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a b s t r a c t

For a mixed (advanced-delay) differential equation with variable delays and coefficients

ẋ(t)± a(t)x(g(t))∓ b(t)x(h(t)) = 0, t ≥ t0

where

a(t) ≥ 0, b(t) ≥ 0, g(t) ≤ t, h(t) ≥ t

explicit nonoscillation conditions are obtained.
© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Differential equations with delay in advanced arguments occur in many applied problems, see [1–6], especially in
mathematical economics. There are natural delays in impact and processing in the economic models, like the policy lags
[4]. A government’s stabilization policy can be destabilizing due to delays in policy response [4] (if the delays are large
enough). An advanced term may, for example, reflect the dependence on anticipated capital stock [5,6]. However, apart
from the case of constant coefficients, there are only a few results on delayed-advanced (mixed) differential equations. The
present paper partially fills this gap. It mainly deals with nonoscillation problems: we obtain criteria when a nonoscillatory
solution with a prescribed tendency (either nonincreasing or nondecreasing) exists.
Recently, results on oscillation of delay differential equations (DDE) have taken the shape of a developed theory presented

in monographs [7–11]. Most of the oscillation criteria for DDE can be extended to equations of advanced type (ADE)
(see [7–12] and also the recent papers [13–19]). However, for mixed differential equations (MDE), i.e., equations with delay
and advanced arguments, the theory is much less developed.
In this paper we consider a mixed differential equation

ẋ(t)+ δ1a(t)x(g(t))+ δ2b(t)x(h(t)) = 0, t ≥ t0 (1)

with variable coefficients a(t) ≥ 0, b(t) ≥ 0, one delayed (g(t) ≤ t) and one advanced (h(t) ≥ t) arguments. To the best
of our knowledge, oscillation of such equations has not been studied before, except partial cases of autonomous equations
[20–24], equations of the second or higher order [25–27] and equations with constant delays [28]. In [29], nonoscillation
only of Eq. (1) and higher order equations was considered, where δ1 and δ2 have the same sign. In [30] the author considers
a differential equation with a deviating argument, without the assumption that it is either a delay or an advanced equation.
Hence, the results of [30] can be applied to MDE (1). The results of the present paper and of [30] are independent.
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We consider Eq. (1) under the following conditions:

(a1) a(t), b(t), g(t), h(t) are Lebesgue measurable locally essentially bounded functions, a(t) ≥ 0, b(t) ≥ 0;
(a2) g(t) ≤ t, h(t) ≥ t, limt→∞ g(t) = ∞.

For Eq. (1) we can consider the same initial value problem as for delay equations:

x(t) = ϕ(t), t < t0, x(t0) = x0. (2)

Definition. An absolutely continuous (on each interval [t0, b]) function x : R→ R is called a solution of problem (1)–(2), if
it satisfies Eq. (1) for almost all t ∈ [t0,∞) and equalities (2) for t ≤ t0.

In the present paper, we will not discuss existence and uniqueness conditions for a solution of the problem (1)–(2).
Instead, as mentioned before, we will only discuss asymptotic properties of the solutions.

Definition. Solution x(t), t0 ≤ t < ∞, of a differential equation or inequality is called nonoscillatory if there exists T such
that x(t) 6= 0 for any t ≥ T and oscillatory otherwise.

In [31] for Eq. (1), the cases when the delay and the advanced term have the same sign (δ1 = δ2 = 1 or δ1 = δ2 = −1)
were investigated and the following main results were obtained.

Theorem A. Suppose for the equation

ẋ(t)+ a(t)x(g(t))+ b(t)x(h(t)) = 0 (3)

(a1)–(a2) hold, functions a(t), b(t), g(t), h(t) are equicontinuous on [0,∞) and

lim sup
t→∞

[t − g(t)] <∞, lim sup
t→∞

[h(t)− t] <∞. (4)

If the delay equation

ẋ(t)+ a(t)x(g(t))+ b(t)x(t) = 0

has a nonoscillatory solution then Eq. (3) also has a nonoscillatory solution.
In particular, if

lim sup
t→∞

∫ t

g(t)
a(s) exp

{∫ s

g(s)
b(τ )dτ

}
ds <

1
e

then Eq. (3) has a nonoscillatory solution.

