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Abstract—This paper analyzes how the distortion created by
hardware impairments in a multiple-antenna base station affects
the uplink spectral efficiency (SE), with focus on Massive MIMO.
The distortion is correlated across the antennas, but has been
often approximated as uncorrelated to facilitate (tractable) SE
analysis. To determine when this approximation is accurate, basic
properties of the distortion correlation are first uncovered. Then,
we focus on third-order non-linearities and prove analytically
and numerically that the correlation can be neglected in the SE
analysis when there are many users. In i.i.d. Rayleigh fading with
equal signal-to-noise ratios, this occurs when having five users.

Index Terms—Massive MIMO, uplink spectral efficiency, hard-
ware impairments, hardware distortion correlation.

I. INTRODUCTION

The receiver hardware in a wireless communication system
is always non-ideal [1]; for example, there are non-linear am-
plification in the low-noise amplifier (LNA) and quantization
errors in the analog-to-digital converter (ADC). In single-
antenna receivers, these effects can be equivalently represented
by scaling the received signal and adding uncorrelated (but not
independent) noise [2], [3]. This is a convenient representation
in information theory, since one can compute lower bounds
on the capacity by utilizing that the worst-case uncorrelated
additive noise is independent and Gaussian distributed [4].

The extension to multiple-antenna receivers is non-trivial,
but important since Massive MIMO (multiple-input multiple-
output) is the key technology to improve SE in future net-
works. In Massive MIMO, a base station (BS) with M ≥ 100
antennas is typically used to serve K ≥ 10 user equip-
ments (UEs) by spatial multiplexing [5], [6]. Each antenna is
equipped with a separate transceiver chain (including LNA and
ADC), so that one naturally assumes uncorrelated distortion
between the antennas. This assumption was made in [7], [8]
(among others) without discussion, while the existence of
correlation was mentioned in [9], but claimed to be negligible
in the SE analysis of Rayleigh fading Massive MIMO systems.

If two antennas equipped with identical hardware would
receive identical signals, the distortions would be identical.
Hence, it is important to characterize under which conditions,
if any, the distortion can be reasonably modeled as uncorre-
lated across the receive antennas. In the related scenario of
multi-antenna transmission, [10] conjectured that the radiated
hardware distortion is “practically uncorrelated” among an-
tennas in MIMO systems transmitting multiple data streams.
This conjecture holds when many data streams are transmitted
with similar power [11]. Recently, [12] claimed that the model
with uncorrelated BS distortion is “physically inaccurate” and

[13] stated that it “does not reveal the spatial characteristics
of the distortion”. These papers primarily focus on out-of-band
interference and assume ideal UE hardware.

The question is now if these statements are applicable or
not when quantifying the SE in Rayleigh fading scenarios with
both UE and BS impairments. This paper takes a close look at
this issue, with the aim of providing a versatile view of when
models with uncorrelated hardware distortion can be used for
uplink SE analysis with multiple-antenna BSs. To this end,
we develop in Section II a system model with a non-ideal
multiple-antenna receiver and explain the characteristics of
hardware distortion along the way. Achievable SE expressions
are provided and maximized with respect to the receive
combining. We study amplitude-to-amplitude (AM-AM) non-
linearities analytically in Section III, with focus on maximum
ratio (MR) combining. We demonstrate numerically when the
distortion is well approximated as uncorrelated in SE analysis.

II. SYSTEM MODEL AND SPECTRAL EFFICIENCY

We consider the uplink of a single-cell system where K
single-antenna UEs communicate with a BS equipped with M
antennas. We consider a symbol-sampled complex baseband
system model [13]. The channel from UE k is denoted
by hk = [hk1 . . . hkM ]T ∈ CM . A block-fading model
is considered where the channels are fixed within a time-
frequency coherence block and take independent realizations
in each block, according to an ergodic stationary random
process. In an arbitrary coherence block, the noise-free signal
u = [u1 . . . uM ]T ∈ CM received at the BS antennas is

u =

K∑
k=1

hksk = Hs (1)

where H = [h1 . . . hK ] ∈ CM×K is the channel matrix,
sk is the information signal transmitted by UE k, and s =
[s1 . . . sM ]T ∼ NC(0, pIK), where NC denotes the multi-
variate circular symmetric complex Gaussian distribution. We
will analyze how u is affected by non-ideal receiver hardware
and additive noise. To focus only on the distortion character-
istics, H is assumed known.
A. Basic Modeling of BS Receiver Hardware Impairments

