10 research outputs found

    Air Interface for Next Generation Mobile Communication Networks: Physical Layer Design:A LTE-A Uplink Case Study

    Get PDF

    Multi-Service Radio Resource Management for 5G Networks

    Get PDF

    Experimental and analytical evaluation of multi-user beamforming in wireless LANs

    Get PDF
    Adaptive beamforming is a. powerful approach to receive or transmit signals of interest in a spatially selective way in the presence of interference and noise. Recently, there has been renewed interest in adaptive beamforming driven by applications in wireless communications, where multiple-input multiple-output (MEMO) techniques have emerged as one of the key technologies to accommodate the high number of users as well as the increasing demand for new high data rate services. Beamforming techniques promise to increase the spectral efficiency of next generation wireless systems and are currently being incorporated in future industry standards. Although a significant amount of research has focused on theoretical capacity analysis, little is known about the performance of such systems in practice. In thesis, I experimentally and analytically evaluate the performance of adaptive beamforming techniques on the downlink channel of a wireless LAN. To this end. I present the design and implementation of the first multi-user beam-forming system and experimental framework for wireless LANs. Next, I evaluate the benefits of such system in two applications. First, I investigate the potential of beamforming to increase the unicast throughput through spatial multiplexing. Using extensive measurements in an indoor environment, I evaluate the impact of user separation distance, user selection, and user population size on the multiplexing gains of multi-user beamforming. I also evaluate the impact of outdated channel information due to mobility and environmental variation on the multiplexing gains of multi-user beamforming. Further, I investigate the potential of beamforming to eliminate interference at unwanted locations and thus increase spatial reuse. Second, I investigate the potential of adaptive beamforming for efficient wireless multicasting. I address the joint problem of adaptive beamformer design at the PHY layer and client scheduling at the MAC layer by proposing efficient algorithms that are amenable to practical implementation. Next, I present the implementation of the beamforming based multicast system on the WARP platform and compare its performance against that of omni-directional and switched beamforming based multicast. Finally, I evaluate the performance of multicast beamforming under client mobility and infrequent channel feedback, and propose solutions that increase its robustness to channel dynamics

    Experimental analysis and proof-of-concept of distributed mechanisms for local area wireless networks

    Get PDF

    Allocations de ressources dans les réseaux sans fils énergétiquement efficaces.