Theorem B. Suppose for the equation

ẋ(t)− a(t)x(g(t))− b(t)x(h(t)) = 0 (5)

(a1)–(a2) hold, functions a(t), b(t), g(t), h(t) are equicontinuous on [0,∞) and condition (4) holds. If the advanced equation

ẋ(t)− a(t)x(t)− b(t)x(h(t)) = 0

has a nonoscillatory solution then Eq. (5) also has a nonoscillatory solution.
In particular, if

lim
t→∞

sup
∫ h(t)

t
b(s) exp

{∫ h(s)

s
a(τ )dτ

}
ds <

1
e

then Eq. (5) has a nonoscillatory solution.

In the present paper, we consider the two remaining cases where coefficients have different signs: δ1 = 1, δ2 = −1 and
δ1 = −1, δ2 = 1. For these cases, we obtain some rather natural explicit nonoscillation conditions for Eq. (1): in Section 2
for the former case, in Section 3 for the latter one. Finally, Section 4 involves a discussion of the results and outlines some
open problems on MDE.
It is important to emphasize that, in applications of ADE and MDE, for example in economics, it is interesting to obtain

not only positive solutions but also positive monotone solutions, which retain the trend. Most of the theorems in this paper
present sufficient conditionswhen solutions of this kind exist. Some of the results also present explicit estimates for positive
solutions.
We note that the methods applied in the present paper are different from [31]. The criteria (like Theorem 2) and non-

explicit results of the general form (Theorem 3) are supplemented by corollaries which provide easily verified sufficient
conditions.
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2. Positive delay term, negative advanced term

In this section, we consider the case δ1 = 1, δ2 = −1 in (1) which becomes
ẋ(t)+ a(t)x(g(t))− b(t)x(h(t)) = 0, t ≥ t0. (6)

Theorem 1. Suppose (a1)–(a2) hold and a(t) ≥ b(t). Then the following conditions are equivalent:
1. Differential inequality

ẋ(t)+ a(t)x(g(t))− b(t)x(h(t)) ≤ 0, t ≥ t0, (7)

has an eventually nonincreasing positive solution.
2. Integral inequality

u(t) ≥ a(t) exp
{∫ t

g(t)
u(s)ds

}
− b(t) exp

{
−

∫ h(t)

t
u(s)ds

}
, t ≥ t1, (8)

has a nonnegative locally integrable solution for some t1 ≥ t0, where we assume u(t) = 0 for t < t1.
3. Differential equation (6) has an eventually positive nonincreasing solution.

Proof. (1) ⇒ (2). Let x be a solution of (7) such that x(t) > 0, ẋ(t) ≤ 0, t ≥ t0. For some t1 ≥ t0 we have g(t) ≥ t0 for
t ≥ t1. Denote u(t) = −ẋ(t)/x(t), t ≥ t1, u(t) = 0, t < t1. Then

x(t) = x(t1) exp
{
−

∫ t

t1
u(s)ds

}
, t ≥ t1. (9)

After substituting (9) into (7) and carrying the exponent out of the brackets, we obtain

− exp
{
−

∫ t

t1
u(s)ds

}
x(t1)

[
u(t)− a(t) exp

{∫ t

g(t)
u(s)ds

}
+ b(t) exp

{
−

∫ h(t)

t
u(s)ds

}]
≤ 0.

Hence (8) holds.
(2)⇒ (3). Suppose u0(t) ≥ 0, t ≥ t1 is a solution of inequality (8). Consider the following sequence

un+1(t) = a(t) exp
{∫ t

g(t)
un(s)ds

}
− b(t) exp

{
−

∫ h(t)

t
un(s)ds

}
, n ≥ 0. (10)

Since un(t) ≥ a(t)− b(t) ≥ 0 and u0 ≥ u1 then by induction

0 ≤ un+1(t) ≤ un(t) ≤ · · · ≤ u0(t).

Hence, there exists a pointwise limit

u(t) = lim
n→∞

un(t).

The Lebesgue convergence theorem and (10) imply

u(t) = a(t) exp
{∫ t

g(t)
u(s)ds

}
− b(t) exp

{
−

∫ h(t)

t
u(s)ds

}
.