We focus now on an arbitrary coherence block with the fixed
channel realization H and use E|H{·} to denote the conditional
expectation given H. Hence, the conditional distribution of
u = [u1 . . . uM ]T is NC(0,Cuu) where Cuu = E|H{uuH} =
pHHH ∈ CM×M describes the correlation between signals
received at different antennas. It is only when Cuu is a scaled



identity matrix that u has uncorrelated elements. This can only
happen when K ≥ M . However, we stress that K < M is
of main interest in Massive MIMO (or more generally in any
multi-user MIMO system).

The BS hardware is assumed to be non-ideal but quasi-
memoryless. The impairments at antenna m are modeled by
an arbitrary deterministic function gm(·) : C → C, for m =
1, . . . ,M , which can describe both continuous non-linearities
and discontinuous quantization errors. These functions distort
each of the components in u, such that the resulting signal is

z =
[
g1(u1) . . . gM (uM )

]T
, g(u). (2)

By defining Czu = E|H{zuH}, we can rewrite (2) as

z = CzuC
†
uuu+ η (3)

where we defined the additive distortion η , g(u)−CzuC
†
uuu

and † denotes the pseudoinverse. By construction, u is uncor-
related with η; that is, E|H{ηuH} = Czu−CzuC

†
uuCuu = 0.

However, u and η are clearly not independent.
This derivation has not utilized the fact that u is Gaussian

distributed (for a given H), but only its first and second order
moments. Hence, the model in (3) holds also for finite-sized
constellations. Since the SE will be our metric, we utilize the
full distribution to simplify CzuC

†
uu in (3) using a discrete

complex-valued counterpart to Bussgang’s theorem [2].

Lemma 1. Consider the jointly circular-symmetric complex
Gaussian variables x and y. For any deterministic function
f(·) : C→ C, it holds that

E{f(x)y∗} = E{f(x)x∗}E{xy
∗}

E{|x|2}
. (4)

Proof: Note that y = E{yx∗}
E{|x|2}x+ε, where ε = y− E{yx∗}

E{|x|2}x
has zero mean and is uncorrelated with x. The Gaussian
distribution implies that ε and x are independent. Replacing
y with this expression in the left-hand side of (4) and noting
that E{f(x)ε∗} = 0 yields the right-hand side of (4).

Using Lemma 1, it follows that (cf. [14, Appendix A])

Czu = E|H{zuH} = DCuu (5)

where D = diag(d1, . . . , dM ) and dm =
E|H{gm(um)u?m}

E|H{|um|2} .
Inserting (5) into (3) yields

z = Du+ η (6)

with η = g(u)−Du. The following observation is thus made.

Observation 1. When a Gaussian signal u is affected by
non-ideal BS receiver hardware, the output is an element-
wise scaled version of u plus a distortion term η that is
uncorrelated with u.

If the functions gm(·) are all equal and Cuu has identical
diagonal elements, D is a scaled identity matrix and the
common scaling factor represents the power-loss incurred by
hardware impairments. In this case, Du has the same correla-
tion characteristics as u. In other cases, one can calibrate the
hardware to make D a scaled identity matrix.

The distortion term has the (conditional) correlation matrix

Cηη = E|H{ηηH} = Czz−CzuC
†
uuC

H

zu = Czz−DCuuD
H

(7)
where Czz = E|H{zzH}. In the special case when Cuu is
diagonal and E|H{gm(um)} = 0 for m = 1, . . . ,M , Cηη

is also diagonal. Hence, the distortion term has uncorrelated
elements. This cannot happen unless K ≥M .

Observation 2. The elements of the BS distortion term η are
generally correlated.

This confirms previous downlink [10]–[12] and uplink [13]
results, derived with different system models. The question is
now if the simplifying assumption of uncorrelated distortion
(e.g., made in [7]–[9]) has significant impact on the SE.

