17,560 research outputs found

    Oscillation Criteria For Even Order Nonlinear Neutral Differential Equations With Mixed Arguments

    Get PDF
    This paper deals with the oscillation criteria for nth order nonlinear neutral  mixed type dierential equations

    Oscillation Criteria for Certain Even Order Neutral Delay Differential Equations with Mixed Nonlinearities

    Get PDF
    We establish some oscillation criteria for the following certain even order neutral delay differential equations with mixed nonlinearities: rtzn-1tα-1zn-1t'+q0(t)(xτ0tα-1x(τ0(t))+q1t(x(τ1(t))β-1x(τ1(t))+q2t(x(τ2(t))γ-1x(τ2(t))=0, t≥t0, where z(t)=x(t)+p(t)x(σ(t)),n is even integer, and γ>α>β>0. Our results generalize and improve some known results for oscillation of certain even order neutral delay differential equations with mixed nonlinearities

    Oscillation and nonoscillation of third order functional differential equations

    Get PDF
    A qualitative approach is usually concerned with the behavior of solutions of a given differential equation and usually does not seek specific explicit solutions;This dissertation is the analysis of oscillation of third order linear homogeneous functional differential equations, and oscillation and nonoscillation of third order nonlinear nonhomogeneous functional differential equations. This is done mainly in Chapters II and III. Chapter IV deals with the analysis of solutions of neutral differential equations of third order and even order. In Chapter V we study the asymptotic nature of nth order delay differential equations;Oscillatory solution is the solution which has infinitely many zeros; otherwise, it is called nonoscillatory solution;The functional differential equations under consideration are:(UNFORMATTED TABLE OR EQUATION FOLLOWS) (b(ay[superscript]\u27)[superscript]\u27)[superscript]\u27 + (q[subscript]1y)[superscript]\u27 + q[subscript]2y[superscript]\u27 = 0, &(b(ay[superscript]\u27)[superscript]\u27)[superscript]\u27 + q[subscript]1y + q[subscript]2y(t - [tau]) = 0, &(b(ay[superscript]\u27)[superscript]\u27)[superscript]\u27 + qF(y(g(t))) = f(t), &(y(t) + p(t)y(t - [tau]))[superscript]\u27\u27\u27 + f(t, y(t), y(t - [sigma])) = 0, &(y(t) + p(t)y(t - [tau]))[superscript](n) + f(t, y(t), y(t - [sigma])) = 0, and &y[superscript](n) + p(t)f(t, y[tau], y[subscript]sp[sigma][subscript]1\u27,..., y[subscript]sp[sigma][subscript]n[subscript]1(n-1)) = F(t). (TABLE/EQUATION ENDS);The first and the second equations are considered in Chapter II, where we find sufficient conditions for oscillation. We study the third equation in Chapter III and conditions have been found to ensure the required criteria. In Chapter IV, we study the oscillation behavior of the fourth and the fifth equations. Finally, the last equation has been studied in Chapter V from the point of view of asymptotic nature of its nonoscillatory solutions

    On Nonoscillation of Mixed Advanced-Delay Differential Equations with Positive and Negative Coefficients

    Get PDF
    For a mixed (advanced--delay) differential equation with variable delays and coefficients x˙(t)±a(t)x(g(t))∓b(t)x(h(t))=0,t≥t0 \dot{x}(t) \pm a(t)x(g(t)) \mp b(t)x(h(t)) = 0, t\geq t_0 where a(t)≥0,b(t)≥0,g(t)≤t,h(t)≥t a(t)\geq 0, b(t)\geq 0, g(t)\leq t, h(t)\geq t explicit nonoscillation conditions are obtained.Comment: 17 pages; 2 figures; to appear in Computers & Mathematics with Application

    Asymptotic solutions of forced nonlinear second order differential equations and their extensions

    Full text link
    Using a modified version of Schauder's fixed point theorem, measures of non-compactness and classical techniques, we provide new general results on the asymptotic behavior and the non-oscillation of second order scalar nonlinear differential equations on a half-axis. In addition, we extend the methods and present new similar results for integral equations and Volterra-Stieltjes integral equations, a framework whose benefits include the unification of second order difference and differential equations. In so doing, we enlarge the class of nonlinearities and in some cases remove the distinction between superlinear, sublinear, and linear differential equations that is normally found in the literature. An update of papers, past and present, in the theory of Volterra-Stieltjes integral equations is also presented

    Oscillation theorems for second order neutral differential equations

    Get PDF
    In this paper new oscillation criteria for the second order neutral differential equations of the form \begin{equation*} \left(r(t)\left[x(t)+p(t)x(\tau(t))\right]'\right)'+q(t)x(\sigma(t))+v(t)x(\eta(t))=0 \tag{EE}\end{equation*} are presented. Gained results are based on the new comparison theorems, that enable us to reduce the problem of the oscillation of the second order equation to the oscillation of the first order equation. Obtained comparison principles essentially simplify the examination of the studied equations. We cover all possible cases when arguments are delayed, advanced or mixed
    • …
    corecore