Then x(t) denoted by (9) is a nonnegative nonincreasing solution of Eq. (6).
Implication (3)⇒ (1) is evident. �

For comparison, now consider the following MDE
ẋ(t)+ a1(t)x(g1(t))− b1(t)x(h1(t)) = 0, t ≥ t0. (11)

Corollary 1.1. Suppose (a1)–(a2) hold for a, b, h, g, a1, b1, h1, g1 and

b1(t) ≤ b(t) ≤ a(t) ≤ a1(t), g(t) ≥ g1(t), h(t) ≤ h1(t). (12)

If Eq. (11) has an eventually positive solution with an eventually nonpositive derivative, then the same is valid for Eq. (6).

Proof. Suppose (11) has an eventually positive solutionwith an eventually nonpositive derivative. By Theorem1 the integral
inequality

u(t) ≥ a1(t) exp
{∫ t

g1(t)
u(s)ds

}
− b1(t) exp

{
−

∫ h1(t)

t
u(s)ds

}
, t ≥ t1,

has a nonnegative locally integrable solution u(t) for some t1. Inequalities (12) imply that u(t) also satisfies (8). Thus by
Theorem 1 Eq. (6) has an eventually positive solution with an eventually nonpositive derivative. �
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Corollary 1.2. Suppose (a1)–(a2) hold, for t sufficiently large a(t) ≥ b(t) and

b(t) ≥ a(t)
[
exp

{∫ t

g(t)
a(s)ds

}
− 1

]
exp

{∫ h(t)

t
a(s)ds

}
.

Then there exists an eventually positive solution with an eventually nonpositive derivative of Eq. (6).

Proof. It is easy to see that u(t) = a(t) is a nonnegative solution of inequality (8). �

Corollary 1.3. Suppose (a1)–(a2) hold and there exist a > 0, b > 0, τ > 0, σ > 0 such that

b ≤ b(t) ≤ a(t) ≤ a, g(t) ≥ t − τ , h(t) ≤ t + σ .

If there exists a solution λ > 0 of the algebraic equation

− λ+ aeλτ − be−λσ = 0 (13)

then Eq. (6) has an eventually positive solution with an eventually nonpositive derivative.

Proof. The function x(t) = e−λt is a positive solution of the equation

ẋ(t)+ ax(t − τ)− bx(t + σ) = 0, t ≥ 0. (14)

By Corollary 1.1 Eq. (6) has a nonoscillatory solution. �

Corollary 1.4. Suppose (a1)–(a2) hold, a(t) ≥ b(t) and there exists a nonoscillatory solution of the delay equation

ẋ(t)+ a(t)x(g(t)) = 0. (15)

Then there exists an eventually positive solution with an eventually nonpositive derivative of Eq. (6).

Proof. Theorem 1 in [32] implies that there exists a nonnegative solution u(t) of the inequality

u(t) ≥ a(t) exp
{∫ t

g(t)
u(s)ds

}
.

Hence u(t) is also a nonnegative solution of inequality (8), then by Theorem 1 Eq. (6) has a nonoscillatory solution. �

Remark. Eq. (15) has a nonoscillatory solution [8] if for t sufficiently large∫ t

g(t)
a(s) ds ≤

1
e
.

Corollary 1.5. Suppose (a1)–(a2) hold, a(t) ≥ b(t), the integral inequality (8) has a nonnegative solution for t ≥ t1 and∫
∞

0 [a(s) − b(s)]ds = ∞. Then there exists an eventually positive solution x(t) with an eventually nonpositive derivative of
Eq. (6) such that limt→∞ x(t) = 0.

Proof. By the assumption of the theorem, there exists a nonnegative solution u(t) of Eq. (8), which obviously satisfies
u(t) ≥ a(t) − b(t). Then the function x(t) defined by (9) is a solution of (6). For this solution we have 0 < x(t) ≤ x(t1)
exp

{
−
∫ t
0 [a(s)− b(s)]ds

}
. Hence limt→∞ x(t) = 0. �

Corollaries 1.4 and 1.5 imply the following statement.

Corollary 1.6. Suppose (a1)–(a2) hold, a(t) ≥ b(t), for t sufficiently large
∫ t
g(t) a(s) ds ≤

1
e and

∫
∞

0 [a(s)− b(s)] ds = ∞. Then
the equation

ẋ(t)+ a(t)x(t)− b(t)x(h(t)) = 0

has an eventually positive solution x(t) with an eventually nonpositive derivative such that limt→∞ x(t) = 0.

Example 1. Consider the equation

ẋ(t)+ 1.4x(t − 0.3)− 1.3x(t + 0.3) = 0. (16)

Then u(t) ≡ 1 is a solution of the relevant inequality (8) since 1.4e0.3 − 1.3e−0.3 ≈ 0.9267 < 1. We remark that since
1.3 · 0.3 = 0.39 > 1

e ≈ 0.368, then all solution of both equations

ẋ(t)+ 1.4x(t − 0.3) = 0 (17)
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and

ẋ(t)− 1.3x(t + 0.3) = 0 (18)

are oscillatory [9]. The characteristic equation

− λ+ 1.4e0.3λ − 1.3e−0.3λ = 0 (19)

has three real roots: λ1 ≈ −4.2282, λ2 ≈ 0.5436 and λ3 ≈ 3.3541, thus e−λ1t , e−λ2t and e−λ3t are three nonoscillatory
solutions of (16), the first one is unbounded on [0,∞) and the other two are bounded and have a negative derivative.

Example 2. Consider the equation

ẋ(t)+ (1.375+ 0.025 sin t)x(t − 0.3)− (1.325+ 0.025 cos t)x(t + 0.3) = 0. (20)

Since 1.3 ≤ 1.325+0.025 cos t ≤ 1.35 ≤ 1.375+0.025 sin t ≤ 1.4 then applying Corollary 1.1 and the results of Example 1
we obtain that (20) has an eventually positive solution x(t) with an eventually nonpositive derivative. Moreover, since the
integral of a continuous nonnegative periodic function

∫
∞

0 (0.05+0.025 sin t−0.025 cos t) dt diverges, then by Corollary 1.5
this solution satisfies limt→∞ x(t) = 0.

Theorem 2. Suppose (a1)–(a2) hold and b(t) ≥ a(t). Then the following conditions are equivalent:
1. Differential inequality

ẋ(t)+ a(t)x(g(t))− b(t)x(h(t)) ≥ 0, t ≥ t0, (21)

has an eventually positive solution with an eventually nonnegative derivative.
2. Integral inequality

u(t) ≥ b(t) exp
{∫ h(t)

t
u(s)ds

}
− a(t) exp

{
−

∫ t

g(t)
u(s)ds

}
, t ≥ t1, (22)

u(t) = 0, t < t1, has a nonnegative locally integrable solution for some t1 ≥ t0.
3. Differential equation (6) has an eventually positive solution with an eventually nonnegative derivative.

Proof. (1) ⇒ (2). Let x be a solution of (21) such that x(t) > 0, ẋ(t) ≥ 0, t ≥ t0. For some t1 ≥ t0 we have g(t) ≥ t0 for
t ≥ t1. Denote u(t) = ẋ(t)/x(t), t ≥ t1. Then

x(t) = x(t1) exp
{∫ t

t1
u(s)ds

}
, t ≥ t1. (23)

After substituting (23) into (21) and carrying the exponent out of the brackets we obtain

exp
{∫ t

t1
u(s)ds

}
x(t1)

[
u(t)− b(t) exp

{∫ h(t)

t
u(s)ds

}
+ a(t) exp

{
−

∫ t

g(t)
u(s)ds

}]
≥ 0.

Hence (22) holds.
(2)⇒ (3). Let u0(t) ≥ 0 be a solution of inequality (22). Consider the sequence

un+1(t) = b(t) exp
{∫ h(t)

t
un(s)ds

}
− a(t) exp

{
−

∫ t

g(t)
un(s)ds

}
, n ≥ 0. (24)

Inequalities un(t) ≥ b(t)− a(t) and u0 ≥ u1 imply

0 ≤ un+1(t) ≤ un(t) ≤ · · · ≤ u0(t).

Hence, there exists a pointwise limit

u(t) = lim
n→∞

un(t).

By the Lebesgue convergence theorem and (24), we have

u(t) = b(t) exp
{∫ h(t)

t
u(s)ds

}
− a(t) exp

{
−

∫ t

g(t)
u(s)ds

}
. (25)

Then x(t) defined by (23) is a positive solution of Eq. (6) with a nonnegative derivative.
Implication (3)⇒ (1) is evident. �

The proofs of the following corollaries can be given, and are very similar to those given for Theorem 1, hence we omit
most of them.
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Corollary 2.1. Suppose (a1)–(a2) hold for Eqs. (6) and (11),

a1(t) ≤ a(t) ≤ b(t) ≤ b1(t), g(t) ≥ g1(t), h(t) ≤ h1(t).