B. Spectral Efficiency with BS Hardware Impairments

Using the signal and distortion characteristics derived above,
we can determine the communication performance. The signal
detection is based on the received signal y ∈ CM that is
available in the digital baseband. It is assumed to be

y = z+ n = Du+ η + n =

K∑
k=1

Dhksk + η + n (8)

where n ∼ NC(0, σ
2IM ) accounts for thermal noise that is

(conditionally) uncorrelated1 with u and η. The combining
vector vk is used to detect the signal of UE k as

vH

ky = vH

kDhksk +

K∑
i=1,i6=k

vH

kDhisi + vH

kη + vH

kn. (9)

In the given coherence block, η is uncorrelated with u,
thus the distortion is also uncorrelated with the information-
bearing signals s1, . . . , sK (which are mutually independent
by assumption). Hence, we can use the worst-case uncorre-
lated additive noise theorem [4] to lower bound the mutual
information between the input sk and output vH

ky in (9) as

I(sk;vH

ky) ≥ log2 (1 + γk) (10)

for the given deterministic channel realization H, where γk
represents the instantaneous signal-to-interference-and-noise
ratio (SINR) and is given by

γk =
pvH

kDhkh
H

kD
Hvk

vH

k

( ∑
i 6=k

pDhihH
i D

H +Cηη + σ2IM
)
vk
. (11)

Since γk is a generalized Rayleigh quotient with respect to
vk, it is maximized by [15, Lemma B.10]

vk = p

( K∑
i=1,i6=k

pDhih
H

i D
H+Cηη+σ

2IM

)−1

Dhk. (12)

We call this the distortion-aware minimum-mean squared error
(DA-MMSE) receiver as it takes into account not only inter-
user interference and noise, but also the distortion correlation.

1In practice, the initially independent noise at the BS is also distorted by the
BS hardware, which results in uncorrelated noise (conditioned on a channel
realization H) by following the same procedure as above.



Observation 3. The BS distortion correlation affects the
SINR and can be utilized in the receive combining. The SE-
maximizing combining vector is changed by the correlation.

Substituting (12) into (11) yields

γk = phH

kD
H

( K∑
i=1,i6=k

pDhih
H

iD
H+Cηη+σ

2IM

)−1

Dhk (13)

so that the ergodic SE I(sk;vH

ky,H) = EH{I(sk;vH

ky)}
over the fading channel in (8), where EH denotes expectation
w.r.t. H, is lower bounded by

EH{I(sk;vH

ky)} ≥ EH{log2(1 + γk)}. (14)

C. Spectral Efficiency with UE Hardware Impairments

In practice, there are hardware impairments at both the BS
and UEs. To quantify the relative impact of both impairments,
we next assume that sk = ςk + ωk for k = 1, . . . ,K, where
ςk ∼ NC(0, κp) is the actual desired signal from UE k and
ωk ∼ NC(0, (1−κ)p) is a distortion term. The parameter κ ∈
[0, 1] determines the level of hardware impairments at the UE
side, potentially after predistortion. For analytical tractability,
we assume that ςk and ωk are independent, thus the transmit
power is E{|sk|2} = κp + (1 − κ)p = p irrespective of κ.
The independence is a worst-case assumption [4], [15], but is
mainly made to obtain the achievable SE EH{I(ςk;vH

ky)} ≥
EH{log2(1+γ

′
k)} with (using the same methodology as above)

γ′k =

κpvH

kDhkh
H

kD
Hvk

vH

k

(∑
i 6=k

pDhihH
iD

H+ (1−κ)pDhkhH

kD
H+Cηη + σ2IM

)
vk
.

(15)
This SINR is also maximized by DA-MMSE in (12), as it
can be proved using [15, Lemma B.4]. The reason is that
the desired signal and UE distortion are received over the
same channel Dhk, thus such distortion cannot be canceled
by receive combining without canceling the desired signal.

Observation 4. The UE distortion does not change the SE-
maximizing receive combining vector at the BS.

