Q12 + α
[

Q14 −R11 +
(

M11 +MT
11

)]

, Θ̄23 = α
(

−M11 +NT
11

)

, Θ̄24 = 0,

Θ̄25 = 0, Θ̄26 = 0, Θ̄27 = 0, Θ̄33 = −Q13 −Q14 +
(

−N11 −NT
11

)

+
(

M12 +MT
12

)

+AT
1 ΞA1,

Θ̄34 = ᾱ
(

−M12 +NT
12

)

, Θ̄35 = ᾱ
(

−MT
11 +N11

)

+ α
(

−M12 +NT
12

)

, Θ̄36 = AT
1 ΞA2,

Θ̄37 = 0, Θ̄44 = −Q11 + ᾱ
(

−N12 −NT
12

)

+ β
(

−N22 −NT
22

)

+ β̄
[

Q24 −R21 +
(

M21 +MT
21

)]

,

Θ̄45 = 0, Θ̄46 = β
(

−MT
22 +N22

)

+ β̄
(

−M21 +NT
21

)

, Θ̄47 = 0,

Θ̄55 = −Q22 + α
(

−N12 −NT
12

)

+ ᾱ
[

Q14 −R11 +
(

M11 +MT
11

)]

+ β
[

Q24 −R21 +
(

M21 +MT
21

)]

,

Θ̄56 = β
(

−M21 +NT
21

)

, Θ̄57 = 0, Θ̄66 = −Q23 −Q24 +
(

−N21 −NT
21

)

+
(

M22 +MT
22

)

+AT
2 ΞA2,

Θ̄67 = β̄
(

−M22 +NT
22

)

, Θ̄77 = −Q21 + β̄
(

−N22 −NT
22

)

,Ξ = Ξ1 + Ξ2,

Ξ1 = α
{

h2m1R11 + (hm2 − hm1)R12

}

+ ᾱ
{

h2m2R11 + (hM1 − hm2)R12

}

,

Ξ2 = β
{

h2m2R21 + (hM1 − hm2)R22

}

+ β̄
{

h2M1R21 + (hM2 − hM1)R22

}

,

α, β ∈
[

0, 1
]

, β̄ = 1− β, ᾱ = 1− α.

Proof. To deal with the four cases presented in Fig. 3.1, consider a Lyapunov-Krasovskii

functional by introducing two binary parameters α ∈ [0, 1] and β ∈ [0, 1], different combina-

tions of which represent the following cases.

Case I: α = 1 and β = 1; Case II: α = 1 and β = 0;

Case III: α = 0 and β = 1; Case IV: α = 0 and β = 0.

With the above introduction of α and β, a Lyapunov-Krasovskii functional is defined as:

V (xt, ẋt) = V1(t) + αV2(t) + ᾱV3(t) + βV4(t) + β̄V5(t), (3.13)

where

V1(t) = xT (t)Px(t) +

2
∑

i=1







t
∫

t−hMi

xT (θ)Qi1x(θ)dθ +

t
∫

t−hmi

xT (θ)Qi2x(θ)dθ

+

t
∫

t−hi

xT (θ)Qi3x(θ)dθ



 ,
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V2(t) =

t−hm1
∫

t−h1

xT (θ)Q14x(θ)dθ + hm1

t
∫

t−hm1

t
∫

θ

ẋT (ω)R11ẋ(ω)dφdω

+

t−hm1
∫

t−hm2

t
∫

θ

ẋT (ω)R12ẋ(ω)dωdθ,

V3(t) =

t−hm2
∫

t−h1

xT (θ)Q14x(θ)dθ + hm2

t
∫

t−hm2

t
∫

θ

ẋT (ω)R11ẋ(ω)dφdθ

+

t−hm2
∫

t−hM1

t
∫

θ

ẋT (ω)R12ẋ(ω)dωdθ,

V4(t) =

t−hm2
∫

t−h2

xT (θ)Q24x(θ)dθ + hm2

t
∫

t−hm2

t
∫

θ

ẋT (ω)R21ẋ(ω)dωdθ

+

t−hm2
∫

t−hM1

t
∫

θ

ẋT (ω)R22ẋ(ω)dφdθ,

V5(t) =

t−hM1
∫

t−h2

xT (θ)Q24x(θ)dθ + hM1

t
∫

t−hM1

t
∫

θ

ẋT (ω)R21ẋ(ω)dωdθ

+

t−hM1
∫

t−hM2

t
∫

θ

ẋT (ω)R22ẋ(ω)dωdθ.

The first component of LK functional (V1(t)) is constituted of non-integral quadratic and

integral quadratic terms corresponding to the two delays h1 and h2, which are similar to the

terms considered in LK functional in Theorem 2.1. The term V1(t) is common to all the cases

of overlapping delays. The other terms V2(t) to V5(t) are constituted with one single integral

term and two double integral terms. The terms are written in such a way that corresponding

to the similar terms in the functional considered in Theorem 2.1 but takes different ranges

of the delays different α and β values are chosen.

Time-derivative of the energy functional (3.13) yields

V̇ (xt, ẋt) = V̇1(t) + αV̇2(t) + ᾱV̇3(t) + βV̇4(t) + β̄V̇5(t), (3.14)
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where

V̇1(t) = 2xT (t)Pẋ(t) +
2

∑

i=1

[

xT (t) (Qi1 +Qi2 +Qi3) x(t) − xT (t− hMi)Qi1

x(t− hMi)− xT (t− hmi)Qi2x(t− hmi) −x
T (t− hi) Qi3x(t− hi)] ,

V̇2(t) = xT (t− hm1)Q14x(t− hm1)− xT (t− h1)Q14x(t− h1)

+ẋT (t)
{

h2m1R11 + (hm2 − hm1)R12

}

ẋ(t)− hm1

t
∫

t−hm1

xT (θ)R11x(θ)dθ

−

t−hm1
∫

t−hm2

ẋT (θ)R12ẋ(θ)dθ,

V̇3(t) = xT (t− hm2)Q14x(t− hm2)− xT (t− h1)Q14x(t− h1)

+ẋT (t)
{

h2m2R11 + (hM1 − hm2)R12

}

ẋ(t)− hm2

t
∫

t−hm2

xT (θ)R11x(θ)dθ

−

t−hm2
∫

t−hM1

ẋT (θ)R12ẋ(θ)dθ,

V̇4(t) = xT (t− hm2)Q24x(t− hm2)− xT (t− h2)Q24x(t− h2)

+ẋT (t)
{

h2m2R21 + (hM1 − hm2)R22

}

ẋ(t)− hm2

t
∫

t−hm2

ẋT (θ)R21ẋ(θ)dθ

−

t−hm2
∫

t−hM1

ẋT (θ)R22ẋ(θ)dθ,

V̇5(t) = xT (t− hM1)Q24x(t− hM1)− xT (t− h2)Q24x(t− h2)

+ẋT (t)
{

h2M1R21 + (hM2 − hM1)R22

}

ẋ(t)− hM1

t
∫

t−hM1

ẋT (θ)R21ẋ(θ)dθ

−

t−hM1
∫

t−hM2

ẋT (θ)R22ẋ(θ)dθ.

Following lemma 1.2, one may approximate the integral terms as in Theorem 3.1 and then



3.3 Numerical examples 59

(3.14) may be written as

V̇ (xt, ẋt) ≤ ξT (t)
{

Θ̄ + σ1ρ1φ1R
−1
12 φ

T
1 + σ1(1− ρ1)φ2R

−1
12 φ

T
2 +σ2ρ2φ3R

−1
22 φ

T
3

+σ2(1− ρ2)φ4R
−1
22 φ

T
4

}

ξ(t),
(3.15)

And (3.15) is polytope of matrices and is negative definite if it’s two certain vertices are

negative definite individually. Then, the stability requirement can be written as:

Θ̄ + (σ1φl) {σ1R12}
−1 (σ1φl)

T + (σ2φm) {σ2R22}
−1 (σ2φm)T < 0, (3.16)

where l = 1, 2 and m = 3, 4.

Now, Taking Schur complement twice on (3.16), one obtains (3.12). Hence, the theorem is

proved.

Remark 3.1. It is well known that the LK approach followed in the chapter can exploit

the lower bound information of the delay i.e., increase in lower bound parameter increases

the tolerability in the upper bound value or the other way. By adopting the overlapping

concept this lower bound or the upper bound for each of the intervals are changed so that the

improvement happens.

3.3 Numerical examples

In this section, two numerical examples are provided to demonstrate the effectiveness of the

proposed criterion.

Example 3.1. Consider a time-delay system of the form [179]:

ẋ(t) = A0x(t) +A1x(t− h1) +B1u(t) +B2u(t− h2),

with

A0 =















0 0 0 0

0 0.5 0 0

−0.5 0 0.3 0

0 0 0 1















, A1 =















−2 −0.5 0 0

−0.2 −1 0 0

0.5 0 −2 −0.5

0 0 0 −1















,

B1 =
[

1 1 1 0
]T

, B2 =
[

0 1 1 1
]T

.
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Table 3.1: Comparison of delay bound (h̄2) for h̄1 = 0.1 for Example 3.1

Approach h̄1 h̄2
Zhang, Wu, She and He [179] 0.1 0.56

Theorem 3.1 0.1 3.91

Theorem 3.2 0.1 3.95

In [179], for 0.1 value of h̄1, h̄2 is computed as 0.56 with a controller gain K = [0.0129 −

0.0031 − 0.0009 − 0.3181]. Using this controller (K) in the above system, one easily

obtains the closed loop system of the form 3.1 with

A =















0.0129 −0.0031 −0.0009 −0.3181

0.0129 0.4969 −0.0009 −0.3181

−0.4871 −0.0031 0.2991 −0.3181

0 0 0 1















, A1 =















−2 −0.5 0 0

−0.2 −1 0 0

0.5 0 −2 −0.5

0 0 0 −1















,

A2 =















0 0 0 0

0.0129 −0.0031 −0.0009 −0.3181

0.0129 −0.0031 −0.0009 −0.3181

0.0129 −0.0031 −0.0009 −0.3181















.

For this closed loop system, h̄2 is computed using Theorem 3.1 and Theorem 3.2. These

values are tabulated in Table 3.1 along with the results obtained earlier in [179]. It can be

seen that Theorem 3.2 is less conservative than that of the existing result [179] and Theorem

3.1. For further verification of less conservativeness, computed h̄2 using Theorem 3.1 and

Theorem 3.2 are shown in Table 3.2 corresponding to different values of h̄1, which shows

Theorem 3.2 is less conservative.

Example 3.2. Consider another example of (3.1) with

A =

[

0 0

0 −2

]

, A1 =

[

−1 0

−2 0

]

, A2 =

[

0 −1

0 −3

]

.

Using this Example, h̄2 is computed for given values of h̄1 and tabulated in the Table 3.3.

The analytical value of the delay bound is computed using the direct method in [153] is
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Table 3.2: Comparison of delay bound (h̄2) for different h̄1 for Example 3.1

h̄1 Theorem 3.1 (h̄2) Theorem 3.2 (h̄2)

0.1 3.91 3.95

0.2 3.43 3.49

0.3 2.95 3.04

0.4 2.49 2.58

0.5 2.00 2.12

Table 3.3: Comparison of delay bound (h̄2) for Example 3.2

h̄1 Analytical Value (h̄2) Theorem 3.1(h̄2) Theorem 3.2(h̄2)

0.10 1.414 0.93 65.77 % 0.95 67.18 %

0.15 1.206 0.84 69.65 % 0.86 71.31 %

0.20 1.154 0.75 64.99 % 0.77 66.72 %

0.25 1.120 0.63 56.25 % 0.65 58.03 %

0.30 1.024 0.51 49.80 % 0.53 51.75 %

shown in Table 3.3 for comparison. It is clearly seen from the table that Theorem 3.2 is less

conservative in the sense of the determined maximum delay value while ensuring stability.

Since delay value is positive scalar only, it is expressed in % compared to the analytical result

in the table. The results obtained using Theorem 3.1 and Theorem 3.2 are also tabulated

therein.

3.4 Robust stability analysis

In the previous section, the stability criteria for nominal systems with two delays are dis-

cussed. Since the proposed criterion is based on simple LK functional approach, one can

easily use it for robust analysis of uncertain systems with two delays. The following section

provides this result.
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3.4.1 System description

Considering a class of uncertain linear time-delay system described by

ẋ(t) = Āx(t) + Ā1x(t− h1) + Ā2x(t− h2), (3.17)

where x(t) ∈ ℜn is the state; the time delays h1 and h2 are continuous constant differentiable

function satisfying

0 ≤ hm1 ≤ h1 ≤ hM1, 0 ≤ hm2 ≤ h2 ≤ hM2, (3.18)

where Ā = (A+∆A(t)), Ā1 = (A1 +∆A1(t)), Ā2 = (A2 +∆A2(t)); A, A1 and A2 are

real-valued known constant matrices of appropriate dimensions, ∆A(t), ∆A1(t) and ∆A1(t)

are real unknown matrices functions representing time-varying admissible norm-bounded

uncertainties. These can be described as:

∆A(t) = D0F0(t)E0,∆A1(t) = D1F1(t)E1,∆A2(t) = D2F2(t)E2, (3.19)

where Fi(t), for i = 0, 1, 2. are real unknown time-varying matrices with Lebesgue measurable

elements satisfying

F T
i (t)Fi(t) ≤ I, for i = 0, 1, 2. (3.20)

where D0, D1, D2, E0 , E1 and E2 are real known constant matrices.

In the next section, two delay-dependent robust criteria for system (3.17) have been

included: one is by treating the delays individually and the other is by extracting the over-

lapping information of the delays.

3.4.2 Robust stability criterion when delays treated individually

The following robust stability criterion is developed for (3.17) by treating the delays indi-

vidually.

Theorem 3.3. System (3.17) is stable if there exist P > 0, Qij > 0, Rik > 0, i = 1, 2,

j = 1, 2...4 and arbitrary matrices Mjk ,Njk, k = 1, 2 satisfying these LMIs:















Θ Σ0 Σ1 Σ2

∗ −ε0I 0 0

∗ ∗ −ε1I 0

∗ ∗ ∗ −ε2I















< 0, (3.21)
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where

Θ =















Θ̄ h̄1φl h̄2φm ĂTΞ

∗ −h̄1R11 0 0

∗ ∗ −h̄2R22 0

∗ ∗ ∗ −Ξ















, for l = 1, 2, m = 3, 4,

φ1 =
[

0 MT
11 NT

11 0 0 0 0
]T

, φ2 =
[

0 0 MT
12 NT

12 0 0 0
]T

,

φ3 =
[

0 0 0 0 MT
21 NT

21 0
]T

, φ4 =
[

0 0 0 0 0 MT
22 NT

22

]T

,

Θ̄ = [Θ̄ij ]i,j=1,..,7., Θ̄11 = PA+ATP +
2

∑

i=1

3
∑

j=1

Qij −R11 −R21 + ε0E
T
0 E0, Θ̄12 = R11,

Θ̄13 = PA1, Θ̄14 = 0, Θ̄15 = R21, Θ̄16 = PA2, Θ̄17 = 0, Θ̄22 = −Q12 +Q14 −R11 + (M11 +MT
11),

Θ̄23 = −M11 +NT
11, Θ̄24 = 0, Θ̄25 = 0, Θ̄26 = 0, Θ̄27 = 0,

Θ̄33 = −(Q13 +Q14) + (M12 +MT
12) + (−N11 −NT

11) + ε1E
T
1 E1, Θ̄34 = −M12 +NT

12,

Θ̄35 = 0, Θ̄36 = 0, Θ̄37 = 0, Θ̄44 = −Q11 + (−N12 −NT
12), Θ̄45 = 0, Θ̄46 = 0, Θ̄47 = 0,

Θ̄55 = −Q22 +Q24 −R21 + (M21 +MT
21), Θ̄56 = −M21 +NT

21, Θ̄57 = 0,

Θ̄66 = −(Q23 +Q24) + (M22 +MT
22) + (−N21 −NT

21) + ε2E
T
2 E2,

Θ̄67 = −M22 +NT
22, Θ̄77 = −Q21 + (−N22 −NT

22),Ξ = Ξ1 + Ξ2,Ξ1 =
[

h2m1R11 + h̄1R12

]

,

Ξ2 =
[

h2m2R21 + h̄2R22

]

, h̄i = (hMi − hmi), i = 1, 2.Ă =
[

A 0 A1 0 0 A2 0
]

,

Σ0 =
[

DT
0 P 01×8 DT

0 Ξ
]T

,Σ1 =
[

DT
1 P 01×8 DT

1 Ξ
]T

,Σ2 =
[

DT
2 P 01×8 DT

2 Ξ
]T

.

Proof. To prove this theorem, consider LK functional as (3.4) (same as case of Theorem 3.1).

The derivative of the functional is obtained as (3.5). The integral terms in the derivative of

the functional is approximated using Lemma 1.2. Then, one obtains

V̇ (t) ≤ ξT (t)
{

Θ̂ + h̄1ρ1φ1R
−1
12 φ

T
1 + h̄1(1− ρ1)φ2R

−1
12 φ

T
2

+h̄2ρ2φ3R
−1
22 φ

T
3 + h̄2(1− ρ2)φ4R

−1
22 φ

T
4

}

ξ(t), (3.22)

The above equation (3.22) is polytope of matrices and is always negative definite, if it’s two

certain vertices are so. Then, the stability requirement become

Θ̂ +
(

h̄1φl
) {

h̄1R12

}−1 (
h̄1φl

)T
+

(

h̄2φm
) {

h̄2R22

}−1 (
h̄2φm

)T
< 0,

for l = 1, 2, m = 3, 4,
(3.23)
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where

Θ̂ = [Θ̂ij ]i,j=1,..,7, Θ̂11 = PĀ+ ĀTP +
2

∑

i=1

3
∑

j=1

Qij + ĀTΞĀ−R11 −R21, Θ̂12 = R11,

Θ̂13 = PĀ1 + ĀTΞĀ1, Θ̂14 = 0, Θ̂15 = R21, Θ̂16 = PĀ2 + ĀTΞĀ2, Θ̂17 = 0,

Θ̂22 = −Q12 +Q14 −R11 + (M11 +MT
11), Θ̂23 = −M11 +NT

11, Θ̂24 = 0, Θ̂25 = 0,

Θ̂26 = 0, Θ̂27 = 0, Θ̂33 = −(Q13 +Q14) + ĀT
1 ΞĀ1 + (M12 +MT

12) + (−N11 −NT
11),

Θ̂34 = −M12 +NT
12, Θ̂35 = 0, Θ̂36 = ĀT

1 ΞĀ2, Θ̂37 = 0, Θ̂44 = −Q11 + (−N12 −NT
12),

Θ̂45 = 0, Θ̂46 = 0, Θ̂47 = 0, Θ̂55 = −Q22 +Q24 −R21 + (M21 +MT
21), Θ̂56 = −M21 +NT

21,

Θ̂57 = 0, Θ̂66 = −(Q23 +Q24) + ĀT
2 ΞĀ2 + (M22 +MT

22) + (−N21 −NT
21),

Θ̂67 = −M22 +NT
22, Θ̂77 = −Q21 + (−N22 −NT

22).

The above equation may be written as

Θ̆ +
(

h̄1φl
) {

h̄1R12

}−1 (
h̄1φ

T
l

)

+
(

h̄2φm
) {

h̄2R22

}−1 (
h̄2φ

T
m

)

+ ˘̄A
T
Ξ ˘̄A < 0,

for l = 1, 2, m = 3, 4,
(3.24)

where

Θ̆ = [Θ̆ij]i,j=1,..,7, Θ̆11 = PĀ+ ĀTP +

2
∑

i=1

3
∑

j=1

Qij −

2
∑

i=1

Ri1, Θ̆12 = Θ̂12, Θ̆13 = PĀ1,

Θ̆14 = 0, Θ̆15 = Θ̂15, Θ̆16 = PĀ2, Θ̆17 = 0, Θ̆22 = Θ̂22, Θ̆23 = Θ̂23, Θ̆24 = 0, Θ̆25 = 0,

Θ̆26 = 0, Θ̆27 = 0, Θ̆33 = −Q13 −Q14 + (M12 +MT
12) + (−N11 −NT

11), Θ̆34 = Θ̂34,

Θ̆35 = 0, Θ̆36 = 0, Θ̆37 = 0, Θ̆44 = Θ̂44, Θ̆45 = 0, Θ̆46 = 0, Θ̆47 = 0, Θ̆55 = Θ̂55, Θ̆56 = Θ̂56,

Θ̆57 = 0, Θ̆66 = −Q23 −Q24 + (M22 +MT
22) + (−N21 −NT

21), Θ̆67 = Θ̂67, Θ̆77 = Θ̂77,

˘̄A =
[

Ā 0 Ā1 0 0 Ā2 0
]

.

Taking Schur complement on (3.24), one obtains















Θ̆ h̄1φl h̄2φm
˘̄ATΞ

∗ −h̄1R11 0 0

∗ ∗ −h̄2R22 0

∗ ∗ ∗ −Ξ















< 0, for l = 1, 2, m = 3, 4. (3.25)

Separating the uncertain terms from (3.25) and treating all ∆A, ∆A1 and ∆A2 terms in
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separate matrices, one may write (3.25) as:

Θ̃ +

3
∑

j=1

(Σ̄T
j Fj

TΣj
T +ΣjFjΣ̄j) < 0, (3.26)

where

Θ̃ =















Θ̀ h̄1φl h̄2φm ĂTΞ

∗ −h̄1R11 0 0

∗ ∗ −h̄2R22 0

∗ ∗ ∗ −Ξ















, Σ̄0 =
[

E0 01×9

]

, Σ̄1 =
[

01×2 E1 01×7

]

,

Σ̄2 =
[

01×5 E2 01×4

]

,Σ0 =
[

DT
0 P 01×8 DT

0 Ξ
]T

,Σ1 =
[

DT
1 P 01×8 DT

1 Ξ
]T

,

Σ2 =
[

DT
2 P 01×8 DT

2 Ξ
]T

, Θ̀ = [Θ̀ij]i,j=1,..,7, Θ̀11 = PA+ATP +

2
∑

i=1

3
∑

j=1

Qij −

2
∑

i=1

Ri1,

Θ̀12 = Θ̂12, Θ̀13 = PA1, Θ̀14 = 0, Θ̀15 = Θ̂15, Θ̀16 = PA2, Θ̀17 = 0, Θ̀22 = Θ̂22, Θ̀23 = Θ̂23,

Θ̀24 = 0, Θ̀25 = 0, Θ̀26 = 0, Θ̀27 = 0, Θ̀33 = Θ̆33, Θ̀34 = Θ̂34, Θ̀35 = 0, Θ̀36 = 0, Θ̀37 = 0,

Θ̀44 = Θ̂44, Θ̀45 = 0, Θ̀46 = 0, Θ̀47 = 0, Θ̀55 = Θ̂55, Θ̀56 = Θ̂56, Θ̀57 = 0, Θ̀66 = Θ̆66,

Θ̀67 = Θ̂67, Θ̀77 = Θ̂77.

Now, using Lemma 2.2, one obtains

Θ̃ +

3
∑

j=1

εjΣ̄
T
j Σ̄j +

3
∑

j=1

ε−1
j ΣT

j Σj < 0, (3.27)

where Θ̃ is defined in (3.26). Combining the first two terms of (3.27), one obtains

Θ +

3
∑

j=1

ε−1
j ΣT

j Σj < 0, (3.28)

where Θ is defined in (3.21). Finally, taking Schur complement, one obtains (3.21). This

proves the above theorem.

3.4.3 Robust stability criterion using overlapping treatment

Similar to the previous analysis in §3.2.3 for nominal system by extracting the overlapping

feature of the delays, the overlapping feature of the delays can be extracted to reduce con-
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servatism in analysis for uncertain systems. The following robust stability criterion holds

such a result.

Theorem 3.4. System (3.17) is stable if there exist P > 0, Qij > 0, Rik > 0, i = 1, 2,

j = 1, 2..4 and arbitrary matrices Mjk ,Njk k = 1, 2 satisfying these LMIs:















∆ Σ0 Σ1 Σ2

∗ −ε0I 0 0

∗ ∗ −ε1I 0

∗ ∗ ∗ −ε2I















< 0, for l = 1, 2, m = 3, 4. (3.29)

where

∆ =















∆̄ Ω1Φl Ω2Φm ĂTΠ

∗ −Ω1R11 0 0

∗ ∗ −Ω2R22 0

∗ ∗ ∗ −Π















, for l = 1, 2, m = 3, 4,

∆̄ = [∆̄ij ]i,j=1,..,7, ∆̄11 = PA+ATP −R11 −R21 +

2
∑

i=1

3
∑

j=1

Qij + ε0E
T
0 E0,

∆̄12 = αR11, ∆̄13 = PA1, ∆̄14 = β̄R21, ∆̄15 = ᾱR11 + βR21, ∆̄16 = PA2, ∆̄17 = 0,

∆̄22 = −Q12 + α
[

Q14 −R11 +
(

M11 +MT
11

)]

, ∆̄23 = α
(

−M11 +NT
11

)

, ∆̄24 = 0,

∆̄25 = 0, ∆̄26 = 0, ∆̄27 = 0, ∆̄33 = −Q13 −Q14 +
(

−N11 −NT
11

)

+
(

M12 +MT
12

)

+ ε1E
T
1 E1,

∆̄34 = ᾱ
(

−M12 +NT
12

)

, ∆̄35 = ᾱ
(

−MT
11 +N11

)

+ α
(

−M12 +NT
12

)

, ∆̄36 = 0, ∆̄37 = 0,

∆̄44 = −Q11 + ᾱ
(

−N12 −NT
12

)

+ β
(

−N22 −NT
22

)

+ β̄
[

Q24 −R21 +
(

M21 +MT
21

)]

,

∆̄45 = 0, ∆̄46 = β
(

−MT
22 +N22

)

+ β̄
(

−M21 +NT
21

)

, ∆̄47 = 0,

∆̄55 = −Q22 + α
(

−N12 −NT
12

)

+ ᾱ
[

Q14 −R11 +
(

M11 +MT
11

)]

+β
[

Q24 −R21 +
(

M21 +MT
21

)]

, ∆̄56 = β
(

−M21 +NT
21

)

,

∆̄57 = 0, ∆̄66 = −Q23 −Q24 +
(

−N21 −NT
21

)

+
(

M22 +MT
22

)

+ ε2E
T
2 E2,

∆̄67 = β̄
(

−M22 +NT
22

)

, ∆̄77 = −Q21 + β̄
(

−N22 −NT
22

)

,Π = Π1 +Π2,

Π1 = α
{

h2m1R11 + (hm2 − hm1)R12

}

+ ᾱ
{

h2m2R11 + (hM1 − hm2)R12

}

,

Π2 = β
{

h2m2R21 + (hM1 − hm2)R22

}

+ β̄
{

h2M1R21 + (hM2 − hM1)R22

}

,

Φ1 =
[

0 αMT
11 NT

11 0 ᾱMT
11 01×2

]T

,Φ2 =
[

01×2 MT
12 ᾱNT

12 αNT
12 01×2

]T

,

Φ3 =
[

01×3 β̄MT
21 βMT

21 NT
21 0

]T

,Φ4 =
[

01×3 βNT
22 0 MT

22 β̄NT
22

]T

,
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Ω1 = α(hm2 − hm1) + ᾱ(hM1 − hm2),Ω2 = β(hM1 − hm2) + β̄(hM2 − hM1).

