154 research outputs found

    Annual Report...

    Get PDF

    Photovoltaics, Batteries, and Silicon Carbide Power Electronics Based Infrastructure for Sustainable Power Networks

    Get PDF
    The consequences of climate change have emphasized the need for a power network that is centered around clean, green, and renewable sources of energy. Currently, Photovoltaics (PV) and wind turbines are the only two modes of technology that can convert renewable energy of the sun and wind respectively into large-scale power for the electricity network. This dissertation aims at providing a novel solution to implement these sources of power (majorly PV) coupled with Lithium-ion battery storage in an efficient and sustainable approach. Such a power network can enable efficiency, reliability, low-cost, and sustainability with minimum impact to the environment. The first chapter illustrates the utilization of PV- and battery-based local power networks for low voltage loads as well as the significance of local DC power in the transportation sector. Chapter two focuses on the most efficient and maximum utilization of PV and battery power in an AC infrastructure. A simulated use-case for load satisfaction and feasibility analysis of 10 university-scale buildings is illustrated. The role of PV- and battery-based networks to fulfill the new demand from the electrification of the surface transportation sector discussed in Chapter three. Chapter four analyzes the PV- and battery- based network on a global perspective and proposes a DC power network with PV and complementary wind power to fulfill the power needs across the globe. Finally, the role of SiC power electronics and the design concept for an SiC based DC-to-DC converter for maximum utilization of PV/wind and battery power through enabling HVDC transmission is discussed in Chapter six

    Ambient Air-Processed CsPbI3-Based Perovskite Solar Cell Via Semi-Sputtering Deposition and Numerical Studies of Cs3Sb2I9-Based Perovskite Solar Cell

    Get PDF
    Commercialization of Perovskite solar cells as a clean energy source can augment the reduction of carbon footprint. CsPbI3, a well-known perovskite material, has been synthesized in ambient air and high-humidity conditions and utilized as the active layer in a perovskite solar cell. The rest of the solar cell layers have been sputter-deposited. This solar cell with a p-i-n configuration ITO/NiOx/CsPbI3/ZnO/Au exhibited a champion efficiency of 3.7%. Nonetheless, lead incorporation in the conventional Pb-cation-based perovskites poses an environmental threat. The physical proximity of living organisms to lead point sources exhibits a wide spectrum of negative consequences. In this study, we have also explored the photovoltaic performance of the Cs3Sb2I9 as an absorber using SCAPS-1D software. A planar, regular architecture with device configuration of FTO/TiO2/ Cs3Sb2I9/NiOx/Au has been proposed and numerically simulated. The best-optimized device yielded a maximum power conversion efficiency of 17.49%, open-circuit voltage Voc of 1.4 V, short-circuit current Jsc of 15.33 mA/cm2 , and fill factor FF of 80.95%

    Throughput and Yield Improvement for a Continuous Discrete-Product Manufacturing System

    Get PDF
    A seam-welded steel pipe manufacturing process has mainly four distinct major design and/or operational problems dealing with buffer inventory, cutting tools, pipe sizing and inspection-rework facility. The general objective of this research is to optimally solve these four important problems to improve the throughput and yield of the system at a minimum cost. The first problem of this research finds the optimal buffer capacity of steel strip coils to minimize the maintenance and downtime related costs. The total cost function for this coil feeding system is formulated as a constrained non-linear programming (NLP) problem which is solved with a search algorithm. The second problem aims at finding the optimal tool magazine reload timing, magazine size and the order quantity for the cutting tools. This tool magazine system is formulated as a mixed-integer NLP problem which is solved for minimizing the total cost. The third problem deals with different type of manufacturing defects. The profit function of this problem forms a binary integer NLP problem which involves multiple integrals with several exponential and discrete functions. An exhaustive search method is employed to find the optimum strategy for dealing with the defects and pipe sizing. The fourth problem pertains to the number of servers and floor space allocations for the off-line inspection-rework facility. The total cost function forms an integer NLP structure, which is minimized with a customized search algorithm. In order to judge the impact of the above-mentioned problems, an overall equipment effectiveness (OEE) measure, coined as monetary loss based regression (MLBR) method, is also developed as the fifth problem to assess the performance of the entire manufacturing system. Finally, a numerical simulation of the entire process is conducted to illustrate the applications of the optimum parameters setting and to evaluate the overall effectiveness of the simulated system. The successful improvement of the simulated system supports this research to be implemented in a real manufacturing setup. Different pathways shown here for improving the throughput and yield of industrial systems reflect not only to the improvement of methodologies and techniques but also to the advancement of new technology and national economy