III. QUANTIFYING THE IMPACT OF NON-LINEARITIES

The distortion term vH

kCηηvk appears in (11) and (15).
To analyze the characteristics of this term and, particularly,
the impact of the distortion correlation (i.e., the off-diagonal
elements in Cηη), we consider the AM-AM distortion caused
by the LNA. This can be modeled, in the complex baseband,
by a third-order strictly memoryless non-linear function [1]

gm(um) = um − am|um|2um, m = 1, . . . ,M. (16)

This is a valid model of amplifier saturation when am ≥ 0 and
for such input amplitudes |um| that |gm(um)| is an increasing
function. This occurs for |um| ≤ 1√

3am
, while clipping occurs

for input signals with larger amplitude. The value of am
depends on the circuit technology and how the output power
of the LNA is normalized. One can model it as

am =
α

boffE{|um|2}
(17)
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Fig. 1. Comparison of linear and non-linear amplifiers in (16) with boff = 1.

where E{|um|2} is the average signal power and boff ≥ 1 is
the back-off parameter selected based on the peak-to-average-
power ratio (PAPR) of the input signal to limit the risk for
clipping. The parameter α > 0 determines the non-linearities
for normalized input signals with amplitudes in [0, 1]. The
worst case is given by α = 1/3, for which the LNA saturates
at unit input amplitude. A smaller value of α = 0.1340 was
reported in [16] for a GaN amplifier operating at 2.1 GHz.
These amplifiers are illustrated in Fig. 1 for boff = 1.

We can use this model to compute Cηη . We let ρij =
E|H{uiu∗j} = [Cuu]ij denote the ijth element of Cuu. With

this notation, dm =
ρmm−2amρ

2
mm

ρmm
= 1− 2amρmm and thus

[DCuuD
H]ij = diρijd

∗
j = (1−2aiρii)ρij(1−2ajρjj). (18)

The (conditional) correlation matrix of z has elements

[Czz]ij = E|H{gi(ui) (gj(uj))
∗}

= E|H{uiu∗j} − aiE|H{|ui|2uiu∗j} − ajE|H{ui|uj |2u∗j}
+ aiajE|H{|ui|2|uj |2uiu∗j} (19)

= ρij−2aiρiiρij−2ajρjjρij+aiaj(2|ρij |2ρij+4ρijρiiρjj)

= (1− 2aiρii)ρij(1− 2ajρjj) + 2aiaj |ρij |2ρij (20)

where the first expectation in (19) is ρij , as defined above,
while the second and third expectations can be computed using
Lemma 1. To compute the last expectation, we follow the
procedure in the proof of Lemma 1 to show that ui =

ρij
ρjj
uj+

ε, where ε ∼ NC(0, ρii − |ρij |2/ρjj) is independent of uj .
Substituting this into the last expectation, it follows that

E|H{|ui|2|uj |2uiu∗j}

= E|H

{∣∣∣∣ ρijρjj uj + ε

∣∣∣∣2|uj |2( ρijρjj uj + ε

)
u∗j

}

=

∣∣∣∣ ρijρjj
∣∣∣∣2 ρijρjj E|H{|uj |6}+ 2

ρij
ρjj

E|H{|uj |4}E|H{|ε|2}

= 2|ρij |2ρij + 4ρijρiiρjj . (21)

By using (18) and (20), we can now obtain the elements of
the distortion term’s correlation matrix in (7) as

[Cηη]ij = [Czz]ij − [DCuuD
H]ij = 2aiaj |ρij |2ρij (22)

which can be expressed in matrix form as

Cηη = 2A (Cuu �C∗uu �Cuu)A (23)



where � denotes the Hadamard (element-wise) product and
A = diag(a1, . . . , aM ). If the information signal u has corre-
lated elements (i.e., Cuu has non-zero off-diagonal elements),
it follows from (23) that also the distortion has correlated
elements. The correlation coefficient between ui and uj is

ξuiuj =
E|H{uiu∗j}√

E|H{|ui|2}E|H{|uj |2}
=

ρij√
ρiiρjj

(24)

while the correlation coefficient between ηi and ηj is

ξηiηj =
E|H{ηiη∗j }√

E|H{|ηi|2}E|H{|ηj |2}
=
|ρij |2ρij√
ρ3
iiρ

3
jj

= |ξuiuj |2ξuiuj .