ᾱ = (1− ᾱ), β̄ = (1− β).

Proof. Consider the same LK functional as (3.13). Obtain the derivative (3.13) as (3.14).

Then approximate the integral terms by following Lemma 1.2, one obtains

V̇ (xt, ẋt) ≤ ξT (t)
{

∆̂ + Ω1ρ1Φ1R
−1
1 ΦT

1 +Ω1(1− ρ1)Φ2R
−1
1 ΦT

2

+Ω2ρ2Φ3R
−1
2 ΦT

3 +Ω2(1− ρ2)Φ4R
−1
2 ΦT

4

}

ξ(t),
(3.30)

where

∆̂ = [∆̂ij ]i,j=1,..,7, ∆̂11 = PĀ+ ĀTP −R11 −R21 +

2
∑

i=1

3
∑

j=1

Qij + ĀTΠĀ, ∆̂12 = ∆̄12,

∆̂13 = PĀ1 + ĀTΠĀ1, ∆̂14 = ∆̄14, ∆̂15 = ∆̄15, ∆̂16 = PĀ2 + ĀTΠĀ2, ∆̂17 = 0,

∆̂22 = ∆̄22, ∆̂23 = ∆̄23, ∆̂24 = 0, ∆̂25 = 0, ∆̂26 = 0, ∆̂27 = 0,

∆̂33 = −Q13 −Q14 +
(

−N11 −NT
11

)

+
(

M12 +MT
12

)

+ ĀT
1 ΠĀ1, ∆̂34 = ∆̄34,

∆̂35 = ∆̄35, ∆̂36 = ĀT
1 ΠĀ2, ∆̂37 = 0, ∆̂44 = ∆̄44, ∆̂45 = 0, ∆̂46 = ∆̄46, ∆̂47 = 0, ∆̂55 = ∆̄55,

∆̂56 = ∆̄56, ∆̂57 = 0, ∆̂66 = −Q23 −Q24 +
(

−N21 −NT
21

)

+
(

M22 +MT
22

)

+ ĀT
2 ΠĀ2,

∆̂67 = ∆̄67, ∆̂77 = ∆̄77,Ω1 = α(hm2 − hm1) + ᾱ(hM1 − hm2),

Ω2 = β(hM1 − hm2) + β̄(hM2 − hM1).

The above equation (3.30) is polytope of matrices and is always negative definite if it’s two

certain vertices are so. Then, the stability requirement become

∆̂ + (Ω1Φl) {Ω1R12}
−1 (Ω1Φl)

T + (Ω2Φm) {Ω2R22}
−1 (Ω2Φm)T < 0, (3.31)

By following Theorem 3.3, the criterion (3.29) can be derived from (3.31). Hence, the

Theorem 3.4 is proved.

The derived criteria is now verified by numerical example in the next section.

3.5 Numerical examples

In this section, the below example is considered to demonstrate the effectiveness of the pro-

posed approach for robust analysis.
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Table 3.4: Comparison of Delay Bound (h̄2) for Example 3.3

h̄1 Analytical Value (h̄2) Theorem 3.3(h̄2) Theorem 3.4(h̄2)

0.13 0.581 0.260 44.82 % 0.275 47.33 %

0.14 0.575 0.230 40 % 0.265 46.08 %

0.15 0.563 0.210 37.30 % 0.255 45.29 %

0.16 0.552 0.180 32.60 % 0.245 44.38 %

Example 3.3. Consider a system of (3.18) with

A =

[

1 −1

0 −10

]

, A1 =

[

2 −1

−1 −1

]

, A2 =

[

−3 −1

2 −2

]

,

D0 = D1 = D2 = 0.001I,E0 = E1 = E2 = I.

In this Example, fixing the hm1 = 0.010 and hm2 = 0.015 corresponding h̄2 is computed

for given values of h̄1 and tabulated in Table 3.4. It can be seen that Theorem 3.4 is less

conservative than Theorem 3.3 that treats the two delays individually.

3.6 Chapter summary

This section highlights the contributions made in this chapter.

• By exploiting the overlapping range information of delays, new stability and conse-

quently robust stability analysis results are obtained. They are less conservative than

the approaches treating the delays individually.

• The proposed overlapping approach uses less number of matrix variables as compared

to the approach treating the delays individually.
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Stabilization of systems with state

delay

This chapter proposes stabilization criterion for systems with single delay via memoryless

(static) state feedback controller. To derive such criterion, the proposed decomposition ap-

proach in Chapter 2 is used. The proposed approach yields simple, computationally efficient,

comparatively less conservative LMI condition. The same is also used for stabilizer design

of uncertain system. For both the cases, numerical examples are presented to show the

effectiveness of the proposed approach.
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4.1 Introduction

Control design for time-delay system is a problem of interest as it is well known that the

delays are the major causes of instability and poor performance of control systems [43, 46,

139]. The numerical decomposition technique proposed in [43,51] using complete quadratic

LK functional gives a necessary and sufficient condition for stability of system with single

constant delay. But the same is difficult to extend for control design problems. So approaches

using simple LK functional has received a lot of attention as they can easily be extended for

control design problems. Using such simple LK functional, many literature are available on

reducing the conservatism by adopting a model transformation and/or bounding techniques

[44, 45, 110]. The model transformation approaches yield conservative results as they may

add some poles in system dynamics which are not present in the actual system, known as

additional dynamics [44, 45]. To overcome this problem, a descriptor model transformation

approach along with a bounding method of [111] has been used in [27, 33]. In [179], an

integral-inequality approach is proposed to obtain a delay-dependent stabilization criterion

for linear time-delay systems. It incorporates Moon’s inequality [111] and the Leibniz-Newton

formula to yield an integral inequality for quadratic terms.

In this chapter, the proposed decomposition technique in Chapter 2 is used to design

static state feedback controller using simple LK functional. Even Though this approach

gives sufficient condition for stability, it yields simple LMI condition as a solution. This is an

important feature of the approach which can easily be extended for control design. During

static state feedback control design for systems with constant delay, direct use of stability cri-

teria leads to non-linear terms in the stabilization condition due to the involvement unknown

parameter K. To handle such non-linear terms, in general bi-linear matrix inequality (BMI)

approaches may be used to get the solution [105,106]. Since the solution for BMI problems

are not global so far and LMIs are still attractive for computational reasons, approximated

LMI approaches are still attractive [89, 90]. The latter approach is used in this chapter to

linearize the non-linear terms evolved due to the involvement of unknown K by quadratic

transformation technique. As the above approach uses simple LK functional, it can easily

be extended for robust stabilization criterion and the same is obtained in this chapter.

4.2 Stabilization using delay-decomposition

This section emphasizes on deriving the stabilization criterion for linear systems with con-

stant delay. Before presenting the main stabilizing criterion, the system description is shown
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below.

4.2.1 System description

Consider a linear time-delay system

ẋ(t) = A0x(t) +A1x(t− h) +B2u(t), (4.1)

where x(t) ∈ ℜn is the system state, u(t) ∈ ℜn is the control input. A0, A1 and B2 are

appropriate dimensional matrices, h is a constant delay satisfying 0 ≤ h ≤ h̄. Let us

define xt = {x(t) : t ∈ [−h̄ 0]}. The initial condition for system (4.1), x0 is first order

differentiably smooth so that ẋ0 exists and continuous. The system (4.1) is considered to be

fully controllable and the states are measurable for feedback.

The objective in this chapter is to design a static state feedback controller of the form

u(t) = Kx(t), (4.2)

for (4.1) using delay-discretized method proposed in Chapter 2. Using (4.2) in (4.1), the

closed-loop system becomes

ẋ(t) = A0x(t) +A1x(t− h) +B2Kx(t), (4.3)

For decomposition scheme, the tolerable delay range h̄ divided into N number of δ intervals

of equal measure so that one may define

hi =















0 for i = 0,

iδ for i = 1, 2, . . . , N − 1,

h̄ for i = N.

(4.4)

The following section holds the static state feedback stabilization criterion for (4.1) using

the background knowledge of decomposition scheme proposed in Chapter 2.

4.2.2 Stabilization criterion

Now, the following theorem presents an LMI based static state feedback controller design for

system (4.3).
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Theorem 4.1. System (4.3) is stable if there exist matrices P̄ > 0, Q̄j > 0, j = 1, . . . , 4,

R̄i > 0 and arbitrary matrices S̄l, M̄i, N̄i, l = 1 . . . 5, i = 1, 2, that satisfy the following LMI:

[

Θ δΦ̄j

∗ −R̄2

]

< 0, j = 1, 2, (4.5)

where

Φ̄1 =
[

0 M̄T
1 N̄T

1 0 0
]T

, Φ̄2 =
[

0 0 M̄T
2 N̄T

2 0
]T

,Θ = [Θij]i,j=1,...,5,

Θ11 = A0S̄
T
1 + S̄1A

T
0 +

3
∑

k=1

Q̄k +B2Ȳ + Ȳ TBT
2 − R̄1,Θ12 = λS̄1A

T
0 + R̄1 + λȲ TBT

2 ,

Θ13 = A1S̄
T
1 + βS̄1A

T
0 + βȲ TBT

2 ,Θ14 = γS̄1A
T
0 + γȲ TBT

2 ,

Θ15 = P̄ − S̄T
1 + αS̄1A

T
0 + αȲ TBT

2 ,Θ22 = −
(

Q̄2 − Q̄4

)

− R̄1 + δ
[

M̄1 + M̄T
1

]

,

Θ23 = λA1S̄
T
1 + δ

[

−M̄1 + N̄T
1

]

,Θ24 = 0,

Θ25 = −λS̄T
1 ,Θ33 = βA1S̄

T
1 + βS̄1A

T
1 −

4
∑

k=3

Q̄k + δ
[

M̄2 + M̄T
2

]

+ δ
[

−N̄1 − N̄T
1

]

,

Θ34 = γS̄1A
T
1 + δ

[

−M̄2 + N̄T
2

]

,Θ35 = −βS̄T
1 + αS̄1A

T
1 ,Θ44 = −Q̄1 + δ

[

−N̄2 − N̄T
2

]

,

Θ45 = −γS̄T
1 ,Θ55 = −αS̄T

1 − αS̄1 + h2(i−1)R̄1 + δ2R̄2, S̄1 = S−1
1 , P̄ = S̄1PS̄

T
1 ,

M̄i = S̄1MiS̄
T
1 , N̄i = S̄1NiS̄

T
1 , i = 1, 2, Q̄j = S̄1QjS̄

T
1 , j = 1, ..4, Ȳ = KS̄T

1 .

Proof. Consider a simple LK functional for ith interval that h ∈ [h(i−1), hi] as:

Vi(xt, ẋt) = xT (t)Px(t) +

2
∑

j=1

t
∫

t−h(i+1−j)

xT (θ)Qjx(θ)dθ +

t
∫

t−h

xT (θ)Q3x(θ)dθ

+

t−h(i−1)
∫

t−h

xT (θ)Q4x(θ)dθ + h(i−1)

t
∫

t−h(i−1)

t
∫

θ

ẋT (φ)R1ẋ(φ)dφdθ + δ

t−h(i−1)
∫

t−hi

t
∫

θ

ẋT (φ)R2ẋ(φ)dφdθ.

(4.6)

Differentiating Vi with respect to time along the state trajectory of (4.3) yields
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V̇i(xt, ẋt) = 2xT (t)Pẋ(t) +
3

∑

k=1

xT (t)Qkx(t)− xT (t− h(i−1))(Q2 −Q4)x(t− h(i−1))

−
4

∑

k=3

xT (t− h)Qkx(t− h)− xT (t− hi)Q1x(t− hi) + ẋT (t)
{

h2(i−1)R1 + δ2R2

}

ẋ(t)

−h(i−1)

t
∫

t−h(i−1)

ẋT (θ)R1ẋ(θ)dθ − δ

t−h(i−1)
∫

t−hi

ẋT (θ)R2ẋ(θ)dθ.

(4.7)

Note that (4.7) does not incorporate any state information from the system. The conven-

tional way to incorporate the state information in V̇i is by replacing the ẋ(t) term directly

from the state equation (4.3). However, such replacement in stabilization problem of time-

delay system does not yield a convenient LMI form as stabilization criterion. Alternatively,

one may convert the state equation (4.3)suitably into a quadratic form and thereby append-

ing the same to V̇i term so that the replacement of ẋ can be avoided. Such an approach

in stabilization of time-delay systems has been used in [22]. Here, we use a quadratic form

introducing new free variables S1 to S5 in order to explore the interplay of the different

variables in the state dynamics.

Instead of replacing ẋ(t) by directly using (4.3), we consider the quadratic formulation

of the system dynamics (4.3) as:

2
{

xT (t)S1 + xT (t− hi−1)S2 + xT (t− h)S3 + xT (t− hi)S4 + ẋT (t)S5
}

×{−ẋ(t) +A0x(t) +A1x(t− h) +B2Kx(t)} = 0,
(4.8)

where Sk, k = 1, . . . , 5 are arbitrary matrices of appropriate dimensions.

V̇i(xt, ẋt) ≤ 2ξT (t)
[

ST
1 ST

2 ST
3 ST

4 ST
5

]T

{−ẋ(t) +A0x(t) +A1x(t− h) +B2Kx(t)}

+2xT (t)Pẋ(t) +

3
∑

k=1

xT (t)Qkx(t)− xT (t− h(i−1))(Q2 −Q4)x(t− h(i−1))

−

4
∑

k=3

xT (t− h)Qkx(t− h)− xT (t− hi)Q1x(t− hi) + ẋT (t)
{

h2(i−1)R1 + δ2R2

}

ẋ(t)

−h(i−1)

t
∫

t−h(i−1)

ẋT (θ)R1ẋ(θ)dθ − δ

t−h(i−1)
∫

t−hi

ẋT (θ)R2ẋ(θ)dθ,

(4.9)
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where

ξ(t) =
[

xT (t) xT (t− h(i−1)) xT (t− h) xT (t− hi) ẋT (t)
]T

.

Following Lemma 1.2, the first integral in (4.9) satisfies

− h(i−1)

t
∫

t−h(i−1)

ẋT (θ)R1ẋ(θ)dθ ≤

[

x(t)

x(t− h(i−1))

][

−R1 R1

∗ −R1

][

x(t)

x(t− h(i−1))

]

. (4.10)

Last term in (4.9) may be written as:

− δ

t−h(i−1)
∫

t−hi

ẋT (θ)R2ẋ(θ)dθ = −δ

t−h
∫

t−hi

ẋT (θ)R2ẋ(θ)dθ − δ

t−h(i−1)
∫

t−h

ẋT (θ)R2ẋ(θ)dθ. (4.11)

Now, one requires to suitably replace the above integral terms in (4.9). One may approximate

the integral terms in (4.11) as:

−

t−h(i−1)
∫

t−h

ẋT (θ)R2ẋ(θ)dθ ≤

[

x(t− h(i−1))

x(t− h)

]T {[

M1 +MT
1 −M1 +NT

1

∗ −N1 −NT
1

]

+ ρ

[

M1

N1

]

R−1
2

[

M1

N1

]T






[

x(t− h(i−1))

x(t− h)

]

. (4.12)

−

t−h
∫

t−hi

ẋT (θ)R2ẋ(θ)dθ ≤

[

x(t− h)

x(t− hi)

]T {[

M2 +MT
2 −M2 +NT

2

∗ −N2 −NT
2

]

+ (1− ρ)

[

M2

N2

]

R−1
2

[

M2

N2

]T






[

x(t− h)

x(t− hi)

]

. (4.13)

where ρ = h−hi−1

δ
, 0 ≤ ρ ≤ 1. Substituting (4.10), (4.12) and (4.13) into (4.11) and then

that into (4.9), one may write

V̇i(xt, ẋt) ≤ ξT (t)(Ψ + h2(i−1)Ωi + ρδ2Φ1R
−1
2 ΦT

1 + (1− ρ)δ2Φ2R
−1
2 ΦT

2 )ξ(t), (4.14)



4.2 Stabilization using delay-decomposition 75

where

Ψ = [Ψij ]i,j=1,...,5,Ψ11 = S1A0 +AT
0 S

T
1 +

3
∑

k=1

Qk + S1B2K +KTBT
2 S

T
1 −R1,

Ψ12 = AT
0 S

T
2 +R1 +KTBT

2 S
T
2 ,Ψ13 = S1A1 +AT

0 S
T
3 +KTBT

2 S
T
3 ,Ψ14 = AT

0 S
T
4 +KTBT

2 S
T
4 ,

Ψ15 = P − S1 +AT
0 S

T
5 +KTBT

2 S
T
5 ,Ψ22 = − (Q2 −Q4)−R1 + δ

[

M1 +MT
1

]

,

Ψ23 = S2A1 + δ
[

−M1 +NT
1

]

,Ψ24 = 0,Ψ25 = −S2,

Ψ33 = S3A1 +AT
1 S

T
3 −

4
∑

k=3

Qk + δ
[

M2 +MT
2

]

+ δ
[

−N1 −NT
1

]

,

Ψ34 = AT
1 S

T
4 + δ

[

−M2 +NT
2

]

,Ψ35 = −S3 +AT
1 S

T
5 ,Ψ44 = −Q1 + δ

[

−N2 −NT
2

]

,

Ψ45 = −S4,Ψ55 = δ2R2 − S5 − ST
5 ,Ωi =

[

04n×4n 04n×n

0n×4n R1

]

.

and Φ1, Φ2 are as given in (4.5). Therefore, the stability requirement for the ith interval is

Ψ + h2(i−1)Ωi + ρδ2Φ1R
−1
2 ΦT

1 + (1− ρ)δ2Φ2R
−1
2 ΦT

2 < 0. (4.15)

The above is a polytope of matrices on ρ and is always negative definite. Then, (4.15) can

be equivalently written as:

Ψ + h2(i−1)Ωi + δ2ΦjR
−1
2 ΦT

j < 0, j = 1, 2. (4.16)

To this end, note that, Ωi ≥ 0 and the term h2(i−1)Ωi is maximum when h ∈ [h(N−1), h̄], the

N th interval. Therefore, irrespective of h lies in any of the intervals, the following condition

ensures stability of (4.1):

Ψ + h2(N−1)ΩN + δ2ΦjR
−1
2 ΦT

j < 0, j = 1, 2. (4.17)

Taking Schur complement for the last term in (4.17), since the third term in (4.17) is positive

definite, one can write
[

Ψ̄ δΦk

∗ −R2

]

< 0, k = 1, 2, (4.18)

where Ψ̄ = Ψ + h2(i−1)Ωi. For linearization, considering S2, S3, S4 and S5 as: S2 = λS1,
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S3 = βS1, S4 = γS1, S5 = αS1, and then, pre- and post-multiplying L.H.S. of (4.18) by

diag
{

S−1
1 S−1

1 S−1
1 S−1

1 S−1
1 S−1

1

}

and its transpose respectively, and subsequently adopting the change of variables

S̄1 = S−1
1 , P̄ = S̄1PS̄

T
1 , M̄i = S̄1MiS̄

T
1 , N̄i = S̄1NiS̄

T
1 , i = 1, 2, Q̄j = S̄1QjS̄

T
1 , j = 1, ..4,

Ȳ = KS̄T
1 .

one obtains (4.5). Hence, the theorem is proved

The stabilization criterion developed in Theorem 4.1 may be conservatively simplified by

eliminating the free variables and reducing the dimension of the LMI. The following corollary

presents this result.

Corollary 4.1. System (4.3) is stable if there exist matrices P̄ > 0, Q̄j > 0, j = 1, . . . , 4,

R̄i > 0 and arbitrary matrices S̄l, l = 1 . . . 5, i = 1, 2, that satisfy the following LMI:

Θ̄ < 0, (4.19)

where

Θ̄ = [Θ̄ij ]i,j=1,...,5, Θ̄11 = A0S̄
T
1 + S̄1A

T
0 +

3
∑

k=1

Q̄k +B2Ȳ + Ȳ TBT
2 − R̄1,

Θ̄12 = λS̄1A
T
0 + R̄1 + λȲ TBT

2 , Θ̄13 = A1S̄
T
1 + βS̄1A

T
0 + βȲ TBT

2 , Θ̄14 = γS̄1A
T
0 + γȲ TBT

2 ,

Θ̄15 = P̄ − S̄T
1 + αS̄1A

T
0 + αȲ TBT

2 , Θ̄22 = −
(

Q̄2 − Q̄4

)

− R̄1 − R̄2, Θ̄23 = λA1S̄
T
1 + R̄2,

Θ̄24 = 0, Θ̄25 = −λS̄T
1 , Θ̄33 = βA1S̄

T
1 + βS̄1A

T
1 −

4
∑

k=3

Q̄k − 2R̄2, Θ̄34 = γS̄1A
T
1 + R̄2,

Θ̄35 = −βS̄T
1 + αS̄1A

T
1 , Θ̄44 = −Q̄1 − R̄2, Θ̄45 = −γS̄T

1 , Θ̄55 = h2(i−1)R̄1 + δ2R̄2 − α(S̄1 + S̄T
1 ),

Proof. Since (4.17) is positive definite, one may reduce the stability condition in the form of

a single matrix inequalities as:

Ψ + h2(N−1)ΩN + δ2Φ1R
−1
2 ΦT

1 + δ2Φ2R
−1
2 ΦT

2 < 0. (4.20)

One may write (4.20) as:

Ψ̄ + δ2Φ1R
−1
2 ΦT

1 + δ2Φ2R
−1
2 ΦT

2 < 0, (4.21)
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where Ψ̄ = Ψ + h2(N−1)ΩN . Separating the M1, N1, M2 and N2 terms from Ψ̄, one obtains

Υ + (δΦ1)I
T
1 + I1(δΦ1)

T + (δΦ1)R
−1
2 (δΦ1)

T + (δΦ2)I
T
2 + I2(δΦ2)

T + (δΦ2)R
−1
2 (δΦ2)

T < 0,

(4.22)

where

Υ = [Υij ]i,j=1,...,5,Υ11 = S1A0 +AT
0 S

T
1 +

3
∑

k=1

Qk + S1B2K +KTBT
2 S

T
1 −R1,

Υ12 = AT
0 S

T
2 +R1 +KTBT

2 S
T
2 ,Υ13 = S1A1 +AT

0 S
T
3 +KTBT

2 S
T
3 ,Υ14 = AT

0 S
T
4 +KTBT

2 S
T
4 ,

Υ15 = P − S1 +AT
0 S

T
5 +KTBT

2 S
T
5 ,Υ22 = − (Q2 −Q4)−R1,Υ23 = S2A1,Υ24 = 0,

Υ25 = −S2,Υ33 = S3A1 +AT
1 S

T
3 −

4
∑

k=3

Qk,Υ34 = AT
1 S

T
4 ,Υ35 = −S3 +AT

1 S
T
5 ,Υ44 = −Q1,

Υ45 = −S4,Υ55 = −S5 − ST
5 +

(

h̄− δ
)2
R1 + δ2R2, I1 =

[

0 I −I 0 0
]T

,

I2 =
[

0 0 I −I 0
]T

.

One can write (4.22) as:

Υ+(δΦ1 + I1R2)R
−1
2 (δΦ1 + I1R2)

T−I1R2I
T
1 +(δΦ2 + I2R2)R

−1
2 (δΦ2 + I2R2)

T−I2R2I
T
2 < 0.

(4.23)

Next, following Lemma 1.2 and substituting the free variables as Mi = Mi
T = −Ni =

−Ni
T = −δ−1R2, the above stability condition yields

Ῡ < 0, (4.24)

where

Ῡ = [Ῡij]i,j=1,...,5, Ῡ11 = Υ11, Ῡ12 = Υ12, Ῡ13 = Υ13, Ῡ14 = Υ14, Ῡ15 = Υ15,

Ῡ22 = − (Q2 −Q4)−R1 −R2, Ῡ23 = S2A1 +R2, Ῡ24 = Υ24, Ῡ25 = Υ25,

Ῡ33 = S3A1 +AT
1 S

T
3 −

4
∑

k=3

Qk − 2R2, Ῡ34 = AT
1 S

T
4 +R2, Ῡ35 = Υ35, Ῡ44 = −Q1 −R2,

Ῡ45 = Υ45, Ῡ55 = Υ55.

For linearization, considering S2, S3, S4 and S5 as: S2 = λS1, S3 = βS1, S4 = γS1,

S5 = αS1, and then, pre- and post-multiplying by diag
{

S−1
1 S−1

1 S−1
1 S−1

1 S−1
1

}

, and
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its transpose respectively, and subsequently adopting the change of variables

S̄1 = S−1
1 , P̄ = S̄1PS̄

T
1 , M̄i = S̄1MiS̄

T
1 , N̄i = S̄1NiS̄

T
1 , i = 1, 2, Q̄j = S̄1QjS̄

T
1 , j = 1, ..4,

Ȳ = KS̄T
1 .

One obtains (4.19).

To validate the proposed criteria, numerical examples are presented in the next subsec-

tion.

4.2.3 Numerical examples

Example 4.1. Consider a system [126] of the form (4.1) with

A0 =

[

0 0

0 1

]

, A1 =

[

−1 −1

0 −0.9

]

, B2 =

[

0

1

]

.

To obtain the controller gain using Theorem 4.1 for the above system, one uses LMI toolbox

to solve the LMI proposed in Theorem 4.1. The external variables (λ, β, γ and α) are tuned

using fminsearch function of MATLAB in order to obtain maximum tolerable delay. Note

that, the obtained delay bound is not optimal, so one may obtain several different controller

gain matrix (K) for same delay bound since the stabilization criterion is an LMI one that

represents a set of solution itself.

Following the previous analysis in Chapter 2, recollect that one always gets maximum

delay value atN = 2. For controller synthesis, a static state feedback controller is designed by

setting N = 2. A comparison of maximum tolerable delay bound obtained using Theorem 4.1

and Corollary 4.1 along with existing results for this system is presented in Table 4.1. From

the comparison, it is clear that the proposed decomposition approach yields less conservative

result than the existing ones. To verify the stabilizing ability of the designed controller using

Corollary 4.1, simulation result of the closed loop system with initial condition x(t) = [2,−2],

t ∈ [−20, 0] is shown in Fig. 4.1. From the simulation, it is seen that the states of the closed-

loop system are regulated to zero as expected. It may be noted that the controller gain

obtained using Theorem 4.1 and Corollary 4.1 are not optimal since a different solution of

the same LMI may be achieved for a different setting of the external variables λ, β, γ and

α.
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Table 4.1: Comparison of delay bound (h̄)

Methods h̄ Controller gain (K)

[90] 0.6779 [-0.1155 -1.9839]

[34] 1.51 [-58.31 -294.935]

[179] 6 [-70.18 -77.67]

[126] 8 [-65.4058 -76.7778]

Corollary 4.1 18 [-7424.7 -7661.9]

Theorem 4.1 20 [-2852.3 -2959.7]
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Figure 4.1: Variation of system states with respect to time for Example 4.1 using
Theorem 4.1

Example 4.2. Let us consider a linearized model of a real-time aircraft control system

[126], which is in the form of (4.1) with

A0 =















−0.0366 0.0271 0.0188 −0.4555

0.0482 −1.0100 0.0024 −4.0208

0.1002 0.3681 −0.7070 1.4200

0 0 1.0000 0















, A1 = 0.3A0, B2 =















0.4422 0.1761

3.5446 −7.5922

−5.5200 4.4900

0 0















.