If Eq. (11) has an eventually positive solution with an eventually nonnegative derivative then so does Eq. (6).

Corollary 2.2. Suppose (a1)–(a2) hold, for t sufficiently large b(t) ≥ a(t) and

a(t) ≥ b(t)
[
exp

{∫ h(t)

t
b(s)ds

}
− 1

]
exp

{∫ t

g(t)
b(s)ds

}
.

Then there exists an eventually positive solution with an eventually nonnegative derivative of Eq. (6).

Proof. It is easy to see that u(t) = b(t) is a nonnegative solution of inequality (22). �

Corollary 2.3. Suppose (a1)–(a2) hold and there exist a > 0, b > 0, τ > 0, σ > 0 such that

a ≤ a(t) ≤ b(t) ≤ b, g(t) ≥ t − τ , h(t) ≤ t + σ .

If there exists a positive solution λ > 0 of the algebraic equation

λ+ ae−λτ − beλσ = 0 (26)

then there exists an eventually positive solution with an eventually nonnegative derivative of Eq. (6).

Corollary 2.4. Suppose (a1)–(a2) hold, b(t) ≥ a(t) and there exists a nonoscillatory solution of the advanced equation

ẋ(t)− b(t)x(h(t)) = 0. (27)

Then there exists an eventually positive solution with an eventually nonnegative derivative of Eq. (6).

Remark. If for t sufficiently large∫ h(t)

t
b(s) ds ≤

1
e
,

then [9] there exists a nonoscillatory solution of (27).

Corollary 2.5. Suppose (a1)–(a2) hold, b(t) ≥ a(t), the integral inequality (22) has a nonnegative solution for t ≥ t1 and∫
∞

0 [b(s)− a(s)] ds = ∞. Then there exists an eventually positive solution with an eventually nonnegative derivative x(t) of (6)
such that limt→∞ x(t) = ∞.

3. Negative delay term, positive advanced term

In this section we consider the following scalar MDE (1) with δ1 = −1, δ2 = 1:

ẋ(t)− a(t)x(g(t))+ b(t)x(h(t)) = 0, t ≥ t0, (28)

Theorem 3. Suppose that a(t), b(t) are continuous bounded on [0,∞) functions, g(t) and h(t) are equicontinuous on [0,∞)
functions, there exist positive numbers a1, a2, b1, b2, τ , σ , t1 such that

a1 ≤ a(t) ≤ a2, b1 ≤ b(t) ≤ b2, t − g(t) ≤ τ , h(t)− t ≤ σ , t ≥ t1, (29)

and the following algebraic system{
a2eyτ − b1e−yσ ≤ x,
b2exσ − a1e−xτ ≤ y

(30)

has a solution x = d1 > 0, y = d2 > 0.
Then Eq. (28) has a nonoscillatory solution.

Proof. Define the following operator in the space C[t1,∞) of all bounded continuous on [t1,∞) functions with the usual
sup-norm

(Au)(t) = a(t) exp
{
−

∫ t

g(t)
u(s)ds

}
− b(t) exp

{∫ h(t)

t
u(s)ds

}
, t ≥ t1,
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u(t) = 0, t ≤ t1. Let x = d1, y = d2 be a positive solution of system (30). Then the inequality −d2 ≤ u(t) ≤ d1 implies
−d2 ≤ (Au)(t) ≤ d1. It means that A(S) ⊂ S, where

S = {u(t) : −d2 ≤ u(t) ≤ d1}.

Now we will prove that A(S) is a compact set in the space C[t1,∞). Denote the integral operators

(Hu)(t) :=
∫ t

g(t)
u(s)ds, (Ru)(t) :=

∫ h(t)

t
u(s)ds.

We have for u ∈ S

|(Hu)(t)| ≤ max{d1, d2}τ , |(Ru)(t)| ≤ max{d1, d2}σ .

