1,889 research outputs found

    Out-of-Band Radiation from Antenna Arrays Clarified

    Get PDF
    Non-linearities in radio-frequency (RF) transceiver hardware, particularly in power amplifiers, cause distortion in-band and out-of-band. Contrary to claims made in recent literature, in a multiple-antenna system this distortion is correlated across the antennas in the array. A significant implication of this fact is that out-of-band emissions caused by non-linearities are beamformed, in some cases into the same direction as the useful signal.Comment: IEEE Wireless Communications Letters, 2018, to appea

    Modeling and Analysis of Composite Antenna Superstrates Consisting on Grids of Loaded Wires

    Get PDF
    We study the characteristics and radiation mechanism of antenna superstrates based on closely located periodical grids of loaded wires. An explicit analytical method based on the local field approach is used to study the reflection and transmission properties of such superstrates. It is shown that as a result of proper impedance loading there exists a rather wide frequency band over which currents induced to the grids cancel each other, leading to a wide transmission maximum. In this regime radiation is produced by the magnetic dipole moments created by circulating out-of-phase currents flowing in the grids. An impedance matrix representation is derived for the superstrates, and the analytical results are validated using full-wave simulations. As a practical application example we study numerically the radiation characteristics of dipole antennas illuminating finite-size superstrates.Comment: 9 pages, 11 figures. In the second version we have clarified the analysis related to the prototype, and re-desinged the prototype antenn

    Efficient DSP and Circuit Architectures for Massive MIMO: State-of-the-Art and Future Directions

    Full text link
    Massive MIMO is a compelling wireless access concept that relies on the use of an excess number of base-station antennas, relative to the number of active terminals. This technology is a main component of 5G New Radio (NR) and addresses all important requirements of future wireless standards: a great capacity increase, the support of many simultaneous users, and improvement in energy efficiency. Massive MIMO requires the simultaneous processing of signals from many antenna chains, and computational operations on large matrices. The complexity of the digital processing has been viewed as a fundamental obstacle to the feasibility of Massive MIMO in the past. Recent advances on system-algorithm-hardware co-design have led to extremely energy-efficient implementations. These exploit opportunities in deeply-scaled silicon technologies and perform partly distributed processing to cope with the bottlenecks encountered in the interconnection of many signals. For example, prototype ASIC implementations have demonstrated zero-forcing precoding in real time at a 55 mW power consumption (20 MHz bandwidth, 128 antennas, multiplexing of 8 terminals). Coarse and even error-prone digital processing in the antenna paths permits a reduction of consumption with a factor of 2 to 5. This article summarizes the fundamental technical contributions to efficient digital signal processing for Massive MIMO. The opportunities and constraints on operating on low-complexity RF and analog hardware chains are clarified. It illustrates how terminals can benefit from improved energy efficiency. The status of technology and real-life prototypes discussed. Open challenges and directions for future research are suggested.Comment: submitted to IEEE transactions on signal processin

    On the Phase Response and Radiation Efficiency of the Complementary Strip-Slot as an Array Element

    Get PDF
    The complementary strip-slot element is a broadlymatched microstrip radiator that has been used to design innovative series-fed arrays. It consists of a microstrip series-fed slot that have its complementary stub on the layer of the microstrip and aligned to the slot. In this contribution, the influence of the strip and slot geometry on its performance is studied through the analysis of four different designs. The obtained results highlight the possibility of controlling the radiation efficiency or the phase response, without compromising the broad matching. Therefore, potential series-fed arrays built with this element can exploit this feature to set the magnitude and phase of the excitations with certain flexibility.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. This work was supported by the Spanish Ministerio de Ciencia e Innovaci ´on (Programa Consolider-Ingenio 2010) under Grant CSD2008-00066, EME

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial

    1-D Scanning Arrays on Dense Dielectrics Using PCS-EBG Technology

    Full text link

    Can Hardware Distortion Correlation be Neglected When Analyzing Uplink SE in Massive MIMO?

    Get PDF
    This paper analyzes how the distortion created by hardware impairments in a multiple-antenna base station affects the uplink spectral efficiency (SE), with focus on Massive MIMO. The distortion is correlated across the antennas, but has been often approximated as uncorrelated to facilitate (tractable) SE analysis. To determine when this approximation is accurate, basic properties of the distortion correlation are first uncovered. Then, we focus on third-order non-linearities and prove analytically and numerically that the correlation can be neglected in the SE analysis when there are many users. In i.i.d. Rayleigh fading with equal signal-to-noise ratios, this occurs when having five users.Comment: 5 pages, 3 figures, IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 201
    corecore