The state variables of this aircraft system is represented by x =
[

xT1 xT2 xT3 xT4

]T

, where
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x1 and x2 are position (m) and velocity (m/s) of center of mass in spatial coordinates re-

spectively, x3 is rotation matrix (rad) of the body axes relative to the spatial axes and x4

is body angular velocity vector (rad/s). For this case also, the controller is designed by

setting N = 2. A comparison of maximum tolerable delay bounds using different approaches

for this system is given in Table 4.2 below. From the comparison, it is clear that the pro-

posed decomposition approach customarily gives less conservative result than the existing

results. The obtained controller gain using Theorem 4.1 for maximum tolerable delay bound

(h̄ = 79) is used to simulate the closed loop system with initial condition x(t) = [2,−4, 3,−5],

t ∈ [−79, 0]. The variation of norm of the state vector with respect to time is shown in Fig.

4.2. From the simulation result, it is seen that the states of the closed loop system are stable.

Note that, the plant states may not take such large values as in Fig. 4.2 in reality, rather

it verifies mere stabilization performance carried out in this work. For actual system, the

delay would be much lesser and one requires to include additional performance criteria for

the design.

Table 4.2: Comparison of delay bound (h̄)

Methods h̄ Controller gain (K)

[90] 1.4142

[

13.6188 1.8680 0.7661 −8.0951
21.9119 2.7268 −0.1298 −14.7952

]

[126] 6

[

−0.0458 0.1447 0.5490 0.2080
−0.0187 0.1331 0.2516 −0.4175

]

Corollary 4.1 78

[

−1.3518 0.2535 0.8412 2.1178
−0.5552 0.2890 0.2580 0.4308

]

Theorem 4.1 79

[

19.6354 2.4332 0.9949 −10.9001
29.7580 3.4891 0.3834 −18.1027

]

4.3 Robust stabilization using delay-decomposition

The previous section covers the stabilizing control design technique for nominal system with

single delay. But simple stabilization criterion does not work for systems with parametric

uncertainty. For such systems, robust stabilization criterion works appropriately. The prob-

lem of robust stabilization is of recurring interest among control communities. To derive

robust stabilization criterion for time-delay systems using Riccati-equation based method is
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Figure 4.2: Variation of norm of the state vector with respect to time for Example
4.2 using Theorem 4.1

proposed in [102, 118, 119, 148]. In [12, 90], a linear matrix inequality approach is proposed

for control design of systems with parametric uncertainty. The LMI approach has two ad-

vantages. First, it does not require tuning of parameters and/or matrix. Second, it can be

efficiently solved numerically using interior-point algorithm. Robust stabilization using H∞

control for uncertain system is investigated in [19]. A non-convex delay-dependent robust

stabilization is obtained in [111] for uncertain system in the form of inequality to bind the

cross-product terms. A descriptor model transformation approach is used in [32] to obtain

robust stabilization criterion. In [179], an integral inequality approach is proposed to derive

robust stabilization criterion to design memoryless controller. In [126], to derive stabiliza-

tion criterion a quasi-full-size LK functional is chosen and free-weighted matrix approach

is employed. In many literature, robust analysis approaches have been extended for robust

stabilization [12,14,17,129]. But the decomposition approaches involving complete quadratic

LK functional to obtain necessary and sufficient condition for robust stability are difficult to

extend for robust stabilization.

In this section, the decomposition approach used for stabilization criterion is extended

for robust stabilization criterion.
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4.3.1 System description

Consider an uncertain system with unknown input delay

ẋ(t) = A0(t)x(t) +A1(t)x(t− h) +B2(t)u(t), (4.25)

where A0(t), A1(t) and B2(t) are the matrices with time-varying uncertainty and can be

decomposed as:

A0(t) = A0 +∆A0(t), A1(t) = A1 +∆A1(t), B2(t) = B2 +∆B2(t), (4.26)

where ∆A0(t), ∆A1(t) and ∆B2 are uncertain components of the nominal matrices A0, A1

and B2 respectively. The uncertain matrices are norm bounded and can be decomposed as:

[

∆A0(t) ∆A1(t) ∆B2(t)
]

=
[

D1F (t)E1 D2F (t)E2 D3F (t)E3

]

, (4.27)

where D1, D2, D3, E1, E2 and E3 are appropriate dimensional constant matrices, and F (t)

satisfies F T (t)F (t) ≤ I. h is constant delay. The objective of this section is to design a static

state feedback controller u(t) = Kx(t) as in (4.2) but for (4.25). Using (4.2) in (4.25), one

obtains

ẋ(t) = A0(t)x(t) +A1(t)x(t− h) +B2(t)Kx(t), (4.28)

where K is the control gain to be designed so that the system can be stabilized. To design

such controller, the following robust stabilization criterion is presented with the background

knowledge of delay-decomposition approach adopted in §4.2.

4.3.2 Robust stabilization criterion

Now, the following theorem presents an LMI based static state feedback controller design for

(4.25).

Theorem 4.2. System (4.28) is stable if there exist matrices P̄ > 0, Q̄j > 0, j = 1, . . . , 4,

R̄i > 0 and arbitrary matrices S̄l, M̄i, N̄i, l = 1 . . . 5, i = 1, 2, that satisfy the following LMI:















Πk Ě1 Ě2 Ě3

∗ −ε1I 0 0

∗ ∗ −ε2I 0

∗ ∗ ∗ −ε3I















< 0, k = 1, 2, (4.29)



4.3 Robust stabilization using delay-decomposition 83

where

Πk =

[

Π̂ δφ̄l

∗ −R̄2

]

, Π̂ = Π̌ + D̄, D̄ =

3
∑

k=1

εkD̄
T
k D̄k, D̄k =

[

DT
k λDT

k βDT
k γDT

k αDT
k

]

,

φ̄1 =
[

0 M̄T
1 N̄T

1 01×2

]T

, φ̄2 =
[

01×2 M̄T
2 N̄T

2 0
]T

, δ ,
h̄

N
, N is a positive integer,

Π̌ = [Π̌ij ]i,j=1,..,5 with, Π̌11 =

3
∑

i=1

Q̄i − R̄1 +A0S̄
T
1 + S̄1A

T
0 +B2Ȳ + Ȳ TBT

2 ,

Π̌12 = R̄1 + λS̄1A
T
0 + λȲ TBT

2 , Π̌13 = βS̄1A
T
0 + βȲ TBT

2 +A1S̄
T
1 ,

Π̌14 = γS̄1A
T
0 + γȲ TBT

2 , Π̌15 = P̄ − S̄T
1 + αS̄1A

T
0 + αȲ TBT

2 ,

Π̌22 = Q̄4 − Q̄2 − R̄1 + δ(M̄1 + M̄T
1 ), Π̌23 = δ(−M̄1 + N̄T

1 ) + λA1S̄
T
1 , Π̌24 = 0,

Π̌25 = −λS̄T
1 , Π̌33 = −(Q̄3 + Q̄4) + δ(−N̄1 − N̄T

1 ) + δ(M̄2 + M̄T
2 ) + βA1S̄

T
1 + βS̄1A

T
1

Π̌34 = γS̄1A
T
1 + δ(−M̄2 + N̄T

2 ), Π̌35 = −βS̄T
1 + αS̄1A

T
1 , Π̌44 = −Q̄1 + δ(−N̄2 − N̄T

2 ),

Π̌45 = −γS̄T
1 , Π̌55 = −αS̄1 − αS̄T

1 +
{

(

h(i−1)

)2
R̄1 + δ2R̄2

}

, Ě1 =
[

E1S̄
T
1 01×6

]T

,

Ě2 =
[

0 0 E2S̄
T
1 01×4

]T

, Ě3 =
[

E3Ȳ 01×6

]T

, S̄1 = S−1
1 , P̄ = S̄1PS̄

T
1 ,

M̄i = S̄1MiS̄
T
1 , N̄i = S̄1NiS̄

T
1 , i = 1, 2, Q̄j = S̄1QjS̄

T
1 , j = 1, ..4, Ȳ = KS̄T

1 .

Proof. Consider a simple LK functional for ith interval that h ∈ [h(i−1), hi]

Vi(xt, ẋt) = xT (t)Px(t) +

2
∑

j=1

t
∫

t−h(i+1−j)

xT (θ)Qjx(θ)dθ +

t
∫

t−h

xT (θ)Q3x(θ)dθ

+

t−h(i−1)
∫

t−h

xT (θ)Q4x(θ)dθ + h(i−1)

t
∫

t−h(i−1)

t
∫

θ

ẋT (φ)R1ẋ(φ)dφdθ + δ

t−h(i−1)
∫

t−hi

t
∫

θ

ẋT (φ)R2ẋ(φ)dφdθ.

(4.30)

Differentiating Vi with respect to time along the state trajectory of (4.28) yields

V̇i(xt, ẋt) = 2xT (t)Pẋ(t) +

3
∑

k=1

xT (t)Qkx(t)− xT (t− h(i−1))(Q2 −Q4)x(t− h(i−1))

−

4
∑

k=3

xT (t− h)Qkx(t− h)− xT (t− hi)Q1x(t− hi) + ẋT (t)
{

h2(i−1)R1 + δ2R2

}

ẋ(t)

−h(i−1)

t
∫

t−h(i−1)

ẋT (θ)R1ẋ(θ)dθ − δ

t−h(i−1)
∫

t−hi

ẋT (θ)R2ẋ(θ)dθ.

(4.31)
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Instead of replacing ẋ(t) by directly using (4.28), we consider the quadratic formulation of

the system dynamics (4.28) as:

2
{

xT (t)S1 + xT (t− hi−1)S2 + xT (t− h)S3 + xT (t− hi)S4 + ẋT (t)S5
}

×{−ẋ(t) +A0(t)x(t) +A1(t)x(t− h) +B2(t)Kx(t)} = 0,
(4.32)

where Sk, k = 1, . . . , 5 are arbitrary matrices of appropriate dimensions. Following (4.26),

(4.27) and Lemma 2.2, one may write

2ξT (t)
[

ST
1 ST

2 ST
3 ST

4 ST
5

]T [

D1F (t)E1x(t) D2F (t)E2x(t− h) D3F (t)E3Kx(t)
]

≤

3
∑

k=1

εkξ
T (t)D̂T

k D̂kξ(t) + ε−1
1 xT (t)ET

1 E1x(t) + ε−1
2 xT (t− h)ET

2 E2x(t− h)

+ε−1
3 xT (t)KTET

3 E3Kx(t),

(4.33)

where

ξ(t) =
[

xT (t) xT (t− h(i−1)) xT (t− h) xT (t− hi) ẋT (t)
]T

,

D̂k =
[

DT
k S

T
1 DT

k S
T
2 DT

k S
T
3 DT

k S
T
4 DT

k S
T
5

]

.

Adding (4.32) to (4.31) by replacing the uncertain terms using (4.33), one obtains

V̇i(t) ≤ 2ξT (t)
[

ST
1 ST

2 ST
3 ST

4 ST
5

]T

{−ẋ(t) + (A0 +B2K)x(t) +A1x(t− h)}

+

3
∑

k=1

εkξ
T (t)D̂T

k D̂kξ(t) + ε−1
1 xT (t)ET

1 E1x(t) + ε−1
2 xT (t− h)ET

2 E2x(t− h)

+ε−1
3 xT (t)KTET

3 E3Kx(t) + 2xT (t)Pẋ(t) +

3
∑

k=1

xT (t)Qkx(t)

−xT (t− h(i−1))(Q2 −Q4)x(t− h(i−1))−

4
∑

k=3

xT (t− h)Qkx(t− h)

−xT (t− hi)Q1x(t− hi) + ẋT (t)
{

h2(i−1)R1 + δ2R2

}

ẋ(t)

−h(i−1)

t
∫

t−h(i−1)

ẋT (θ)R1ẋ(θ)dθ − δ

t−h(i−1)
∫

t−hi

ẋT (θ)R2ẋ(θ)dθ.

(4.34)
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Following Lemma 1.2, the first integral in (4.34) satisfies

− h(i−1)

t
∫

t−h(i−1)

ẋT (θ)R1ẋ(θ)dθ ≤

[

x(t)

x(t− h(i−1))

][

−R1 R1

∗ −R1

][

x(t)

x(t− h(i−1))

]

. (4.35)

and the second one satisfies

−δ

t−h(i−1)
∫

t−h(i)

ẋT (θ)R2ẋ(θ)dθ

=

[

x(t− h(i−1))

x(t− h)

]T






[

M1 +MT
1 −M1 +NT

1

∗ −N1 −NT
1

]

+ ρ

[

M1

N1

]

R−1
2

[

M1

N1

]T






[

x(t− h(i−1))

x(t− h)

]

+

[

x(t− h)

x(t− hi)

]T






[

M2 +MT
2 −M2 +NT

2

∗ −N2 −NT
2

]

+ (1− ρ)

[

M2

N2

]

R−1
2

[

M2

N2

]T






[

x(t− h)

x(t− hi)

]

.

(4.36)

Then following the procedure from Theorem 4.1, one obtains

V̇i(t) ≤ ξT (t)(ψ + h2i−1Ωi + ρδ2φ1R
−1
2 φT1 + (1− ρ)δ2φ2R

−1
2 φT2 )ξ(t), (4.37)

where

ψ = [ψij ]i,j=1,..,5,

ψ11 =

3
∑

k=1

Qk −R1 + S1A0 +AT
0 S

T
1 + S1B2K +KTBT

2 S
T
1

+

3
∑

k=1

εkS1DkD
T
k S

T
1 + ε−1

1 ET
1 E1 + ε−1

3 KTET
3 E3K,

ψ12 = R1 +AT
0 S

T
2 +KTBT

2 S
T
2 +

3
∑

k=1

εkS1DkD
T
k S

T
2 ,

ψ13 = AT
0 S

T
3 + S1A1 +KTBT

2 S
T
3 +

3
∑

k=1

εkS1DkD
T
k S

T
3 ,

ψ14 = AT
0 S

T
4 +KTBT

2 S
T
4 +

3
∑

k=1

εkS1DkD
T
k S

T
4 ,

ψ15 = P − S1 +AT
0 S

T
5 +KTBT

2 S
T
5 +

3
∑

k=1

εkS1DkD
T
k S

T
5 ,
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ψ22 = −(Q2 −Q4)−R1 + δ
[

M1 +MT
1

]

+

3
∑

k=1

εkS2DkD
T
k S

T
2 ,

ψ23 = δ
[

−M1 +NT
1

]

+ S2A1 +

3
∑

k=1

εkS2DkD
T
k S

T
3 ,

ψ24 =

3
∑

k=1

εkS2DkD
T
k S

T
4 , ψ25 = −S2 +

3
∑

k=1

εkS2DkD
T
k S

T
5 ,

ψ33 = −

4
∑

k=3

Qk + δ
[

−N1 −NT
1

]

+ δ
[

M2 +MT
2

]

+ S3A1 +AT
1 S

T
3

+ε2
−1ET

2 E2 +
3

∑

k=1

εkS3DkD
T
k S

T
3 ,

ψ34 = δ
[

−M2 +NT
2

]

+AT
1 S

T
4 +

3
∑

k=1

εkS3DkD
T
k S

T
4 ,

ψ35 = −S3 +AT
1 S

T
5 +

3
∑

k=1

εkS3DkD
T
k S

T
5 ,

ψ44 = −Q1 + δ
[

−N2 −NT
2

]

+

3
∑

k=1

εkS4DkD
T
k S

T
4 ,

ψ45 = −S4 +

3
∑

k=1

εkS4DkD
T
k S

T
5 , ψ55 = δ2R2 − S5 − ST

5 +

3
∑

k=1

εkS5DkD
T
k S

T
5 ,

ρ =
h− hi−1

δ
, 0 ≤ ρ ≤ 1,Ωi =

[

04n×4n 04n×n

0n×4n R1

]

.

Therefore, the stability requirement for the ith interval is

ψ + h2(i−1)Ωi + δ2φjR
−1
2 φTj < 0, j = 1, 2. (4.38)

To this end, note that, Ωi ≥ 0 and the term h2(i−1)Ωi is maximum when h ∈ [h(N−1), h̄], the

N th interval. Therefore, the following condition always ensures stability of (4.28):

ψ + h2(N−1)ΩN + δ2φjR
−1
2 φTj < 0, j = 1, 2, (4.39)

Since the third term in (5.36) are positive definite, one may approximate them in a reduced

LMI form as:
[

ψ̄ δφl

∗ −R2

]

< 0, l = 1, 2 (4.40)
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where ψ̄ = ψ + h2(i−1)Ωi.

For linearization, considering S2, S3, S4 and S5 as: S2 = λS1, S3 = βS1, S4 = γS1, S5 = αS1

and then, pre- and post-multiplying by diag
{

S−1
1 S−1

1 S−1
1 S−1

1 S−1
1 S−1

1

}

, and its

transpose respectively, and subsequently adopting the change of variables

S̄1 = S−1
1 , P̄ = S̄1PS̄

T
1 , M̄i = S̄1MiS̄

T
1 , N̄i = S̄1NiS̄

T
1 , i = 1, 2, Q̄j = S̄1QjS̄

T
1 , j = 1, ..4,

Ȳ = KS̄T
1 .

One may write

Πl + Ξ1 + Ξ2 + Ξ3 < 0, (4.41)

where

Ξ1 =

[

ε−1
1 S̄1E

T
1 E1S̄

T
1 05n×5n

05n×n 0n×5n

]

,Ξ2 =

[

Ξ21 03n×3n

03n×3n 03n×3n

]

,Ξ21 =

[

02n×2n 02n×n

0n×2n ε−1
2 S̄1E

T
2 E2S̄

T
1

]

,

Ξ3 =

[

ε−1
3 Ȳ TET

3 E3Ȳ 05n×5n

05n×n 0n×5n

]

.

Applying Schur complement thrice on (4.41), one obtains (4.29).

To simplify Theorem 4.2 by eliminating free matrix variables, the following corollary is

developed.

Corollary 4.2. System (4.28) is stable if there exist P̄ > 0, Q̄k > 0, R̄j > 0, k = 1, . . . , 4,

j = 1, 2 satisfying the following LMI condition:















Π̃ Ě0 Ě1 Ě2

∗ −ε1I 0 0

∗ ∗ −ε2I 0

∗ ∗ ∗ −ε3I















< 0, (4.42)

where

Π̃ = Π̄ + D̄, Π̄ = [Π̄ij ]i,j=1,..,5 with Π̄11 = Π̌11, Π̄12 = Π̌12, Π̄13 = Π̌13, Π̄14 = Π̌14,

Π̄15 = Π̌15, Π̄22 = Q̄4 − Q̄2 − R̄1 − R̄2, Π̄23 = λA1S̄
T
1 + R̄2, Π̄24 = Π̌24, Π̄25 = Π̌25,

Π̄33 = −(Q̄3 + Q̄4)− 2R̄2 + βA1S̄
T
1 + βS̄1A

T
1 , Π̄34 = γS̄1A

T
1 + R̄2, Π̄35 = Π̌35,

Π̄44 = −Q̄1 − R̄2, Π̄45 = Π̌45, Π̄55 = Π̌55.
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Proof. Since the last term in (4.38) is positive definite, one may reduce the stability condition

in the form of a single matrix inequalities as:

ψ + h2N−1ΩN + δ2φ1R
−1
2 φT1 + δ2φ2R

−1
2 φT2 < 0. (4.43)

One may write (4.43) as:

ψ̄ + δ2φ1R
−1
2 φT1 + δ2φ2R

−1
2 φT2 < 0, (4.44)

where ψ̄ = ψ + h2(N−1)ΩN . Separating the M1, N1, M2 and N2 terms from ψ̄, one obtains

υ+(δφ1)I
T
1 +I1(δφ1)

T +(δφ1)R
−1
2 (δφ1)

T +(δφ2)I
T
2 +I2(δφ2)

T +(δφ2)R
−1
2 (δφ2)

T < 0, (4.45)

where

υ = [υij ]i,j=1,...,5, υ11 = ψ11, υ12 = ψ12, υ13 = ψ13, υ14 = ψ14, υ15 = ψ15,

υ22 = −(Q2 −Q4)−R1 +
3

∑

k=1

εkS2DkD
T
k S

T
2 , υ23 = S2A1 +

3
∑

k=1

εkS2DkD
T
k S

T
3 , υ24 = ψ24,

υ25 = ψ25, υ33 = −
4

∑

k=3

Qk + S3A1 +AT
1 S

T
3 + ε2

−1ET
2 E2 +

3
∑

k=1

εkS3DkD
T
k S

T
3 ,

υ34 = AT
1 S

T
4 +

3
∑

k=1

εkS3DkD
T
k S

T
4 , υ35 = ψ35, υ44 = −Q1 +

3
∑

k=1

εkS4DkD
T
k S

T
4 , υ45 = ψ45,

υ55 = ψ55, I1 =
[

0 I −I 0 0
]T

, I2 =
[

0 0 I −I 0
]T

.

One can write (4.45) as:

υ+(δφ1 + I1R2)R
−1
2 (δφ1 + I1R2)

T−I1R2I
T
1 +(δφ2 + I2R2)R

−1
2 (δφ2 + I2R2)

T−I2R2I
T
2 < 0.

(4.46)

Further, following Lemma 1.2, substituting the free variables asMi =Mi
T = −Ni = −Ni

T =

−δ−1R2, the above stability condition yields.

ῡ < 0, (4.47)

where

ῡ = [ῡij]i,j=1,...,5, ῡ11 = υ11, ῡ12 = υ12, ῡ13 = υ13, ῡ14 = υ14, ῡ15 = υ15,
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ῡ22 = −(Q2 −Q4)−R1 −R2 +

3
∑

k=1

εkS2DkD
T
k S

T
2 , ῡ23 = S2A1 +R2 +

3
∑

k=1

εkS2DkD
T
k S

T
3 ,

ῡ24 = υ24, ῡ25 = υ25, ῡ33 = −

4
∑

k=3

Qk + S3A1 +AT
1 S

T
3 + ε−1

2 ET
2 E2 − 2R2 +

3
∑

k=1

εkS3DkD
T
k S

T
3 ,

ῡ34 = AT
1 S

T
4 +R2 +

3
∑

k=1

εkS3DkD
T
k S

T
4 , ῡ35 = υ35, ῡ44 = −Q1 −R2 +

3
∑

k=1

εkS4DkD
T
k S

T
4 ,

ῡ45 = υ45, ῡ55 = υ55.

For linearization, considering S2, S3, S4 and S5 as: S2 = λS1, S3 = βS1, S4 = γS1,

S5 = αS1 and then, pre- and post-multiplying by diag
{

S−1
1 S−1

1 S−1
1 S−1

1 S−1
1

}

, and

its transpose respectively, and subsequently adopting the change of variables

S̄1 = S−1
1 , P̄ = S̄1PS̄

T
1 , M̄i = S̄1MiS̄

T
1 , N̄i = S̄1NiS̄

T
1 , i = 1, 2, Q̄j = S̄1QjS̄

T
1 , j = 1, ..4,

Ȳ = KS̄T
1 .

one obtains (5.39).

In some cases, the uncertain system may be described in simple fashion as:

ẋ(t) = A0(t)x(t) +A1(t)x(t− h) +B2u(t), (4.48)

where A0(t) and A1(t) are the matrices with time-varying uncertainty, and B2 is a constant

matrix with appropriate dimension

A0(t) = A0 +∆A0(t), A1(t) = A1 +∆A1(t), (4.49)

where ∆A0(t), ∆A1(t) are uncertain components of the nominal matrices A0, A1 respectively.

The uncertain matrices are norm bounded and can be decomposed in simple fashion as:

[

∆A0(t) ∆A1(t)
]

= DF (t)E, (4.50)

whereD andE are appropriate dimensional constant matrices, and F (t) satisfies F T (t)F (t) ≤

I. Using (4.2) in (4.48), one obtains the closed loop system as:

ẋ(t) = A0(t)x(t) +A1(t)x(t− h) +B2Kx(t), (4.51)
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To design K for (4.51), the following stabilization criterion is developed.

Corollary 4.3. System (4.51) is stable if there exist matrices P̄ > 0, Q̄j > 0, j = 1, . . . , 4,

R̄i > 0 and arbitrary matrices S̄l, M̄i, N̄i, l = 1 . . . 5, i = 1, 2, that satisfy the following LMI:

[

∇k Ẽ

∗ −εI

]

< 0, (4.52)

where

∇k =

[

∇̄ δφ̄k

∗ −R̄2

]

, k = 1, 2, ∇̄ = Π̌ + D̃, D̃ = εD̂T D̂, D̂ =
[

DT λDT βDT γDT αDT
]

,

Ẽ =
[

ES̄T
1 0 ES̄T

1 0 0
]T

, Π̌ is mentioned in Theorem 4.2.

Proof. To prove this corollary, consider the LK functional same as (4.30) and obtain the

derivative of the functional as in the case of Theorem 4.2. Instead of replacing ẋ(t) by

directly using (4.51), consider the quadratic formulation of the system dynamics (4.51) as:

2
{

xT (t)S1 + xT (t− hi−1)S2 + xT (t− h)S3 + xT (t− hi)S4 + ẋT (t)S5
}

×{−ẋ(t) +A0(t)x(t) +A1(t)x(t− h) +B2Kx(t)} = 0,
(4.53)

where Sk, k = 1, . . . , 5 are arbitrary matrices of appropriate dimensions. Following (4.49),

(4.50) and Lemma 2.2, one may write

2ξT (t)
[

ST
1 ST

2 ST
3 ST

4 ST
5

]T

DF (t)
[

Ex(t) Ex(t− h)
]

≤ εξT (t)ĎT Ďξ(t) + ε−1ξT (t)ÈT Èξ(t),

(4.54)

where

ξ(t) =
[

xT (t) xT (t− h(i−1)) xT (t− h) xT (t− hi) ẋT (t)
]T

,

Ď =
[

DTST
1 DTST

2 DTST
3 DTST

4 DTST
5

]T

, È =
[

E 0 E 0 0
]T

,
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Adding (4.53) to (4.31) by replacing the uncertain term by R.H.S. of (4.54), one obtains

V̇i(t) ≤ 2ξT (t)
[

ST
1 ST

2 ST
3 ST

4 ST
5

]T

{−ẋ(t) + (A0 +B2K)x(t) +A1x(t− h)}

+εξT (t)ĎT Ďξ(t) + ε−1ξT (t)ÈT Èξ(t) + 2xT (t)Pẋ(t) +

3
∑

k=1

xT (t)Qkx(t)

−xT (t− h(i−1))(Q2 −Q4)x(t− h(i−1))−

4
∑

k=3

xT (t− h)Qkx(t− h)

−xT (t− hi)Q1x(t− hi) + ẋT (t)
{

h2(i−1)R1 + δ2R2

}

ẋ(t)

−h(i−1)

t
∫

t−h(i−1)

ẋT (θ)R1ẋ(θ)dθ − δ

t−h(i−1)
∫

t−hi

ẋT (θ)R2ẋ(θ)dθ.