Hence the sets H(S) and R(S) are bounded in the space C[t1,∞).
Let u ∈ S. Then

|(Hu)(τ2)− (Hu)(τ1)| ≤
∣∣∣∣∫ g(τ2)

g(τ1)
|u(s)|ds

∣∣∣∣+ ∣∣∣∣∫ τ2

τ1

|u(s)|ds
∣∣∣∣

≤ max{d1, d2} (|g(τ2)− g(τ1)| + |τ2 − τ1|)

and, similarly,

|(Ru)(τ2)− (Ru)(τ1)| ≤ max{d1, d2}(|h(τ2)− h(τ1)| + |τ2 − τ1|).

Since g , h are equicontinuous in [t1,∞), then functions in H(S) and R(S) are also equicontinuous. Then the sets H(S) and
R(S) are compact. Consequently, A(S) is also a compact set.
Schauder’s fix point theorem implies that there exists a solution u ∈ S of operator equation u = Au. Therefore the

function x(t) = x(t1) exp
{∫ t
t1
u(s)ds

}
, t ≥ t1, is a positive solution of Eq. (28). �

Corollary 3.1. Suppose that a(t), b(t) are continuous bounded on [0,∞) functions, g(t) and h(t) are equicontinuous on [0,∞)
and there exist positive numbers a1, a2, b1, b2, τ , σ such that (29) is satisfied and at least one of the following conditions holds:

(1) b2 < a1, 0 < a2 − b1 < 1
τ+σ
ln a1b2 ,

(2) a2 < b1, 0 < b2 − a1 < 1
τ+σ
ln b1a2 .

Then Eq. (28) has a nonoscillatory solution.

Proof. It suffices to prove that system (30) has a positive solution. Suppose condition (1) holds. For the second condition,
the proof is similar.
Let us define the functions f (x) = b2exσ − a1e−xτ and g(y) = a2eyτ − b1e−yσ which are both monotone increasing. We

have f (0) < 0, f (x1) = 0, where

x1 =
1

τ + σ
ln
a1
b2
.

Since g(y) is a monotone function then there exists the monotone increasing inverse function g−1(x), for which we have
g−1(x2) = 0, where x2 = a2 − b1 > 0.
Denote h(x) = g−1(x)− f (x). Condition (1) implies x2 < x1, then f (x2) < 0 and thus h(x2) > 0.
From the equality g(y) = a2eyτ − b1e−yσ = xwe have a2eyτ ≤ x+ b1 for y ≥ 0. Then

g−1(x) ≤
1
τ
ln
x+ b1
a2

and h(x) ≤
1
τ
ln
x+ b1
a2
− b2exσ + a1

for x large enough. Hence limx→∞ h(x) = −∞.
Since h is continuous, then there exists x0 > x2 > 0 such that h(x0) = 0. It means that f (x0) = g−1(x0). Therefore

x0, y0 = f (x0) is a solution of the system (30). Hence Eq. (28) has a nonoscillatory solution. �

If the conditions of Corollary 3.1 do not hold, we can apply numerical methods to prove that system (30) has a positive
solution.

Example 3. Consider the equation

ẋ(t)− (1.3+ 0.1 sin t)x(t − 0.1− 0.1 cos t)+ (1.7+ 0.1 cos t)x(t + 0.2+ 0.1 sin t) = 0, t ≥ 0. (31)

Then a1 = 1.2, a2 = 1.4, b1 = 1.6, b2 = 1.8, τ = 0.2, σ = 0.3 and (30) has a positive solution x = 2, y = 3, since

a2eyτ − b1e−yσ = 1.4e0.6 − 1.6e−0.9 ≈ 1.9 < x = 2,
b2exσ − a1e−xτ ≤ y = 1.8e0.6 − 1.2e−0.4 ≈ 2.48 < y = 3.

Hence Eq. (31) has a nonoscillatory solution.
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Fig. 1 illustrates the domain of values (x, y) satisfying the system of inequalities (30) for Eq. (31) which is between the
two curves.

Example 4. Consider the equation with constant coefficients and variable advance and delay

ẋ(t)− ax(g(t))+ bx(h(t)) = 0, t ≥ 0, (32)

where t ≥ g(t) ≥ t − 0.2, t ≤ h(t) ≤ t + 0.3, as in Example 3. Thus, in (30) we have τ = 0.2, δ = 0.3. All values below the
curve in Fig. 2 are such that the system of inequalities (30) has a positive solution and hence Eq. (32) has a nonoscillatory
solution.