(25)
Clearly, |ξηiηj | = |ξuiuj |3 ≤ |ξuiuj | since |ξuiuj | ∈ [0, 1].

Observation 5. The distortion terms are less correlated than
the corresponding signal terms.

This is in line with observations made in [10], [11], [13].

A. What Happens if the Distortion Correlation is Neglected?
If the distortion terms are only weakly correlated, it would

be analytically tractable to neglect the correlation. This effec-
tively means using the diagonal correlation matrix

Cdiag
ηη = Cηη � IM (26)

which has the same diagonal elements as Cηη . This simplifica-
tion is made in numerous papers that analyze SE [7]–[9], [15].
We will now quantify the impact that such a simplification
has when the BS distortion is caused by the third-order non-
linearity in (16). For this purpose, we consider i.i.d. Rayleigh
fading channels hk ∼ NC(0, IM ) for k = 1, . . . ,K. The
average power received at BS antenna m in (17) is

E{|um|2} = E

{
p

K∑
k=1

|hkm|2
}

= pK. (27)

The impact of distortion correlation can be quantified by
considering the distortion term vH

kCηηvk in (11) and (15) and
comparing it with vH

kC
diag
ηη vk where correlation is neglected.

To make a fair comparison, we consider MR combining with
vk = hk/

√
E{‖hk‖2}, which does not suppress distortion.

Lemma 2. Consider i.i.d. Rayleigh fading channels and am
given by (17), then

E{hH

kCηηhk}
E{‖hk‖2}

=
2α2p

b2off

(
K + 6 +

9

K
+

4

K2
+

2M(K + 1)

K2

)
(28)

≈
E{hH

kC
diag
ηη hk}

E{‖hk‖2}
=

2α2p

b2off

(
K + 6 +

11

K
+

6

K2

)
(29)

where the approximation neglects the distortion correlation.
Proof: Follows from direct computation of moments of

complex Gaussian random variables.
The average distortion power with MR combining is larger

when the distortion terms are correlated, since the fraction
E{hH

kCηηhk}
E{‖hk‖2}

E{hH
kC

diag
ηη hk}

E{‖hk‖2}

=
E{hH

kCηηhk}
E{hH

kC
diag
ηη hk}

= 1+
2(M − 1)

(K + 2)(K + 3)
(30)
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Fig. 2. The BS and UE distortion power with correlation and when correlation
is neglected. The approximation drops significantly in the shaded interval. The
UE distortion dominates for K ≥ 5.

is larger than one and independent of α and boff . The size of
the second term depends on the relation between M and K.

The solid and dash-dotted curves in Fig. 2 show (28) and
(29), normalized by the noise, as a function of K. We consider
a Massive MIMO setup with M = 200, a worst-case amplifier
with α = 1/3, boff = 7 dB, and a signal-to-noise ratio (SNR)
of p/σ2 = 0 dB. The correlation has a huge impact on the
BS distortion term when there are few UEs. Quantitively
speaking, it increases by more than 10 dB. The reason is
that the correlation gives the distortion vector η a similar
direction as hk, for k = 1, . . . ,K, when K is small. Hence,
the distortion effect is amplified by MR combining. The gap
to the curve with uncorrelated distortion reduces with K. In
the shaded part, the gap reduces from 15.3 to 5.5 dB. This is
expected from (30), since η becomes less correlated with each
UE signal that is added when K grows.

We now evaluate the impact of the distortion caused by non-
ideal hardware at the UE. This results in (1− κ)p|hH

kD
Hvk|2

in the denominator of the SINR in (15). With i.i.d. Rayleigh
fading, MR combining, and am given by (17), we have

E{|hH

kDhk|2}
E{‖hk‖2}

= (M + 1)− 4α(MK +K +M + 3)

boffK

+
4α2(MK2 + 8K + 11 + 2MK +K2 +M)

b2offK
2

(31)

which grows with M , similar to (28). The dashed curve in
Fig. 2 shows the UE distortion, under the same conditions
as for the other curves. We consider high-quality transmitter
hardware with κ = 0.99 [15, Sect. 6.1.2] and the signal-
to-distortion power ratio κ/(1 − κ) = 99, which is higher
than [DCuuD

H]ii/[Cηη]ii ≈ 85 for the LNA. The correlated
BS distortion is the dominant factor for K ≤ 3. But for
larger values of K (as envisaged in Massive MIMO), the UE
distortion becomes much higher (5 dB in this example). The
reason is that the largest BS distortion terms reduce with K.

Observation 6. The correlation of the BS distortion reduces
with K. The BS distortion will eventually have a smaller
impact than the UE distortion, which doesn’t reduce with K.

The first part of this observation is line with the downlink
analysis in [10]–[12] and uplink analysis in [13]. These papers
did not quantify the impact of BS distortion on the SE.
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B. How Much is the SE Affected by Neglecting Distortion
Correlation at the BS?

The BS distortion is correlated among antennas, but (as
shown in Fig. 2) this has a very limited impact on the total
distortion in the SINR for K ≥ 5. To further quantify the
impact, we compute the SE expressions derived in Section II-C
numerically for the same setup as considered in Fig. 2:
M = 200 antennas, varying number of UEs, i.i.d. Rayleigh
fading, p/σ2 = 0 dB SNR, and non-ideal hardware at the BS
and UEs represented by α = 1/3, κ = 0.99, and boff = 7 dB.

Fig. 3 shows the SE per UE, as a function of the num-
ber of UEs. We consider either DA-MMSE combining in
(12) or distortion-aware MR (DA-MR) combining, defined
as vk = Dhk/‖Dhk‖. The solid lines represent the exact
SE, taking the correlated distortion into account, while the
dashed lines represent approximate SEs achieved by neglecting
distortion correlation; that is, using Cdiag

ηη in (26) instead of
Cηη . Although the choice of the receive combining scheme has
a large impact on the SE, the approximation error is negligible
for K ≥ 5 with both schemes. Even in the range K < 5, the
shaded gap only ranges from 6.7% to 5.5% for DA-MMSE.

Observation 7. The distortion correlation has negligible im-
pact on the uplink SE in the studied Massive MIMO scenario;
that is, i.i.d. Rayleigh fading and equal SNRs for all UEs.

This is in line with the Massive MIMO papers [9], [15],
which make similar claims but without analytical or numerical
evidence. Note that we reached this result by considering
higher hardware quality at the UE than at the BS, in an effort
to not underestimate the impact of BS distortion. In practice,
the UEs could potentially have lower hardware quality than the
BS, which would make the approximation error negligible for
even smaller values of K. Furthermore, the use of a flat-fading
channel, AM-AM distortion without phase-distortion, and no
quantization errors are further conservative assumptions.

IV. CONCLUSIONS

The hardware distortion in a multiple-antenna BS is gen-
erally correlated across antennas. This reduces the SINR, but
its impact on the SE is marginal, particularly for DA-MMSE.
Even in Massive MIMO with 200 antennas, approximating

the distortion as uncorrelated leads to negligible errors when
serving a small number of UEs. The reason is that the BS
distortion correlation reduces with the number of UEs, making
UE distortion the dominant factor. This was demonstrated by
deriving SE expressions with arbitrary quasi-memoryless dis-
tortion functions and then quantifying the impact of third-order
AM-AM non-linearities. Results were obtained analytically
and numerically for i.i.d. Rayleigh fading with equal SNRs.

Different phenomena may arise when using other propaga-
tion and hardware models. Frequency-selective fading lead to
reduced correlation [11]. Distortion compensation algorithms
achieve similar results. However, near-far effects might make
the distortion vector similar to a cell-center UE’s channel [12].

In summary, we have demonstrated that the uncorrelated
distortion model advocated in [9], [15] for Massive MIMO
with Rayleigh fading can give very accurate results when
analyzing the SE in such systems. Although it is generally
“physically inaccurate” to neglect distortion correlation, we
can do it when analyzing the SE. However, when using the
model in other setups, one must always verify that the distor-
tion correlation has negligible impact also in those setups.
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