    "ALTERNATIF PENERAPAN TEKNOLOGI INFORMASI DALAM PENENTUAN SUPPLIER INDUSTRI MANUFAKTUR BERBASIS BILL of MATERIAL DAN GROUP TECHNOLOGY"

    Get PDF
    "Pemilihan supplier merupakan permasalahan yang komplek pada era Industri 4.0 sekarang ini. Banyaknya jumlah supplier dengan kualitas performansi yang berbeda-beda menyebabkan sulitnya pihak internal perusahaan untuk memilih supplier yang sesuai. Di sisi lain macam-macam bahan baku yang dibutuhkan untuk membuat produk jadi, sangat beragam. Kesesuaian supplier berkualitas yang diperlukan untuk memasok bahan baku yang dibutuhkan oleh industri menjadi hal yang penting untuk diselesaikan. Begitupun halnya dengan industri perakitan traktor tangan, industri kecil menengah ini juga sangat tergantung pada ketersediaan bahan pasokan, dan sudah pasti tergantung pula dengan pemilihan supplier itu sendiri. Penelitian disertasi ini bertujuan untuk memperoleh metode terbaru untuk memilih supplier pada industri manufaktur dengan studi kasus pada perakitan industri kecil traktor tangan. Penelitian disertasi ini diawali dengan kegiatan studi literatur melalui FGD, dan studi pustaka, kemudian diikuti dengan pembuatan desain prototipe aplikasi. Dimana untuk menyusun database bahan baku disusun menggunakan struktur produk pada Bill of Material, penentuan bobot kriteria optimal menggunakan Genetic Algorythms dan pemilihan supplier menggunakan metode multi criteria decision making. Studi kasus penelitian ini di sentra Industri Logam Ceper Klaten Solo, yaitu di Politeknik Manufaktur Ceper. Sedangkan pelaksanaan penelitiannya di Lab Komputasional dan Sistem Informasi serta Laboratorium Rekayasa Sistem Informasi Politeknik Negeri Jember. Uji coba aplikasi diimplementasikan pada studi kasus sesungguhnya, dengan data supplier 153, data bahan baku 70 bahan baku dengan variabel kriteria pemilihan supplier sebanyak 10 variabel. Pada tahap akhir diverifikasi menggunakan kuesioner online Google Form, dengan data responden sebanyak 101, banyaknya responden yg memilih “Sangat mudah” dan “Mudah” atau “Sangat lengkap” dan “Lengkap” atau “Sangat tepat” dan “Tepat” > 80 %, ini menunjukkan bahwa aplikasi / web yang dihasilkan dalam penelitian ini sesuai dengan harapan IKM pengguna (Verified). Kata kunci : Pemilihan pemasok, Computational intelegence, Bill of Material, Group Technology, Multi Criteria Decision Making dan Genetic Algorythms.

    Criticality of Byproduct Materials: Assessing Supply Risk, Environmental Impact, and Strategic Policy Response for Tellurium

    Get PDF
    Creating a more sustainable future will require a transition toward more clean energy technologies. As technology shifts, the portfolio of materials needed to support the energy sector will shift as well. To prevent resource scarcity challenges, it is necessary to investigate multifaceted risks for energy materials. In recent years, a tool known as criticality assessment has been used for this purpose, identifying economic vulnerabilities for key energy, defense, and electronic technologies. These studies intend to guide strategic response to reduce risk; however existing methodologies lack a comprehensive systems perspective necessary to inform decisions. This is particularly true for materials supplied from byproduct mining. Byproduct minerals (e.g. tellurium, indium, gallium) are unintended minor joint products generated while mining and refining major metals (e.g. aluminum, iron, copper). They contribute only marginally to profit, so their extraction is justified strictly by association with the carrier metal ore, linking their supply, both physically and economically, to the system of materials being produced by the joint process. This level of interconnection is not well captured by the single-product focus characteristic of existing criticality assessments, potentially misrepresenting risks for byproducts. This dissertation aims to inform more appropriate policy response by addressing key gaps in criticality assessment and mitigation for byproduct minerals through the application of various systems modeling tools, including dynamic material flow analysis (dMFA), life cycle assessment (LCA), and scenario-based uncertainty analysis. Resulting contributions address the following specific challenges: (a) supply risk assessment neglects carrier metal production dynamics, (b) environmental risk assessment is sensitive to variability in impact allocation assumptions, and (c) standard, static result metrics are poorly matched for development of dynamic risk mitigation policy. Novel methodologies are demonstrated throughout using a case study of tellurium, a byproduct of copper refining critical to rapidly-growing CdTe thin-film photovoltaics

    Open collaborative system design : a strategic framework with application to synthetic biology

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Engineering Systems Division, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 251-259).Across technology industries and particularly at the cutting edge of biotechnology a debate is under way about the proper balance between open and closed - between co-developing products with shared information and open standards, versus using more traditional, closed, proprietary processes. Beyond the relative success of open source software to date, it is not clear how and whether open design processes might be applied generally for complex, assembled technologies. This problem takes on special urgency within the domain of synthetic biology, an emerging discipline in which many practitioners advocate opening design and development through platforms such as the registry of standardized biological parts. Biotechnology is IP intensive in part because commercialization is complicated and capital intensive. How might one develop a sustainable open development process in this context? This thesis addresses these questions from an Engineering Systems perspective. Defining open, collaborative system development (OCSD) specifically as a process in which subsystems are created voluntarily by an unrestricted set of third-party contributors, it makes the following claim: An OCSD process can itself be designed, with the principal objective of creating an environment for third-party innovation. To support this claim the thesis outlines a conceptual framework to guide OCSD design. The framework includes a taxonomy of parameters and constraints relevant to opening design, a list of options within each taxonomic category, and three high level strategies found to recur as a function of sponsor goals and technological constraints. Finally, the thesis proposes a quantitative method, based on multidisciplinary modeling and pareto analysis, to design open standards within the context of one of the three strategies. The research is carried out through a pragmatic blend of case studies and quantitative modeling. First, an in-depth, multi-discipline literature review synthesizes relevant taxonomic categories. Thirteen examples of OCSD spanning nine industries are then analyzed to define options within each taxonomic category. The case studies are also used to identify strategies for opening design based on correlations between OCSD options. The framework is validated and expanded through an in-depth case study of the opening of Very Large Scale Integration (VLSI) in the semi-conductor industry in the late 1970s. Finally, a quantitative method is developed to guide the design of open standards within one of the three strategies. These three contributions - the framework, correlated strategies, and quantitative method - are then applied to a particular biotechnology called microbial fuel cells.by Matthew Robin Silver.Ph.D

    Energy End-Use Technologies for the 21st Century. A Report of the World Energy Council

    Get PDF
    This report makes clear the opportunities and places technology development firmly centre stage in meeting and overcoming the challenges confronting the energy industry and policy makers. Energy End-Use Technologies for the 21st Century makes it crystal clear that technologies deployed in 20 to 50 years will be the result of policy and funding decisions taken now and that we cannot afford to duck these decisions if we are to meet the World Energy Council’s goals of energy availability, accessibility and acceptability
    • …
    corecore