(4.55)

Replacing the integral terms of (4.55) by following Lemma 1.2 as in case of Theorem 4.2,

one obtains

V̇i(t) ≤ ξT (t)(Ξ + h2i−1Ωi + ρδ2φ1R
−1
2 φT1 + (1− ρ)δ2φ2R

−1
2 φT2 )ξ(t), (4.56)

where

Ξ = [Ξij]i,j=1,..,5,

Ξ11 =

3
∑

k=1

Qk −R1 + S1A0 +AT
0 S

T
1 + S1B2K +KTBT

2 S
T
1 + εS1DD

TST
1 + ε−1ETE,

Ξ12 = R1 +AT
0 S

T
2 +KTBT

2 S
T
2 + εS1DD

TST
2 ,

Ξ13 = AT
0 S

T
3 + S1A1 +KTBT

2 S
T
3 + ε−1ETE + εS1DD

TST
3 ,

Ξ14 = AT
0 S

T
4 +KTBT

2 S
T
4 + εS1DD

TST
4 ,Ξ15 = P − S1 +AT

0 S
T
5 +KTBT

2 S
T
5 + εS1DD

TST
5 ,

Ξ22 = −(Q2 −Q4)−R1 + δ
[

M1 +MT
1

]

+ εS2DD
TST

2 ,

Ξ23 = δ
[

−M1 +NT
1

]

+ S2A1 + εS2DD
TST

3 ,Ξ24 = εS2DD
TST

4 ,Ξ25 = −S2 + εS2DD
TST

5 ,

Ξ33 = −

4
∑

k=3

Qk + δ
[

−N1 −NT
1 +M2 +MT

2

]

++S3A1 +AT
1 S

T
3 + ε−1ETE + εS3DD

TST
3 ,

Ξ34 = δ
[

−M2 +NT
2

]

+AT
1 S

T
4 + εS3DD

TST
4 ,Ξ35 = −S3 +AT

1 S
T
5 + εS3DD

TST
5 ,

Ξ44 = −Q1 + δ
[

−N2 −NT
2

]

+ εS4DD
TST

4 ,Ξ45 = −S4 + εS4DD
TST

5 ,

Ξ55 = δ2R2 − S5 − ST
5 + εS5DD

TST
5 , ρ =

h− hi−1

δ
, 0 ≤ ρ ≤ 1,Ωi =

[

04n×4n 04n×n

0n×4n R1

]

.
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The stability requirement for the ith interval becomes

Ξ + h2(i−1)Ωi + δ2φjR
−1
2 φTj < 0, j = 1, 2. (4.57)

The following condition ensures stability of (4.51):

Ξ + h2(N−1)ΩN + δ2φjR
−1
2 φTj < 0, j = 1, 2. (4.58)

One may approximate (4.58) in a reduced LMI form as:

[

Ξ̄ δφl

∗ −R2

]

< 0, l = 1, 2, (4.59)

where Ξ̄ = Ξ + h2(i−1)Ωi.

For linearization, considering S2, S3, S4 and S5 as: S2 = λS1, S3 = βS1, S4 = γS1, S5 = αS1,

and then, pre- and post-multiplying (4.59) by diag
{

S−1
1 S−1

1 S−1
1 S−1

1 S−1
1 S−1

1

}

and

its transpose respectively, and subsequently adopting the change of variables

S̄1 = S−1
1 , P̄ = S̄1PS̄

T
1 , M̄i = S̄1MiS̄

T
1 , N̄i = S̄1NiS̄

T
1 , i = 1, 2, Q̄j = S̄1QjS̄

T
1 , j = 1, ..4,

Ȳ = KS̄T
1 .

One may write

ξT (t)(∇k + ε−1ẼT Ẽ)ξ(t) < 0, (4.60)

where ∇k and Ẽ are mentioned in (4.52). Applying Schur complement on (4.60), one obtains

(4.52).

By eliminating the free matrix variables from Corollary 4.3, the following result is devel-

oped.
Corollary 4.4. System (4.51) is stable if there exist matrices P̄ > 0, Q̄j > 0, j = 1, . . . , 4,

R̄i > 0, i = 1, 2,and arbitrary matrices S̄l, l = 1 . . . 5 that satisfy the following LMI:

[

∇̃ Ẽ

∗ −εI

]

< 0, (4.61)

where

∇̃ = Π̄ + D̃, D̃ = εD̂T D̂, D̂ =
[

DT λDT βDT γDT αDT
]

,

Ẽ =
[

ES̄T
1 0 ES̄T

1 0 0
]T

, Π̄ is mentioned in Corollary 4.2.
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Proof. Since the last term in (4.58) is positive definite, one may reduce the stability condition

in the form of a single matrix inequalities as:

Ξ + h2N−1ΩN + δ2φ1R
−1
2 φT1 + δ2φ2R

−1
2 φT2 < 0. (4.62)

one may write (4.62) as:

Ξ̄ + δ2φ1R
−1
2 φT1 + δ2φ2R

−1
2 φT2 < 0, (4.63)

where Ξ̄ = Ξ + h2(N−1)ΩN . Separating the M1, N1, M2 and N2 terms from Ξ̄, one obtains

Σ+(δφ1)I
T
1 +I1(δφ1)

T+(δφ1)R
−1
2 (δφ1)

T+(δφ2)I
T
2 +I2(δφ2)

T+(δφ2)R
−1
2 (δφ2)

T < 0, (4.64)

where

Σ = [Σij]i,j=1,...,5,Σ11 = Ξ11,Σ12 = Ξ12,Σ13 = Ξ13,Σ14 = Ξ14,Σ15 = Ξ15,

Σ22 = −(Q2 −Q4)−R1 + εS2DD
TST

2 ,Σ23 = S2A1 + εS2DD
TST

3 ,Σ24 = Ξ24,

Σ25 = Ξ25,Σ33 = −

4
∑

k=3

Qk + S3A1 +AT
1 S

T
3 + ε−1ETE + εS3DD

TST
3 ,

Σ34 = AT
1 S

T
4 + εS3DD

TST
4 ,Σ35 = Ξ35,Σ44 = −Q1 + εS4DD

TST
4 ,Σ45 = Ξ45,

Σ55 = Ξ55, I1 =
[

0 I −I 0 0
]T

, I2 =
[

0 0 I −I 0
]T

.

One can write (4.64) as:

Σ+(δφ1 + I1R2)R
−1
2 (δφ1 + I1R2)

T−I1R2I
T
1 +(δφ2 + I2R2)R

−1
2 (δφ2 + I2R2)

T−I2R2I
T
2 < 0.

(4.65)

Further, following Lemma 1.2, substituting the free variables asMi =Mi
T = −Ni = −Ni

T =

−δ−1R2, the above stability condition yields.

Σ̄ < 0, (4.66)

where

Σ̄ = [Σ̄ij]i,j=1,...,5, Σ̄11 = Σ11, Σ̄12 = Σ12, Σ̄13 = Σ13, Σ̄14 = Σ14, Σ̄15 = Σ15,

Σ̄22 = −(Q2 −Q4)−R1 −R2 + εS2DD
TST

2 , Σ̄23 = S2A1 +R2 + εS2DD
TST

3 ,

Σ̄24 = Σ24, Σ̄25 = Σ25, Σ̄33 = −
4

∑

k=3

Qk + S3A1 +AT
1 S

T
3 + ε−1ETE − 2R2 + εS3DD

TST
3 ,
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Σ̄34 = AT
1 S

T
4 +R2 + εS3DD

TST
4 , Σ̄35 = Σ35, Σ̄44 = −Q1 −R2 + εS4DD

TST
4 ,

Σ̄45 = Σ45, Σ̄55 = Σ55.

For linearization, considering S2, S3, S4 and S5 as: S2 = λS1, S3 = βS1, S4 = γS1, S5 = αS1,

and then, pre- and post-multiplying (4.66) by diag
{

S−1
1 S−1

1 S−1
1 S−1

1 S−1
1

}

and its

transpose respectively, and subsequently adopting the change of variables

S̄1 = S−1
1 , P̄ = S̄1PS̄

T
1 , M̄i = S̄1MiS̄

T
1 , N̄i = S̄1NiS̄

T
1 , i = 1, 2, Q̄j = S̄1QjS̄

T
1 , j = 1, ..4,

Ȳ = KS̄T
1 .

one obtains (4.61).

The next section presents some numerical examples to validate the developed criteria in

this section.

4.3.3 Numerical examples

Example 4.3. Consider an uncertain system of the form (4.51) with

A0 =

[

0 0

0 1

]

, A1 =

[

−1 −1

0 −0.9

]

, B2 =

[

0

1

]

,D1 = D2 = 0.2I,D3 = 0, E1 = E2 = I,E3 = 0

Using the proposed stabilization criterion based on decomposition technique, one is expected

to get maximum delay bound value at N = 2. At N = 2, comparison of maximum tolerable

delay bound for this system is made in the Table 4.3 which is shown below. Note that, for this

example, Corollary 4.4 yields better result than Theorem 4.2 since several of the uncertain

terms in this approach are treated through a single normalized uncertainty matrix, F (t) only.

The conservatism is less since, one has to bound only a single term rather than three terms

following the approach in Theorem 4.2.

Example 4.4. Consider another example in the form (4.51) with

A0 =

[

0 0

0 1

]

, A1 =

[

−2 −0.5

0 −1

]

, B2 =

[

0

1

]

,D1 = D2 = 0.2I,D3 = 0, E1 = E2 = I,E3 = 0

For this case also, the controller is designed by setting N = 2. A comparison of maximum

tolerable delay bound for this system is done in the Table 4.4. From the comparison, it is
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Table 4.3: Comparison of delay bound (h̄)

Methods h̄ Controller gain (K)

[90] 0.2250 -

[19] 0.3346 -

[126] 1.3 [-2.1485 -5.6948]

Theorem 4.2 1.2498 [-2246.5 -5142.5]

Corollary 4.4 1.3870 [-370.3688 -867.3798]

clear that the proposed decomposition approach customarily gives less conservative result.

Similar to the previous example, Corollary 4.4 yields better result here as well.

Table 4.4: Comparison of delay bound (h̄)

Methods h̄ Controller gain (K)

[90] 0.2716 -

[118] 0.3015 -

[111] 0.4500 [-4.8122 -7.7129]

[34] 0.5865 [-0.3155 -4.4417]

[126] 0.6900 [-23.2572 -26.1488]

Theorem 4.2 0.6905 [6541.9 -5451.4]

Corollary 4.4 0.7605 [-4228.8 -3048.3]

4.4 Chapter summary

This section summarizes the contributions made in this chapter.

• A Less conservative stabilization criterion for systems with single delay has been pro-

posed.

• The decomposition technique proposed in Chapter 2 is utilized to derive such less

conservative stabilization criteria using static state feedback controller for systems with

constant delay.

• As the proposed decomposition technique does not require a complete LK functional

to derive the stabilization criterion, it results in simple LMI condition.
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• A sufficient stabilization criterion is derived by decomposing the whole delay range into

several intervals and drawing a single one out of them by defining a simple multiple

LK functional.

• Though the decomposition technique gives a sufficient stabilization criteria, they are

less conservative than the existing approach.

• The resulting criterion is independent of the number of decomposition of the delay

interval as a result of which a finite-dimensional LMI is formulated.

• The complexity of the stabilization criterion does not increase with increase in number

of decomposition.

• The stabilization criterion of the nominal system has been easily extended for uncertain

systems.

• Numerical examples are presented to show the effectiveness of the proposed criteria,

which are less conservative than the existing ones while being computationally efficient

for using lesser number of LMI variables.



C H A P T E R 5

Stabilization of systems with

input-delay

In this chapter, improved delay-dependent robust stabilization criteria for systems with

input-delay using state feedback controllers are proposed. To derive such criteria, suit-

able Lyapunov-Krasovskii functional is chosen and free-weighted matrix variable approach

is employed. First, a simple static state feedback robust stabilization criterion is formulated

in terms of LMI. The major issue in such type of stabilization problem is the linearization of

nonlinear terms in the criterion. To address such an issue, a simple linearization technique

is used. Next, the decomposition approach proposed in Chapter 2 is implemented to design

less conservative robust static state feedback controller. Stabilizability of such systems with

a PI-type state feedback controller is then investigated. The PI-type controller includes

both proportional and integral control actions whereas static state feedback controller has

only proportional control action. Due to the involvement of the integral control action, the

dimension of the overall system increases along with the controller dynamics as well. This

might introduce flexibility to control designers to search the control gain parameters in a

higher dimensional space with more number of parameters. This way, robustness improve-

ment using the PI-type controller is addressed in this chapter. Some numerical examples are

considered to demonstrate the effectiveness of the proposed stabilization criteria for input

delay system.
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5.1 Introduction

Time delays in control inputs are often encountered in feedback control systems. Given the

development in the previous chapter, one may wonder what are the differences in stabilization

of systems with state delay and input delay. The differences involved are as follows: (i) In

systems with state delay, the delay is involved with known parameters of the system whereas

in input delay, the delay is involved with unknown parameter, i.e. the controller gain K

that is to be designed, (ii) For systems with input delay, specifically with constant known

delay, a model transformation exists [4, 76, 85] that transforms the system into a non-time-

delay one. Exploiting this transformation a complex structured controller has been designed

in [19,67,110,144]. The same has further been investigated in [14,117,174,179]. These issues

in stabilization of input-delay systems attracts researchers for further investigation.

Using reduction method [85, 110], an input-delayed system is reduced to a delay-free

ordinary system and a controller is designed for the reduced system. Though this approach

overcomes the problems of the conventional Smith predictor method but the approach is

conservative and it requires the exact value of the time-delay. An LMI based approach using

controller with memory proposed in [173] that does not require the exact value of the delay.

The same author further introduces a new state transformation approach in [174] to reduce

the conservatism in previous design. Under this approach, the controller design only requires

to know the change in interval of the input delays rather than the exact values. However,

this method is conservative and uses memory type controller which is complicated to realize

while implementation. By using a simple state feedback controller, an integral inequality

approach is proposed in [179] to obtain a less conservative criterion. For further reduction

in conservatism, a state transformation approach of [174] with descriptor system approach

are used in [14] to obtain the stabilization criterion in terms of LMIs. However, once again,

the drawback of this approach is that it uses memory based controller which is difficult to

realize. This motivates to investigate on stabilization of a input-delay system using simple

LK functional.

In this chapter, state feedback stabilization criteria for uncertain systems with input-

delay have been developed. From the robust stabilization criteria, one can easily obtain

stabilization criteria for nominal systems with input-delay. To obtain the desired criteria, a

free weighted matrix variable method is used to get the delay-dependent criterion via LMI

formulation. During the process of obtaining the criteria, non-linear terms are evolved due to

unknown controller parameter K. To handle this problem, a simple linearization technique

is used. And a tighter delay bound is used for integral approximation in the derivative of the
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functional. First, using the above techniques static state feedback stabilization criterion is

derived. Next, to reduce conservatism, the proposed decomposition technique in Chapter 2 is

used to design static state feedback controller. Finally, a PI (Proportional and Integral)-type

controller is used to improve the tolerable input-delay bound.

5.2 System description

Consider an uncertain system with input delay

ẋ(t) = A0(t)x(t) +B1(t)u(t) +B2(t)u(t− h), (5.1)

where x(t) ∈ ℜn is the state, and u(t) ∈ ℜn is the control input; h is constant delay satisfying

0 ≤ h1 ≤ h ≤ h2, h̄ = h2 − h1; A0(t), B1(t) and B2(t) are matrices with time-varying

uncertainties and can be decomposed as:

A0(t) = A0 +∆A0(t), B1(t) = B1 +∆B1(t), B2(t) = B2 +∆B2(t), (5.2)

where A0, B1 and B2 are constant matrices of appropriate dimensions, and ∆A0(t), ∆B1(t)

and ∆B2(t) are unknown perturbed matrices representing time-varying parameter uncer-

tainties in the system model. Assuming that the uncertainties are norm bounded and can

be represented as:

[

∆A0(t) ∆B1(t) ∆B2(t)
]

=
[

D0F (t)E0 D1F (t)E1 D2F (t)E2

]

, (5.3)

where D0, D1, D2, E0, E1 and E2 are appropriately dimensioned constant matrices, and F (t)

is an unknown real and possibly time-varying matrix with is Lebesgue measurable elements

satisfying F T (t)F (t) ≤ I, ∀t.

5.3 Simple stabilization using memory less controller

This section presents static state feedback controller based robust stabilization using simple

LK functional. The objective is to derive a stabilization criterion for (5.1) using a controller

of the form

u(t) = Kx(t), (5.4)
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whereK is the control gain matrix of appropriate dimension. The closed loop system becomes

ẋ(t) = A0(t)x(t) +B1(t)Kx(t) +B2(t)Kx(t− h), (5.5)

The following lemma will be used to derive main stabilization criterion in this section.

Lemma 5.1. For any arbitrary matrix S1, S2, S3, S4 and S5, the following condition holds:

2XT (t)
[

ST
1 ST

2 ST
3 ST

4 ST
5

]T

× {−ẋ(t) +A0x(t) +B1Kx(t) +B2Kx(t− h)}

+

2
∑

k=0

εkX
T (t)D̂T

k D̂kX(t) + ε−1
0 xT (t)ET

0 E0x(t) + ε−1
1 xT (t)KTET

1 E1Kx(t)

+ε−1
2 xT (t− h)KTET

2 E2Kx(t− h) ≥ 0,

(5.6)

where

X(t) =
[

xT (t) xT (t− h1) xT (t− h) xT (t− h2) ẋT (t)
]T

,

D̂k =
[

DT
k S

T
1 DT

k S
T
2 DT

k S
T
3 DT

k S
T
4 DT

k S
T
5

]

.

Proof. Following (5.5), one can write

2XT (t)
[

ST
1 ST

2 ST
3 ST

4 ST
5

]T

{−ẋ(t) +A0(t)x(t) +B1(t)Kx(t) +B2(t)Kx(t− h)} = 0.

(5.7)

Substituting (5.2) and (5.3) in (5.7) and by following Lemma 2.2, the uncertain terms can

be written as:

2XT (t)
[

ST
1 ST

2 ST
3 ST

4 ST
5

]T

D0F (t)E0x(t)

≤ ε0X
T (t)D̂T

0 D̂0X(t) + ε−1
0 xT (t)ET

0 E0x(t).

(5.8)

2XT (t)
[

ST
1 ST

2 ST
3 ST

4 ST
5

]T

D1F (t)E1Kx(t)

≤ ε1X
T (t)D̂T

1 D̂1X(t) + ε−1
1 xT (t)KTET

1 E1Kx(t).

(5.9)

2XT (t)
[

ST
1 ST

2 ST
3 ST

4 ST
5

]T

D2F (t)E2Kx(t− h)

≤ ε2X
T (t)D̂T

2 D̂2X(t) + ε−1
2 xT (t− h)KTET

2 E2Kx(t− h).

(5.10)

Replacing the terms in (5.8), (5.9) and (5.10) by the uncertain terms of (5.7), one obtains

(5.6).

The above lemma is used to derive the following robust stabilization criterion for (5.5).
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5.3.1 Stabilization criterion

A controller of the form (5.4) is designed for (5.1) using the stabilization criterion presented

below.

Theorem 5.1. System (5.1) is stable if, for arbitrarily chosen real scalar quantities such

as: λ, β, γ and α, there exist matrices P̄ > 0, Q̄j > 0, j = 1, . . . , 4, R̄i > 0, scalars εk,

k = 0, . . . , 2. and arbitrary matrices S̄1, M̄i, N̄i, i = 1, 2, that satisfy the following LMI:















Θl Ẽ0 Ẽ1 Ẽ2

∗ −ε0I 0 0

∗ ∗ −ε1I 0

∗ ∗ ∗ −ε2I















< 0, l = 1, 2, (5.11)

where

Θl =

[

Θ̄ Φ̄l

∗ −R̄2

]

, l = 1, 2, Θ̄ = Θ + D̄, D̄ =

2
∑

k=0

εkD̄
T
k D̄k,

D̄k =
[

DT
k λDT

k βDT
k γDT

k αDT
k

]

, Φ̄1 =
[

0 M̄T
1 N̄T

1 0 0
]T

,

Φ̄2 =
[

0 0 M̄T
2 N̄T

2 0
]T

,Θ = [Θij]i,j=1,..,5 with

Θ11 = Q̄1 + Q̄2 + Q̄3 − R̄1 +A0S̄
T
1 + S̄1A

T
0 +B1Ȳ + Ȳ TB1

T ,

Θ12 = R̄1 + λS̄1A
T
0 + λȲ TBT

1 ,Θ13 = βS̄1A
T
0 + βȲ TBT

1 +B2Ȳ ,Θ14 = γS̄1A
T
0 + γȲ TBT

1 ,

Θ15 = P̄ − S̄T
1 + αS̄1A

T
0 + αȲ TBT

1 ,Θ22 = Q̄4 − Q̄1 − R̄1 + h̄−1(M̄1 + M̄T
1 ),

Θ23 = λB2Ȳ + h̄−1(−M̄1 + N̄T
1 ),Θ24 = 0,Θ25 = −λS̄T

1 ,

Θ33 = −(Q̄3 + Q̄4) + βB2Ȳ + βȲ TBT
2 + h̄−1(−N̄1 − N̄T

1 ) + h̄−1(M̄2 + M̄T
2 ),

Θ34 = γȲ TBT
2 + h̄−1(−M̄2 + N̄T

2 ),Θ35 = −βS̄T
1 + αȲ TBT

2 ,Θ44 = −Q̄2 + h̄−1(−N̄2 − N̄T
2 ),

Θ45 = −γS̄T
1 ,Θ55 = −αS̄1 − αS̄T

1 +
{

h21R̄1 + R̄2

}

, Ẽ0 =
[

E0S̄
T
1 0 0 0 0 0 0

]T

,

Ẽ1 =
[

E1Ȳ 0 0 0 0 0 0
]T

, Ẽ2 =
[

0 0 E2Ȳ 0 0 0 0
]T

,

S−1
1 = S̄1, M̄j = S̄1MjS̄

T
1 , N̄j = S̄1N̄jS̄

T
1 , j = 1, 2, P̄ = S̄1PS̄

T
1 , Q̄i = S̄1QiS̄

T
1 , i = 1, . . . , 4,

Ȳ = KS̄T
1 .
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Proof. Consider the following Lyapunov-Krasovskii functional:

V (t) = xT (t)Px(t) +
2

∑

i=1

t
∫

t−hi

xT (θ)Qix(θ)dθ +

t
∫

t−h

xT (θ)Q3x(θ)dθ

+

t−h1
∫

t−h

xT (θ)Q4x(θ)dθ + h1

t
∫

t−h1

t
∫

θ

ẋT (ϕ)R1ẋ(ϕ)dϕdθ + h̄−1

t−h1
∫

t−h2

t
∫

θ

ẋT (ϕ)R2ẋ(ϕ)dϕdθ.

(5.12)

Differentiating (5.12) with respect to time, one obtains

V̇ (t) = 2xT (t)Pẋ(t) +

3
∑

i=1

xT (t)Qix(t)−

4
∑

i=3

xT (t− h)Qix(t− h)

−xT (t− h1)(Q1 −Q4)x(t− h1)− xT (t− h2)Q2x(t− h2)

+ẋT (t)(h21R1 +R2)ẋ(t)− h1

t
∫

t−h1

ẋT (θ)R1ẋ(θ)dθ − h̄−1

t−h1
∫

t−h2

ẋT (θ)R2ẋ(θ)dθ.

(5.13)

The stability of the (5.5) can be analyzed by checking V̇ (t) is less than zero or not. By

referring Lemma 5.1, the LHS of (5.6) is added to (5.13) in order to ensure that V̇ (t) is taken

along the state trajectory of (5.5). Then, it becomes

2XT (t)
[

ST
1 ST

2 ST
3 ST

4 ST
5

]T

{−ẋ(t) +A0x(t) +B1Kx(t) +B2Kx(t− h)}

+

2
∑

k=0

εkX
T (t)D̂T

k D̂kX(t) + ε−1
0 xT (t)ET

0 E0x(t) + ε−1
1 xT (t)KTET

1 E1Kx(t)

+ε−1
2 xT (t− h)KTET

2 E2Kx(t− h) + 2xT (t)Pẋ(t) +

3
∑

i=1

xT (t)Qix(t)

−

4
∑

i=3

xT (t− h)Qix(t− h)− xT (t− h1)(Q1 −Q4)x(t− h1)

−xT (t− h2)Q2x(t− h2) + ẋT (t)(h21R1 +R2)ẋ(t)

−h1

t
∫

t−h1

ẋT (θ)R1ẋ(θ)dθ − h̄−1

t−h1
∫

t−h2

ẋT (θ)R2ẋ(θ)dθ < 0.

(5.14)

Approximating the two integral terms in the RHS of (5.14) using Lemma 1.2, (5.14) can be
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written as

XT (t)
{

Θ̂ + ρΦ1R
−1
2 ΦT

1 + (1− ρ)Φ2R
−1
2 ΦT

2

}

X(t) < 0, (5.15)

where

Θ̂ = [Θ̂ij]i,j=1,..,5, with

Θ̂11 = Q1 +Q2 +Q3 −R1 + S1A0 +AT
0 S

T
1 + S1B1K +KTB1

TST
1

+

2
∑

k=0

εkS1DkD
T
k S

T
1 ,+ε

−1
1 ET

0 E0 + ε−1
2 KTET

1 E1K,

Θ̂12 = R1 +KTBT
1 S

T
2 +AT

0 S
T
2 +

2
∑

k=0

εkS1DkD
T
k S

T
2 ,

Θ̂13 = AT
0 S

T
3 +KTBT

1 S
T
3 + S1B2K +

2
∑

k=0

εkS1DkD
T
k S

T
3

Θ̂14 = AT
0 S

T
4 +KTBT

1 S
T
4 +

2
∑

k=0

εkS1DkD
T
k S

T
4

Θ̂15 = P − S1 +AT
0 S

T
5 +KTB1

TST
5 +

2
∑

k=0

εkS1DkD
T
k S

T
5 ,

Θ̂22 = Q4 −Q1 −R1 + h̄−1(M1 +MT
1 ) +

2
∑

k=0

εkS2DkD
T
k S

T
2 ,

Θ̂23 = h̄−1(−M1 +NT
1 ) + S2B2K +

2
∑

k=0

εkS2DkD
T
k S

T
3 ,

Θ̂24 =
2

∑

k=0

εkS2DkD
T
k S

T
4 , Θ̂25 = −S2 +

2
∑

k=0

εkS2DkD
T
k S

T
5 ,

Θ̂33 = −(Q3 +Q4) + S3B2K +KTBT
2 S

T
3 + h̄−1(−N1 −NT

1 )

+h̄−1(M2 +MT
2 ) +

2
∑

k=0

εkS3DkD
T
k S

T
3 + ε−1

3 KTET
2 E2K,

Θ̂34 = h̄−1(−M2 +NT
2 ) +KTBT

2 S
T
4 +

2
∑

k=0

εkS3DkD
T
k S

T
4 ,

Θ̂35 = −S3 +KTBT
2 S

T
5 +

2
∑

k=0

εkS3DkD
T
k S

T
5 ,

Θ̂44 = −Q2 − h̄−1(−N2 −NT
2 ) +

2
∑

k=0

εkS4DkD
T
k S

T
4 ,
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Θ̂45 = −S4 +

2
∑

k=0

εkS4DkD
T
k S

T
5 ,

Θ̂55 = −S5 − ST
5 +

{

h1
2R1 +R2

}

+

2
∑

k=0

εkS5DkD
T
k S

T
5 ,

Φ1 =
[

0 MT
1 NT

1 0 0
]T

,Φ2 =
[

0 0 MT
2 NT

2 0
]T

, ρ =
h− h1
h̄

, 0 ≤ ρ ≤ 1.

Now, the stability requirement for (5.5) is

{

Θ̂ + ρΦ1R
−1
2 ΦT

1 + (1− ρ)Φ2R
−1
2 ΦT

2

}

< 0. (5.16)

The LHS of (5.16) is uncertain due to the uncertain ρ. However, it can be represented in

terms of two certain vertices as:

Θ̂ + ΦlR
−1
2 ΦT

l < 0, l = 1, 2. (5.17)

Finally, using Schur complement on (5.17), one obtains

[

Θ̂ Φl

∗ −R2

]

< 0, l = 1, 2. (5.18)

To eliminate the non-linear terms in (5.18), consider S2, S3, S4 and S5 as:

S2 = λS1, S3 = βS1, S4 = γS1, S5 = αS1,

and pre-multiplying and post-multiplying diag
{

S−1
1 S−1

1 S−1
1 S−1

1 S−1
1 S−1

1

}

and its

transpose, and subsequently adopting the linear change in variables as:

S−1
1 = S̄1, M̄j = S̄1MjS̄

T
1 , N̄j = S̄1N̄jS̄

T
1 , j = 1, 2, P̄ = S̄1PS̄

T
1 , Q̄i = S̄1QiS̄

T
1 , i = 1, . . . , 4,

Ȳ = KS̄T
1 .

One obtains

Θ̌ =

[

Θ̃ Φ̄l

∗ −R̄2

]

< 0, l = 1, 2. (5.19)

where

Θ̃ = [Θ̃ij ]i,j=1,..,6, with
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Θ̃11 =

3
∑

i=1

Q̄i − R̄1 +A0S̄
T
1 + S̄1A

T
0 +B1Ȳ + Ȳ TBT

1 + ε−1
0 S̄1E

T
0 E0S̄

T
1 + ε−1

2 Ȳ TET
1 E1Ȳ

+

2
∑

k=0

εkDkD
T
k ,

Θ̃12 = R̄1 + λS̄1A
T
0 + λȲ TBT

1 + λ

2
∑

k=0

εkDkD
T
k ,

Θ̃13 = βS̄1A
T
0 + βȲ TBT

1 +B2Ȳ + β

2
∑

k=0

εkDkD
T
k ,

Θ̃14 = γS̄1A
T
0 + γȲ TBT

1 + γ

2
∑

k=0

εkDkD
T
k ,

Θ̃15 = P̄ − S̄T
1 + αS̄AT

0 + αȲ TBT
1 + α

2
∑

k=0

εkDkD
T
k ,

Θ̃22 = −(Q̄1 − Q̄4)− R̄1 + h̄−1
[

M̄1 + M̄T
1

]

+ λ2
2

∑

k=0

εkDkD
T
k ,

Θ̃23 = h̄−1
[

−M̄1 + N̄T
1

]

+ λB2Ȳ + λβ
2

∑

k=0

εkDkD
T
k ,

Θ̃24 = λγ
2

∑

k=0

εkDkD
T
k , Θ̃25 = −λS̄T

1 + λα
2

∑

k=0

εkDkD
T
k ,

Θ̃33 = −

4
∑

i=3

Q̄i + h̄−1
[

−N̄1 − N̄T
1

]

+ h̄−1
[

M̄2 + M̄T
2

]

+ βB2Ȳ

+βȲ TBT
2 + ε−1

2 Ȳ TET
2 E2Ȳ + β2

2
∑

k=0

εkDkD
T
k ,

Θ̃34 = h̄−1
[

−M̄2 + N̄T
2

]

+ γȲ TBT
2 + γα

2
∑

k=0

εkDkD
T
k ,

Θ̃35 = −βS̄T
1 + αȲ TBT

2 + βα

2
∑

k=0

εkDkD
T
k ,

Θ̃44 = −Q̄2 + h̄−1
[

−N̄2 − N̄T
2

]

+ γ2
2

∑

k=0

εkDkD
T
k ,

Θ̃45 = −γST
1 + γα

2
∑

k=0

εkDkD
T
k ,

Θ̃55 = h21R̄1 + R̄2 − αS̄1 − αS̄T
1 + α2

2
∑

k=0

εkDkD
T
k .
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Separating the nonlinear terms in Θ̌, one can write

Θk +Ξ0 + Ξ1 + Ξ2 < 0, (5.20)

where

Ξ0 =

[

ε−1
0 S̄1E

T
0 E0S̄

T
1 05×5

05×1 01×5

]

,Ξ1 =

[

ε−1
1 Ȳ T

1 E
T
1 E1Ȳ1 05×5

05×1 01×5

]

,

Ξ2 =

[

Ξ21 03×3

03×3 03×3

]

,Ξ21 =

[

02×2 02×1

01×2 ε−1
2 Ȳ T

1 E
T
2 E2Ȳ1

]

.

Finally, employing Schur Complement thrice on (5.20), one obtains (5.11).

The effectiveness of the derived criterion is validated with numerical examples presented

in the next subsection.

5.3.2 Numerical examples

The less conservativeness of the resulting criterion compared to some existing results in

Theorem 5.1 is verified through two numerical examples in this section. For the purpose, the

tuning parameters λ, β, γ and α are searched using fminsearch program of MATLABr.

Example 5.1. Consider a system of (5.1) with [14]

ẋ(t) = (A0 +∆A0)x(t) +B2u(t− h), t ≥ 0, (5.21)

x(0) = x0,u(t) = φ(t), t ∈ [−0.2, 0],

where

A0 =

[

0 1

−1.25 −3

]

, ∆A0 =

[

0 0

q 0

]

, B2 =

[

0

1

]

, h1 = 0, h2 = 0.2.

In the above system description, q is an uncertain parameter with bounding |q| ≤ η. The

conservativeness of the proposed theory on stabilization is verified in terms of designing a

controller that maximizes tolerable η. The maximum η is obtained using Theorem 5.1 as

10.0048. The corresponding tuning parameters λ, β, γ and α are tuned at 4.9119, 0.1613,

−1.0198 and 1.0465 respectively corresponding to a controller K = [−13.9272 − 3.6382].

In [14, 174], the stabilizing controllers are of the form u(t) = Kz(t), where z(t) = x(t) +
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t
∫

t−h0

eA(t−s−h0)B1u(s)ds. Such a controller is complicated in structure due to its integral

part and is difficult to implement. But the approach in this chapter considers a static

state feedback controller of the form u(t) = Kx(t), which is simple in structure and easy

to implement. A clear picture of comparison of present result with some existing ones is

presented in Table 5.1.

The Theorem 5.1 provides a less conservative robust stabilization criterion for systems

with input-delay than that of existing results. The reasons of less conservativeness of the

Theorem 5.1 are stated as follows: (i) A special type of LK functional i.e (5.12) is considered

to describe the energy functional of the system, (ii) The conventional way to introduce the

state information is by replacing the ẋ(t) term directly from the state equation in the deriva-

tive of the LK functional i.e. (5.13). However, such replacement in stabilization problems of

time-delay system does not yield a convenient LMI form for stabilization criterion. Alterna-

tively, one may convert the state equation (5.5) suitably into a quadratic form and thereby

appending the same to V̇i term so that the replacement of ẋ can be avoided. Here, we have

used a quadratic form introducing five free-matrix variables such as S1, S2, S3, S4 and S5

in order to explore the interplay of the different signals in the state dynamics, (iii) Jensen’s

inequality is used to approximate the integral terms in the derivative of the LK functional.

To validate the control design using Theorem 5.1, the simulation result with initial con-

dition x(t) = [−1, 3], t ∈ [−0.2, 0] is presented in Fig. 5.1. The result shows that all the

states of the system are stable using the designed controller (K = [−13.9272 − 3.6382]) by

Theorem 5.1.

Table 5.1: Comparison of robustness maximum η

Approach maximum η Structure of u(t)

[174] 7.2568 u(t) = Kz(t), where z(t) = x(t) +
t
∫

t−h0

eA(t−s−h0)B1u(s)ds

[14] 10.8485 u(t) = Kz(t), where z(t) = x(t) +
t
∫

t−h0

eA(t−s−h0)B1u(s)ds

Theorem 5.1 10.0048 u(t) = Kx(t) where K = [−13.9272 − 3.6382]



108 Stabilization of systems with input-delay

0 1 2 3 4 5
−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

Time

S
y
st
em

st
a
te
s

 

 
x1
x2

Figure 5.1: Variation of system states with respect to time for Example 5.1

Example 5.2. Next, consider system (5.1) with [108]

A0 =









−0.08 −0.03 0.2

0.2 −0.04 −0.005

−0.06 0.2 −0.07









, B1 =









0

0

0









, B2 =









−0.1

−0.2

0.1









,D0 = D1 = D2 = 0,

E0 = E1 = E2 = 0.

For this system, using Theorem 5.1, the maximum delay margin (h̄) is obtained to be 9.1626.

The corresponding tuning parameters λ, β, γ and α are tuned at 0.1408, 0.0121, 0.0056 and

475.3271 respectively that yields a controller K = [0.4464 0.5653 0.4855]. A comparison

of the present result with existing ones is presented in Table 5.2 that shows the less conser-

vativeness of the developed criterion. The designed controller using Theorem 5.1 is used to

obtain the simulation result with initial condition x(t) = [−1, 3,−2], t ∈ [−9.1626, 0] shown

in Fig. 5.2. The simulation result (norm of the states of the system) shows that the system

is stable at h̄ = 9.1626.
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Table 5.2: Maximum Tolerable Delay Bound (h̄)

Approach h̄

[108] 5

Theorem 5.1 9.1626
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‖
x
(t
)‖

Figure 5.2: Variation of norm of the state vector with respect to time for Example
5.2

5.4 Stabilization using delay-decomposition

For further reduction of the conservatism, the decomposition approach is used to design

robust controller for (5.1). To derive such criterion, a simple static state feedback controller

of the form (5.4) is used.

5.4.1 Stabilization criterion

The following theorem presents an LMI based controller design for system (5.1).

Theorem 5.2. System (5.5) is stable if there exist matrices P̄ > 0, Q̄j > 0, j = 1, . . . , 4,
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R̄i > 0 and arbitrary matrices S̄l, M̄i, N̄i, l = 1 . . . 5, i = 1, 2, that satisfy the following LMI:















Υk Ě0 Ě1 Ě2

∗ −ε0I 0 0

∗ ∗ −ε1I 0

∗ ∗ ∗ −ε2I















< 0, (5.22)

where

Υk =

[

Ῡ δφ̄k

∗ −R̄2

]

, k = 1, 2, Ῡ = Υ+ D̄, D̄ =

3
∑

k=1

εkD̄
T
k D̄k,

D̄k =
[

DT
k λDT

k βDT
k γDT

k αDT
k

]

,

φ̄1 =
[

0 M̄T
1 N̄T

1 0 0
]T

, φ̄2 =
[

0 0 M̄T
2 N̄T

2 0
]T

,Υ = [Υij]i,j=1,...,5,

Υ11 =

3
∑

i=1

Q̄i − R̄1 +A0S̄
T
1 + S̄1A

T
0 +B1Ȳ + Ȳ TBT

1 ,Υ12 = R̄1 + λS̄1A
T
0 + λȲ TBT

1 ,

Υ13 = βS̄1A
T
0 + βȲ TBT

1 +B2Ȳ ,Υ14 = γS̄1A
T
0 + γȲ TBT

1 ,

Υ15 = P̄ − S̄T
1 + αS̄AT

0 + αȲ TBT
1 ,Υ22 = −(Q̄2 − Q̄4)− R̄1 + δ

[

M̄1 + M̄T
1

]

,

Υ23 = δ
[

−M̄1 + N̄T
1

]

+ λB2Ȳ ,Υ24 = 0,Υ25 = −λS̄T
1 ,

Υ33 = −

4
∑

i=3

Q̄i + δ
[

−N̄1 − N̄T
1

]

+ δ
[

M̄2 + M̄T
2

]

+ βB2Ȳ + βȲ TBT
2 ,

Υ34 = δ
[

−M̄2 + N̄T
2

]

+ γȲ TBT
2 ,Υ35 = −βS̄T

1 + αȲ TBT
2 ,

Υ44 = −Q̄1 + δ
[

−N̄2 − N̄T
2

]

,Υ45 = −γS̄T
1 ,

Υ55 = (h̄− δ)2R̄1 + δ2R̄2 − αS̄1 − αS̄T
1 , Ě0 =

[

E0S̄
T
1 01×6

]T

, Ě1 =
[

E1Ȳ 01×6

]T

,

Ě2 =
[

0 0 E2Ȳ 01×4

]T

, S̄1 = S−1
1 , P̄ = S̄1PS̄

T
1 , M̄i = S̄1MiS̄

T
1 ,

N̄i = S̄1NiS̄
T
1 , i = 1, 2, Q̄j = S̄1QjS̄

T
1 , j = 1, ..4, Ȳ = KS̄T

1 .
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Proof. Consider a simple LK functional for ith interval that h ∈ [h(i−1), hi] as:

Vi(xt, ẋt) = xT (t)Px(t) +

2
∑

j=1

t
∫

t−h(i+1−j)

xT (θ)Qjx(θ)dθ +

t
∫

t−h

xT (θ)Q3x(θ)dθ

+

t−h(i−1)
∫

t−h

xT (θ)Q4x(θ)dθ + h(i−1)

t
∫

t−h(i−1)

t
∫

θ

ẋT (φ)R1ẋ(φ)dφdθ + δ

t−h(i−1)
∫

t−hi

t
∫

θ

ẋT (φ)R2ẋ(φ)dφdθ.

(5.23)

Differentiating Vi with respect to time along the state trajectory of (5.5) yields

V̇i(xt, ẋt) = 2xT (t)Pẋ(t) +

3
∑

k=1

xT (t)Qkx(t)− xT (t− h(i−1))(Q2 −Q4)x(t− h(i−1))

−

4
∑

k=3

xT (t− h)Qkx(t− h)− xT (t− hi)Q1x(t− hi) + ẋT (t)
{

h2(i−1)R1 + δ2R2

}

ẋ(t)

−h(i−1)

t
∫

t−h(i−1)

ẋT (θ)R1ẋ(θ)dθ − δ

t−h(i−1)
∫

t−hi

ẋT (θ)R2ẋ(θ)dθ.

(5.24)

Instead of replacing ẋ(t) by directly using (5.5), we consider the quadratic formulation of

the system dynamics (5.5) as:

2
{

xT (t)S1 + xT (t− hi−1)S2 + xT (t− h)S3 + xT (t− hi)S4 + ẋT (t)S5
}

×{−ẋ(t) +A0(t)x(t) +B1(t)Kx(t) +B2(t)Kx(t− h)} = 0,
(5.25)

where Sk, k = 1, . . . , 5 are arbitrary matrices of appropriate dimensions. Next, the bounds

of the uncertain terms in (5.25) are obtained. Following Lemma 5.1, one may write

2ξT (t)
[

ST
1 ST

2 ST
3 ST

4 ST
5

]T [

D0F (t)E0x(t) D1F (t)E1Kx(t) D2F (t)E2Kx(t− h)
]

≤
3

∑

k=1

εkξ
T (t)D̂T

k D̂kξ(t) + ε−1
0 xT (t)ET

0 E0x(t) + ε−1
1 xT (t)KTET

1 E1Kx(t)

+ε−1
2 xT (t− h)KTET

2 E2Kx(t− h),

(5.26)
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where

ξ(t) =
[

xT (t) xT (t− h(i−1)) xT (t− h) xT (t− hi) ẋT (t)
]T

,

D̂k =
[

DT
k S

T
1 DT

k S
T
2 DT

k S
T
3 DT

k S
T
4 DT

k S
T
5

]

.

Adding (5.25) with (5.24) by approximating the uncertain terms using (5.26), one obtains

V̇ (t) ≤ 2ξT (t)
[

ST
1 ST

2 ST
3 ST

4 ST
5

]T

{−ẋ(t) + (A0 +B1K)x(t) +B2x(t− h)}

+

3
∑

k=1

εk−1ξ
T (t)D̂T

k−1D̂k−1ξ(t) + ε−1
0 xT (t)ET

0 E0x(t) + ε−1
1 xT (t)KTET

1 E1Kx(t)

+ε−1
2 xT (t− h)KTET

2 E2Kx(t− h) + 2xT (t)Pẋ(t) +

3
∑

k=1

xT (t)Qkx(t)

−xT (t− h(i−1))(Q2 −Q4)x(t− h(i−1))−

4
∑

k=3

xT (t− h)Qkx(t− h)− xT (t− hi)Q1x(t− hi)

+ẋT (t)
{

h2(i−1)R1 + δ2R2

}

ẋ(t)− h(i−1)

t
∫

t−h(i−1)

ẋT (θ)R1ẋ(θ)dθ − δ

t−h(i−1)
∫

t−hi

ẋT (θ)R2ẋ(θ)dθ.

(5.27)

Following Lemma 1.2, the first integral term in (5.27) satisfies

− h(i−1)

t
∫

t−h(i−1)

ẋT (θ)R1ẋ(θ)dθ ≤

[

x(t)

x(t− h(i−1))

][

−R1 R1

∗ −R1

][

x(t)

x(t− h(i−1))

]

. (5.28)

and the second one due to having uncertain delay parameter satisfies

−δ

t−h(i−1)
∫

t−hi

ẋT (θ)R2ẋ(θ)dθ =

[

x(t− h(i−1))

x(t− h)

]T {

δ

[

M1 +MT
1 −M1 +NT

1

∗ −N1 −NT
1

]

+δ2ρ

[

M1

N1

]

R−1
2

[

M1

N1

]T






[

x(t− h(i−1))

x(t− h)

]

+

[

x(t− h)

x(t− h(i))

]T {

δ

[

M2 +MT
2 −M2 +NT

2

∗ −N2 −NT
2

]
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+δ2(1− ρ)

[

M2

N2

]

R−1
2

[

M2

N2

]T






[

x(t− h)

x(t− h(i))

]

. (5.29)

Approximating the integral terms of (5.27) using (5.28) and (5.29), one obtains

V̇i(t) ≤ ξT (t)(ψ + h2i−1Ωi + ρδ2φ1R
−1
2 φT1 + (1− ρ)δ2φ2R

−1
2 φT2 )ξ(t), (5.30)

where

ψ11 =

3
∑

i=1

Qi −R1 + S1A0 +AT
0 S

T
1 + S1B1K +KTBT

1 S
T
1 + ε−1

0 ET
0 E0

+ε−1
1 KTET

1 E1K +
2

∑

k=0

εkS1DkD
T
k S

T
1 ,

ψ12 = R1 +AT
0 S

T
2 +KTBT

1 S
T
2 +

2
∑

k=0

εkS1DkD
T
k S

T
2 ,

ψ13 = AT
0 S

T
3 +KTBT

1 S
T
3 + S1B2K +

2
∑

k=0

εkS1DkD
T
k S

T
3 ,

ψ14 = AT
0 S

T
4 +KTBT

1 S
T
4 +

2
∑

k=0

εkS1DkD
T
k S

T
4 ,

ψ15 = P − S1 +AT
0 S

T
5 +KTBT

1 S
T
5 +

2
∑

k=0

εkS1DkD
T
k S

T
5 ,

ψ22 = −(Q2 −Q4)−R1 + δ
[

M1 +MT
1

]

+

2
∑

k=0

εkS2DkD
T
k S

T
2 ,

ψ23 = δ
[

−M1 +NT
1

]

+ S2B2K +

2
∑

k=0

εkS2DkD
T
k S

T
3 ,

ψ24 =
2

∑

k=0

εkS2DkD
T
k S

T
4 , ψ25 = −S2 +

2
∑

k=0

εkS2DkD
T
k S

T
5 ,

ψ33 = −
4

∑

i=3

Qi + δ
[

−N1 −NT
1

]

+ δ
[

M2 +MT
2

]

+ S3B2K +KTBT
2 S

T
3

+ε−1
2 KTET

2 E2K +
2

∑

k=0

εkS3DkD
T
k S

T
3 ,

ψ34 = δ
[

−M2 +NT
2

]

+KTBT
2 S

T
4 +

2
∑

k=0

εkS3Dk−1D
T
k−1S

T
4 ,
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ψ35 = −S3 +KTBT
2 S

T
5 +

2
∑

k=0

εkS3DkD
T
k S

T
5 ,

ψ44 = −Q1 + δ
[

−N2 −NT
2

]

+

2
∑

k=0

εkS4DkD
T
k S

T
4 ,

ψ45 = −S4 +

2
∑

k=0

εkS4DkD
T
k S

T
5 , ψ55 = δ2R2 − S5 − ST

5 +

2
∑

k=0

εkS4DkD
T
k S

T
5 ,

ρ =
h̄− hi−1

δ
, 0 ≤ ρ ≤ 1,Ωi =

[

04n×4n 04n×n

0n×4n R1

]

.

Therefore, the stability requirement for the ith interval is

ψ + h2(i−1)Ωi + δ2φjR
−1
2 φTj < 0, j = 1, 2. (5.31)

To this end, note that, Ωi ≥ 0 and h2(i−1)Ωi term is maximum when h ∈ [h(N−1), h̄], the

N th interval. Therefore, irrespective of h lies in any of the intervals, the following condition

always ensures stability of (5.5):

ψ + h2(N−1)ΩN + δ2φjR
−1
2 φTj < 0, j = 1, 2. (5.32)

One can write (5.32) in LMI form as:

[

ψ̄ δφk

∗ −R2

]

< 0, k = 1, 2, (5.33)

where ψ̄ = ψ + h2(i−1)Ωi.

For linearization, considering S2, S3, S4, S5 as: S2 = λS1, S3 = βS1, S4 = γS1, S5 = αS1

and then, pre- and post-multiplying by diag
{

S−1
1 S−1

1 S−1
1 S−1

1 S−1
1 S−1

1

}

and its

transpose respectively, and subsequently adopting the change of variables.

S̄1 = S−1
1 , P̄ = S̄1PS̄

T
1 , M̄i = S̄1MiS̄

T
1 , N̄i = S̄1NiS̄

T
1 , i = 1, 2, Q̄j = S̄1Qj S̄

T
1 , j = 1, . . . , 4,

Ȳ = KS̄T
1 .

One obtains from (5.33),

ψ̌ =

[

ψ̃ φ̄l

∗ −R̄2

]

< 0, l = 1, 2, (5.34)
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where

ψ̃ = [ψ̃ij ]i,j=1,...,5,

ψ̃11 =
3

∑

i=1

Q̄i − R̄1 +A0S̄
T
1 + S̄1A

T
0 +B1Ȳ + Ȳ TBT

1 + ε−1
1 S̄1E

T
0 E0S̄

T
1

+ε−1
2 Ȳ TET

1 E1Ȳ +
2

∑

k=0

εkDkD
T
k ,

ψ̃12 = R̄1 + λS̄1A
T
0 + λȲ TBT

1 + λ
2

∑

k=0

εkDkD
T
k ,

ψ̃13 = βS̄1A
T
0 + βȲ TBT

1 +B2Ȳ + β

2
∑

k=0

εkDkD
T
k ,

ψ̃14 = γS̄1A
T
0 + γȲ TBT

1 + γ

2
∑

k=0

εkDkD
T
k ,

ψ̃15 = P̄ − S̄T
1 + αS̄AT

0 + αȲ TBT
1 + α

2
∑

k=0

εkDkD
T
k ,

ψ̃22 = −(Q̄2 − Q̄4)− R̄1 + δ
[

M̄1 + M̄T
1

]

+ λ2
2

∑

k=0

εkDkD
T
k ,

ψ̃23 = δ
[

−M̄1 + N̄T
1

]

+ λB2Ȳ + λβ

2
∑

k=0

εkDkD
T
k ,

ψ̃24 = λγ

2
∑

k=0

εkDkD
T
k , ψ̃25 = −λS̄T

1 + λα

2
∑

k=0

εkDkD
T
k ,

ψ̃33 = −
4

∑

i=3

Q̄i + δ
[

−N̄1 − N̄T
1

]

+ δ
[

M̄2 + M̄T
2

]

+ βB2Ȳ + βȲ TBT
2

+ε−1
3 Ȳ TET

2 E2Ȳ + β2
2

∑

k=0

εkDkD
T
k ,

ψ̃34 = δ
[

−M̄2 + N̄T
2

]

+ γȲ TBT
2 + γα

2
∑

k=0

εkDkD
T
k ,

ψ̃35 = −βS̄T
1 + αȲ TBT

2 + βα
2

∑

k=0

εkDkD
T
k ,

ψ̃44 = −Q̄1 + δ
[

−N̄2 − N̄T
2

]

+ γ2
2

∑

k=0

εkDkD
T
k ,
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ψ̃45 = −γS̄T
1 + γα

2
∑

k=0

εkDkD
T
k , ψ̃55 = δ2R̄2 − αS̄1 − αS̄T

1 + α2
2

∑

k=0

εkDkD
T
k .

Separating the nonlinear terms in ψ̌, one can write (5.34) as:

Υk +Ξ0 + Ξ1 + Ξ2 < 0, (5.35)

where

Ξ0 =

[

ε−1
0 S̄1E

T
0 E0S̄

T
1 05×5

05×1 01×5

]

,Ξ1 =

[

ε−1
1 Ȳ T

1 E
T
1 E1Ȳ1 05×5

05×1 01×5

]

,

Ξ2 =

[

Ξ21 03×3

03×3 03×3

]

,Ξ21 =

[

02×2 02×1

01×2 ε−1
2 Ȳ T

1 E
T
2 E2Ȳ1

]

.

Applying Schur complement on (5.35), one obtains (5.22).

The following corollary is a simplified form of Theorem 5.2 by eliminating the number of

free matrix variables. However, this involves approximation for simplification.

Corollary 5.1. System (5.5) is stable if there exist P̄ > 0, Q̄k > 0, R̄j > 0, k = 1, . . . , 4,

j = 1, 2 satisfying the following LMI condition:















Σ̃ Ě0 Ě1 Ě2

∗ −ε0I 0 0

∗ ∗ −ε1I 0

∗ ∗ ∗ −ε2I















< 0, (5.36)

where

Σ̃ = Σ̄ + D̄, Σ̄ = [Σ̄ij]i,j=1,...,5, Σ̄11 = Υ11, Σ̄12 = Υ12, Σ̄13 = Υ13, Σ̄14 = Υ14,

Σ̄15 = Υ15, Σ̄22 = Q̄4 − Q̄2 − R̄1 − R̄2, Σ̄23 = λB2Ȳ + R̄2, Σ̄24 = Υ24, Σ̄25 = Υ25,

Σ̄33 = −
4

∑

i=3

Q̄i + βB2Ȳ + βȲ TBT
2 − 2R̄2, Σ̄34 = γȲ TBT

2 + R̄2, Σ̄35 = Υ35,

Σ̄44 = −Q̄1 − R̄2, Σ̄45 = Υ45, Σ̄55 = Υ55.

Proof. Since the last term in (5.31) is positive definite, one may reduce the stability condition
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in the form of a single matrix inequalities as:

ψ + h2N−1ΩN + δ2φ1R
−1
2 φT1 + δ2φ2R

−1
2 φT2 < 0. (5.37)

one may write (5.37) as:

ψ̄ + δ2φ1R
−1
2 φT1 + δ2φ2R

−1
2 φT2 < 0, (5.38)

where ψ̄ = ψ + h2(N−1)ΩN . Separating the M1, N1, M2 and N2 terms from ψ̄, one obtains

υ+(δφ1)I
T
1 +I1(δφ1)

T +(δφ1)R
−1
2 (δφ1)

T +(δφ2)I
T
2 +I2(δφ2)

T +(δφ2)R
−1
2 (δφ2)

T < 0, (5.39)

where

υ = [υij ]i,j=1,...,5, υ11 = ψ11, υ12 = ψ12, υ13 = ψ13, υ14 = ψ14, υ15 = ψ15,

υ22 = −(Q2 −Q4)−R1 +
2

∑

k=0

εkS2DkD
T
k S

T
2 , υ23 = S2B2K +

2
∑

k=0

εkS2DkD
T
k S

T
3 , υ24 = ψ24,

υ25 = ψ25, υ33 = −

4
∑

k=3

Qk + S3B2K +KTBT
2 S

T
3 + ε−1

2 KTET
2 E2K +

2
∑

k=0

εkS3DkD
T
k S

T
3 ,

υ34 = KTBT
2 S

T
4 +

2
∑

k=0

εkS3DkD
T
k S

T
4 , υ35 = ψ35, υ44 = −Q1 +

3
∑

k=0

εkS4DkD
T
k S

T
4 , υ45 = ψ45,

υ55 = ψ55, I1 =
[

0 I −I 0 0
]T

, I2 =
[

0 0 I −I 0
]T

.

One can write (5.39) as:

υ+(δφ1 + I1R2)R
−1
2 (δφ1 + I1R2)

T−I1R2I
T
1 +(δφ2 + I2R2)R

−1
2 (δφ2 + I2R2)

T−I2R2I
T
2 < 0.

(5.40)

Further, following Lemma 1.2, substituting the free variables asMi =Mi
T = −Ni = −Ni

T =

−δ−1R2, the above stability condition yields.

ῡ < 0, (5.41)

where

ῡ = [ῡij ]i,j=1,...,5, ῡ11 = υ11, ῡ12 = υ12, ῡ13 = υ13, ῡ14 = υ14, ῡ15 = υ15,
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ῡ22 = −(Q2 −Q4)−R1 −R2 +

3
∑

k=1

εkS2DkD
T
k S

T
2 ,

ῡ23 = S2B2K +R2 +

3
∑

k=1

εkS2DkD
T
k S

T
3 , ῡ24 = υ24, ῡ25 = υ25,

ῡ33 = −

4
∑

k=3

Qk + S3B2K +KTBT
2 S

T
3 + ε−1

2 KTET
2 E2K − 2R2 +

3
∑

k=1

εkS3DkD
T
k S

T
3 ,

ῡ34 = KTBT
2 S

T
4 +R2 +

3
∑

k=1

εkS3DkD
T
k S

T
4 , ῡ35 = υ35,

ῡ44 = −Q1 −R2 +
3

∑

k=1

εkS4DkD
T
k S

T
4 , ῡ45 = υ45, ῡ55 = υ55.

For linearization, considering S2, S3, S4 and S5 as: S2 = λS1, S3 = βS1, S4 = γS1, S5 = αS1

and then, pre- and post-multiplying by diag
{

S−1
1 S−1

1 S−1
1 S−1

1 S−1
1

}

and its transpose

respectively, and subsequently adopting the change of variables

S̄1 = S−1
1 , P̄ = S̄1PS̄

T
1 , M̄i = S̄1MiS̄

T
1 , N̄i = S̄1NiS̄

T
1 , i = 1, 2, Q̄j = S̄1QjS̄

T
1 , j = 1, ..4,

Ȳ = KS̄T
1 .

One obtains (5.36).

5.4.2 Numerical examples

In this section some numerical examples are presented to validate proposed theorem in the

previous section.

Example 5.3. Consider the Example 5.1, the maximum η (ηmax) is achieved using The-

orem 5.2 to be 10.0480. For this system, the tuning parameters λ, β, γ and α are tuned at

0.0434, −0.1685, 0.1236 and 0.2114 respectively by a controller K =
[

−13.9843 −3.6384
]

.

The obtained ηmax using Theorem 5.2 is compared with that obtained using Theorem

5.1 in Table 5.3. To validate the proposed Theorem 5.2, the simulation results using the

designed controller (K =
[

−13.9843 −3.6384
]

) with initial condition x(t) = [3,−2],

t ∈ [−10.0480, 0] is presented in Fig. 5.3. This results shows that the states of the closed-

loop system are stable at ηmax = 10.0480.



5.4 Stabilization using delay-decomposition 119

Table 5.3: Comparison of robustness ηmax

Approach ηmax Structure of u(t)

Theorem 5.1 10.0048 u(t) = Kx(t)

Theorem 5.2 10.0480 u(t) = Kx(t)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

0

2

4

6

8

10

12

14

Time

S
y
st
em

st
a
te
s

 

 
x1
x2

Figure 5.3: Variation of system states with respect to time for Example 5.3

Example 5.4. Next, consider system (5.1) with [108]

A0 =









−0.08 −0.03 0.2

0.2 −0.04 −0.005

−0.06 0.2 −0.07









, B1 =









0

0

0









, B2 =









−0.1

−0.2

0.1









,

D0 = D1 = D2 = 0 and E0 = E1 = E2 = 0.

For this system, using Theorem 5.2, the maximum delay margin (h̄) is obtained to be 9.2541.

The corresponding tuning parameters λ, β, γ and α are tuned at −1.0092, 0.0017, 0.0075 and

89.6665 respectively that yields a controller K = [0.4419 0.5597 0.4806]. A comparison
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of the present results with existing one in [108] is presented in Table 5.4 that shows the less

conservativeness of the developed criterion.

Table 5.4: Maximum Tolerable Delay Bound (h̄)

Approach h̄

[108] 5

Theorem 5.1 9.1626

Theorem 5.2 9.2541

From the above two examples, it may be noted that the static state-feedback stabilization

criterion using delay decomposition approach obtained in the previous section is slightly less

conservative as compared static state-feedback stabilization criterion derived without delay-

decomposition approach proposed in Chapter 2. It is expected that the former one will reduce

the conservativeness extensively. However, during the process of designing the controller gain

matrix (K), a nonlinear matrix inequality of the form (5.44) is obtained. To linearize such

nonlinear matrix inequality, the matrix variables are approximated as S2 = λS1, S3 = βS1,

S4 = γS1, S5 = αS1. The involvement of this approximation process might be a reason that

considerable reduction in conservativeness could not be attained. The further reduction of

conservatism can be investigated by using a controller of higher degree of freedom.

5.5 Stabilization criterion using PI-type controller

Next, we consider designing PI-type state feedback controller for systems with input delays

5.5.1 The PI controller

A stabilization criterion is derived in this section for system (5.1) using a state-feedback

PI-controller of the form

u(t) = Kpx(t) +KI

t
∫

0

x(θ)dθ, (5.42)

where Kp and KI are the control gains to be designed so that the system is stabilized.

Consider

ż(t) = x(t). (5.43)
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and

x̄(t) =
[

xT (t) zT (t)
]T

. (5.44)

So, the control input (5.42) can now be written as:

u(t) =
[

Kp KI

]

x̄(t). (5.45)

Using the controller (5.45) in (5.1), the augmented closed-loop system can be written as:

˙̄x(t) = Ā0x̄(t) + B̄1Kx̄(t) + B̄2Kx̄(t− h), (5.46)

where

Ā0 =

[

(A0 +∆A0(t)) 0

I 0

]

, B̄0 =

[

(B1 +∆B1(t))

0

]

, B̄1 =

[

(B2 +∆B2(t))

0

]

,

K =
[

Kp KI

]

.

The following lemma is used to derive main stability criterion.

Lemma 5.2. For any arbitrary matrices S1, S2, S3, S4 and S5 the following condition holds:

2ξT (t)
[

ST
1 ST

2 ST
3 ST

4 ST
5

]T

{

− ˙̄x(t) + Ā0x̄(t) + B̄1Kx̄(t) + B̄2Kx̄(t− h)
}

= 0,

(5.47)

where

ξ(t) =
[

x̄T (t) x̄T (t− h1) x̄T (t− h(t)) x̄T (t− h2) ˙̄x
T
(t)

]T

.

Proof: Using (5.46), one can write

{

− ˙̄x(t) + Ā0x̄(t) + B̄1Kx̄(t) + B̄2Kx̄(t− h)
}

= 0. (5.48)

One obtains (5.47) by multiplying 2ξT (t)
[

ST
1 ST

2 ST
3 ST

4 ST
5

]T

with (5.48).

The objective of this section is to design a controller of the form (5.42) for the system

(5.1).
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5.5.2 Stabilization criterion

The following stabilization criterion is used to design the PI-controller for (5.1).

Theorem 5.3. System (5.46) is stable if, for arbitrarily chosen λ, β, γ and α, there exist

matrices P̄ > 0, Q̄j > 0, j = 1, . . . , 4, R̄i > 0, and arbitrary matrices S̄1, M̄i, N̄i, i = 1, 2,

that satisfy the following LMI:

[

Θ̄ φ̄l

∗ −R̄2

]

< 0, l = 1, 2, (5.49)

where

φ̄1 =
[

0 M̄T
1 N̄T

1 0 0
]T

, φ̄2 =
[

0 0 M̄T
2 N̄T

2 0
]T

,

Θ̄ = [Θ̄ij ]i,j=1,..,5 with Θ̄11 =
3

∑

i=1

Q̄i − R̄1 + Ā0S̄
T
1 + S̄1Ā

T
0 + B̄1Ȳ + Ȳ T B̄T

1 ,

Θ12 = R̄1 + λS̄1Ā
T
0 + λȲ T B̄T

1 ,Θ13 = B̄2Ȳ + βS̄1Ā
T
0 + βȲ T B̄T

1 ,

Θ14 = γS̄1Ā
T
0 + γȲ T B̄T

1 ,Θ15 = P̄ − S̄T
1 + αS̄1Ā

T
0 + αȲ T B̄T

1 ,

Θ22 = −
(

Q̄1 − Q̄4

)

− R̄1 + h̄−1
[

M̄1 + M̄T
1

]

,Θ23 = λB̄2Ȳ + h̄−1
[

−M̄1 + N̄T
1

]

,Θ24 = 0,

Θ25 = −λS̄T
1 ,Θ33 = −

4
∑

i=3

Q̄i + βB̄2Ȳ + βȲ T B̄T
2 + h̄−1

[

−N̄1 − N̄T
1

]

+ h̄−1
[

M̄2 + M̄T
2

]

,

Θ34 = γȲ T B̄T
2 + h̄−1

[

−M̄2 + N̄T
2

]

,Θ35 = −βS̄T
1 + αȲ T B̄T

2 ,

Θ44 = −Q̄2 + h̄−1
[

−N̄2 − N̄T
2

]

,Θ45 = −γS̄T
1 ,Θ55 = h21R̄1 + R̄2 − αS̄T

1 − αS̄1,

S̄1 = S−1
1 , P̄ = S̄1PS̄

T
1 , Q̄i = S̄1QiS̄

T
1 , i = 1, ..., 4, M̄j = S̄1Mj S̄

T
1 , S̄1Nj S̄

T
1 = N̄j , j = 1, 2,

Ȳ = KS̄T
1 .

Proof: Consider the following Lyapunov-Krasovskii functional

V (t) = x̄T (t)Px̄(t) +

2
∑

i=1

t
∫

t−hi

x̄T (θ)Qix̄(θ)dθ +

t
∫

t−h

x̄T (θ)Q3x̄(θ)dθ

+

t−h1
∫

t−h

x̄T (θ)Q4x̄(θ)dθ + h1

t
∫

t−h1

t
∫

θ

˙̄x
T
(ϕ)R1 ˙̄x(ϕ)dϕdθ + h̄−1

t−h1
∫

t−h2

t
∫

θ

˙̄x
T
(ϕ)R2 ˙̄x(ϕ)dϕdθ.

(5.50)

Differentiating (5.50) with respect to time along the state trajectory of (5.48) is
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V̇ (t) = 2x̄T (t)P ˙̄x(t) +
3

∑

i=1

x̄T (t)Qix̄(t)−
4

∑

i=3

(1− µ)x̄T (t− h(t))Qix̄(t− h(t))

−x̄T (t− h1)(Q1 −Q4)x̄(t− h1)− x̄T (t− h2)Q2x̄(t− h2)

+ ˙̄x
T
(t)(h21R1 +R2) ˙̄x(t)− h1

t
∫

t−h1

˙̄x
T
(θ)R1 ˙̄x(θ)dθ − h̄−1

t−h1
∫

t−h2

˙̄x
T
(θ)R2 ˙̄x(θ)dθ.

(5.51)

The stability of the (5.48) can be analyzed by checking V̇ (t) is less than zero or not, the

R.H.S. of (5.47) is added to (5.51). Then, it becomes

2ξT (t)
[

ST
1 ST

2 ST
3 ST

4 ST
5

]T
{

− ˙̄x(t) + Ā0x̄(t) + B̄1Kx̄(t) + B̄2Kx̄(t− h)
}

+2x̄T (t)P ˙̄x(t) +
3

∑

i=1

x̄T (t)Qix̄(t)−
4

∑

i=3

x̄T (t− h)Qix̄(t− h)

−x̄T (t− h1)(Q1 −Q4)x̄(t− h1)− x̄T (t− h2)Q2x̄(t− h2)

+ ˙̄x
T
(t)(h21R1 +R2) ˙̄x(t)− h1

t
∫

t−h1

˙̄x
T
(θ)R1 ˙̄x(θ)dθ − h̄−1

t−h1
∫

t−h2

˙̄x
T
(θ)R2 ˙̄x(θ)dθ.

(5.52)

Approximating the two integral terms in the RHS of (5.52) using Lemma 1.2, (5.52) can be

written as

ξT (t)
{

Θ+ ρφ1R
−1
2 φT1 + (1− ρ)φ2R

−1
2 φT2

}

ξ(t), (5.53)

Note that, (5.53) is polytope of matrices and is negative definite if it’s two certain vertices

are negative definite individually. Then, the stability requirement can be written as:

Θ + φlR
−1
2 φTl < 0, l = 1, 2. (5.54)

Finally, using Schur Complement on (5.54), one obtains

[

Θ φl

∗ −R2

]

< 0, l = 1, 2, (5.55)

where

φ1 =
[

0 MT
1 NT

1 0 0
]T

, φ2 =
[

0 0 MT
2 NT

2 0
]T

,
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Θ = [Θij ]i,j=1,..,5 with

Θ11 =

3
∑

i=1

Qi −R1 + S1Ā0 + ĀT
0 S

T
1 + S1B̄1K +KT B̄T

1 S
T
1 ,

Θ12 = R1 + ĀT
0 S

T
2 +KT B̄T

1 S
T
2 ,Θ13 = S1B̄2K + ĀT

0 S
T
3 +KT B̄T

1 S
T
3 ,

Θ14 = ĀT
0 S

T
4 +KT B̄T

1 S
T
4 ,Θ15 = P − S1 + ĀT

0 S
T
5 +KT B̄T

1 S
T
5 ,

Θ22 = −(Q1 −Q4)−R1 + h̄−1
[

M1 +MT
1

]

,

Θ23 = S2B̄2K + h̄−1
[

−M1 +NT
1

]

,Θ24 = 0,Θ25 = −S2,

Θ33 = −

4
∑

i=3

Qi + S3B̄2K +KT B̄T
2 S

T
3 + h̄−1

[

−N1 −NT
1

]

+ h̄−1
[

M2 +MT
2

]

,

Θ34 = KT B̄T
2 S

T
4 + h̄−1

[

−M2 +NT
2

]

,Θ35 = −S3 +KT B̄T
2 S

T
5 ,

Θ44 = −Q2 + h̄−1
[

−N2 −NT
2

]

,Θ45 = −S4,Θ55 = h21R1 +R2 − S5 − ST
5 .

The nonlinear terms in (5.55) can be eliminated by considering S2, S3, S4 and S5 as:

S2 = λS1, S3 = βS1, S4 = γS1, S5 = αS1.

and then pre- and post-multiplying (5.55) by

diag
{

S−1
1 S−1

1 S−1
1 S−1

1 S−1
1 S−1

1

}

and its transpose respectively, and subsequently adopting the change of variables

S̄1 = S−1
1 , P̄ = S̄1PS̄

T
1 , M̄i = S̄1MiS̄

T
1 , N̄i = S̄1NiS̄

T
1 , i = 1, 2, Q̄j = S̄1QjS̄

T
1 ,

j = 1, . . . , 4, Ȳ = KS̄T
1 .

With the above procedure, one finally obtains (5.49).

To verify the above criterion proposed in this section, two numerical examples are con-

sidered in the next section.

5.5.3 Numerical examples

Some numerical examples are presented in this section to validate the stabilization criterion

developed in the previous section.

Example 5.5. Consider the system in Example 5.1. Also recollect that the maximum

η (ηmax) is achieved using Theorem 5.3 to be 28.7690. For this same system, using LMI
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(5.49) the tuning parameters λ, β, γ and α are tuned as 2.5107, −4.4885, 2.9221 and 0.9954

respectively with a controller K =
[

Kp KI

]

, where Kp =
[

−33.1133 −4.7441
]

and

KI =
[

−0.0397 −0.0008
]

, which is more robust than the existing controllers in [14, 174]

since ηmax obtained for this case is quite large. A comparison of all the results is presented

in Table 5.3. The simulation result (norm of the states of the system) is presented with

x(t) = [5,−2,−3,−1], t ∈ [−28.7690, 0] initial condition in Fig. 5.4 using the PI-type

controller for ηmax = 28.7690. The results shows that the states are stable.

Table 5.5: Comparison of robustness ηmax

Approach ηmax Structure of u(t)

Theorem 5.1 10.0048 u(t) = Kx(t)

Theorem 5.2 10.0480 u(t) = Kx(t)

Theorem 5.3 28.7690 u(t) = Kpx(t) + KI

t
∫

0

x(θ)dθ where

Kp =
[

−33.1133 −4.7441
]

and KI =
[

−0.0397 −0.0008
]

Example 5.6. Consider another system of (5.1) with [14]

ẋ(t) = (A0 +∆A0)x(t) +B1u(t) +B2u(t− h), t ≥ 0, (5.56)

x(0) = x0, u(t) = φ(t), t ∈ [−0.4, 0],

where

A0 =

[

0 0

1 −5

]

, ∆A0 =

[

q 0

0 q

]

, B1 =

[

0

0

]

, B2 =

[

1

0

]

, |q| ≤ η.

In this case, the ηmax is obtained using Theorem 5.3 to be 1.8524. The tuning parameters

λ, β, γ and α are tuned at 1.2887, 0.1741, 0.3952 and 2.9147 respectively by a controller

K =
[

Kp KI

]

, where Kp =
[

−2.3661 −0.0035
]

and KI =
[

−0.0247 −0.0074
]

,

which is also more robust than the existing controllers in [14, 174]. A comparison with the

existing results is presented in Table 5.6. From this analysis, one can easily conclude that

the result obtained using Theorem 5.3 is less conservative than that of Theorem 5.1 and

Theorem 5.2.
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Figure 5.4: Variation of norm of the state vector with respect to time for Example
5.5

Table 5.6: Comparison of robustness ηmax

Approach ηmax

[174] 0.5998

[14] 1.4120

Theorem 5.1 1.2175

Theorem 5.2 1.2204

Theorem 5.3 1.8524

5.6 Summary

In this chapter:

• An improved robust delay-dependent stabilizing criterion has been obtained by using

a simple static state feedback controller. The obtained result is less conservative than

that of [174] but conservative to [14]. Though the result is slightly conservative to

[14], the present controller is comparatively simple in structure and hence easier to

implement.
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• A simple linearization technique is adopted for linearizing the non-linear terms in the

stability criterion to obtain the LMI conditions.

• To improve the robustness, the delay-decomposition approach proposed in Chapter 2

is implemented. But the decomposition technique is not able to reduce the conserva-

tiveness due to the linearization technique.

• Finally, This chapter includes an improved robust delay-dependent stabilizing crite-

rion by using a PI-type controller. By adding the integral control action with simple

memoryless controller, the degree of the freedom is increased as a result of which the

robustness is increased. The obtained new robust stabilizing criterion is less conserva-

tive than that of the existing results [14]. Numerical examples are considered to show

the effectiveness of the criterion than that of criteria derived using a simple static state

feedback control.





C H A P T E R 6

Stabilization using dynamic

state-feedback controller with

artificial delays

This chapter presents investigations on a dynamic state-feedback controller with artificial

delays that improves tolerable delay margin for systems with input-output delays. Using an

iterative pole placement technique for time-delay systems, the effect of introducing artificial

delay in the controller dynamics is studied. It is observed that such a controller improves

the tolerable delay margins compared to its static or even simple dynamic counterpart.
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6.1 Introduction

Time-delay is inherent to many feedback control systems owing to the fact that information

takes finite time to get transported. Often, delays appear in the feedback loop due to the

time taken in (i) measuring outputs (ii) computing control actions and (iii) actuating the

plant. Such delays in the feedback loop are, in general, destabilizing [43]. However, it is

also possible that purposeful use of artificial delays in the controller may improve stability

of certain systems, e.g., (i) use of an appropriate adjustment of the spindle speed helps in

tuning the delay to avoid chattering in metal machining in a milling process [152], (ii) use of

delay may yield better purchasing and stocking decisions in supply chain management [59].

Such stabilizing effect of delays is a motivation to many researchers to exploit the possibilities

of using them with benefits.

This chapter considers the problem of stabilizing systems with Input and Output (IO)

delays as shown in Fig. 6.1. Time taken in measuring the output signal and thereby receiving

at the controller is called as the output delay (hs), whereas the sending time for the control

signal from the controller to the actuator is the input delay (ha). For such systems, if one

uses a state-feedback controller then the delay in the feedback loop may be represented as

htotal = ha + hs [86].

For an illustration, consider a scalar system of the form

ẋ(t) = ax(t) + u(t− ha), (6.1)

It is well known that using a static state-feedback controller of the form u(t) = ksx(t− hs),

where ks is the control gain, system (6.1) can be stabilized till a (ha + hs) < 1 [108]. However,

if one uses an observer based controller of the form

˙̂x(t) = ax̂(t) + kx̂(t− ha) + lx̂(t− hs)− lx(t− hs), (6.2)

where x̂(t) is the estimate of the state, l is the observer gain, then the scalar system (6.1)

can be stabilized till aha < 1 and ahs < 1 [108], which is an improvement over the static

feedback one. However, implementing such a controller is difficult since one has to obtain

accurate information of the two delays, which is impractical specifically when these delays

are uncertain or time-varying.

From this perspective, it may be intuited that dynamic controller with delay might

have stability improvement ability for time-delay systems. Note that the inclusion of delay
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in such controllers is important in addition to the dynamicness. Since, similar to systems

without time delays, simple dynamic controllers without time delay doesn’t have any stability

improvement ability as compared to static controllers typically for state-feedback case [108,

142].

From the above discussion, it may be perceived that dynamics and state delays com-

binedly in controllers may help in improving the tolerable delay bound. Question that now

arises is whether the controller dynamics, its state delays or both of them contribute to

this improvement. This chapter attempts to address this question and proposes a dynamic

state-feedback controller with state delays that improves tolerable delay bound in the feed-

back loop further. It is to mention here that this work does not investigate the stabilizing

ability of controller with time delays for systems that are not otherwise stabilizable, as it

has been attempted in [143]. Rather, it looks into the possibility of tolerable delay margin

improvement for systems that are conventionally stabilizable. To investigate the stabilizing

ability of the delayed state-feedback dynamic controller, three variants of dynamic controller

structure are studied for linear time-invariant plant. However, the design of controller param-

eters is a challenging issue for time-delay systems. A well-known Continuous Pole Placement

Technique (CPPT) [108] for time-delay system is used for designing the controller. A brief

description of this technique is presented in subsequent section of the chapter. To implement

this algorithm, DDE-BIFTOOL [23] is used.

Output
Delay

Input
Delay

Controller

Plant

Figure 6.1: Feedback control system with input-output delays
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6.2 Problem consideration

The system considered in this chapter is shown in Fig. 6.1. The plant dynamics with input

delay is represented as:

ẋp(t) = Apxp(t) +Bpup(t− ha), (6.3)

where xp(t) ∈ ℜnp is the state, up(t) ∈ ℜmp is the control input; Ap and Bp are constant

matrices of appropriate dimensions; ha is the input delay of the systems. For stabilizing such

systems, we consider the following controller types with hs(≥ 0) delay in the output:

Type I: Simple dynamic controller

ẋc(t) = Ac0xc(t) + Ccxp(t− hs), up(t) = xc(t); (6.4)

Type II: Dynamic controller with a state-delay

ẋc(t) = Ac0xc(t) +Ac1xc(t− h1) + Ccxp(t− hs), up(t) = xc(t); (6.5)

Type III: Dynamic controller with two state-delays

ẋc(t) = Ac0xc(t) +Ac1xc(t− h1) +Ac2xc(t− h2) + Ccxp(t− hs),

up(t) = xc(t); (6.6)

where xc(t) ∈ ℜmp is the state of the dynamic controller and Ac0, Ac1, Ac2 and Cc are the

controller matrices to be designed.

Stabilization using Type I is of interest to study the effect of controller dynamics on improve-

ment in tolerable delay ranges whereas the same for Type II corresponds to the effect of both

the dynamics and controller state-delay. Comparison of the stabilizing ability of Type III

explores whether use of more than one delay in the controller states has any further effect.

It may be noted that the controller of Type III is similar to the observer based controller.

However, the delays h1 and h2 may take different values other than the IO delays and may

be chosen appropriately.

The closed-loop system for the Type-I controller, (6.3) along with (6.4), may be written

as:

ξ̇(t) = Aξ(t) +Dξ(t− ha) + Eξ(t− hs), (6.7)
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The closed-loop system for the Type-II controller, (6.3) along with (6.5), may be written as:

ξ̇(t) = Aξ(t) +Bξ(t− h1) +Dξ(t− ha) + Eξ(t− hs), (6.8)

The closed-loop system for the Type-III controller, (6.3) along with (6.6), may be written

as:

ξ̇(t) = Aξ(t) +Bξ(t− h1) + Cξ(t− h2) +Dξ(t− ha) + Eξ(t− hs), (6.9)

where

ξ(t) =

[

xp(t)

xc(t)

]

, A =

[

Ap 0

0 Ac0

]

, B =

[

0 0

0 Ac1

]

,

C =

[

0 0

0 Ac2

]

,D =

[

0 Bp

0 0

]

, E =

[

0 0

Cc 0

]

.

Note that, the complexity of the closed loop system dynamics depends on the introduction

of number artificial delays in the controller dynamics.

6.3 Continuous Pole-Placement Technique (CPPT)

For being infinite dimensional system, stability of time-delay systems are often addressed

using computational approaches, e.g., using frequency sweeping test [43], stability charts

[7]. Stabilization, i.e. controller design guaranteeing stability is expectedly more complex.

Lyapunov approaches lead to computationally efficient criteria in terms of Riccati equations

[148] or Linear Matrix Inequalities [33, 38], but they are indeed conservative so far. The

finite spectrum assignment technique using a predictor based controller [79] does not meet

the present requirement. To this end, a numerical stabilization technique is available, called

as Continuous Pole Placement Technique (CPPT) using which stabilizing control gains may

be obtained iteratively [108]. Since, there exists no closed form solution for stabilization of

time-delay systems, we use this numerical procedure just to find the existence of, possibly

superior, controllers. We next present CPPT briefly. Details on convergence and performance

of the algorithm have been discussed in [108].

Consider C+
r represents the closed right half plane of a vertical line through r ∈ R

and contains poles with R(λ) ≥ r. Further, C−
r is complementary to C+

r . Note that, the

number of poles for a time-delay system on C+
r is finite and computationally tractable [7].

Software packages are available that can be used readily for computing them, e.g., DDE-
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BIFTOOL [23]. This tool has been used to compute the rate of synchronization in biological

networks with time-delays [165], to design higher truncated predictor for linear systems [180]

and to study flute-like instruments which are modelled as a delay dynamical system [162].

let us define K ∈ ℜq consisting of the q number of controller parameters. The dimension

of K depends on the consideration on the order of the dynamic controller. While, for a cho-

sen dynamic controller, the dimension of K is fixed, its parameters may be chosen differently

depending on one’s choice. However corresponding to a particular choice, the computation

of sensitivity matrix changes. For designing K, the designer is required to arrange all the

controller gain parameters in a row matrix. To have a clear view on this, some example cases

are demonstrated as follows:

1. For Type I, the simple dynamic controller (6.4), of the structure ẋc(t) = ac0xc(t) +

ccxp(t − hs), up(t) = xc(t), the controller gains parameters are ac0 and cc. For this, a

choice of K is K = [ac0, cc].

2. Similarly a Type III dynamic controller, of the structure ẋc(t) = ac0xc(t) + ac1xc(t −

h1) + ac2xc(t − h2) + ccxp(t − hs), up(t) = xc(t) the designed parameters are ac0, ac1,

ac2 and cc. For this, a choice of K is K = [ac0, ac1, ac2, cc].

Now, for stabilization, one requires to obtain controller parameters K for which all closed-

loop poles are placed in C−
0 . A sensitivity matrix S = [Si,j ] ∈ ℜq×m, where Si,j = ∂λi

∂kj
, λi

being the ith rightmost pole and kj the jth element of K. Then the CPPT with a slight

modification to the one presented in [108] for obtaining a stabilizing controller is presented

in the following.

Algorithm 6.1.

Step 1: Initialize controller parameters K. Set a r̄ for which the poles in C+
r̄ will be

regulated. Let the number of poles in C+
r̄ be m and set a desired change in the regulated poles

as δλ ∈ ℜm.

Step 2: Update m, δλ, and compute S.

Step 3: Compute desired change in controller parameters as δK = S†δλ, where S
† is the

Moore-Penrose inverse of S, and update K as K = K + δK .

Step 4: Check whether the rightmost pole is placed to the left-half plane. If not then go to

Step 2 until a certain number of iterations, else exit declaring stabilized or not.

Remark 6.1. Note that, m must be less than or at most equal to q. Therefore, a combination

of r̄ and initial K may be chosen so that the number of poles in C+
r̄ is ≤ q. Moreover,
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since mere stabilization is concerned in this chapter, one may consider only the real parts

of the poles for regulation, i.e., for a complex pole pair the number of controlled poles (real

component) would be one.

To this end, one need to compute ∂λi

∂kj
to obtain S. For the purpose, let ith root of the

characteristic equation of (6.9) be λi and hence it satisfies

{

λiI −A−Be−λih1 − Ce−λih2 −De−λiha − Ee−λihs

}

× vi = 0, (6.10)

where vi is the corresponding eigenvector of (6.9).

Using a normalizing function for vi, one may write

fℵ(vi) = 0. (6.11)

Taking derivative of (6.10) and (6.11) with respect to kj , one obtains

[

ψ1 ψ2

dfT
ℵ
(vi)

dvi
0

]





∂vi
∂kj
∂λi

∂kj



 =

[

ψ3vi

0

]

, (6.12)

where

ψ1 = λiI −A−Be−λih1 − Ce−λih2 −De−λiha − Ee−λihs ,

ψ2 = I + h1Be
−λih1 + h2Ce

−λih2 + haDe
−λiha + hsEe

−λihs ,

ψ3 = ∂
(

−A−Be−λih1 − Ce−λih2 −De−λiha − Ee−λihs

)

/∂kj .

Finally, using (6.12), one can compute ∂λi

∂kj
and thereby obtain S.

Before presenting the observations for different controllers, we first present a case to demon-

strate the stabilizing ability of the CPPT. For implementation of the Algorithm 6.1, we set

1) Minimum real part of eigenvalue as 20, 2) Maximum number of eigenvalues to 10, 3)

Maximum number of newton iteration to 12 in BIFTOOL. This parameter set are used for

all the results presented in this chapter. Consider stabilization of system (6.1) with a first

order Type II controller for the choice ha = hs = h1 = 0.50. Variations of real parts of some

rightmost eigenvalues is shown in Fig. 6.2. Initially, one pole is in C+
r̄ for a initial choice

of K = [1, −0.7, −2]. We set r̄ = −0.2 and correspondingly m = 1. As the controller

parameters update, the 2nd rightmost complex pole pair splits into two real ones at the 28th

iteration. At 41st iteration m is updated to 2 and the system is stabilized at 66 iteration
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with a control gain K = [1.1779, −0.8958, −2.0736].
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Figure 6.2: Variations of real parts of rightmost poles

6.4 Stabilization of scalar systems with input-output delay

This section presents stabilizing results obtained for the three controller types using CPPT

for system (6.1) with a = 1. For this, as discussed, static state-feedback controllers can

attain at most htotal = 1, whereas observer based controllers of [108] can attain htotal = 2.

The approach is rigorous but effective to study the problem in hand. First order controller

dynamics has been used for the study. Moreover, the results are obtained in the delay

parameter plane to examine their ability to improve tolerable delay values.

6.4.1 Simple dynamic controller (Type I)

The variation of maximum tolerable hs with respect to ha for Type I controller is shown in

Fig. 6.3. It is found that the maximum htotal is less than 1, i.e., the dynamic controller of

the form (6.4) can stabilize the system upto the delay limit which is also attainable using

static state-feedback controllers.
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Figure 6.3: Variation of maximum hs with respect to ha using Type I controller

6.4.2 Dynamic controller with a state delay (Type II)

To study the behavior of a first order dynamic controller with a state delay of type-II, the

structure of the controller is considered as, ẋc(t) = ac0xc(t) + ac1xc(t − h1) + ccxp(t − hs),

up(t) = xc(t). Using this controller, the closed loop system can be represented as: ξ̇(t) =

Aξ(t) + Bξ(t − h1) + Dξ(t − ha) + Eξ(t − hs), where ξ(t) =

[

xp(t)

xc(t)

]

, A =

[

1 0

0 ac0

]

, B =

[

0 0

0 ac1

]

, D =

[

0 1

0 0

]

, E =

[

0 0

cc 0

]

. To obtain the controller parameters, K is arranged

as K = [ac0, ac1, cc]. To discuss the influence of state delay in the controller dynamics, the

following subcases are considered.

6.4.2.1 Variation of ha = hs with respect to h1

The behavior of tolerable ha = hs with respect to variation in h1 is shown in Fig. 6.4.

With increase in h1 from 0.04, tolerable ha (hs) also gradually increases from a initial value

of less than 0.5 until h1 = 1.74, the corresponding maximum value of ha (hs) is 1.17, i.e.

htotal = 2.34. Note that, this htotal is larger than the one achievable using static state-

feedback (and simple dynamic feedback) controller and even using observer based controller

of (htotal = 2) [108]. However, the improvement ability gets stalled at h1 = 1.74. This point

may be referred to as a stalling point. At this point, the convergence of the system state and
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controller state are shown in Fig. 6.5 and Fig. 6.6 with controller parameters ac0 = −0.3247,

ac1 = −3.5925 and cc = −3.9173, initial condition xp(t) = 1, t ∈ [−1.17, 0], xc(0) = 0,

t ∈ [−1.74, 0]. Beyond this point, the tolerable ha first decreases abruptly and then remains

at a value of hs = ha ≤ 0.5 for a while. It is also observed that the tolerable ha(hs) falls

even below 0.5 with h1 > 30.

Hence, the use of dynamic controllers with a state delay h1 is beneficial compared to static

controller or simple dynamic controllers provided h1 is chosen suitably (within a certain

range). Moreover, the optimal value of h1 for which maximum tolerable delay obtained

is highly fragile since a slight increase from this value decreases the tolerable delay values

considerably.
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Figure 6.4: Variation of ha = hs with respect to h1 using Type II controller

6.4.2.2 Variation of ha with respect to hs for different values of h1

Next, consider the variation of hs with respect to ha for different choices of h1. Four different

choices of h1 = 1.75, 1.74, 1.70 and 1.50 (around the stalling point) are used for the study.

The corresponding results are shown in Fig. 6.7. For a chosen h1, htotal remains constant

and h1 = 1.74 is the optimal value for all combinations of ha and hs. It is also observed

that a single controller works for a particular h1. For example, the controller is as ac0 =

−0.3247, ac1 = −3.9173 and cc = −3.5925 for h1 = 1.74. It may also be noted that unlike
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Figure 6.5: Variation of xp(t) with respect to time of scalar system using Type II
controller
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observer based controller [108] for which ha ≤ 1 and hs ≤ 1, here the tolerable delay limit is

only htotal ≤ 2.34 irrespective of individual values of the delays. Therefore, the result in the

previous subsection (Fig. 6.4) otherwise can be seen as the effect of h1 on htotal.
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Figure 6.7: Variation of hs with respect to ha for different h1 using Type II controller

6.4.2.3 Variation of ha with respect to h1 = hs

The previous result does not answer the question whether choosing h1 equal to ha or hs

(provided they are known) is advantageous or not. To study this, consider the case that

h1 = hs. For this, variation of tolerable ha with respect to hs is presented in Fig. 6.8.

Initially, with increase in hs until 0.21, ha increases to 1.31, but after that it decreases

gradually. At hs = 1.74, ha suddenly decreases to 0.17. Note that, this value is same as

obtained in the previous sub-cases and corroborates that there exists an optimal h1 for which

maximum tolerable delay may be obtained. Same as the previous cases, the maximum htotal

is 2.34 at hs = 1.74. Therefore, the choice of optimal h1 can be made independently. For a

system of class (6.1) with a = 1, it is h1 = 1.74.

6.4.3 Dynamic controller with two state delays (Type-III)

Next, to study the behavior of a first order dynamic controller with two state delays of type-

III, the structure of the controller is considered as, ẋc(t) = ac0xc(t)+ac1xc(t−h1)+ac2xc(t−



6.5 Stabilization of a second order system 141

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

h1 = hs

h
a

Figure 6.8: Variation of ha with respect to h1 = hs using Type II controller

h2) + ccxp(t− hs), up(t) = xc(t). Using this dynamic controller, the closed loop system can

be represented as: ξ̇(t) = Aξ(t) +Bξ(t− h1) +Cξ(t− h2) +Dξ(t− ha) +Eξ(t− hs), where

ξ(t) =

[

xp(t)

xc(t)

]

, A =

[

1 0

0 ac0

]

, B =

[

0 0

0 ac1

]

, C =

[

0 0

0 ac2

]

D =

[

0 1

0 0

]

, E =

[

0 0

cc 0

]

. To

obtain the controller parameters, K is arranged as K = [ac0, ac1, ac2, cc].

We consider here obtaining variation of tolerable ha = hs with respect to h2 for h1 = 1.74

(the stalling point for Type II controller). This result is shown in Fig. 6.9. It is observed

that for h2 ≤ 1.89, the tolerable ha = hs is 1.17, which is same as that obtained using

controller with a single delay. However, for 1.89 < h2 ≤ 2.54, the htotal is larger compared

to the single delay case. At this point, the convergence of the system state and controller

state are shown in Fig. 6.10 and Fig. 6.11 with controller parameters ac0 = −0.1704,

ac1 = −3.3320, ac2 = −1.3767 and cc = −4.8791, initial condition xp(t) = 1, t ∈ [−1.35, 0],

xc(0) = 0, t ∈ [−2.54, 0]. Beyond this, the tolerable delay decreases significantly. The

maximum tolerable delay is 2.70 for h2 = 2.54.

6.5 Stabilization of a second order system

So far, we have studied the improvement abilities of dynamic state-feedback controller with

state delays for scalar systems. To strengthen the observations further, a second order
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example is now considered for stabilization with a dynamic controller of Type II. The plant

matrices are given by

Ap =

[

0 1

1 −1

]

, Bp =

[

0

1

]

, (6.13)

Let us consider a first order dynamic controller of type-II with a structure as follows.

ẋc = ac0xc + ac1xc(t− h1) + cc1x1(t− htotal) + cc2x2(t− htotal), u = kxc(t), (6.14)

where htotal is the total tolerable delay, htotal = hs+ha. Using the dynamic controller (6.14),

the closed loop system can be represented as:

ξ̇(t) = Aξ(t) + Cξ(t− htotal) +Dξ(t− h1), (6.15)

where ξ =
[

xT1 xT2 xTc

]T

, x1 and x2 are two states of the plant and xc is the state of the

controller; A =









0 1 0

1 −1 k

0 0 ac0









, C =









0 0 0

0 0 0

cc1 cc2 0









, D =









0 0 0

0 0 0

0 0 ac1









.

We have arranged the controller parameters for designing the controller gain matrix



144 Stabilization with dynamic state feedback controller

(K) as K =
[

k, ac0 , ac1 , cc1 , cc2

]

. Note that, the open-loop plant (6.13) has one real

unstable eigenvalue at 0.6180. Following Theorem 7 of [109], (6.13) is stabilizable using any

LTI controller for htotal = 2/0.6180 = 3.2362. Now, we study the variation of htotal with

respect to h1 using (6.14). The obtained maximum htotal is shown in Fig. 6.12. It can be seen

that the tolerable delay (htotal) increases with respect to h1 until h1 = 2.7 (stalling point), but

then decreases abruptly. At the stalling point, the total tolerable delay is 4.7, which is higher

than that achievable using simple LTI controllers (htotal = 3.2362) [109]. At this point, the

convergence of the system states and control input are shown in Fig. 6.13 and Fig. 6.14 with

controller parameters k = 0.85766, ac0 = 0.347076, ac1 = −1.852729, cc1 = −1.75554 and

cc2 = −1.829. Therefore, this example also substantiates the observations made previously

that dynamic controllers with state delays has tolerable delay margin improvement ability.
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Figure 6.12: Variation of htotal with respect to h1 for system 6.13 using a controller
6.14

6.6 Chapter summary

Stabilization improving ability of dynamic controllers with state delay is studied in this

chapter. Using CPPT technique, stabilizing results are obtained in the delay-parameter
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plane for two (one scalar and one second order) systems with input-output delays. The

salient observations made from the studies are:

1. Use of dynamic state feedback controller with state delays may improve tolerable delay

margin compared to static or simple dynamic feedback controllers.

2. Use of multiple delays may improve the tolerable delay margin further compared to

using a single one.



C H A P T E R 7

Conclusions and suggestions for

future work

The stability analysis and stabilization of systems with delays are investigated in this thesis.

New approaches have been proposed to obtain improved results on stability analysis and sta-

bilization of such systems. The following section emphasizes chapterwise main contributions

of the present work.

7.1 Thesis contributions

This thesis deals with some problems on stability analysis and stabilization of time-delay

systems. For stability analysis of systems with constant delay, a delay-decomposition ap-

proach is proposed using simple LK functional which is further used for static state feedback

stabilization of both for systems with state- and input-delay. Finally, the stabilizing ability

of artificial delays incorporated in dynamic state feedback controller has been investigated.

A brief description about the contributions in each chapter are presented in the following.

• A delay-decomposition technique is proposed for systems with single, constant but un-

certain delay in Chapter 2 by considering a simple LK functional to derive a simple

LMI condition. The dimension of the derived criterion is independent of the num-

ber of decomposition. So that the computational complexity of the criterion does not
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increase with respect to the number of decomposition. It has been shown through nu-

merical examples that the present approach is superior over the existing ones. Finally,

effectiveness of the proposed approach has been demonstrated for uncertain systems

through numerical examples.

• The problem of stability analysis of systems with two constant delays has been ad-

dressed in Chapter 3. The extraction of overlapping feature of the delays to derive

less conservative result for such systems, that appears to be not addressed so far in

literature, has been considered in this chapter. By exploiting this feature, a less conser-

vative criterion is obtained as compared to the existing results. Then the approach is

extended for robust stability analysis. For both cases, the effectiveness of the proposed

approach for systems with two delays has also been demonstrated through numerical

examples.

• The Chapter 4 considers the state feedback stabilization of systems with single delay

using the decomposition approach proposed in Chapter 2. As the approach involves

a simple LK functional, the derived criterion becomes finite-dimensional and it is in-

dependent of the number of decomposition. For easy implementable capability of the

approach, it has also been used for control design of uncertain system. Though the

approach leads to a sufficient stabilization criteria, but they are less conservative com-

pared to the existing finite-dimensional approaches. To validate the effectiveness of the

derived criteria, numerical examples are presented for comparative analysis.

• The control design for input-delay systems are challenging issues. To deal with these

issues, the Chapter 5 includes LMI based control design approaches for such systems.

A simple linearization technique are applied to derive less conservative static state feed-

back stabilization criterion. To further improve the stabilizing ability, the dimension of

the designed controller is increased by introducing a state feedback PI-type controller.

Finally, the decomposition approach proposed in Chapter 2 is implemented to get a less

conservative criterion. All the proposed criteria in this chapter is tested on numerical

examples to check the effectiveness of the approaches.

• The stabilizing ability of artificial delay is investigated in Chapter 5. Using continu-

ous pole placement technique technique, stabilizing results are obtained in the delay-

parameter plane for systems with input-output delay. The improvement of tolerable

delay bound using dynamic controllers with artificial state delay as compared to static

or simple dynamic feedback controllers is studied through a scalar case. And a study



7.2 Suggestions for future work 149

has been made that the stabilizing ability of the dynamic controller with multiple state

delays may improve the tolerable delay margin.

7.2 Suggestions for future work

The thesis opens up some scope for future work which has been given below.

• The delay-decomposition technique proposed for systems with constant delay may be

investigated for systems with time-varying delay. The challenge that one may face on

this problem is in developing the theory based on multiple LK functional. This remains

an open problem.

• To design a controller for a system with single and constant delay, the system is consid-

ered to be fully controllable and the states are measurable for feedback. Therefore, the

proposed delay-decomposition approach is used in Chapter 4 to design a state-feedback

delay-controller for the system with single and constant delay. For a output feedback

case, the output vector (y(t)) will be in the form of y(t) = Cx(t). Due to the presence

of this C matrix, the non-linear matrix inequality for stabilization is difficult to handle

by existing linearization of matrix inequalities techniques. Therefore, the use of pro-

posed delay-decomposition technique for partial or output feedback controller design

remains an open problem for further investigation.

• The proposed overlapping approach for stability analysis of systems with two delays

may be extended for deriving less conservative stabilization criterion for systems with

arbitrary number of delays. However, for arbitrary number of delays, the overlapping

information becomes complicated. How to reduce this complexity is an open issue.

• Besides the investigation made on stabilizing ability of the delayed state dynamic con-

troller, the work opens up a new set of problems involving the proposed dynamic

controllers, for example, how to design such controllers using Lyapunov framework,

how is the effect of such controllers on plant uncertainties, to mention a few.





Appendix

Linear Matrix Inequality [6,141]

All the stability and stabilization criterion discussed in the preceding section as well as many

other problems in systems and control can be formulated as optimization problems involving

constraints that can be expressed as LMIs having the following form:

F (x) = F0 +

p
∑

i=1

xiFi < 0, (7.1)

where x ∈ ℜp is the variable vector and xi being the ith element of it, Fi = F T
i ∈ ℜq×q,

i = 0, 1, . . . , p are constant known matrices where q is a positive integer. Clearly, a set of

LMIs can easily be expressed as a single LMI.

The important property of (7.1) is that this defines a convex constraint on the variable x.

Now, if the objective function of an optimization problem is convex and the constraints are

in LMI form then the whole problem can be cast as a convex optimization problem in LMI

framework. Note that, convex optimization problems are attractive mainly for two reasons:

(a) local minima is the global minima and it is unique if it exists and (b) computationally

attractive due to available efficient algorithms for solving these.

In fact problems associated with LMI can be classified into three categories:

1. Feasibility problem:

Finding if there exists a solution of an LMI (F (x) < 0).
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2. Optimization problem:

Minimizing a convex objective f(x) subject to an LMI constraint (F (x) < 0).

3. Generalized eigenvalue problem:

Minimizing λ subject to G(x)− λF (x) < 0, F (x) > 0 and H(x) < 0.

Often, a class of nonlinear matrix inequalities are confronted in systems and control

theory which can be reformulated as LMIs using Schur Complement formula [6]. It states

that for matrices Z1 = ZT
1 , Z2 = ZT

2 and L,

Z2 < 0 and Z1 − LZ−1
2 LT < 0,

is equivalent to





Z1 L

LT Z2



 < 0,



















. (7.2)

The LMI Control Toolbox of MATLAB
r [35]

The LMI control toolbox provides an LMI Lab to specify and solve user defined LMIs. In

this thesis, this LMI Lab has been used for solving LMIs. Some commands of this LMI Lab

that are used for producing the numerical results are presented in the following.

SETLMIS : This initializes the LMI system description.

GETLMIS : It is used when all the LMIs are described and returns the internal description

of the defined LMI.

LMIVAR : It is used to declare the LMI variables.

LMITERM: The LMI terms are specified with this command.

FEASP : This is an LMI solver which is used to solve LMI feasibility problems.

MINCX : This LMI solver is used to solve an LMI optimization problem.

GEVP : It is used for solving generalized eigenvalue problem.

A graphical user interface LMIEDIT also exists to define LMIs.

The FMINSEARCH command of the Optimization Toolbox of MATLABr [18] has also

been used to tune certain parameters that are associated with the derived LMI criteria.
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Birkhäuser, 2003.

[44] K. Gu and S. I. Niculescu, “Additional dynamics in transformed time-delay systems,”
IEEE Transactions on Automatic Control, vol. 45, pp. 572–575, 2000.

[45] ——, “Further remarks in additional dynamics in various model transformation of
linear delay systems,” IEEE Transactions on Automatic Control, vol. 46, pp. 497–500,
2001.

[46] ——, “Survey on recent results on stability and control of time-delay systems,” Journal
of Dynamic Systems, Measurement, and Control, vol. 125, pp. 158–165, 2003.

[47] J. E. Hale and S. M. Verduyn-Lunel, Introduction to functional differential equations.
New York: Applied Mathematical Sciences, 1993.

[48] Q. L. Han, “On robust stability of neutral systems with time-varying discrete delay
and norm-bounded uncertainty,” Automatica, vol. 40, pp. 1087–1092, 2004.

[49] ——, “Absolute stability of time-delay systems with sector-bounded nonlinearity,”
Automatica, vol. 41, pp. 2171–2176, 2005.

[50] ——, “A new delay-dependent stability criterion for linear neutral systems with norm-
bounded uncertainties in all system matrices,” International Journal of Systems Sci-
ence, vol. 36, pp. 469–475, 2005.

[51] ——, “A discrete delay decomposition approach to stability of linear retarded and
neutral system,” Automatica, vol. 46, pp. 517–524, 2009.

[52] Q. L. Han and D. Mehdi, “Comments on robust control for parameter uncertain delay
systems in state and control input,” Automatica, vol. 34, pp. 1665–1666, 1998.

[53] Y. He, Q. G.Wang, L. Xie, , and C. Lin, “Further improvement of free-weighting matri-
ces technique for systems with time-varying delay,” IEEE Transactions on Automatic
Control, vol. 52, pp. 293–299, 2007.

[54] Y. He, Q. G.Wang, L. Xie, C. Lin, and M. Wu, “Delay-range-dependent stability for
systems with time-varying delay,” Automatica, vol. 43, pp. 371–376, 2007.

[55] Y. He, M. Wu, J. H. She, and G. P. Liu, “Delay-dependent robust stability criteria for
uncertain neutral systems with mixed delays,” Systems and Control Letters, vol. 51,
pp. 57–65, 2004.



REFERENCES 157

[56] ——, “Parameter-dependent Lyapunov functional for stability of time-delay systems
with polytopic-type uncertainties,” IEEE Transactions on Automatic Control, vol. 49,
pp. 828–832, 2004.

[57] H. W. Hethcote, “The mathematics of infectious diseases,” SIAM Review, vol. 42, pp.
599–653, 1999.

[58] G. D. Hui and G. D. Hu, “Simple criteria for stability of neutral systems with multiple
delays,” International Journal of Systems Science, vol. 28, no. 12, pp. 1325–1328, 1997.

[59] T. Huschtoa, G. Feichtinger, R. F. Hartl, P. M. Kort, S. Sager, and A. Seidl, “Numerical
solution of a conspicuous consumption model with constant control delay,” Automatica,
vol. 47, pp. 1868–1877, 2011.

[60] M. Ikeda and T. Ashida, “Stabilization of linear systems with time-varying delay,”
IEEE Transactions on Automatic Control, vol. 24, pp. 369–370, 1979.

[61] W. Jiang, E. Fridman, A. Kruszewski, and J. P. Richard, “Switching controller for
stabilization of linear systems with switched time-varying delays,” in Joint 48th IEEE
Conference on Decision and Control and 28th Chinese Control Conference, Shanghai,
P. R. China, 2009.

[62] X. Jiang and Q. L. Han, “Delay-dependent robust stability for uncertain linear systems
with interval time-varying delay,” Automatica, vol. 42, pp. 1059–1065, 2006.

[63] V. K. R. Kandanvli and H. Kar, “Robust stability of discrete-time state-delayed
systems employing generalized overflow nonlinearities,” Nonlinear Analysis: Theory,
Methods & Applications, vol. 69, no. 9, pp. 2780–2787, 2008.

[64] ——, “Robust stability of discrete-time state-delayed systems with saturation non-
linearities: linear matrix inequality approach,” Signal Processing, vol. 89, no. 2, pp.
161–173, 2009.

[65] ——, “An LMI condition for robust stability of discrete-time state-delayed systems us-
ing quantization/overflow nonlinearities,” Signal Processing, vol. 89, no. 11, pp. 2092–
2102, 2009.

[66] ——, “Delay-dependent stability criterion for discrete-time uncertain state-delayed
systems employing saturation nonlinearities,” Arabian Journal for Science and Engi-
neering, vol. 38, no. 10, pp. 2911–2920, 2013.

[67] V. L. Kharitonov and D. M. Aguilar, “On delay-dependent stability conditions,” Sys-
tems & control letters, vol. 40, no. 1, pp. 71–76, 2000.

[68] J. H. Kim, “Delay and its time derivative dependent robust stability of time-delayed
linear systems with uncertainty,” IEEE Transactions on Automatic Control, vol. 46,
pp. 789–792, 2001.

[69] J. H. Kim, E. T. Jeung, and H. B. Park, “Robust control for parameter uncertain delay
systems in state and control input,” Automatica, vol. 32, pp. 1337–1339, 1996.



158 REFERENCES

[70] C. R. Knospe and M. Roozbehani, “Stability of linear systems with interval time-
delay,” in IEEE American Control Conferencee, Denver, Colorado,, 4-6 June 2003.

[71] ——, “Stability of linear systems with interval time-delays excluding zero,” IEEE
Transactions on Automatic Control, vol. 51, pp. 1271–1288, 2006.

[72] V. B. Kolmanovskii and J. P. Richard, “JESA special issue on analysis and control of
time-delay systems with delays,” Automatica, vol. 31, pp. 971–982, 1997.

[73] ——, “Stability of some linear systems with delays,” IEEE Transactions on Automatic
Control, vol. 44, pp. 984–989, 1999.

[74] V. Kolmanovskii and A. Myshkis, Applied theory of functional differential equations.
Dordrecht, The Netherlands: Kluwer Academic Publishers, 1962.

[75] V. Kolmanovskii and J. P. Richard., “Stability of some systems with delays,” IEEE
Transactions on Automatic Control, vol. 44, pp. 984–989, 1998.

[76] V. Kolmanovskii and J. P. Richard, “Stability of some linear systems with delays,”
IEEE Transactions on Automatic Control, vol. 44, pp. 985–989, 1999.

[77] V. Kolmanovskii, J. P. Richard, and A. P. Tchangani, “Some model transformation for
the stability study of linear systems with delays,” in Proc. IFAC Workshop on Linear
Time-Delay Systems, Grenoble, France, 1998.

[78] O. I. Kosmidou and Y. S. Boutalis, “A linear matrix inequality approach for guaranteed
cost control of systems with state and input-delays,” IEEE Transactions on Automatic
Control, vol. 36, pp. 936–942, 2006.

[79] N. Kosugi and K. Suyama, “Finite spectrum assignment of systems with general de-
lays,” International Journal of Control, vol. 84, no. 12, pp. 1983–1995, 2011.

[80] N. N. Krasovskii, “Stability of motion,” SIAM Review, vol. 6, pp. 471–472, 1960.

[81] ——, “On the analytic construction of an optimal control in a system with time-lags,”
SIAM Review, vol. 26, pp. 50–67, 1962.

[82] ——, Stability of Motion: applications of Lyapunovs second method to differential sys-
tems and equations with delay. California: Stanford University Press, 1963.

[83] Y. Kuang, Delay differential equations with applications in population dynamics.
Boston: Academic press, 1993.

[84] O. Kwon, J. H. Park, and S. M. Lee, “On stability criteria for uncertain delay-
differential systems of neutral type with time-varying delays,” Applied Mathematics
and Computation, vol. 197, no. 2, pp. 864–873, 2008.

[85] W. H. Kwon and A. E. Pearson, “Feedback stabilization of linear systems with delayed
control,” IEEE Transactions on Automatic Control, vol. 25, pp. 265–269, 1980.



REFERENCES 159

[86] J. Lam, H. Gao, and C. Wang, “Stability analysis for continuous systems with two
additive time-varying delay components,” Systems and Control Letters, vol. 56, pp.
16–24, 2007.

[87] T. N. Lee and U. L. Radovic, “Decentralized stabilization of linear continuous and
discrete-time systems with delays in interconnections,” IEEE Transactions on Auto-
matic Control, vol. 33, pp. 757–761, 1988.

[88] X. Li and C. E. de Souza, “LMI approach to delay-dependent robust stability and
stabilization of uncertain linear delay systems,” in Proc. 34th IEEE Conf. Decision
Contr., New Orleans, LA, vol. 4, 13-15 Dec 1995.

[89] ——, “Criteria for robust stability and stabilization of uncertain linear systems with
state-delay,” Automatica, vol. 33, pp. 1657–1662, 1997.

[90] ——, “Delay-dependent robust stability and stabilization of uncertain linear delay sys-
tem: a linear matrix inequality approach,” IEEE Transactions on Automatic Control,
vol. 42, pp. 1144–1148, 1997.

[91] C. H. Lien, K. W. Yu, and J. G. Hsieh, “Stability conditions for a class of neutral sys-
tems with multiple time-delays,” Journal of Mathematical Analysis and Applications,
vol. 245, no. 1, pp. 20–27, 2000.

[92] P. L. Liu, “Stabilization of singularly perturbed multiple-time-delay systems with a
saturating actuator,” International Journal of Systems Science, vol. 32, no. 8, pp.
1041–1045, 2001.

[93] ——, “Exponential stability for linear time-delay systems with delay dependence,”
Journal of the Franklin Institute, vol. 340, no. 6, pp. 481–488, 2003.

[94] ——, “Robust exponential stability for uncertain time-varying delay systems with delay
dependence,” Journal of the Franklin Institute, vol. 346, no. 10, pp. 958–968, 2009.

[95] ——, “Stabilization criteria for neutral time-delay systems with saturating actuators,”
Journal of the Franklin Institute, vol. 347, no. 8, pp. 1577–1588, 2010.

[96] ——, “Improved delay-dependent stability criteria for neutral-type systems with time-
varying delays: a delayed decomposition approach,” International Journal of General
Systems, vol. 43, no. 6, pp. 552–569, 2014.

[97] ——, “Improved delay-range-dependent robust stability for uncertain systems with
interval time-varying delay,” ISA transactions, vol. 53, no. 6, pp. 1731–1738, 2014.

[98] P. L. Liu and T. J. Su, “Robust stability of interval time-delay systems with delay-
dependence,” Systems & Control Letters, vol. 33, no. 4, pp. 231–239, 1998.

[99] X. G. Liu, M. Wub, R. Martin, and M. L. Tang, “Delay-dependent stability analysis
for uncertain neutral systems with time-varying delays,” Mathematics and Computers
in Simulation, vol. 75, pp. 15–27, 2007.



160 REFERENCES

[100] Y. Liu, L. S. Hu, and P. Shi, “A novel approach on stabilization for linear systems
with time-varying input-delay,” Applied Mathematics and Computation, vol. 218, pp.
5937–5947, 2012.

[101] M. S. Mahmoud, Robust control and filtering for time-delay systems. Marcel Dekker,
2000.

[102] M. S. Mahmoud and N. F. Al-Muthairi, “Quadratic stabilization of continuous time
systems with state-delay and norm-bounded time-varying uncertainties,” IEEE Trans-
actions on Automatic Control, vol. 39, pp. 2135–2139, 1994.

[103] M. S. Mahmoud and A. Ismail, “New results on delay-dependent control of time-delay
systems,” IEEE Transactions on Automatic Control, vol. 50, pp. 95–100, 2005.

[104] X. Meng, J. Lam, B. Du, and H. Gao, “A delay-partitioning approach to the stability
analysis of discrete-time systems,” Automatica, vol. 46, pp. 610–614, 2010.

[105] M. Mesbahi, G. P. Papavassilopoulos, and M. G. Safonov, “Matrix cones, complemen-
tarity problems, and the bilinear matrix inequality,” in Proceedings of the 34th IEEE
Conference on Decision and Control, New Orleans, LA, 13-15 Dec 1995.

[106] M. Mesbahi, M. G. Safonov, and G. P. Papavassilopoulos, “Bilinearity and comple-
mentarity in robust control,” Advances in linear matrix inequality methods in control,
pp. 269–292, 2000.

[107] W. Michiels, K. Engelborghs, D. Roose, and D. Dochain, “Sensitivity to infinitesimal
delays in neutral equations,” SIAM Journal on Control and Optimization, vol. 40,
no. 4, pp. 1134–1158, 2002.

[108] W. Michiels, K. Engelborghs, P. Vansevenant, and D. Roose, “Continuous pole place-
ment for delay equations,” Automatica, vol. 38, pp. 747–761, 2002.

[109] R. H. Middleton and D. E. Miller, “On the achievable delay margin using LTI control
for unstable plants,” IEEE Transactions on Automatic Control, vol. 52, pp. 1194–1207,
2007.

[110] Y. S. Moon, P. Park, and W. H. Kwon, “Robust stabilization of uncertain input-delayed
systems using reduction method,” Automatica, vol. 37, pp. 307–312, 2001.

[111] Y. S. Moon, P. Park, W. H. Kwon, and Y. S. Lee, “Delay-dependent robust stabilization
of uncertain state-delayed systems,” International Journal of Control, vol. 74, pp.
1447–1455, 2001.

[112] P. Mukhija, I. N. Kar, and R. K. P. Bhatt, “Delay-distribution-dependent robust sta-
bility analysis of uncertain lurie systems with time-varying delay,” Acta Automatica
Sinica, vol. 38, no. 7, pp. 1100–1106, 2012.

[113] ——, “New synchronization criteria for fuzzy complex dynamical network with time-
varying delay,” in IEEE International Conference on Fuzzy Systems (FUZZ), Hyder-
abad, 7-10 July 2013.



REFERENCES 161

[114] ——, “Wirtinger inequality based absolute stability of lurie singular system with time-
delay,” in IEEE International Conference on Control Applications (CCA), Hyderabad,
28-30 Aug. 2013.

[115] ——, “Robust absolute stability criteria for uncertain lurie system with interval time-
varying delay,” Journal of Dynamic Systems, Measurement, and Control, vol. 136,
no. 4, p. 041020, 2014.

[116] R. M. Murray, Control in an information rich world: report of the panel on future
directions in control, dynamics and system. Philadelphia: SIAM, 2003.

[117] S. I. Niculescu, “On delay-dependent stability under model transformations of some
neutral linear systems,” International Journal of Control, vol. 74, pp. 609–617, 2001.

[118] S. I. Niculescu, C. E. de Souza, J. M. Dion, and L. Dugard, “Robust stability and
stabilization of uncertain linear systems with state-delay: multiple delays case,” in
IFAC Symp. Robust Contr. Design, Rio deJaneiro, Brazil, 14-16 Sept. 1994.

[119] ——, “Robust stability and stabilization of uncertain linear systems with state-delay:
single delay case,” in IFAC Symp. Robust Contr. Design, Rio deJaneiro, Brazil, 14-16
Sept. 1994.

[120] S. I. Niculescu, C. E. deSouza, L. Dugard, and J. M. Dion, “Robust exponential stabil-
ity of uncertain systems with time-varying delays,” IEEE Transactions on Automatic
Control, vol. 43, pp. 743–748, 1998.

[121] G. Orosz and G. Stépán, “Subcritical hopf bifurcations in a car-following model with
reaction-time-delay,” Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Science, vol. 462, no. 2073, pp. 2643–2670, 2006.

[122] J. H. Park, “A new delay-dependent criterion for neutral systems with multiple delays,”
Journal of Computational and Applied Mathematics, vol. 136, no. 1, pp. 177–184, 2001.

[123] ——, “Novel robust stability criterion for a class of neutral systems with mixed delays
and nonlinear perturbations,” Applied Mathematics and Computation, vol. 161, no. 2,
pp. 413–421, 2005.

[124] P. Park, “A delay-dependent stability criterion for systems with uncertain time-
invariant delays,” IEEE Transactions on Automatic Control, vol. 44, pp. 876–877,
1999.

[125] P. Park, Y. M. Moon, and W. H. Kwon, “A delay-dependent robust stability crite-
rion for uncertain time-delay systems,” in 43th IEEE American Control Conference,
Philadelphia, PA, USA, 21-26 June 1998.

[126] M. N. A. Parlakci, “Improved robust stability criteria and design of robust stabilizing
controller for uncertain linear time-delay systems,” International Journal of Robust
and Nonlinear Control, vol. 16, pp. 599–636, 2006.



162 REFERENCES

[127] R. Pearl, “The biology of population growth,” IEEE Transactions on Automatic Con-
trol, vol. 34, pp. 775–777, 1989.

[128] D. Peaucelle, D. Arzelier, D. Henrion, and F. Gouaisbaut, “Quadratic separation for
feedback connection of an uncertain matrix and an implicit linear transformation,”
Automatica, vol. 43, pp. 795–804, 2007.

[129] I. R. Petersen, “A stabilization algorithm for a class of linear uncertain systems,”
Systems and Control Letters, vol. 8, pp. 351–357, 1987.

[130] I. R. Peterson, “A stabilization algorithm for a class of uncertain systems,” Systems
and Control Letters, vol. 8, pp. 181–188, 1987.

[131] K. Ramakrishnan and G. Ray, “Delay-range-dependent stability criterion for interval
time-delay systems with nonlinear perturbations,” International Journal of Automa-
tion and Computing, vol. 8, no. 1, pp. 141–146, 2011.

[132] ——, “Robust stability criteria for uncertain linear systems with interval time-varying
delay,” Journal of Control Theory and Applications, vol. 9, no. 4, pp. 559–566, 2011.

[133] ——, “Robust stability criteria for uncertain neutral systems with interval time-varying
delay,” Journal of optimization theory and applications, vol. 149, no. 2, pp. 366–384,
2011.

[134] ——, “Stability criteria with less lmi variables for linear system with additive time-
delays,” Journal of Applied Mathematics and Computing, vol. 36, no. 1-2, pp. 263–274,
2011.

[135] ——, “Stability criterion with less LMI variables for linear discrete-time systems with
additive time-delays,” International Journal of Automation and Computing, vol. 8,
no. 4, pp. 490–492, 2011.

[136] ——, “An improved delay-dependent stability criterion for a class of lure systems of
neutral type,” Journal of Dynamic Systems, Measurement, and Control, vol. 134, no. 1,
p. 011008, 2012.

[137] ——, “Robust stability criteria for a class of uncertain discrete-time systems with
time-varying delay,” Applied Mathematical Modelling, vol. 37, no. 3, pp. 1468–1479,
2013.

[138] B. S. Razumikhin, “On the stability of systems with a delay,” Prikl. Math. Meh.,
vol. 20, pp. 500–512, 1956.

[139] J. P. Richard, “Time-delay: an overview of some recent advances and open preblems,”
Automatica, vol. 39, pp. 1667–1694, 2003.

[140] C. E. Riddalls and S. Bennett, “The stability of supply chains,” International Journal
of Production Research, vol. 40, pp. 459–475, 2002.



REFERENCES 163

[141] C. Scherer and S. Weiland, “Lecture notes for disc course on linear matrix inequalities
in control,” http://www.er.ele.tue.nl/SWeiland/lmi99.htm, 1999.

[142] W. E. Schmitendorf and H. Stalford, “Improving stability margins via dynamic-state
feedback for systems with constant uncertainty,” IEEE Transactions on Automatic
Control, vol. 42, no. 8, pp. 1161–1163, 1997.

[143] A. Seuret, C. Edwards, S. K. Spurgeon, and E. Fridman, “Static output feedback
sliding mode control design via an artificial stabilizing delay,” IEEE Transactions on
Automatic Control, vol. 54, pp. 256–265, 2009.

[144] U. Shaked, I.Yaesh, and C. E. de Souza, “Bounded real criteria for linear time-delay
systems,” IEEE Transactions on Automatic Control, vol. 43, pp. 1016–1022, 1998.

[145] H. Shao, “Improved delay-dependent stability criteria for systems with a delay varying
in a range,” Automatica, vol. 44, pp. 3215–3218, 2008.

[146] ——, “New delay-dependent stability criteria for systems with interval-delay,” Auto-
matica, vol. 45, pp. 744–749, 2009.

[147] H. Shao and Q. L. Han, “Less conservative delay-dependent stability criteria for linear
systems with interval time-varying delays,” International Journal of Systems Science,
vol. 43, pp. 894–902, 2012.

[148] J. C. Shen, B. S. Chen, and F. Kung, “Memoryless stabilization of uncertain dynamic
delay systems: Riccati equation approach,” IEEE Transactions on Automatic Control,
vol. 36, pp. 638–640, 1991.

[149] T. B. Sheridan, “Space teleoperation through time delay: review and prognosis,” IEEE
Transactions on Robotics and Automation, vol. 9, no. 5, pp. 592–606, 1993.

[150] R. Sipahi and I. I. Delice, “Some new directions in control theory inspired by systems
biology,” System Biology, vol. 1, pp. 9–18, 2004.

[151] ——, “Stability of inventory dynamics in supply chains with three delays,” Interna-
tional Journal of Production Economics, vol. 123, pp. 107–117, 2010.

[152] R. Sipahi, S. I. Niculescu, C. T. Abdallah, W. Michiels, and K. Gu, “Stability and
stabilization of systems with time delay: limitation and opportunities,” IEEE Control
Systems Magazine, vol. 31, no. 1, pp. 38–65, 2011.

[153] R. Sipahi and N. Olgac, “Direct method implementation for the stability analysis of
multiple time delayed systems,” in IEEE Conference on Control Applications, 2003,
Istanbul, Turkey, 23-25 June 2003 2003.

[154] J. E. Speich and J. Rosen, Medical Robotics. New York: Marcel Dekkar, 2004.

[155] G. Stépán, Retarded dynamical systems: stability and characteristic functions. Long-
man Scientific & Technical Essex, 1989.



164 REFERENCES

[156] G. Stépán and T. Insperger, “Stability of time-periodic and delayed systems a route
to act-and-wait control,” Annual Reviews in Control, vol. 30, no. 2, pp. 159–168, 2006.

[157] J. D. Sterman, Business dynamics: systems thinking and modeling for a complex world.
Irwin/McGraw-Hill Boston, 2000.

[158] J. H. Su, “Further results on the robust stability of linear systems with a single time-
delay,” Systems and Control Letters, vol. 23, pp. 375–379, 1994.

[159] T. J. Su and C. G. Huang, “Robust stability of delay dependence for linear uncertain
systems,” IEEE Transactions on Automatic Control, vol. 37, pp. 1656–1659, 1992.

[160] B. Subudhi, S. Bonala, S. Ghosh, and R. Dey, “Robust analysis of networked control
systems with time-varying delays,” in 7th IFAC Symposium on Robust Control Design,
Denmark, 20-22 June 2012.

[161] J. Sun, G. P. Liu, J. Chen, and D. Rees, “Improved delay-range-dependent stability
criteria for linear systems with time-varying delays,” Automatica, vol. 46, pp. 466–470,
2010.

[162] S. Terrien, C. Vergez, and B. Fabre, “Flute-like musical instruments: A toy model
investigated through numerical continuation,” Journal of Sound and Vibration, vol.
332, no. 15, pp. 3833–3848, 2013.

[163] B. Vielle and G. Chauvet, “Delay equation analysis of human respiratory stability,”
Mathematical biosciences, vol. 152, no. 2, pp. 105–122, 1998.

[164] C. Wang and Y. Shen, “Improved delay-dependent robust stability criteria for uncer-
tain time-delay systems,” Applied Mathematics and Computation, vol. 218, pp. 2880–
2888, 2011.

[165] Y. Wang and F. J. Doyle III, “The influence of global cues and local coupling on the
rate of synchronization in the presence of time-delays,” Automatica, vol. 49, no. 6, pp.
1838–1845, 2013.

[166] S. Won and J. H. Park, “A note on the stability analysis of neutral systems with
multiple time-delays,” International Journal of Systems Science, vol. 32, no. 4, pp.
409–412, 2001.

[167] M. Wu, Y. He, J. H. She, and G. P. Liu, “Delay-dependent criteria for robust stability
of time-varying delay systems,” Automatica, vol. 40, pp. 1435–1439, 2004.

[168] W. Wu and H. Fang, “Integrated fault-tolerant control methodology for non-linear dy-
namical networked control systems subject to time-varying delay,” IET Control Theory
& Applications, vol. 8, no. 8, pp. 535–545, 2014.

[169] J. Yan, X. Luo, X. Yang, C. Hua, and X. Guan, “Consensus of multi-slave bilateral tele-
operation system with time-varying delays,” Journal of Intelligent & Robotic Systems,
vol. 76, no. 2, pp. 239–253, 2014.



REFERENCES 165

[170] F. Yang, H. Zhang, Z. Liu, and R. Li, “Delay-dependent resilient-robust stabilisation of
uncertain networked control systems with variable sampling intervals,” International
Journal of Systems Science, vol. 45, no. 3, pp. 497–508, 2014.

[171] K. W. Yu and C. H. Lien, “Stability criteria for uncertain neutral systems with interval
time-varying delays,” Chaos, Solitons & Fractals, vol. 38, no. 3, pp. 650–657, 2008.

[172] Z. Yu and S. Li, “Neural-network-based output-feedback adaptive dynamic surface
control for a class of stochastic nonlinear time-delay systems with unknown control
directions,” Neurocomputing, vol. 129, pp. 540–547, 2014.

[173] D. Yue, “Robust stabilization of uncertain systems with unknown input-delay,” Auto-
matica, vol. 40, pp. 331–336, 2004.

[174] D. Yue and Q. L. Han, “Delayed feedback control of uncertain systems with time-
varying input-delay,” Automatica, vol. 41, pp. 233–240, 2005.

[175] D. Yue and S. Won, “An improvement on delay and its time-derivative dependent
robust stability of time-delayed linear systems with uncertainty,” IEEE Transactions
on Automatic Control, vol. 47, pp. 407–408, 2002.

[176] H. Zhang and Z. Liu, “Stability analysis for linear systems via an optimally dividing
delay interval approach,” Automatica, vol. 47, pp. 2126–2129, 2011.

[177] J. Zhang, C. Knospe, and P. Tsiotras, “Stability of time-delay systems: equivalence be-
tween Lyapunov and scaled small-gain conditions,” IEEE Transactions on Automatic
Control, vol. 46, pp. 482–486, 2001.

[178] K. Zhang, “Stability analysis of linear neutral systems with multiple time-delays,”
Mathematical Problems in Engineering, no. 2, pp. 175–183, 2005.

[179] X. M. Zhang, M. Wu, J. H. She, and Y. He, “Delay-dependent stabilization of linear
systems with time-varying state and input-delays,” Automatica, vol. 41, pp. 1405–1412,
2005.

[180] B. Zhou, Z. Y. Li, and Z. Lin, “On higher-order truncated predictor feedback for linear
systems with input-delay,” International Journal of Robust and Nonlinear Control,
vol. 24, no. 17, pp. 2609–2627, 2014.

[181] P. Zıtek and J. Hlava, “Anisochronic internal model control of time-delay systems,”
Control Engineering Practice, vol. 9, no. 5, pp. 501–516, 2001.





Publications from this thesis

1. D. Das, S. Ghosh and B. Subudhi, “Tolerable delay-margin improvement for systems

with inputoutput delays using dynamic delayed feedback controllers ”, Applied Math-

ematics and Computation (Elsevier), vol. 230, 57-64, 2014.

2. D. Das, S. Ghosh and B. Subudhi, “Stability analysis of linear systems with two delays

of overlapping ranges ”, Applied Mathematics and Computation (Elsevier),vol. 243,

83-90, 2014.

3. D. Das, S. Ghosh and B. Subudhi, “An improved robust stability analysis for systems

with two delays by extracting overlapping feature ”, Journal of Control and Decision

(Taylor & Francis), 10.1080/23307706.2015.1009504, 2015.

4. D. Das, S. Ghosh and B. Subudhi, “State Feedback Robust Stability analysis and

Stabilization using PI-Controller for Input-delayed system ”, International Journal of

Dynamics and Control (Under review).

5. D. Das, S. Ghosh and B. Subudhi, “Delay-Discretization Based Simple Delay-Dependent

Stability Analysis for Time-Delay Systems ”, (To be communicated).

6. D. Das, S. Ghosh and B. Subudhi, “An improved state feedback stabilization of uncer-

tain systems with input-delay ”, in 2012 Annual IEEE India Conference (INDICON),

Kerela, India, pp. 756-769, 7-9 Dec. 2012.

7. D. Das, S. Ghosh, B. Subudhi and Sathyam Bonala “Robustness improvement of input

delayed systems using static state feedback controller ”, in IEEE sponsored ICCPCT-

2013, Kanyakumari, India, pp. 321-325, 20-21 March 2013.





Author’s biography

Dushmanta Kumar Das was born to Sri Rabindra Nath Das and Smt. Geetanjali Das on

25th April, 1982 at Tiarapari, Dist.-Puri, Odisha, India. He obtained a Bachelor’s degree in

Electronics and Instrumentation Engineering from B.P.U.T, Rourkela, Odisha in 2004 and a

Master in Control System Engineering from National Institute of Technology Rourkela, India

in 2010. He joined as a Institute PhD Scholar in the Department of Electrical Engineering,

National Institute of Technology Rourkela in July 2010. Now, he is working as a Assistant

Professor in the Department of Electrical and Electronics Engineering, National Institute

of Technology Nagaland, India. His areas of academic pursuit include time-delay systems,

network control system and robust control.

Communications:

Address: Department of Electrical Engineering, National Institute of Technology Rourkela,

Orissa, PIN: 769008.

e-mail: dushmantakumardas29@gmail.com


	Abstract
	List of symbols and acronyms
	List of figures
	Introduction
	Background
	Classification of time-delay systems
	Systems with discrete delays
	Systems with distributed delay
	Neutral delay systems

	Literature review on stability analysis of time-delay systems
	Stability definitions
	Lyapunov stability theorems
	Delay-independent stability analysis
	Delay-dependent stability analysis

	Literature review on stabilization of time-delay systems
	Stabilization of systems with state delay
	Stabilization of systems with input delay
	Stabilization of systems using artificial delay

	Motivations of the present work
	Scope of the thesis
	Organization of the thesis

	Stability analysis for systems with single delay
	Introduction
	System description and preliminaries
	Simple stability criterion
	Stability criterion using delay-decomposition
	Numerical examples

	Robust analysis using delay-decomposition
	Numerical examples

	Chapter summary

	Stability analysis for systems with two delays
	Introduction
	Stability analysis
	System description and preliminaries
	Stability criterion when delays treated individually
	Stability criterion exploiting overlapping delay ranges

	Numerical examples
	Robust stability analysis
	System description
	Robust stability criterion when delays treated individually
	Robust stability criterion using overlapping treatment

	Numerical examples
	Chapter summary

	Stabilization of systems with state delay
	Introduction
	Stabilization using delay-decomposition
	System description
	Stabilization criterion
	Numerical examples

	Robust stabilization using delay-decomposition
	System description
	Robust stabilization criterion
	Numerical examples

	Chapter summary

	Stabilization of systems with input-delay
	Introduction
	System description
	Simple stabilization using memory less controller
	Stabilization criterion
	Numerical examples

	Stabilization using delay-decomposition
	Stabilization criterion
	Numerical examples

	Stabilization criterion using PI-type controller
	The PI controller
	Stabilization criterion
	Numerical examples

	Summary

	Stabilization using dynamic state-feedback controller
	Introduction
	Problem consideration
	Continuous Pole-Placement Technique
	Stabilization of scalar systems with input-output delay
	Simple dynamic controller
	Dynamic controller with a state delay
	Dynamic controller with two state delays

	Stabilization of a second order system
	Chapter summary

	Conclusions and suggestions for future work
	Thesis contributions
	Suggestions for future work

	References
	Publications from this thesis