For comparison, we also included the line

0.2a+ 0.3b <
1
e
. (33)

Remark. The autonomous equation

ẋ(t)− ax(t − τ)+ bx(t + σ) = 0, a > 0, b > 0, τ > 0, σ > 0, (34)

always has a positive solution eλt , where λ is a solution of the characteristic equation

f (λ) = λ− ae−τλ + beσλ = 0. (35)

Since limλ→±∞ f (λ) = ±∞, then there is always a realλ satisfying (35). There is a positive solution satisfying limt→∞ x(t) =
∞ if b < a, and a positive solution satisfying limt→∞ x(t) = 0 if b > a.

4. Discussion and open problems

In this paper, we presented results for equations with variable arguments and coefficients, one delay and one advanced
term in the case when coefficients have any of four possible sign combinations; the results for coefficients of different signs
are new. If the delayed term is positive,wenot only claim the existence of a positive solution but present sufficient conditions
under which its asymptotics can be deduced (i.e., a nonincreasing positive solutions which tends to zero or a nondecreasing
solution which tends to infinity).
Below, we present some open problems and topics for research and discussion.

1. If we consider the characteristic equation of the autonomous equation (14), it is easy to prove that Eq. (14) has a positive
solution for any positive coefficients a > 0, b > 0.
Prove or disprove:
If conditions (a1)–(a2) hold,

a1 ≤ a(t) ≤ a2, b1 ≤ b(t) ≤ b2, t − g(t) ≤ τ , h(t)− t ≤ σ ,

then Eq. (6) has an eventually positive solution.
Consider the same problem for Eq. (28).

2. Prove or disprove:
If a(t) ≥ b(t) ≥ 0 and (6) has an eventually positive solution with an eventually nonpositive derivative which tends

to zero, then all solutions of the ordinary differential equation

ẋ(t)+ [a(t)− b(t)]x(t) = 0 (36)

tend to zero as t → ∞. If b(t) ≥ a(t) ≥ 0 and (6) has an eventually positive solution with an eventually nonnegative
derivative which tends to infinity as t →∞, then all solutions of (36) tend to infinity.

3. For Eq. (6), obtain sufficient conditions under which there exists a positive solution which tends to some d 6= 0. Is
convergence of

∫
∞

0 a(s) ds and
∫
∞

0 b(s) ds sufficient, together with the other conditions of Theorem 1? Consider the
same problem for (28). We remark that, for first order delay neutral equations with positive and negative coefficients
in [33,34], sufficient conditions were found, under which all solutions either oscillate or tend to zero, and for the second
order neutral delay equation such conditions can be found in the recent paper [35]. It would be interesting to find
conditions which guarantee the existence of a positive solution (which tends to zero) for these equations. For some
sufficient conditions for linear models without a neutral part, see [36].

4. Find sufficient conditions when Eq. (28) has a positive nonincreasing solution x(t) such that limt→∞ x(t) = 0 or find
sufficient conditionswhen Eq. (28) has a positive solution x(t)with a nonnegative derivative such that limt→∞ x(t) = ∞.

5. Obtain sufficient conditionswhen the equationwith one termwhich can be both advanced anddelayed, and an oscillating
coefficient

ẋ(t)+ a(t)x(g(t)) = 0 (37)

has a positive solution. For instance, if a(t)[t − g(t)] is either positive or negative for any t , then (37) can be rewritten in
the form (6) or (28), thus some conditions can be deduced from the results of the present paper.
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Fig. 1. The domain of values (x, y) satisfying the system of inequalities (30) for Eq. (31) is between the curves. The chosen value x = 2, y = 3 inside the
domain is also marked on the graph.

Fig. 2. The domain of values a, b such that the system of inequalities (30) for Eq. (32) has a positive solution is under the curve.

6. Prove or disprove:
Suppose a(t) ≥ 0, b(t) ≥ 0,

∫
∞

0 [a(t)+ b(t)]dt = ∞.
If Eq. (3) has a positive solution then this equation is asymptotically stable.
If Eq. (5) has a positive solution then the absolute value of any nontrivial solution tends to infinity.

7. Instead of initial condition (2) for MDE we can formulate the ‘‘final’’ conditions

x(t) = ϕ(t), t > t0, x(t0) = x0, (38)

studying nonoscillation for t < T ≤ t0 and asymptotics for t →−∞. Howwould the results of the present paper change
if obtained for (6), (38) or (28), (38)?
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