    Get PDF
    In this thesis, we investigate two techniques used for enhancing the energy orspectral efficiency of the network. In the first part of the thesis, we propose tocombine the network future context prediction capabilities with the well-knownlatency vs. energy efficiency tradeoff. In that sense, we consider a proactivedelay-tolerant scheduling problem. In this problem, the objective consists ofdefining the optimal power strategies of a set of competing users, which minimizesthe individual power consumption, while ensuring a complete requestedtransmission before a given deadline. We first investigate the single user versionof the problem, which serves as a preliminary to the concepts of delay tolerance,proactive scheduling, power control and optimization, used through the first halfof this thesis. We then investigate the extension of the problem to a multiusercontext. The conducted analysis of the multiuser optimization problem leads toa non-cooperative dynamic game, which has an inherent mathematical complexity.In order to address this complexity issue, we propose to exploit the recenttheoretical results from the Mean Field Game theory, in order to transitionto a more tractable game with lower complexity. The numerical simulationsprovided demonstrate that the power strategies returned by the Mean FieldGame closely approach the optimal power strategies when it can be computed(e.g. in constant channels scenarios), and outperform the reference heuristicsin more complex scenarios where the optimal power strategies can not be easilycomputed.In the second half of the thesis, we investigate a dual problem to the previousoptimization problem, namely, we seek to optimize the total spectral efficiencyof the system, in a constant short-term power configuration. To do so, we proposeto exploit the recent advances in interference classification. the conductedanalysis reveals that the system benefits from adapting the interference processingtechniques and spectral efficiencies used by each pair of Access Point (AP) and User Equipment (UE). The performance gains offered by interferenceclassification can also be enhanced by considering two improvements. First, wepropose to define the optimal groups of interferers: the interferers in a samegroup transmit over the same spectral resources and thus interfere, but can processinterference according to interference classification. Second, we define theconcept of ’Virtual Handover’: when interference classification is considered,the optimal Access Point for a user is not necessarily the one providing themaximal SNR. For this reason, defining the AP-UE assignments makes sensewhen interference classification is considered. The optimization process is thenthreefold: we must define the optimal i) interference processing technique andspectral efficiencies used by each AP-UE pair in the system; ii) the matching ofinterferers transmitting over the same spectral resources; and iii) define the optimalAP-UE assignments. Matching and interference classification algorithmsare extensively detailed in this thesis and numerical simulations are also provided,demonstrating the performance gain offered by the threefold optimizationprocedure compared to reference scenarios where interference is either avoidedwith orthogonalization or treated as noise exclusively.Dans le cadre de cette thèse, nous nous intéressons plus particulièrement àdeux techniques permettant d’améliorer l’efficacité énergétique ou spectrale desréseaux sans fil. Dans la première partie de cette thèse, nous proposons de combinerles capacités de prédictions du contexte futur de transmission au classiqueet connu tradeoff latence - efficacité énergétique, amenant à ce que l’on nommeraun réseau proactif tolérant à la latence. L’objectif dans ce genre de problèmesconsiste à définir des politiques de transmissions optimales pour un ensembled’utilisateur, qui garantissent à chacun de pouvoir accomplir une transmissionavant un certain délai, tout en minimisant la puissance totale consommée auniveau de chaque utilisateur. Nous considérons dans un premier temps le problèmemono-utilisateur, qui permet alors d’introduire les concepts de tolérance àla latence, d’optimisation et de contrôle de puissance qui sont utilisés dans lapremière partie de cette thèse. L’extension à un système multi-utilisateurs estensuite considérée. L’analyse révèle alors que l’optimisation multi-utilisateurpose problème du fait de sa complexité mathématique. Mais cette complexitépeut néanmoins être contournée grâce aux récentes avancées dans le domainede la théorie des jeux à champs moyens, théorie qui permet de transiter d’unjeu multi-utilisateur, vers un jeu à champ moyen, à plus faible complexité. Lessimulations numériques démontrent que les stratégies de puissance retournéespar l’approche jeu à champ moyen approchent notablement les stratégies optimaleslorsqu’elles peuvent être calculées, et dépassent les performances desheuristiques communes, lorsque l’optimum n’est plus calculable, comme c’est lecas lorsque le canal varie au cours du temps.Dans la seconde partie de cettethèse, nous investiguons un possible problème dual au problème précédent. Plusspécifiquement, nous considérons une approche d’optimisation d’efficacité spectrale,à configuration de puissance constante. Pour ce faire, nous proposonsalors d’étudier l’impact sur le réseau des récentes avancées en classification d’interférence.L’analyse conduite révèle que le système peut bénéficier d’uneadaptation des traitements d’interférence faits à chaque récepteur. Ces gainsobservés peuvent également être améliorés par deux altérations de la démarched’optimisation. La première propose de redéfinir les groupes d’interféreurs decellules concurrentes, supposés transmettre sur les mêmes ressources spectrales.L’objectif étant alors de former des paires d’interféreurs “amis”, capables detraiter efficacement leurs interférences réciproques. La seconde altération portele nom de “Virtual Handover” : lorsque la classification d’interférence est considérée,l’access point offrant le meilleur SNR n’est plus nécessairement le meilleuraccess point auquel assigner un utilisateur. Pour cette raison, il est donc nécessairede laisser la possibilité au système de pouvoir choisir par lui-même la façondont il procède aux assignations des utilisateurs. Le processus d’optimisationse décompose donc en trois parties : i) Définir les coalitions d’utilisateurs assignésà chaque access point ; ii) Définir les groupes d’interféreurs transmettantsur chaque ressource spectrale ; et iii) Définir les stratégies de transmissionet les traitements d’interférences optimaux. L’objectif de l’optimisationest alors de maximiser l’efficacité spectrale totale du système après traitementde l’interférence. Les différents algorithmes utilisés pour résoudre, étape parétape, l’optimisation globale du système sont détaillés. Enfin, des simulationsnumériques permettent de mettre en évidence les gains de performance potentielsofferts par notre démarche d’optimisation

    Multi-cell Coordination Techniques for DL OFDMA Multi-hop Cellular Networks

    Get PDF
    The main objective of this project is to design coordinated spectrum sharing and reuse techniques among cells with the goal of mitigating interference at the cell edge and enhance the overall system capacity. The performance of the developed algorithm will be evaluated in an 802.16m (WiMAX) environment. In conventional cellular networks, frequency planning is usually considered to keep an acceptable signal-to-interference-plus noise ratio (SINR) level, especially at cell boundaries. Frequency assignations are done under a cell-by-cell basis, without any coordination between them to manage interference. Particularly this approach, however, hampers the system spectral efficiency at low reuse rates. For a specific reuse factor, the system throughput depends highly on the mobile station (MS) distribution and the channel conditions of the users to be served. If users served from different base stations (BS) experience a low level of interference, radio resources may be reused, applying a high reuse factor and thus, increasing the system spectral efficiency. On the other side, if the served users experience large interference, orthogonal transmissions are better and therefore a lower frequency reuse factor should be used. As a consequence, a dynamic reuse factor is preferable over a fixed one. This work addresses the design of joint multi-cell resource allocation and scheduling with coordination among neighbouring base stations (outer coordination) or sectors belonging to the same one (inner coordination) as a way to achieve flexible reuse factors. We propose a convex optimization framework to address the problem of coordinating bandwidth allocation in BS coordination problems. The proposed framework allows for different scheduling policies, which have an impact on the suitability of the reuse factor, since they determine which users have to be served. Therefore, it makes sense to consider the reuse factor as a result of the scheduling decision. To support the proposed techniques the BSs shall be capable of exchanging information with each other (decentralized approach) or with some control element in the back-haul network as an ASN gateway or some self-organization control entity (centralized approach)

    In-band relays for next generation communication systems

    Get PDF
    Next generation mobile communication systems will operate at high system bandwidths of up to 100MHz and at carrier frequencies beyond 2GHz to provide peak data rates of up to 1Gbit/s with similar average revenues per user as todays cellular networks. High bit rates should be available to all users in a cell which is challenging due to the unfavorable propagation conditions in these bands. In-band relays are a seen as a promising technology for cellular networks to extend the high bit rate coverage and to enable cost efficient network deployments. The research in this thesis has contributed to the development of the relaying concept within the European research project WINNER. WINNER has designed a next generation radio system concept based on Orthogonal Frequency Division Multiple Access (OFDMA) with the inclusion of relays as one of the major innovations. In our work we have identified the radio resource management as the most important function to exploit the potential benefits of relay based deployments. We develop a flexible radio resource management framework that adapts to a wide range of deployments, whereas our main focus is on metropolitan area deployments. Here we propose to utilize a dynamic resource assignment based on soft frequency reuse. Further, we propose a practical way to integrate cooperative relaying in a relay network. This concept allows the cooperation of multiple radio access points within a relay enhanced cell with low overhead and small delays. In system simulations we compare the performance of relay deployments to base station only deployments in a metropolitan area network. Our results show that relay deployments are cost efficient and they increase both the network throughput as well as the high bit rate coverage of the network. Further, they show that our proposed soft frequency reuse scheme outperforms competing interference coordination schemes in the studied metropolitan area scenario. Even though the results have been obtained for WINNER system parameters, the conclusions can also be applied to OFDMA based systems such as 3GPP Long Term Evolution and WiMAX

    Multi-cell Coordination Techniques for DL OFDMA Multi-hop Cellular Networks

    Get PDF
    The main objective of this project is to design coordinated spectrum sharing and reuse techniques among cells with the goal of mitigating interference at the cell edge and enhance the overall system capacity. The performance of the developed algorithm will be evaluated in an 802.16m (WiMAX) environment. In conventional cellular networks, frequency planning is usually considered to keep an acceptable signal-to-interference-plus noise ratio (SINR) level, especially at cell boundaries. Frequency assignations are done under a cell-by-cell basis, without any coordination between them to manage interference. Particularly this approach, however, hampers the system spectral efficiency at low reuse rates. For a specific reuse factor, the system throughput depends highly on the mobile station (MS) distribution and the channel conditions of the users to be served. If users served from different base stations (BS) experience a low level of interference, radio resources may be reused, applying a high reuse factor and thus, increasing the system spectral efficiency. On the other side, if the served users experience large interference, orthogonal transmissions are better and therefore a lower frequency reuse factor should be used. As a consequence, a dynamic reuse factor is preferable over a fixed one. This work addresses the design of joint multi-cell resource allocation and scheduling with coordination among neighbouring base stations (outer coordination) or sectors belonging to the same one (inner coordination) as a way to achieve flexible reuse factors. We propose a convex optimization framework to address the problem of coordinating bandwidth allocation in BS coordination problems. The proposed framework allows for different scheduling policies, which have an impact on the suitability of the reuse factor, since they determine which users have to be served. Therefore, it makes sense to consider the reuse factor as a result of the scheduling decision. To support the proposed techniques the BSs shall be capable of exchanging information with each other (decentralized approach) or with some control element in the back-haul network as an ASN gateway or some self-organization control entity (centralized approach)

    Design and analysis of adaptive noise subspace estimation algorithms

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore