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Summary

In this thesis, several adaptive noise subspace estimation algorithms are ana-

lyzed and tested. Adaptive subspace estimation algorithms are of importance be-

cause many techniques in communications are based on subspace approaches. To

avoid the cubic-order computational complexity of the direct eigenvalue decompo-

sition which makes real-time implementation impossible, many adaptive subspace

algorithms which need much less computational effort have been proposed. Among

them, there are only a few limited noise subspace estimation algorithms as com-

pared with signal subspace estimation algorithms. Moreover, many of the existing

noise subspace estimation algorithms are either unstable or nonrobust. Therefore,

the aim of this thesis is to develop and analyze stable low cost noise subspace

estimation algorithms.

To shed light on how to obtain stable results for noise subspace algorithms,

the propagation of orthogonality error for FRANS (fast Rayleigh’s quotient based

adaptive noise subspace) algorithm is examined in the mean and in the mean-

square sense. It is shown that FRANS suffers from numerical instability since

its accumulated numerical errors grow geometrically. Then, an upper bound on

the orthogonality error is derived for the Householder based FRANS (HFRANS)

algorithm, which is numerically much more stable than FRANS algorithm.

viii



SUMMARY

To further improve the performance of HFRANS, a gradient adaptive step-size

strategy is proposed. One drawback of such a strategy is the difficulty in choosing

a proper initial value and convergence rate for the step-size update. Hence, we

propose an optimal step-size strategy, which addresses the initialization issue. The

proposed step-size strategies can also be applied on other noise and signal subspace

estimation algorithms.

To speed up the convergence rate of adaptive subspace estimation algorithms,

a diagonal matrix step-size strategy is proposed, which leads to a set of decoupled

noise (or signal) subspace vectors that can be controlled individually. This results

in better performance of the algorithms.

Finally, a hardware friendly approach, which is free from square root or division

operations is proposed to stabilize FRANS while retaining its low computational

complexity. This approach is suitable for VLSI (very large scale integration) im-

plementation. An ordinary differential equation (ODE) based analysis is provided

to examine the stability of the proposed algorithm. This analysis shows that the

proposed algorithm is stable on the manifold and bounded at the equilibrium point.
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Chapter 1

Introduction

In this opening chapter of the thesis, we briefly touch upon the field of wireless

communications to establish a broader application context for subspace estimation.

Following this, we present a brief review of the literature to motivate the research

problem undertaken in the thesis. We conclude this chapter with a summary of

the main contributions of this thesis and organization of the thesis.

1.1 Introduction

Wireless communication is a rapidly growing segment of the communications

industry, with the potential to provide high-speed and high-quality information

exchange between portable devices located anywhere in the world [48, Chap 1].

The main factor driving this tremendous growth in wireless coverage is that it does

not need the setting up of expensive infrastructure such as copper or fiber lines

and switching equipment.

The first generation of public cellular wireless communication systems was the

1



CHAPTER 1. Introduction

analog mobile phone systems introduced in the early 1980s. They were followed

by the second generation systems in the late 1980s, such as GSM (Global system

for mobile communications). These systems are based on digital modulation tech-

niques which provided better spectral efficiency. The first generation systems were

mainly voice oriented, whereas the second generation systems can also provide low

rate data transmission. Emerging requirements for higher data rates and better

spectrum efficiency are the primary challenges faced by the third generation sys-

tems. Because the available frequency spectrum is limited, these requirements in-

crease the demand for more band-width efficient multiple access schemes. FDMA

(frequency division multiple access), TDMA (time division multiple access) and

CDMA (code division multiple access) [15, 52, 85] are the most widely known mul-

tiple access techniques. Especially, CDMA is considered a promising solution for

wireless communication, since it offers frequency diversity and interference diversity

to enhance spectral efficiency and capacity [84][100, Chap 1].

The explosive growth in wireless communications has triggered the need for

more efficient mobile radio systems. In order to accommodate the demand for wire-

less communications services, new techniques that allow for efficient use for limited

available frequency spectrum, increased system capacity, high data rates and better

accuracy are being developed. Several of the fundamental problems that must be

solved to achieve these goals are from the area of signal processing for communi-

cations. Signal processing related research in the recent past has made significant

progress in improving the quality and accuracy of communications systems in the

areas of channel estimation [22, 43, 47, 60, 77, 96], spectral estimation [6, 45, 71],

direction of arrival estimation [50, 70, 99, 110, 111], etc. In this thesis, we focus on a

very specific signal processing problem known as ‘subspace estimation’. As briefly

2
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explained in the next section, subspace estimation is a key tool used in several

applications of wireless communications to provide reliable and high quality com-

munication systems. In fact, the application of subspace estimation goes beyond

wireless communications to several day-to-day applications of signal processing as

an effective tool for parameter estimation and signal separation.

1.2 Motivation

Most of the signal processing problems in communications can be formulated

as parameter estimation problems. In the interest of optimality, the maximum like-

lihood (ML) approach is usually used to formulate parameter estimation problems

[74]. However, the resulting signal processing algorithms are often not practically

feasible due to their heavy computational requirements. Therefore, algorithms

providing trade-off between performance and complexity are of primary interest.

Subspace based approaches to solving estimation problems in communications

lead to potentially low cost algorithms and near-optimal performance. For exam-

ple, in channel estimation [46], training based approaches can be used to obtain

the channel information at the receiver, the price to be paid being reduced band-

width efficiency. Furthermore, training approaches may lead to inaccurate channel

estimates due to the presence of noise and the limited duration and number of

training symbols. A good substitute is to use subspace based approaches. Sub-

space based approaches are not only important to communications problems, but

could also be used in other areas such as signal separation problems in medical sig-

nal processing [95]. Signal separation refers to recovering underlying source signals

from a set of observations obtained by an unknown linear mixture of the sources.

3
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Subspace-based methods are usually preferred, because they yield high resolution

results.

Subspace based methods are based on the concept that the observation space

of the received signal can be partitioned into two orthogonal subspaces, known as

signal and noise subspaces. Correspondingly, the eigenvectors of the covariance

matrix of the observed data can be partitioned into two sets to form the bases

of these subspaces. Thus, estimation of bases of signal and/or noise subspaces

becomes the first step in subspace-based estimation approaches [6, 22, 43, 45, 50,

60, 70, 71, 77, 96, 110, 111].

Performance of subspace-based algorithms depends, to a large extent, on the

speed and accuracy of the subspace estimation process, especially when the pa-

rameters (and hence the subspaces) are time-varying. One possible choice for

subspace-based methods is to use the standard eigenvalue decomposition (EVD)

of the data covariance matrix to compute the signal or noise subspace. Unfortu-

nately, the EVD is computationally intensive and time consuming, especially when

the dimension of the observed data vectors is large. Consequently, in practical

applications [51] where the signal is time-varying, repeated EVD of a continuously

updated covariance matrix makes the subspace-based method difficult to imple-

ment in real-time. Therefore, the scope of our research is to develop stable, robust

and low cost adaptive subspace estimation algorithms for applications in signal

processing problems related to wireless communications.

4



CHAPTER 1. Introduction

1.3 Brief Review of Literature

We now present a very brief review of the existing literature on subspace

estimation to show where our work fits in the big picture. A detailed review of

literature will be given in Chapter 2. The literature referring to the problem of

adaptive subspace tracking is enormous. There was a review paper by Common

and Golub [31] published in 1990, focusing on the problem of tracking the signal

subspace. This article did an excellent survey of the literature up to that time.

The adaptive methods described in [31] are grouped into two classes, according

to their complexity. The first class requires O(N2(N − P )) 1 operations and the

second needs O(N(N − P )2), where N is the dimension of the data vector and

(N − P ) is the dimension of the signal subspace. The first adaptive approach

for estimating the signal eigenvectors was developed by Owsley [82]. Yang and

Kaveh [110] reported an adaptive approach for estimation of the entire signal or

noise subspace. Based on an algorithm for estimating a single eigenvector, they

also proposed inflation and deflation techniques for estimating noise subspace and

signal subspace, respectively.

Although the above mentioned algorithms have lower complexities than EVD,

their complexities are still not low enough. In the recent past, a large number of

low complexity algorithms were proposed. For signal subspace estimation, one of

the most famous algorithms is PAST (projection approximation subspace tracking)

developed by Yang [109] with complexity O(N(N − P )). Other signal subspace

estimation algorithms with similar complexity are Oja’s algorithm [78], orthogo-

nal Oja algorithm [4], NFQR (normalized fast Rayleigh’s quotient algorithm) [10]

and MALASE (maximum likelihood adaptive subspace estimation) [28]. For noise

1O(·) denotes order of the number of multiplications required by each algorithm.

5
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subspace estimation, the available algorithms are quite limited as compared with

signal subspace algorithms. The O(NP ) complexity ones are modified Oja’s algo-

rithm [105], Chen et al.’s algorithm [23] and fast Rayleigh’s quotient based adaptive

noise subspace algorithm (FRANS) [9]. Unfortunately, these noise subspace algo-

rithms lose their orthogonality gradually and no longer extract the true subspace.

More recently, several stable algorithms with computational complexity O(NP )

were proposed, such as HFRANS (FRANS with Householder transformation) [11]

and FDPM (fast data projection method) [41]. However, they converge slowly

since they are gradient based and non-optimal step-sizes are used to update all the

subspace vectors at the same speed. They also require division and square-root

operations which make them difficult for real-time implementation [44]. Moreover,

the complex forms of the equations specifying these algorithms make it extremely

difficult to analyze their performance. Therefore, in this thesis, we propose novel

approaches that result in stable and fast subspace estimation algorithms to enhance

the performance of bandwidth-efficient high-speed communications systems.

1.4 Contributions of the Thesis

As briefly mentioned at the end of section 1.2, the main overall objective of the

research undertaken during this thesis work is to develop stable and fast subspace

estimation algorithms that are low in complexity and near-optimal in performance.

Our main contributions in this thesis are as follows.

• FRANS algorithm [9] is known to be unstable [11]. In Appendix A of [40], a

theoretical analysis of orthogonality error in FRANS was given. But that analysis

was not evaluated through simulation studies. In this thesis, we provide a different
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approach with both mean and mean-square analysis. We provide simulation results

to corroborate the mean-square analysis of FRANS. We also examine the propa-

gation of orthogonality error in HFRANS [11], which is a stable implementation of

FRANS with Householder transform. We show that the orthogonality error growth

of HFRANS is bounded linearly, which implies that Householder transform is an

effective tool for stabilization of noise subspace estimation algorithms. Hence, we

recommend HFRANS for noise subspace estimation.

• Even though HFRANS is a more stable low cost noise subspace estimation

algorithm, its convergence is slow because it is a stochastic gradient-based adaptive

algorithm. To achieve a good trade-off between convergence speed and steady-

state error for HFRANS, we propose a gradient step-size strategy and an optimal

step-size strategy. The proposed strategies can also be used for other subspace

algorithms.

• In the literature, some of the well-known noise subspace algorithms estimate

a number of subspace vectors in parallel. Unfortunately, the step-sizes used in

these algorithms are all constant scalars. To improve the performance, use of

adaptive step-size is proposed. However, a single adaptive step-size parameter is

used to update all the subspace vectors. In this thesis, we propose that every

subspace vector has its own step-size parameter, and hence each one should be

allowed to converge with different dynamics. We implement our proposed strategy

on MOja (modified Oja’s algorithm) [105] and YK (Yang and Kaveh’s algorithm)

[110] algorithms since they are well-known and their forms are simple for further

cost reduction and orthonormalization operations. The original MOja and YK

algorithms are either unstable or computationally costly. We propose several low

cost and stable implementations for MOja and YK with a diagonal matrix step-

7
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size. The resulting algorithms outperform the original algorithms with smaller

estimation error and/or faster convergence rate.

• Most of the existing noise subspace algorithms involve several square-root

and/or division operations. Consequently, it becomes very costly to implement

these algorithms using VLSI (very large scale integration) circuits [44]. In this

thesis, we propose a square-root and division free stable noise subspace estimation

algorithm, known as SFRANS, which is a stabilized version of FRANS. By first

simplifying FRANS through first order approximation and then adding a stabilizing

factor, the proposed algorithm avoids the need for conventional orthonormalization

methods [55]. An ODE (ordinary differential equation) based analysis is also pro-

vided to prove the stability of the proposed algorithm. We show that the algorithm

is numerically stable if it is initialized properly.

1.5 Publications Originating from the Thesis

The contributions in this thesis have been published or accepted for publication

as listed below.

Journals

[J1] Y. Lu, S. Attallah, G. Mathew and K. Abed-Meraim, “Analysis of Or-

thogonality Error Propagation for FRANS and HFRANS Algorithms,” IEEE

Trans. Signal Proc., vol. 56, no. 9, pp. 4515-4521, Sep. 2008.

[J2] Y. Lu and S. Attallah, “Adaptive Noise Subspace Estimation Algorithm

Suitable for VLSI Implementation,” IEEE Signal Proc. Lett., accepted.
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Conferences

[C1] Y. Lu and S. Attallah, “Speeding up noise subspace estimation algo-

rithms using an optimal diagonal matrix step-size strategy for MC-CDMA

application,” in Proc. IEEE VTC 2008 spring, May 2008, pp. 1335-1339.

[C2] Y. Lu and S. Attallah, “Adaptive noise subspace estimation algorithm

with an optimal diagonal-matrix step-size,” in Proc. IEEE SIPS 2007, Oct.

2007, pp. 584-588.

[C3] Y. Lu, S. Attallah and G. Mathew, “Stable noise subspace estimation

algorithm suitable for VLSI implementation,” in Proc. IEEE SIPS 2007,

Oct. 2007, pp. 579-583.

[C4] Y. Lu, S. Attallah, G. Mathew and K. Abed-Meraim, “Propagation of

orthogonality error for FRANS algorithm,” in Proc. ISSPA 2007, Feb. 2007,

pp. 1-4.

[C5] Y. Lu, S. Attallah and G. Mathew, “Variable step-size base adaptive

noise subspace estimation for blind channel estimation,” in Proc. APCC

2006, Aug. 2006, pp. 1-5.

1.6 Organization of the Thesis

This thesis is devoted to the design and analysis of noise subspace estimation

techniques for wireless communications. The rest of the thesis is organized as

follows.

Chapter 2 outlines the mathematical preliminaries, the standard eigenvalue
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decomposition, iterative subspace computation techniques, and a review of the lit-

erature on both signal and noise subspaces estimation algorithms. This chapter also

describes and finally the data generation method and the performance measures

used in the simulation studies reported in the thesis.

In Chapter 3, the propagation of orthogonality error in FRANS and HFRANS

is analyzed. First, we examine the propagation of orthogonality error in the nu-

merically unstable FRANS in the mean and in the mean-square sense. We show

that FRANS accumulates rounding errors and its orthogonality error grows geo-

metrically. We then demonstrate that the orthogonality error propagation of the

numerically well-behaved HFRANS is bounded by an upper bound that only slowly

grows with iterations. The theoretical analysis is verified through computer simu-

lations.

In Chapter 4, we describe a gradient step-size strategy and an optimal step-size

strategy to improve the convergence performance of HFRANS algorithm. We assess

the performance of the proposed strategies under stationary and non-stationary

(tracking) conditions. An application to multi-carrier CDMA (MC-CDMA) system

is also presented.

In Chapter 5, we propose a diagonal matrix step-size strategy for MOja and

YK algorithms where the decoupled subspace vectors are controlled individually.

Several low cost implementations are developed for each algorithm. The proposed

step-size strategy is optimized through the optimal step-size technique of Chapter 4.

Finally, effectiveness of the proposed implementations is verified through computer

simulations.

In Chapter 6, we propose a VLSI friendly noise subspace estimation algorithm

called SFRANS. It is derived from FRANS, but with much better stability. An

10



CHAPTER 1. Introduction

optimal step-size based on the method discussed in Chapter 4 is proposed. The

stability of SFRANS on the manifold and at the equilibrium point is examined

through a corresponding ODE method.

The thesis is concluded in Chapter 7 with some suggestions for further research

directions.
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Chapter 2

Background Information and

Literature Review of Subspace

Estimation Algorithms

In this chapter, some background information and a detailed literature re-

view of subspace estimation algorithms are provided. Development and analysis

of subspace estimation algorithms require knowledge of linear algebra and ma-

trix computations. So we start with a short review of the essential mathematical

preliminaries. This is followed by a review of existing subspace estimation algo-

rithms, particularly for estimating noise subspace, since techniques that estimate

noise subspace are very limited as compared to the wide variety available for signal

subspace estimation. Our main focus during this review is algorithms with low

computational complexity since complexity is the second most important factor in

the selection of an algorithm for practical implementation, the first factor being

12
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performance.

2.1 Mathematical Preliminaries

2.1.1 Vector Space

Let V be a set of N×1 vectors with complex-valued elements and let C denote

the set of all complex-valued scalars. Then, V is said to be a vector space over C if

its elements satisfy the following properties [64, Chap 7]:

• Commutativity: x + y = y + x for all x,y ∈ V .

• Associativity of vector addition: (x + y) + z = x + (y + z) for all x,y, z ∈ V .

• Existence of additive identity: For all x ∈ V , there exists a zero vector, 0 ∈ V ,

such that x + 0 = 0 + x = x.

• Existence of additive inverse: For all x ∈ V , there exists an additive inverse

vector, (−x) ∈ V , such that x + (−x) = (−x) + x = 0.

• Associativity of scalar multiplication: For all x ∈ V and α, β ∈ C, (αβ)x =

α(βx).

• Distributive in scalar addition: For all x ∈ V and α, β ∈ C, (α + β)x =

αx + βx.

• Distributive in vector addition: For all x,y ∈ V and α ∈ C, α(x + y) =

αx + αy.

• Existence of scalar multiplication identity: αx = xα = x for all x ∈ V and

α = 1 ∈ C.

13
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• Closed under scalar multiplication: For all α ∈ C and x ∈ V , αx ∈ V .

• Closed under vector addition: For all x,y ∈ V , x + y ∈ V .

2.1.2 Subspace, Dimension and Rank

• Subspace: Given a collection of vectors x1, x2, · · · , xM ∈ CN , the set of

all possible linear combinations of these vectors is referred to as the span of

{x1, x2, · · · , xM}:

span{x1, x2, · · · , xM} =

{
M∑
i=1

αixi : αi ∈ C
}

. (2.1)

Clearly, span{x1,x2, · · · ,xM} is also a vector space and is called a subspace

of the parent vector space from which vectors x1,x2, · · · ,xM are taken.

• Basis of a vector space: The set of minimum number of vectors needed to

span a vector space is called a basis of that vector space. Clearly, the vectors

that form a basis of a vector space are linearly independent.

• Dimension of a vector space: The number of vectors in a basis of a vector

space is called the dimension of that vector space.

• Rank of a matrix: Let C be a N × N matrix of complex-valued elements.

Then, the number of linearly independent columns or rows of C is called the

rank of C.
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2.1.3 Gram-Schmidt Orthogonalization of Vectors

Given a set of linearly independent N×1 vectors x1, x2, · · · , xM , the Gram-

Schmidt orthogonalization procedure can be used to generate a set of orthonormal

N × 1 vectors y1, y2, · · · , yM such that y1,y2, · · · ,yM span the same vector

space as x1,x2, · · · ,xM . We start by choosing y1 in the direction of x1 as

y1 =
x1

‖x1‖ (2.2)

where ‖x1‖ denotes the Euclidean norm of x1. To determine y2, we first get z2 by

subtracting the component of x2 along y1 as

z2 = x2 −
(
yH

1 x2

)
y1 (2.3)

where superscript ‘H’ denotes Hermitian transpose. Then, y2 is obtained by nor-

malizing z2 as

y2 =
z2

‖z2‖ . (2.4)

Similarly, to determine y3, we get z3 by subtracting from x3 its components along

y1 and y2 as

z3 = x3 −
(
yH

2 x3

)
y2 −

(
yH

1 x3

)
y1 (2.5)

and then normalize z3 to get y3

y3 =
z3

‖z3‖ . (2.6)
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This approach leads to the following Gram-Schmidt algorithm:

• Compute y1 = x1

‖x1‖ .

• For 2 ≤ i ≤ M , compute

zi =xi −
i−1∑

k=1

(
yH

k xi

)
yk (2.7a)

yi =
zi

‖zi‖ . (2.7b)

2.2 Eigenvalue Decomposition

Eigenvalue problems form an important class of problems in scientific comput-

ing. Let the Hermitian matrix C, i.e. CH = C, be the N × N covariance matrix

of a complex-valued wide-sense stationary discrete-time stochastic process repre-

sented by the N × 1 observation vector r(i). Then, there exists a N × N unitary

matrix

Q = [q1,q2, · · · ,qN ], (2.8)

i.e., QHQ = IN = QQH with IN being the N×N identity matrix, and a real-valued

diagonal matrix

Λ = diag [λ1, λ2, · · · , λN ] , (2.9)
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where λ1 ≤ λ2 ≤ · · · ≤ λN , satisfying

Cqi = λiqi, i = 1, 2, · · · , N. (2.10)

That is, qi is an eigenvector of C with corresponding eigenvalue λi for i = 1, 2, · · · , N .

Then, the covariance matrix C can be expressed as

C = QΛQH =
N∑

i=1

λiqiq
H
i , (2.11)

which is known as the eigenvalue decomposition (EVD) of C.

We divide the eigenvalues into two groups:

1. λi for i = 1, 2, · · · , P , and

2. λi for i = P + 1, · · · , N .

Correspondingly, the space spanned by the eigenvectors of C can be divided into

two subspaces:

1. Noise (minor) subspace: spanned by the eigenvectors associated with the

eigenvalues λ1, λ2, · · · , λP , and

2. Signal (principal) subspace: spanned by the eigenvectors associated with the

eigenvalues λP+1, · · · , λN .

Here, we have assumed that the signal subspace is of dimension (N − P ) and

noise subspace is of dimension P , where N > P . Noise subspace is the orthogonal

complement of signal subspace. Denoting [q1,q2, · · · ,qP ] by Un ∈ CN×P and

[qP+1, · · · ,qN ] by Us ∈ CN×(N−P ), we can further represent the covariance matrix
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C as

C =

[
Un Us

]
Λ




UH
n

UH
s


 = UnΛnU

H
n + UsΛsU

H
s , (2.12)

where Λn = diag[λ1, · · · , λP ] and Λs = diag[λP+1, · · · , λN ]. Let W = UnB,

where B is an arbitrary P × P unitary matrix. Since the columns of Un span the

noise subspace, the columns of W also span the noise subspace. For the sake of

convenience, we call matrix Un or its rotation W as noise subspace, even though

columns of W are not eigenvectors of C. Similar statements can be made about

signal subspace also.

2.3 Iterative Subspace Computation Techniques

In this section, two of the most well known iterative subspace computation

techniques, power method and its variant known as orthogonal iteration method,

are presented.

2.3.1 Power Iteration Method

The power iteration method produces a sequence of scalars ϕ(i) and vectors

w(i) that converge to the largest eigenvalue λN and corresponding eigenvector qN ,

respectively, of a N ×N symmetric non-negative definite matrix A. The iteration

is summarized in Table 2.1. Its convergence rate is exponential and proportional to

the ratio of the two largest eigenvalues
(

λN−1

λN

)i

. More discussion on power iteration

method can be found in [49, Chap. 8] and [54].

If A is replaced by A−1 in Table 2.1, the resulting algorithm is known as inverse
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Initialization: Choose w(0) to be a unit norm vector
For i = 1, 2, · · ·

1. p(i) = Aw(i− 1)

2. w(i) = p(i)
‖p(i)‖

3. ϕ(i) = w(i)HAw(i)

Table 2.1: Power iteration method.

power iteration. In this case, ϕ(i) and w(i) converge to the smallest eigenvalue and

corresponding eigenvector, respectively, of A.

The power iteration method has computational complexity O(N2) [54].

2.3.2 Orthogonal Iteration

The orthogonal iteration [90, 91] is a generalization of the power iteration

method for simultaneous extraction of P eigenvectors and corresponding eigenval-

ues of A. If P = 1, orthogonal iteration will reduce to power method. We have

the orthogonal iteration presented in Table 2.2. Here, W(i) is a N ×P matrix and

Λ(i) is a P × P diagonal matrix. The orthonormalization of AW(i − 1) can be

Initialization: Choose W(0) to be a N × P matrix with orthonormal columns
For i = 1, 2, · · ·

1. W(i) = orthonomalize (AW(i− 1))

2. Λ(i) = diag
(
WH(i)AW(i)

)

Table 2.2: Orthogonal iteration.

realized by QR decomposition [49, Chap. 5], which is an efficient implementation

of Gram-Schmidt orthogonalization. As iteration proceeds, W(i) converges to the
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eigenvectors corresponding to P largest eigenvalues of A and Λ(i) converges to the

corresponding eigenvalues.

The orthogonal iteration method has computational complexity O(N2P ).

2.4 Literature Review

In many signal processing systems, the main objective is to extract a few fea-

tures and/or minimize the noise inherent in the complex, high dimensional input

data. Two of the general purpose extraction techniques are principal component

analysis (PCA) and minor component analysis (MCA) [25] [29, Chap 3][59, Chap

1]. PCA was introduced by Pearson [83] in 1901 as a methodology for fitting

planes in the least-square sense and next developed by Hotelling [53] in works

done on psychometry. PCA was also developed by Karhunen [63] in the context

of probability theory and was subsequently generalized by Loève [67]. Principal

components (PCs) and minor components (MCs) can be obtained by solving an

eigenvalue problem of the correlation matrix of the received data. PCs are the di-

rections in which the input data has the largest strengths or variances. In contrast

to PCs, MCs are the directions in which the input data has the smallest strengths

or variances. So, MCA is the problem of finding a set of smallest eigenvalues and

corresponding eigenvectors, and PCA is the problem of finding a set of largest

eigenvalues and corresponding eigenvectors. Stating in the language of signal pro-

cessing, the purpose of PCA is to derive a relatively small number of decorrelated

random variables while retaining as much information as possible from the original

variables. PCA has been widely studied and used in pattern recognition and signal

processing. It is important and extensively used in mobile positioning [20], blind
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channel equalization [27, 36, 76, 97, 98, 104], etc.

When we are interested only in the subspace spanned by the largest or small-

est eigenvectors, we do not necessarily need to solve for the eigenvectors, but a

set of vectors that span the same subspace as the eigenvectors would suffice. Such

problems are called principal subspace analysis (PSA) and minor subspace anal-

ysis (MSA) or signal subspace estimation and noise subspace estimation. In the

following review, both PCA/MCA and PSA/MSA are considered.

The standard numerical method for subspace extraction is to first compute

the correlation matrix, and then the subspace. However, if the dimension of the

input data vector is very large, the size of the correlation matrix will be very large,

and hence it will be computationally costly to compute the subspace. Adaptive

algorithms enable us to estimate the subspace without computing or estimating

large correlation matrices. Such approaches are very useful in tracking scenarios

where we need to estimate a signal feature that varies with time.

From the point of view of practical implementation, we classify the existing

adaptive algorithms according to their computational complexity. In this thesis, we

use flops counts as a key measure of complexity for an algorithm, although many

other parameters such as parallelism and memory requirement are also important

in practice. For signal subspace estimation, schemes requiring O(N2(N − P ))

or O(N2) operations per iteration are classified as high complexity algorithms,

schemes requiring O(N(N−P )2) complexity are referred to as medium complexity

algorithms, and schemes with complexity O(N(N−P )) are considered as low com-

plexity algorithms. For noise subspace estimation, the same classification criteria

apply by changing the dimension (N − P ) to P . Note that methods in the high

complexity class usually have faster convergence rates than algorithms in the other
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two classes. It is understandable since there is a tradeoff between complexity and

performance.

2.4.1 Estimation of Signal Subspace

2.4.1.1 High Complexity Class

For the sake of completeness, we give a quick review of the algorithms with

complexity O(N2(N−P )) or O(N2). Owsley first introduced an adaptive procedure

for the estimation of signal subspace with O(N2(N−P )) complexity [82]. Sharman

[88] applied the QR recursive algorithm to estimate the complete eigenstructure

with O(N2) complexity. Other algorithms with similar complexity can be found in

review papers by Comon and Golub [31] and Reddy et al. [86].

2.4.1.2 Medium Complexity Class

Yang and Kaveh [110] proposed a stochastic gradient based constrained adap-

tive algorithm for estimation of signal subspace. The algorithm is based on maxi-

mizing the cost function E
[
Tr

(
WHCW

)]
subject to the orthonormality constraint

on W, where E[·] denotes stochastic expectation operator, Tr(·) denotes trace op-

erator and W is a N × (N −P ) matrix. The proposed algorithm is given in Table

2.3, where W(i) denotes the signal subspace estimate and r(i) denotes the observed

data vector (N ×1) at ith instant, and β denotes the step-size parameter that con-

trols the convergence speed. It has O(N(N − P )2) complexity, which arises from

the Gram-Schmidt orthonormalization in Step 3.

In [62], Karasalo proposed a QR-based subspace algorithm, where the noise

eigenvalues are replaced by their average value so that deflation could be used to
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1. y(i) = WH(i− 1)r(i)

2. W̄(i) = W(i− 1) + βr(i)yH(i)

3. W(i) = Gram-Schmidt orthonormalization(W̄(i))

Table 2.3: Yang and Kaveh’s algorithm [110] for signal subspace estimation.

reduce complexity. According to [31], it had the best performance to complexity

ratio. The corresponding algorithm is presented in Table 2.4, with overall complex-

ity O(N(N − P )2). Replacing the small dimensional singular value decomposition

(SVD) used in [62] (complexity O((N − P )3)) by a transposed QR iteration (com-

plexity O((N −P )2)), a TQR-SVD algorithm was proposed by Dowling et al. [42].

However, this resulted in a serious performance loss [91].

Strobach [89] draws two conclusions from the TQR-SVD [42] algorithm: (1)

Karasalo’s algorithm [62] is very sensitive to the accuracy of (N−P+2)×(N−P+1)

SVD; and (2) more than a single iteration for this SVD in each step results in

a computationally less attractive algorithm. To overcome this dilemma, the Bi-

SVD algorithm proposed by Strobach [89] completely avoids the need for SVD.

It is based on the bi-iteration method [30], and it involves only a single small

(N − P + 1) × (N − P ) QR decomposition. This decomposition is much faster

to compute than any approximation of the (N − P + 2) × (N − P + 1) SVD in

Karasalo’s algorithm. It claimed to outperform its related predecessors.

2.4.1.3 Low Complexity Class

Low complexity algorithms are the most important ones due to their suitabil-

ity for real-time applications. In the early 1990’s, the merger of signal processing

and neural networks brought a lot of attention to Oja’s subspace algorithm [78],
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Initialization: Choose W(0) =

[
IN−P

0P×(N−P )

]
, SN−P (0) = IN−P , p(0) = 1,

and 0 ≤ λ ≤ 1
1. y(i) = WH(i− 1)r(i)

2. r⊥(i) = r(i)−W(i− 1)y(i)

3. z(i) = rH
⊥ (i)r⊥(i)

4. r̄⊥(i) = z−
1
2 (i)r⊥(i)

5. K(i) =




λ
1
2SN−P (i− 1) 0(N−P )×1

01×(N−P ) λ
1
2 p(i− 1)

(1− λ)
1
2y(i) (1− λ)

1
2 z

1
2 (i)




6. K(i) = U(i)SN−P+1(i)V
H(i): (N − P + 2)× (N − P + 1) SVD

7. SN−P+1(i) =

[
SN−P (i) 0(N−P )×1

01×(N−P ) sN−P+1(i)

]

8. V(i) =

[
Θ(i)

...

fH(i) ∗

]

9. W(i) = W(i− 1)Θ + r̄⊥(i)fH(i)

10. p2(i) = 1
P

(sN−P+1(i) + λ(P − 1)p2(i− 1))

Table 2.4: Karasalo’s algorithm [62] for signal subspace estimation.

depicted in Table 2.5. This algorithm can be interpreted as a constrained or ap-

proximate gradient rule for maximizing the output variance or minimizing the mean

square error (MSE). It has complexity O(NP ). Analyses in [24, 106] showed that

it is globally convergent with an arbitrary small step-size. However, its accuracy

is sensitive to the chosen step-size. If the step-size is not small enough, Oja’s

algorithm diverges.

The projection approximation subspace tracking algorithm (PAST) proposed

by Yang [109] is based on a novel interpretation of the signal subspace as the solu-

tion of an unconstrained minimization task. A projection approximation is utilized
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1. y(i) = WH(i− 1)r(i)

2. W(i) = W(i− 1) + β
[
r(i)yH(i)−W(i− 1)y(i)yH(i)

]

Table 2.5: Oja’s algorithm [78] for signal subspace estimation.

to reduce the minimization task to the well known exponentially weighted least

square problem. Recursive least squares (RLS) methods are then used to track the

signal subspace. The steps of PAST are presented in Table 2.6, where the notation

Tri(X) denotes that only the upper (or lower) triangular part of X is calculated and

its Hermitian transposed version is copied to another lower (or upper) triangular

part. PAST has fast convergence, because it is a recursive least squares (RLS) type

of implementation. However, it does not guarantee orthonormality of the estimated

subspace matrix, which might be needed in some applications [43]. A variant of

PAST, called PASTd (PAST with deflation), was also presented in [109], where the

principal components are extracted sequentially. Using a deflation technique, the

most dominant principal component is first extracted and is subtracted from the

data vector, so that the second dominant principal component becomes the most

dominant component in the modified data vector. This procedure is repeated until

all the desired eigencomponents are estimated. An extension of PASTd to esti-

mate the dimension of signal subspace and signal subspace was presented in [107].

And a theoretical convergence analysis for both PAST and PASTd was given in

[108]. To ensure global convergence and to guarantee the orthonormality of the

noise subspace matrix at each iteration, in [2], an explicit orthonormalization at

each iteration of PAST was carried out, which resulted in the orthonormal PAST

(OPAST) algorithm.
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1. y(i) = WH(i− 1)r(i)

2. h(i) = P(i− 1)y(i)

3. g(i) = h(i)/[β + yH(i)h(i)]

4. P(i) = 1
β
Tri{P(i− 1)− g(i)hH(i)}

5. e(i) = r(i)−W(i− 1)y(i)

6. W(i) = W(i− 1) + e(i)gH(i)

Table 2.6: PAST [109] for signal subspace estimation.

The NIC (novel information criterion) algorithm introduced in [75] is a gen-

eralization of the PAST algorithm. The NIC exhibits a single global maximum if

and only if the estimated signal subspace spans the desired signal subspace. The

performance of NIC is similar to that of PAST [54, 75]. A convergence analysis of

NIC can be found in [66] and [75]. As shown in [54], the algorithms of Oja, PAST

and NIC [75, 78, 109] are all variations of the power iteration method, whose key

feature is that the key information for subspace update comes from multiplying

the old subspace matrix by the new observed data vector.

In [54], a natural version of the power iteration method and its implemen-

tation with varied computational complexity are presented. Its linear complexity

implementation, NP3, has faster convergence than other power method based al-

gorithms, such as Oja [78], PAST [109] and NIC [75], and is globally convergent.

More information on power iteration based methods can be found in [54] and [55].

In [13], Badeau et al. proposed a fast implementation of the power iteration

method for subspace tracking, based on an approximation that is less restrictive

than the well-known projection approximation. This algorithm, referred to as fast

approximated power iteration (API), is faster than a previously proposed API
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method [12]. It guarantees orthonormality of the subspace estimate at each itera-

tion. Moreover, it outperforms the other power iteration based methods, such as

PAST [109], NIC [75], NP3 [54], and OPAST [2], while having the same computa-

tional complexity.

Non-power based methods include the maximum likelihood adaptive subspace

estimation (MALASE) algorithm [28] and several quasi-Newton based algorithms

proposed by Mathew et al. [72], Kang et al. [61] and Ouyang et al. [81]. MALASE

[28] computes the singular vectors of the subspace of interest and the resulting

estimates form an orthonormal matrix. However, it requires proper initialization

or otherwise it does not converge. In [72], Mathew et al. presented a rapidly con-

vergent quasi-Newton based algorithm derived from a cost function based on the

penalty function method of optimization. This algorithm estimates the eigenvec-

tors corresponding to the smallest eigenvalues up to the eigenvectors corresponding

to the largest eigenvalues sequentially. However, in many applications we are only

interested in getting the principal eigenvectors. Kang et al. [61] proposed an-

other adaptive quasi-Newton algorithm by reversing the estimation order. They

have demonstrated an improved convergence rate compared with the RLS type

algorithms reported in[109] and [16] and the quasi-Newton algorithm reported in

[72], by using a geometric progression approximation to the Hessian matrix. How-

ever, both [61] and [72] have computational complexity O(N2(N−P )), and ad-hoc

selection of the penalty factor may jeopardize performance under time-varying sce-

nario. To alleviate these problems, a non-quadratic information criterion based

quasi-Newton algorithm was proposed by Ouyang et al. in [81].
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2.4.2 Estimation of Noise Subspace

In the literature, noise subspace estimation algorithms are very limited as

compared with signal subspace estimation algorithms and many of the existing

algorithms with low complexity are either unstable or lose orthogonality rapidly

[69, 93]. One would expect that noise subspace algorithms can be derived from the

same idea as the corresponding signal subspace algorithms, by simply changing the

sign of the update term. However, this makes most of the noise subspace algorithms

numerically unstable. For example, Xu et al. [105] proposed a straightforward

modification of Oja’s single unit rule [78] to obtain the minor component of the

input sequence. It was shown in [26] and [35, Chap 4] that this simple change does

not extract the minor component. More discussion on the convergence of PCA (or

PSA) algorithms and the corresponding MCA (or MSA) algorithms are available

in [26]. Exceptions where noise subspace algorithms derived from the same idea

as the corresponding signal subspace algorithms are stable can be seen in [72] and

[110], etc.

2.4.2.1 High Complexity Class

In [79], Ouyang et al. proposed an algorithm for adaptive extraction of minor

components (AMEX) based on gradient search over a nonquadratic criterion func-

tion. Unlike other approaches, the AMEX algorithm is capable of obtaining the

desired minor eigenvalues and the corresponding eigenvectors directly. The quasi-

Newton algorithm proposed in [72] can also be used for noise subspace estimation.
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2.4.2.2 Medium Complexity Class

Yang and Kaveh’s algorithm (YK) [110] minimizes the cost function E
[
Tr

(
WHCW

)]
,

subject to the orthonormality constraint
(
WHW = I

)
. This can be done by re-

versing the sign of the gradient term in Step 2 of Table 2.3. The resulting algorithm

is shown in Table 2.7. Observe that it also has O(NP 2) complexity.

1. y(i) = WH(i− 1)r(i)

2. W̄(i) = W(i− 1)− βr(i)yH(i)

3. W(i) = Gram-Schmidt orthonormalize
{
W̄(i)

}

Table 2.7: Yang and Kaveh’s algorithm [110] for noise subspace estimation.

2.4.2.3 Low Complexity Class

Most of the noise subspace algorithms of computational complexity O(NP )

are either unstable or non-robust. The modified Oja’s single unit rule (MOja)

proposed by Xu et al. [105], about which we mentioned at the beginning of Section

2.4.2, is shown in Table 2.8. However, Diamantaras and Kung [35] showed that

this algorithm diverges quickly.

1. y(i) = WH(i− 1)r(i)

2. W(i) = W(i− 1)− β
[
r(i)yH(i)−W(i− 1)y(i)yH(i)

]

Table 2.8: Modified Oja’s algorithm [105] for noise subspace estimation.

Table 2.9 shows another noise subspace estimation algorithm, proposed by

Chen et al. [23]. In terms of orthonormality, it loses orthonormality slower than

the modified Oja’s algorithm of Xu et al. [105]. However, it eventually diverges.
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1. y(i) = WH(i− 1)r(i)

2. W(i) = W(i− 1)− β
[
r(i)yH(i)WH(i− 1)W(i− 1)−W(i− 1)y(i)yH(i)

]

Table 2.9: Chen et al.’s algorithm [23] for noise subspace estimation.

Douglas et al. [37] proposed a self-stabilized minor subspace rule (SMSR)

for estimation of noise subspace. The algorithm is shown in Table 2.10. Its self-

stabilizing property makes it more stable than the above mentioned low complexity

algorithms. Further, it contains no square-root or division operations, which makes

it suitable for VLSI implementation. An ODE analysis is also given in [37] to prove

its convergence. However, Abed-Meraim et al. [5] showed that this analysis is

flawed when the data is time-variant. Based on a general method that transforms

MSA algorithms into MCA algorithms [58], a modification of [37] was proposed by

Jankovic and Reljin [57] for extraction of minor components.

1. y(i) = WH(i− 1)r(i)

2. W(i) = W(i− 1)− β
[
r(i)yH(i)WH(i− 1)W(i− 1)WH(i− 1)W(i− 1)

−W(i− 1)y(i)yH(i)]

Table 2.10: Self-stabilized minor subspace rule [37] for noise subspace estimation.

More recently, four stable low cost noise subspace estimation algorithms, namely

NOOja (normalized orthogonal Oja) [8], FOOja (fast orthogonal Oja) [21], HFRANS

(FRANS with Householder transformation) [11] and FDPM (fast data projection

method) [41] were proposed. If we categorize them by the algorithms from which

they are derived, NOOja [8] and FOOja [21] are based on MOja [105], while

HFRANS [11] and FDPM [41] are based on YK [110]. If we categorize them by
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the orthonormalization methods they use, NOOja [8] and HFRANS [11] directly

orthonormalize the subspace estimation matrix, while FOOja [21] and FDPM [41]

first orthogonalize and then normalize the subspace estimation matrix.

To introduce HFRANS algorithm [11], we have to start with its unstable im-

plementation, known as FRANS algorithm [9]. Recall that Yang and Kaveh’s

algorithm [110] in Table 5.5 has O(NP 2) complexity due to the Gram-Schmidt

orthonormalization step. To reduce computational complexity, Attallah [9] pro-

posed the FRANS algorithm. It is a low cost orthonormalized implementation of

Yang and Kaveh’s algorithm [110]. As shown in [110], Yang and Kaveh iteratively

minimize the cost function

JW = E
[
Tr(WHCW)

]
, (2.13)

subject to the constraint

WHW = IP , (2.14)

where W ∈ CN×P , IP is the P × P identity matrix and Tr(·) denotes the trace

operator. Using an instantaneous gradient-descent approach combined with Gram-

Schmidt orthonormalization, the resulting adaptive noise subspace estimation al-

gorithm is given by [110]

y(i) =WH(i− 1)r(i)

W̄(i) =W(i− 1)− 2βr(i)yH(i)

W(i) = Gram-Schmidt orthonormalization(W̄(i)), (2.15)
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where β is a small positive step-size. To reduce complexity, Attallah [9] proposed

to do orthonormalization using

W(i) =W̄(i)
(
W̄H(i)W̄(i)

)− 1
2 , (2.16)

instead of Gram-Schmidt orthonormalization. After some manipulations, the in-

verse square root of W̄H(i)W̄(i) can be written as [9]

(
W̄H(i)W̄(i)

)− 1
2 = IP + τ(i)y(i)yH(i), (2.17)

where

τ(i) =
1

‖y(i)‖2

[
1√

1− 4β(1− β‖r(i)‖2)‖y(i)‖2
− 1

]
, (2.18)

based on the assumption that W(i) is orthonormal, i.e. WH(i)W(i) = IP , and

the equality that

(
IP − xxH

)− 1
2 = IP +

(
1√

1− ‖x‖2
− 1

)
xxH

‖x‖2
(2.19)

for any N×1 vector x. Substituting (2.17) and (2.18) in (2.16), we get the FRANS

algorithm [9]. Moreover, a normalized step-size was proposed in [7] as the instan-

taneous suboptimal of ∂JW(i)
∂β(i)

= 0, where JW(i) = E
[
Tr(WH(i)CW(i))

]
, and

W(i) = W(i − 1) − 2β(i)r(i)yH(i). The resulting step-size is β(i) = α/‖r(i)‖2.

The complete steps of FRANS with adaptive step-size is given in Table 2.11.

In a later paper [11], using simulations, Attallah showed that FRANS cannot

preserve orthogonality. As mentioned in [9], a periodic re-orthonormalization of
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1. y(i) = WH(i− 1)r(i)

2. β(i) = α/‖r(i)‖2

3. δ(i) = 4β(1− β‖r(i)‖2)‖y(i)‖2

4. ρ(i) =
√

1− δ(i)

5. τ(i) = 1
‖y(i)‖2 (

1
ρ(i)

− 1)

6. p(i) = −τ(i)W(i− 1)y(i)/β + 2r(i)(1 + τ(i)‖y(i)‖2)

7. W(i) = W(i− 1)− βp(i)yH(i)

Table 2.11: FRANS algorithm [9] for noise subspace estimation.

the noise subspace estimate is necessary from time to time in order to keep the al-

gorithm numerically stable. The Householder transformation was used successfully

in [4] to stabilize Oja’s algorithm [78] for noise subspace estimation. In [11], Attal-

lah gave a mathematical proof for the existence of a Householder transformation-

based implementation for FRANS algorithm. The proposed algorithm is named as

HFRANS algorithm (FRANS with Householder transformation), where

W(i) = H(i)W(i− 1), (2.20)

where H(i) is the Householder matrix given by

H(i) = IN − 2u(i)uH(i) (2.21)

u(i) =
p(i)

‖p(i)‖ . (2.22)

Proposition 1 in [11] proved that Step 6 in Table 2.11 can be rewritten as (2.20).

We summarize the HFRANS algorithm in Table 2.12, where a normalized step-size

β(i) = α/‖r(i)‖2 was used as the instantaneous suboptimal of ∂JW(i)
∂β(i)

= 0, with
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JW(i) = E
[
Tr(WH(i)CW(i))

]
, and W(i) = W(i− 1)− 2β(i)r(i)yH(i).

1. y(i) = WH(i− 1)r(i)

2. β(i) = α/‖r(i)‖2

3. δ(i) = 4β(1− β‖r(i)‖2)‖y(i)‖2

4. ρ(i) =
√

1− δ(i)

5. τ(i) = 1
‖y(i)‖2 (

1
ρ(i)

− 1)

6. p(i) = −τ(i)W(i− 1)y(i)/β + 2r(i)(1 + τ(i)‖y(i)‖2)

7. u(i) = p(i)/‖p(i)‖
8. v(i) = WH(i− 1)u(i)

9. W(i) = W(i− 1)− 2u(i)vH(i)

Table 2.12: HFRANS algorithm [11] for noise subspace estimation.

Using a similar approach, HFRANS’s MOja based counterpart NOOja [8] can

be obtained. NOOja is orthogonal MOja algorithm (OOja) [4] with a normalized

step-size. By adding an orthonormalization step to MOja, OOja improves the

stability of MOja. The orthonormalization is done as follows [8]

y(i) =WH(i− 1)r(i) (2.23)

z(i) = r(i)−W(i− 1)y(i) (2.24)

W̄(i) =W(i− 1)− βz(i)yH(i) (2.25)

W(i) =W̄(i)
(
W̄H(i)W̄(i)

)− 1
2 , (2.26)

where

(
W̄H(i)W̄(i)

)− 1
2 = IP + τ(i)y(i)yH(i) (2.27)
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τ(i) =
1

‖y(i)‖2

(
1√

1 + β2‖z(i)‖2‖y(i)‖2
− 1

)
. (2.28)

Note that equations (2.23)-(2.25) are the steps of MOja algorithm [105] (Table 2.8),

and equation (2.26) is the same as the orthonormlization step (2.16) of FRANS [9].

However, (2.26) also suffers from the propagation of roundoff errors as FRANS. To

alleviate the problem of roundoff error propagation, a Householder transformation

implementation similar to the one in HFRANS was proposed as [8]

W(i) = H(i)W(i− 1), (2.29)

where H(i) is the Householder matrix given by

H(i) = IN − 2u(i)uH(i) (2.30)

u(i) =
p(i)

‖p(i)‖ . (2.31)

The Proposition in [4] proved that (2.26) can be rewritten as (2.29). The steps of

OOja is summarized in Table 2.13.

1. y(i) = WH(i− 1)r(i)

2. z(i) = r(i)−W(i− 1)y(i)

3. τ(i) = 1
‖y(i)‖2

(
1√

1+β2‖z(i)‖2‖y(i)‖2 − 1

)

4. p(i) = − τ(i)
β

W(i− 1)y(i) + (1 + τ(i)‖y(i)‖2)z(i)

5. W(i) = W(i− 1)− 2p(i)pH(i)W(i−1)
‖p(i)‖2

Table 2.13: OOja algorithm [4] for noise subspace estimation.

If the step-size β in OOja is too large, the algorithm will not track the true
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noise subspace. To avoid the uncertainty in choosing step-size, an optimal step-

size was proposed in NOOja by maximizing the mean-square error (MSE) Jw =

E‖r(i)−WWHr(i)‖2. The NOOja algorithm is summarized in Table 2.14.

1. y(i) = WH(i− 1)r(i)

2. z(i) = r(i)−W(i− 1)y(i)

3. β(i) = α
‖r(i)‖2−‖y(i)‖2+ε

4. τ(i) = 1
‖y(i)‖2

(
1√

1+β2(i)‖z(i)‖2‖y(i)‖2 − 1

)

5. p(i) = − τ(i)
β(i)

W(i− 1)y(i) + (1 + τ(i)‖y(i)‖2)z(i)

6. W(i) = W(i− 1)− 2p(i)pH(i)W(i−1)
‖p(i)‖2

where α and ε are small positive constants.

Table 2.14: NOOja algorithm [8] for noise subspace estimation.

The FDPM approach proposed by Doukopoulos and Moustakides [41] is an

alternative low cost implementation of Yang and Kaveh’s algorithm [110]. Unlike

HFRANS where orthonormalization is done directly by setting W(i) = W̄(i)·
(
W̄H(i)W̄(i)

)− 1
2 , FDPM first orthogonalizes W(i) by left multiplication with a

Householder matrix, which results in Z(i). Then Z(i) is normalized to produce

orthonormal W(i). The details of FDPM are shown in Table 2.15. Comparing

HFRANS and FDPM, FDPM requires O(P ) divisions and O(P ) square-root oper-

ations at each iteration, whereas HFRANS requires only 4 divisions and 1 square-

root operation at each iteration. Further, this number does not grow with the

dimension of the noise subspace. In very large scale integration (VLSI) technology,

division and square-root operations are very costly to implement [44]. Therefore,

HFRANS with significantly less division and square-root operations could be fa-

vored in practical applications.
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1. y(i) = WH(i− 1)r(i)

2. TYK(i) = W(i− 1)− β
‖r(i)‖2 r(i)y

H(i)

3. a(i) = y(i)− ‖y(i)‖e1(i)e
jangle(eH

1 y(i))

4. Z(i) = TYK(i)− 2 [TYK(i)a(i)]aH(i)
‖a(i)‖2

5. D(i) =
[
diag

(
ZH(i)Z(i)

)]− 1
2

6. W(i) = Z(i)D(i)

Table 2.15: FDPM algorithm [41] for noise subspace estimation.

1. y(i) = WH(i− 1)r(i)

2. z(i) = W(i− 1)y(i)

3. p(i) = r(i)− z(i)

4. TOja(i) = W(i− 1)− βp(i)yH(i)

5. a(i) = y(i)− ‖y(i)‖e1e
jangle(eH

1 y(i))

6. Z(i) = TOja(i)− 2
[TOja(i)a(i)]aH(i)

‖a(i)‖2

7. D(i) =
[
diag

(
ZH(i)Z(i)

)]− 1
2

8. W(i) = Z(i)D(i)

Table 2.16: FOOja algorithm [21] for noise subspace estimation.

Bartelmaos and Abed-Meraim [21] applied the principle of FDPM [41] to MOja

[105] and developed the FOOja algorithm [21] shown in Table 2.16. Comparing

HFRANS [11], NOOja [8], FDPM [41] and FOOja [21], these four algorithms have

similar performance in terms of estimation error. In terms of computational com-

plexity, FDPM and FOOja require O(P ) divisions and O(P ) square-root operations

at each iteration, whereas HFRANS and NOOja require only 4 or 5 divisions and

1 square-root operation at each iteration. In terms of orthogonality, the orthogo-

nality errors in FDPM and FOOja do not grow as iteration grows. However, the
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orthogonality errors in HFRANS and NOOja grow slowly with iteration.

In [87], Regalia proposed a gradient-based algorithm based on minimization

of Rayleigh quotient where the constraint is replaced by a Givens parametrization

[49, Chap 5.]. Since there are no division or square-root operations in the update

formula, it is suitable for VLSI implementation. Its convergence is proved in [34].

An extension of this algorithm to the complex-valued case is given by Delmas in

[33].

In [14], YAST algorithm for noise subspace estimation was proposed by Badeau

et al.. It reduces the computational cost by limiting the search to the range space

of W(i) plus one or two additional search directions, which means the P dimen-

sional range space of W(i) is to be found as a subspace of the P + p dimensional

space spanned by the N × (P + p) matrix [W(i − 1),x(i)], where x(i) contains

p = 1 or 2 columns. Although it does not use the Householder matrix to restore

orthonormality, it is numerically very stable. As claimed in [14], it outperforms

NOOja algorithm [8]. It has 6NP complexity when p = 1, and 11NP complexity

when p = 2, which is slightly higher than the 4NP complexity of NOOja [8].

2.5 Data Generation and Performance Measures

2.5.1 Data Generation

We now explain the data generation method in this section, since it will be

used throughout the simulations presented in this thesis. Let C be the covariance

matrix of the observed data sequence {r(i)}. The EVD of C is given as

C = QΛQH =
(
QΛ

1
2

)(
Λ

1
2Q

)
= KKH , (2.32)
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where K = QΛ
1
2 . A sequence of independent jointly-Gaussian random vectors

{n(i)} ∈ CN×1 is generated, with

E
[
n(i)nH(i)

]
= IN (2.33)

where IN is the N ×N identity matrix. Then, the observed data is generated as

r(i) = Kn(i) (2.34)

so that E
[
r(i)rH(i)

]
= C is satisfied.

2.5.2 Performance Measures

In this thesis, as in [11], we use mainly two performance measures for assessing

subspace estimation algorithms. These measures are given by

σ(i) =
1

r0

r0∑
r=1

Tr(WH
r (i)UsU

H
s Wr(i))

Tr(WH
r (i)UnUH

n Wr(i))
(2.35)

η(i) =
1

r0

r0∑
r=1

‖WH
r (i)Wr(i)− IP‖2

F (2.36)

where r0 denotes the number of Monte Carlo runs, Wr(i) denotes the estimated

subspace matrix W(i) in the rth run, ‖.‖F denotes the Frobenius norm, and Us

and Un are the signal and noise subspaces, respectively, of the underlying covari-

ance matrix C. Here, σ(i) measures the estimation error in Wr(i) with respect

to the true noise subspace Un, and η(i) measures the orthogonality error of the

estimated noise subspace Wr(i). Another useful performance measure, that is used
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occasionally, is the cost function given by

JW(i) =
1

r0

r0∑
r=1

Tr
(
WH

r (i)CWr(i)
)
, (2.37)

where JW(i) measures the estimated sum of the P smallest eigenvalues of C. In

all our simulations, W(0) is initialized to be the first P columns of IN , and r0 is

set to 500.
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Chapter 3

Analysis of Propagation of

Orthogonality Error for FRANS

and HFRANS Algorithms

Recall from Chapter 2 that the FRANS [9] and HFRANS [11] algorithms are

computationally efficient implementations of Yang and Kaveh’s adaptive algorithm

[110] for estimation of noise subspace. It has been observed that FRANS becomes

unstable due to accumulation of rounding errors. However, what is still not un-

derstood is how the rounding errors are accumulated in FRANS and which are

the parameters that influence the error accumulation process. In this chapter, we

first examine the propagation of orthogonality error for FRANS in the mean and

in the mean-square sense. We also derive an upper bound for the orthogonality

error of the HFRANS algorithm. Numerical examples and results are provided to

corroborate the proposed error propagation models.
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3.1 Introduction

FRANS and HFRANS algorithms of Attallah [9, 11] and FDPM (fast data

projection method) algorithm of Doukopoulos et al. [39–41] are typical examples

of adaptive noise subspace estimation algorithms with computational complexity

O(NP ). Simulation studies have shown that FRANS algorithm loses orthogonality

with time due to accumulation of round-off errors [11]. As a result, the subspace

estimate diverges from the true noise subspace. The HFRANS algorithm is derived

by stabilizing FRANS using the numerically well behaved Householder transforma-

tion. The HFRANS and FDPM algorithms have been compared in a recent paper

[11], and are shown to have comparable convergence performance. According to

a very recent paper [39], the orthogonality error of FDPM algorithm does not

grow, whereas the orthogonality error of HFRANS algorithm grows at a very slow

rate. Doukopoulos and Moustakides [41] presented some results on the stability

of FRANS algorithm. According to [41], FRANS is non-robust, since a parameter

that measures the orthogonality error of FRANS theoretically grows exponentially.

However, there is no simulation result given in [41] to prove the theoretical re-

sult. To overcome this problem, a parameter that is easily measurable through

simulation is defined in this chapter. Our main motivation is to study the propa-

gation of orthogonality error for FRANS and to understand how the Householder

transformation helps to improve the stability in HFRANS.

3.2 Propagation of Orthogonality Error in FRANS

Let us first recall the steps of FRANS algorithm in Table 3.1. For the sake of

simplicity, instead of using the adaptive step-size β(i) = α/‖r(i)‖2, a small positive
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Initialization: Choose W(0) such that WH(0)W(0) = IP

1. y(i) = WH(i− 1)r(i)

2. δ(i) = 4β(1− β‖r(i)‖2)‖y(i)‖2

3. ρ(i) =
√

1− δ(i)

4. τ(i) = 1
‖y(i)‖2 (

1
ρ(i)

− 1)

5. p(i) = −τ(i)W(i− 1)y(i)/β + 2r(i)(1 + τ(i)‖y(i)‖2)

6. W(i) = W(i− 1)− βp(i)yH(i)

Table 3.1: FRANS algorithm [9] for noise subspace estimation.

constant step-size β is used here. We rewrite the main steps of FRANS algorithm

as

τ(i) =
1

‖y(i)‖2

[
1√

1− 4β (1− β‖r(i)‖2) ‖y(i)‖2
− 1

]
(3.1a)

A(i) = IP + τ(i)y(i)yH(i) (3.1b)

W(i + 1) =
[
IN − 2βr(i)rH(i)

]
W(i)A(i). (3.1c)

Let us define the orthogonality error matrix as

∆(i) = WH(i)W(i)− IP . (3.2)

Note that a non-zero ∆(i) may arise from either accumulation of round-off errors

or non-orthonormal initialization of W(i). Since we always initialize W(0) or-

thonormally, the orthogonality error that arises here is due to round-off errors. In

the following sub-sections, we examine the propagation of orthogonality error for

FRANS in the sense of mean and mean-square.
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3.2.1 Mean Analysis of Orthogonality Error

Using the definition of τ(i) in (3.1a), we can easily show that

1

‖y(i)‖2

[
1− 1

(1 + τ(i)‖y(i)‖2)2

]
= 4β(1− β‖r(i)‖2) (3.3)

Multiplying both sides of (3.3) by (1 + τ(i)‖y(i)‖2)2 leads to

2τ(i) + τ 2(i)‖y(i)‖2 = 4β(1− β‖r(i)‖2)(1 + τ(i)‖y(i)‖2)2. (3.4)

Based on the definition of A(i), the product AH(i)A(i) can be written as

AH(i)A(i) = IP + (2τ(i) + τ 2(i)‖y(i)‖2)y(i)yH(i). (3.5)

Using (3.4) in (3.5), we obtain

AH(i)A(i) = IP + 4β
(
1− β‖r(i)‖2

) (
1 + τ(i)‖y(i)‖2

)2
y(i)yH(i). (3.6)

Using (3.1c) and (3.6), we can write a recursion for ∆(i) as

∆(i + 1) =AH(i)∆(i)A(i)

=∆(i) + τ(i)y(i)yH(i)∆(i) + τ(i)∆(i)y(i)yH(i)

+τ 2(i)y(i)yH(i)∆(i)y(i)yH(i). (3.7)

A first-order approximation is commonly used in stochastic approximation

theory [65] to reach a mathematically tractable solution for recursive equations of

the type we have in (3.7). Let us consider the general formulation of a stochastic
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recursive algorithm [29, Chap 5]

Θ(i + 1) = Θ(i) + β(i)f(x(i),Θ(i)), i = 0, 1, 2, · · · (3.8)

where x(i) ∈ CN is a sequence of random vectors, β(i) is a sequence of step-size pa-

rameters, f is a continuous and bounded matrix-valued function, and Θ(i) ∈ CN×P

is a sequence of approximations of some desired parameter matrix Θ∗. Kushner

and Clark [65] showed that under certain conditions, the sequence Θ(i) of (3.8)

converges with probability 1 to the solution of an associated deterministic ordinary

differential equation (ODE). The assumptions made in this work are as follows.

A-1

β(i) → 0 and
∞∑
i=0

β(i) = ∞ (3.9)

A-2. f(·, ·) is a bounded and measurable CN×P -valued function.

A-3. The function f(x, ·) is continuous and bounded (uniformly in x).

A-4. There is a function f̄(Θ) such that

f̄(Θ) = lim
i→∞

∑∞
i=k β(k)f(x(k),Θ)∑∞

i=k β(k)
= lim

i→∞
E{f(x(i),Θ)} (3.10)

for all fixed Θ. Here, x(i) does not necessarily have to be a stationary sequence,

but it is required to be “stationary in the limit” as i →∞, so that its expectation

is independent of i.

Theorem: Assume that A-1 through A-4 holds and let Θ(i) be bounded with

probability 1. Then the sequence Θ(·) is a convergent sequence whose limit satisfies
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the ordinary differential equation (ODE)

dΘ

dt
= f̄(Θ). (3.11)

Based on this theorem, we now present a convergence analysis of the orthogonality

error ∆(i) in FRANS given in (3.7), assuming that the step-size is very small.

Assuming β to be small, we can approximate τ(i) in (3.1c) using first-order

Taylor’s series as

τ(i)≈ 2β. (3.12)

Substituting (3.12) into (3.7), and dropping all the terms that contain β in second-

order or above, we can approximate the recursion for the orthogonality error matrix

∆(i) as

∆(i + 1)≈∆(i) + 2βy(i)yH(i)∆(i) + 2β∆(i)y(i)yH(i). (3.13)

Assume that ∆(i) and y(i) are independent and W(i) is close to the optimal noise

subspace matrix given by Wo = UnB, where B is a P × P unitary matrix. This

last assumption is valid only until the algorithm has not diverged completely. In

fact, W(i) will hover around Wo after initialization and before divergence, as long

as we have W(i)HW(i) = IP . This represents the region of interest to us as we

would like to quantify the increase in orthogonality error before the algorithm has

completely diverged and before our assumption fails.

To justify this assumption (i.e. W(i) is close to Wo), firstly, for the sake of

analysis, we initialize the algorithm with the best initial condition, i.e. W(0) = Un.
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In this case, W(i) is very close to Wo as long as the accumulation of round-off

errors does not become too large through time. Secondly, using the stochastic

approximation approach by Kushner and Clark [65] and replacing β by a sequence

that satisfies β(i) → 0 and
∑∞

i=0 β(i) = ∞, we can associate an ODE to the FRANS

algorithm given by

dW(t)

dt
= W(t)WH(t)CW(t)−CW(t), (3.14)

where C is the N × N covariance matrix of the data r(i). This ODE has been

studied extensively in the literature [29, Chap 3] [26]. The solution of this ODE

will be the noise subspace if WH(t)W(t) = IP for all t, i.e. W(t) should always

belong to the Stiefel manifold ON,P [29, Chap 5] [32]. However, if W(t) deviates to

W(t)+dW outside ON,P due to round-off errors, then the deviation will grow and

W(t) will eventually diverge from ON,P . Since we choose WH(0)W(0) = IP , the

algorithm will try to converge to the noise subspace until the accumulated round-

off errors become too large. So, W(i) will be quite close to Wo for some iterations

before the divergence due to accumulation of round-off errors takes place. As we

shall see later in Section 3.4 on simulation results, initializing W(0) by Un or using

the first P columns of IN leads to the same orthogonality propagation error (see

Figures 3.1 and 3.3), which further supports our assumption.

Under the assumptions mentioned above, the expectation of (3.13) can be

written as

E [∆(i + 1)]≈E [∆(i)] + 2βBHΛnBE [∆(i)] + 2βE [∆(i)]BHΛnB, (3.15)

where Λn ∈ <P×P is a diagonal matrix formed by the smallest P eigenvalues of C.
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With ∆̃(i + 1) = B∆(i + 1)BH , from (3.15), we obtain

E
[
∆̃(i + 1)

]
≈E

[
∆̃(i)

]
+ 2βΛnE

[
∆̃(i)

]
+ 2βE

[
∆̃(i)

]
Λn. (3.16)

We can express (3.16) in component form as

E
[
∆̃m,l(i + 1)

]
≈ [1 + 2β (λm + λl)] E

[
∆̃m,l(i)

]
, (3.17)

where 1 ≤ m, l ≤ P and λ1 ≤ · · · ≤ λP are the noise eigenvalues of C, and ∆̃m,l(i) is

the (m, l)th element of ∆̃(i). Observe from (3.17) that the sequences {E[∆̃m,l(i)]}
are geometric progressions with common ratios 1 + 2β (λm + λl). Therefore, the

elements of orthogonality error matrix ∆(i) increase geometrically since λm and λl

are non-negative scalars.

3.2.2 Mean-square Analysis of Orthogonality Error

In the mean-square analysis, we examine the orthogonality error η(i) =

E
[‖WH(i)W(i)− IP‖2

F

]
. Using the aforedefined orthogonality error matrix ∆(i),

we can write

η(i) = E
[
Tr

(
∆H(i)∆(i)

)]
= E

[
Tr

(
∆̃H(i)∆̃(i)

)]
. (3.18)

From (3.13), we have

∆̃(i + 1)≈ ∆̃(i) + 2βỹ(i)ỹH(i)∆̃(i) + 2β∆̃(i)ỹ(i)ỹH(i), (3.19)
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where ỹ(i) = By(i). Using (3.19) and assuming that β is small, W(i) is near Wo,

and ∆̃(i) and ỹ(i) are independent, we obtain

E
[
∆̃H(i + 1)∆̃(i + 1)

]

≈ E
[
∆̃H(i)∆̃(i)

]
+ 4βE

[
∆̃H(i)Λn∆̃(i)

]
+ 2βE

[
∆̃H(i)∆̃(i)Λn

]

+ 2βE
[
Λn∆̃

H(i)∆̃(i)
]

+ 4β2E
[
∆̃H(i)ỹ(i)ỹH(i)ỹ(i)ỹH(i)∆̃(i)

]

+ 4β2E
[
∆̃H(i)ỹ(i)ỹH(i)∆̃(i)ỹ(i)ỹH(i)

]

+ 4β2E
[
ỹ(i)ỹH(i)∆̃H(i)ỹ(i)ỹH(i)∆̃(i)

]

+ 4β2E
[
ỹ(i)ỹH(i)∆̃H(i)∆̃(i)ỹ(i)ỹH(i)

]
. (3.20)

Applying trace operator on the above equation, we obtain

E
[
Tr

(
∆̃H(i + 1)∆̃(i + 1)

)]

≈ E
[
Tr

(
∆̃H(i)∆̃(i)

)]
+ 4β

P∑
m=1

P∑

l=1

E
[
|∆̃m,l(i)|2

]
λm

+ 4β
P∑

m=1

P∑

l=1

E
[
|∆̃m,l(i)|2

]
λl, (3.21)

where the terms that are second order in β are dropped. Note that

η(i) = E
[
Tr

(
∆̃H(i)∆̃(i)

)]
=

P∑
m=1

P∑

l=1

E
[
|∆̃m,l(i)|2

]
. (3.22)

When the noise eigenvalues are equal (i.e. λ1 = λ2 = · · · = λP ), we denote

the resulting orthogonality error by ηeq(i). From (3.21) and (3.22), we obtain a
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recursion for ηeq(i) as

ηeq(i) ≈ (1 + 8βλ1)
i−1 ηeq(1). (3.23)

When the noise eigenvalues are unequal, we denote the resulting orthogonality error

by ηneq(i). Further, by assuming that the mean-square values of all the elements

of ∆̃(i) are equal, we obtain

ηneq(i) = P 2E
[
|∆̃m,l(i)|2

]
for all m, l, (3.24)

which results in the solution for ηneq(i) as

ηneq(i)≈
(

1 +
8β

∑P
m=1 λm

P

)i−1

ηneq(1). (3.25)

From (3.23) and (3.25), we observe that the evolution of orthogonality error

sequences {ηeq(i)} and {ηneq(i)} is described by geometric progressions with com-

mon ratios exceeding 1.0. Further, these common ratios depend on the step-size

and the noise eigenvalues of the covariance matrix.

3.3 Propagation of Orthogonality Error in HFRANS

As shown in the previous section, FRANS loses orthogonality with iterations.

To improve numerical stability while retaining its computational complexity at

O(NP ), Attallah proposed the implementation of FRANS algorithm with House-

holder transformation (HFRANS) [11]. The steps of HFRANS algorithm are given

in Table 3.2. Again, for the sake of simplicity and to be consistent with our anal-
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ysis for FRANS algorithm, the step-size β is also considered as a small positive

constant here.

Initialization: choose W(0) such that WH(0)W(0) = IP

1. y(i) = WH(i− 1)r(i)

2. δ(i) = 4β(1− β‖r(i)‖2)‖y(i)‖2

3. ρ(i) =
√

1− δ(i)

4. τ(i) = 1
‖y(i)‖2 (

1
ρ(i)

− 1)

5. p(i) = −τ(i)W(i− 1)y(i)/β + 2r(i)(1 + τ(i)‖y(i)‖2)

6. u(i) = p(i)/‖p(i)‖
7. H(i) = IP − 2u(i)uH(i)

8. W(i) = H(i)W(i− 1)

Table 3.2: HFRANS algorithm [11] for noise subspace estimation.

If there are no round-off errors, the instantaneous orthogonality error η̂(i) of

HFRANS is given by

η̂(i) = ‖WH(i)W(i)− IP‖2
F

= ‖WH(i− 1)HH(i− 1)H(i− 1)W(i− 1)− IP‖2
F

= ‖WH(i− 1)W(i− 1)− IP‖2
F = η̂(i− 1), (3.26)

since the Householder matrix H(i−1) is a unitary matrix. Equation (3.26) demon-

strates that if there is infinite precision in calculation, the orthogonality error η̂(i)

should always be zero, if W(0) is orthonormal. However, due to the use of finite

precision in simulations, round-off errors are inevitable.

In HFRANS, W(i) is essentially W(0) left multiplied by a sequence of House-
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holder matrices

W(i) = H(i− 1)H(i− 2) · · ·H(0)W(0). (3.27)

Therefore, orthogonality error can be expressed as

η(i) = E
[‖WH(0)H(0) · · ·H(i− 1)H(i− 1) · · ·H(0)W(0)− IP‖2

F

]
. (3.28)

A detailed error analysis of the sequence of the product of unitary and Householder

matrices can be found in [102] and [103]. To keep the analysis simple, we neglect

the round-off errors before the application of Householder transformation (Steps

1-5 in Table 3.2). In other words, round-off errors are assumed to arise from the

Householder transformation step (Steps 6-8 in Table 3.2) only, which also implies

that the orthogonality error is independent of the step-size. The latter is consistent

with our observation from Figures 3.5 and 3.6 that the orthogonality error is not

strongly dependent on the step-size.

According to [102], if H(i) is computed exactly at each stage, the transforma-

tion is performed exactly, and the computed transform is rounded before proceed-

ing, the following bound exists

η(i) ≤ 2−2k
[
1 + (1 + 2−k) + · · ·+ (1 + 2−k)i−1

]2
N, (3.29)

where k is the number of bits used for finite precision representation. Equation

(3.29) shows that if k is large, the corresponding bound is dominated by i22−2kN ,

which is independent of the eigenvalues and the step-size parameter β.
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3.4 Simulation Results and Discussion

In our simulations, we choose the covariance matrix with unequal noise eigen-

values as

Cneq = QneqΛneqQ
H
neq =




0.9 0.4 0.7 0.3

0.4 0.3 0.5 0.4

0.7 0.5 1.0 0.6

0.3 0.4 0.6 0.9




, (3.30)

where N = 4, P = 2, Λneq = diag[ 0.0157, 0.1690, 0.6058, 2.3096], and Qneq is

formed by all the eigenvectors of Cneq. The covariance matrix with equal noise

eigenvalues is generated as

Ceq = QneqΛeqQ
H
neq, (3.31)

where Λeq = diag[ 0.0157, 0.0157, 0.6058, 2.3096]. Generation of the observed data

r(i) is done as stated in Section 2.5.1.

3.4.1 Results and Discussion for FRANS Algorithm

3.4.1.1 Initializing W(0) by Un

Simulation results for FRANS are shown in Figures 3.1 and 3.2. Figure 3.1

shows the theoretical prediction of the orthogonality error ηeq(i) using (3.23) and

the corresponding simulation result η̄(i) for FRANS, when the covariance matrix

(Ceq) has equal noise eigenvalues and W(0) is initialized using Un. Two different

step-sizes are used: β = 0.05 and β = 0.1. As can be seen, the theoretical prediction
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closely approximates simulation results.

Figure 3.2 shows the theoretical prediction of the orthogonality error ηneq(i)

using (3.25) and the corresponding simulation result η̄(i) for FRANS, when the

covariance matrix (Cneq) has unequal noise eigenvalues and W(0) is initialized

using Un. Two different step-sizes are used: β = 0.005 and β = 0.01. As can

be seen, the difference between simulation results and theoretical predictions in

Figure 3.2 is larger than that in Figure 3.1. This difference is mainly due to the

assumption of equal mean-square values for the elements of ∆̃(i). Nevertheless,

the theoretical predictions do give the trends quite accurately.
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Fig. 3.1: Orthogonality error for FRANS with equal noise eigenvalues, initialized by Un.
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Fig. 3.2: Orthogonality error for FRANS with unequal noise eigenvalues, initialized by Un.

3.4.1.2 Initializing W(0) by the First P Columns of IN

The orthogonality error results shown in Figure 3.3 are obtained under exactly

the same conditions as that of Figure 3.1, except that W(0) is initialized using the

first P columns of IN . Observe that Figure 3.3 is almost the same as Figure 3.1. The

figure showing the simulation result of FRANS initialized by the first P columns

of IN with unequal noise eigenvalues is omitted since it is the same as Figure 3.2.

Thus, we can see that the choice of initialization does not seem to influence the

propagation of orthogonality error. Figure 3.4 shows the noise subspace estimation

errors (see Section 2.5.2) of FRANS initialized by Un and the first P columns of

IN . Observe that irrespective of the choice of initialization, the algorithm hovers

around Wo at least for the first few hundreds of iterations.
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Fig. 3.3: Orthogonality error for FRANS with equal noise eigenvalues, initialized by the first P
columns of IN .
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Fig. 3.4: Subspace estimation error for FRANS with equal noise eigenvalues.
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3.4.1.3 Discussion on the Saturation of FRANS Algorithm

We can observe from Figures 3.1, 3.2 and 3.3 that the orthogonality error from

simulations has a saturation floor for large iterations (see the zoom-in inside the

figures). This is due to the divergence of the algorithm. When it loses orthogonality,

the assumption that FRANS is based on (WH(i − 1)W(i − 1) = IP ) is no more

valid. In other words, FRANS algorithm loses its theoretical support and becomes

invalid once orthogonality is completely lost. Our main goal was to analyze the

divergence rate of FRANS, when the algorithm is still valid. So the time slot we

are interested in is the one before FRANS loses the orthogonality completely. The

theoretical analysis does not exhibit this saturation behavior. This is because of

the implicit assumption in FRANS that W(i) is orthonormal in each step.

3.4.2 Results and Discussion for HFRANS Algorithm

Figures 3.5 and 3.6 depict the orthogonality error for FRANS and HFRANS

algorithms. In Figure 3.5, the covariance matrix used is Ceq, and the step-sizes

are β = 0.05 and β = 0.1. In Figure 3.6, the covariance matrix used is Cneq,

and the step-sizes are β = 0.005 and β = 0.01. Observe that the orthogonality

error of HFRANS also grows with time, however, at a much slower rate than that of

FRANS. Moreover, the orthogonality error η̄(i) seems to be independent of (at least

not strongly dependent on) β, since the orthogonality error curves for HFRANS

with different step-sizes are overlapping.

Figure 3.7 plots the orthogonality error for HFRANS and the theoretical bound

given by (3.29). Since the simulation tool Matlab uses double precision, we have

k = 53. In the simulations, the step-size used is β = 0.01 for both cases of the
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Fig. 3.5: Orthogonality error for FRANS and HFRANS with equal noise eigenvalues.
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covariance matrix: Ceq and Cneq. Observe that the orthogonality error curves for

the cases of equal and unequal eigenvalues are overlapping, implying that orthog-

onality error is independent of eigenvalues. The theoretical bound given by (3.29)

is also independent of eigenvalues. As can be seen from Figure 3.7, although the

theoretical upper bound (3.29) is a loose upper bound, it does give the trend in

the propagation of orthogonality error for HFRANS. As can be seen, the orthogo-

nality error curves of HFRANS and the theoretical bound grow extremely slowly.

Therefore, HFRANS is numerically much more stable than FRANS.
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3.5 Conclusion

In this chapter, we analyzed the propagation of orthogonality error for FRANS

and HFRANS algorithms. It is shown that FRANS suffers from numerical instabil-

ity since it accumulates numerical errors geometrically. However, HFRANS based

on Householder transformation displays much better numerical behavior. There-

fore, HFRANS algorithm is recommended for noise subspace estimation applica-

tions, especially since it has a low computational complexity which is composed

of O(NP ) multiplications and only 1 square-root and 4 division operations per

iteration.
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Chapter 4

Variable Step-size Strategies for

HFRANS

The HFRANS algorithm proposed by Attallah [11] is a stable adaptive noise

subspace estimation algorithm with computational complexity O(NP ). In HFRANS,

the adaptive step-size is chosen to be inversely proportional to the input signal

power. To achieve better trade-off between convergence speed and steady-state er-

ror, we propose in this chapter a gradient step-size strategy and an optimal step-size

strategy for HFRANS.

4.1 Introduction

Recall from the literature review in Chapter 2 that there are several linear com-

plexity least-squares type signal subspace algorithms that converge rapidly [2, 109].

In contrast to this, existing low-complexity noise subspace algorithms are either un-
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stable or gradient based that converge quite slowly. There is currently no linear

complexity least-squares type noise subspace algorithm. Hence, our aim in this

chapter is to develop novel strategies for improving the convergence performance

of gradient type noise subspace algorithms. We choose HFRANS algorithm, which

was shown in Chapter 3 as a stable linear complexity gradient based algorithm, for

developing new approaches for improving convergence speed and reducing steady-

state error. We may point out that the methods presented in this chapter are not

limited to HFRANS, but could also be applied to other noise subspace algorithms

and even signal subspace algorithms as well. First, in Section 4.2, we derive a

gradient adaptive step-size strategy such that the step-size will gradually converge

from a preset value to the optimal step-size. A main drawback of this strategy is

the difficulty in choosing proper initial value and convergence rate for the step-size

update. A bad choice of these parameters could lead to divergence. Therefore,

in Section 4.3, we propose an optimal step-size strategy, which solves the initial-

ization problem. Finally, in Section 4.4, using simulations, we assess the effect of

the proposed step-size adaptation strategies under stationary and non-stationary

(tracking) conditions.

4.2 Gradient Adaptive Step-size for HFRANS

The gradient adaptive step-size strategy applies the principle of stochastic

gradient method to update the step-size parameter β in HFRANS. Recall from

Section 2.4.2 that the cost function underlying HFRANS is Tr
(
WHCW

)
, where

C is the covariance matrix and W is the subspace matrix. Replacing C by its

instantaneous value Ĉ(i) = r(i)rH(i) and W by its ith update W(i), we obtain
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the instantaneous value of the cost function as

ĴW(i) = Tr
[
WH(i)Ĉ(i)W(i)

]
, (4.1a)

where

W(i) = W(i− 1)− 2β(i− 1)Ĉ(i− 1)W(i− 1). (4.1b)

Equation (4.1b) is same as equation (2.15) except for the orthogonalization step.

For the sake of simplicity, we ignore the orthogonalization step while deriving the

updating equation for β, since orthogonality is ensured by HFRANS at each itera-

tion. Therefore, substituting (4.1b) in (4.1a), we can develop a gradient technique

[73] to update the step-size as

β(i) = β(i− 1)− µ
∂ĴW(i)

∂β(i− 1)

= β(i− 1)− µ
[
−2Tr

(
WH(i− 1)Ĉ(i)Ĉ(i− 1)W(i− 1)

)

−2Tr
(
WH(i− 1)Ĉ(i− 1)Ĉ(i)W(i− 1)

)

+8β(i− 1)Tr
(
WH(i− 1)R(i)W(i− 1)

) ]
. (4.2)

where R(i) = Ĉ(i− 1)Ĉ(i)Ĉ(i− 1).

Let us examine the convergence of β(i) in the mean to derive the bounds on the

step-size µ. Defining the error v(i) = β(i)− βo, where βo is the optimal step-size,

we obtain from (4.2)

v(i) = v(i− 1)
[
1− 8µTr

(
WH(i− 1)R(i)W(i− 1)

)]

−8µβoTr
(
WH(i− 1)R(i)W(i− 1)

)
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+2µTr
(
WH(i− 1)Ĉ(i)Ĉ(i− 1)W(i− 1)

)

+2µTr
(
WH(i− 1)Ĉ(i− 1)Ĉ(i)W(i− 1)

)
. (4.3)

Comparing equations (4.2) and (4.3), we see that the sum of the last three terms

in (4.3) is equal to the negative gradient of the cost function with respect to the

step-size parameter β when evaluated at the optimal step-size β = βo. Therefore,

the sum of the last three terms in (4.3) becomes zero for large enough i. Assume

that v(i), W(i− 1) and Ĉ(i) are mutually independent, and i is large enough such

that W(i−1) is very close to Wo, which is the optimal value of the subspace matrix

given by Wo = UnB, where Un is a N × P matrix formed by the eigenvectors of

C corresponding to the smallest P eigenvalues, and B is a P × P unitary matrix.

Hence, span(Wo) = span(Un). Therefore, we get

E[v(i)] = E[v(i− 1)]
[
1− 8µTr

(
WH

o E [R(i)]Wo

)]
. (4.4)

Thus, for E[v(i)] to converge to zero, we require

| 1− 8µTr
(
WH

o E [R(i)]Wo

) |< 1,

which gives the bounds of µ as

0 < µ <
1

4Tr (WH
o E [R(i)]Wo)

. (4.5)

Evaluation of Tr
(
WH

o E [R(i)]Wo

)
is shown below. Let r̃(i) = QHr(i) and

Ũn = QHUn, where Q is a unitary matrix consisting of the orthonormal eigenvec-
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tors of C. Using these, we get

Tr
(
WH

o E [R(i)]Wo

)
= Tr

(
ŨH

n GŨn

)
, (4.6)

where G = E
[
r̃(i− 1)r̃H(i− 1)r̃(i)r̃H(i)r̃(i− 1)r̃H(i− 1)

]
. For the sake of simpli-

fying the analysis, we assume that {r(i)} is a sequence of zero mean and indepen-

dent Gaussian vectors. Then, we get the (k, l)th element of G as

gk,l =
N∑

m=1

E
(
r̃kr̃

∗
l |r̃m|2

)
λm, (4.7)

where λ1 ≤ λ2 ≤ · · · ≤ λN are the eigenvalues of C, and r̃k denotes the kth element

of r̃(i−1). Note that r̃k, r̃l and r̃m are independent and zero mean complex Gaussian

random variables, we can obtain

E
(
r̃kr̃

∗
l |r̃m|2

)
=





0 for k 6= l

λkλmδ(k − l) [1− δ(l −m)] for k = l, l 6= m

2λ2
kδ(k − l)δ(k −m) for k = l = m.

(4.8)

Based on (4.8), the (k, k)th element of G is of the form

gk,k = λk

N∑
m=1

λ2
m + λ3

k, (4.9)
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and gk,l = 0 if k 6= l. Using (4.9) in (4.6), we get

Tr
(
WH

o E [R(i)]Wo

)
= Tr

(
ŨH

n GŨn

)

=
P∑

k=1

N∑
m=1

λkλ
2
m +

P∑

k=1

λ3
k. (4.10)

Using (4.10) in (4.5), the bounds of µ are found to be

0 < µ <
1

4
(∑P

k=1

∑N
m=1 λkλ2

m +
∑P

k=1 λ3
k

) . (4.11)

Assuming that {r(i)} is a sequence of zero mean and independent Gaussian

vectors, W(i − 1) and Ĉ(i) are mutually independent and W(i − 1) is very close

to Wo, we have

∑P
k=1 λk = E

[
Tr

(
WH(i− 1)Ĉ(i)W(i− 1)

)]
= E[‖y(i)‖2]

∑P
k=1 λ3

k = E
[
Tr

(
WH(i− 2)Ĉ(i− 1)Ĉ(i)Ĉ(i− 2)W(i− 3)

)]

= E[ς∗(i)κ(i)yH(i− 2)y(i− 1)]
∑N

k=1 λ2
k = E

[
Tr

(
Ĉ(i)Ĉ(i− 1)

)]
= E[|ς(i)|2],





(4.12)

where

ς(i) = rH(i)r(i− 1) and κ(i) = rH(i)r(i− 2). (4.13)

Therefore, estimates of
∑P

k=1 λk,
∑P

k=1 λ3
k and

∑N
k=1 λ2

k can be approximated by
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the following time averages, θ1(i), θ2(i) and θ3(i), respectively, as

θ1(i) = (1− ν(i))θ1(i− 1) + ν(i)‖y(i)‖2

θ2(i) = (1− ν(i))θ3(i− 1) + ν(i)Re[ς∗(i)κ(i)yH(i− 2)y(i− 1)]

θ3(i) = (1− ν(i))θ4(i− 1) + ν(i)|ς(i)|2,





(4.14)

where ν(i) = 1
i

for stationary signal and it is set to a small value (0 < ν(i) < 1) for

non-stationary signal. Using (4.14), a practical bound of µ(i) can be obtained as

0 < µ(i) <
1

4(θ1(i)θ3(i) + θ2(i))
. (4.15)

The gradient adaptive step-size strategy for HFRANS given in (4.2) can be

expressed as

y(i) =WH(i− 1)r(i) (4.16)

z(i) =WH(i− 1)r(i− 1)

ς(i) = rH(i)r(i− 1)

β(i) = β(i− 1) + 4µ(i)
(
Re

[
ς(i)zH(i)y(i)

]− 2β(i− 1)|ς(i)|2‖y(i− 1)‖2
)
,

(4.17)

where µ(i) is bounded by (A.5) and Re[υ] denotes the real part of υ.

The gradient adaptive step-size method developed above is for complex-valued

data. The gradient adaptive step-size method developed for real-valued data is

given in Appendix A.1.
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4.3 Optimal Step-size for HFRANS

In the last section, we proposed a gradient step-size strategy for HFRANS

algorithm. However, performance of the algorithm will rely on the choices for

initial step-size and update rate of the step-size. For example, if the update rate is

set to be too small, it takes too long before the step-size converges to the optimal

value, and the algorithm will act just like using constant step-size; if the update

rate is set to be too large, the step-size might fluctuate and not converge to the

optimal value, etc. To avoid these problems, we propose a simple optimal step-size

strategy, which does not have to deal with any special initialization or updating

rate.

Let βo(i) be the instantaneous optimal of β(i), i.e. the solution of ∂ĴW(i)
∂β(i−1)

= 0.

Therefore, setting ∂ĴW(i)
∂β(i−1)

= 0 [see (4.2)], taking expectation of the result, and

assuming that i is large enough such that W(i− 1) is close to Wo, we get

E[βo(i− 1)] =
Tr

(
WH

o E
[
Ĉ(i)Ĉ(i− 1)

]
Wo

)
+ Tr

(
WH

o E
[
Ĉ(i− 1)Ĉ(i)

]
Wo

)

4Tr (WH
o E [R(i)]Wo)

.

(4.18)

Following in similar lines as in the last section, (4.18) can be simplified to

E[βo(i− 1)] =

∑P
k=1 λ2

k

2
∑P

k=1 λk

(
λ2

k +
∑N

m=1 λ2
m

) , (4.19)

where λk, 1 ≤ k ≤ P , are the eigenvalues of the noise subspace and λk, (P + 1) ≤
k ≤ N , are the eigenvalues of the signal subspace.

Estimates of
∑P

k=1 λk,
∑P

k=1 λ3
k and

∑N
k=1 λ2

k can be obtained as given in (4.14).
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Assuming that {r(i)} is a sequence of zero mean and independent Gaussian vectors,

W(i − 1) and Ĉ(i) are mutually independent and W(i − 1) is very close to Wo,

we have

P∑

k=1

λ2
k = E

[
Tr

(
WH(i− 1)Ĉ(i)Ĉ(i− 1)W(i− 1)

)]
= E[zH(i)y(i)ς(i)].(4.20)

Therefore, the estimate of
∑P

k=1 λ2
k, denoted by θ4, can be obtained by

θ4(i) = (1− ν(i))θ2(i− 1) + ν(i)Re[ς(i)zH(i)y(i)], (4.21)

where ν(i) = 1
i

for stationary signal and it is set to a small value (0 < ν(i) < 1) for

non-stationary signal. Thus, the estimated optimal step-size for HFRANS at each

instant is obtained as

β(i) =
θ4(i)

2 (θ2(i) + θ1(i)θ3(i))
. (4.22)

To stabilize (4.22), we propose to add 2 positive constant α and γ into (4.22)

β(i) = α
θ4(i)

2 (θ2(i) + θ1(i)θ3(i)) + γ
. (4.23)

The optimal step-size for HFRANS obtained above is for complex-valued data. The

optimal step-size for HFRANS with real-valued data is given in Appendix A.2.
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4.4 Simulation Results and Discussion

4.4.1 Performance under Stationary Conditions

In simulations, we set the covariance matrix to

C =




0.9 0.4 0.7 0.3

0.4 0.3 0.5 0.4

0.7 0.5 1.0 0.6

0.3 0.4 0.6 0.9




,

where N = 4, and P = 2. Generation of the observed data r(i) is done as described

in Section 2.5.1.

Figure 4.1 shows the evolution of the subspace estimation error σ(i) [see

(2.35) in Chapter 2] for HFRANS, HFRANS with gradient adaptive step-size (de-

noted by GHFRANS) and HFRANS with optimal step-size strategy (denoted by

OHFRANS). In HFRANS, β(i) = α/‖r(i)‖2, where α is chosen to be 0.06. Here, α

is chosen such that HFRANS and GHFRANS have the similar convergence speed.

In GHFRANS, we set β(0) = 0.03 and µ = 0.0003. In OHFRANS, ν(i) = 1
i
,

α = 0.5, and γ = 0.001. As can be seen, all the three algorithms have good nu-

merical stability because of the use of Householder transformation in HFRANS.

Further, GHFRANS and OHFRANS have smaller steady-state error than the orig-

inal HFRANS algorithm.

Figure 4.2 presents the orthogonality error η(i) [see (2.36) in Chapter 2] for

each iteration. Clearly, all the three algorithms have similar orthogonality error,

owing to the numerical stability of HFRANS due to the use of Householder trans-

formation.
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Figure 4.3 presents the step-size β(i) for each iteration. To get a better of

view of how step-size is updated, Figure 4.3 is zoomed to show only the first

1000 iterations. As can be seen, the step-size of HFRANS is fluctuated since an

instantaneous step-size β(i) = α/‖r(i)‖2 is used. Both the step-sizes of GHFRANS

and OHFRANS start with a big value, and gradually go smaller, which ensures it

to achieve a good trade-off between the convergence speed and the steady-state

error.

We now present the computational complexities of the three algorithms. The

original HFRANS requires 4NP multiplications, 1 square root and 5 divisions, GH-

FRANS requires 5NP multiplications, 1 square root and 4 divisions, and OHFRANS

requires 4NP multiplications, 1 square root and 5 divisions (when ν(i) = 1
i
). There-

fore, HFRANS, GHFRANS and OHFRANS have similar computational complex-

ity, and they are all linear complexity algorithms.

4.4.2 Performance under Non-stationary Conditions: Track-

ing

To examine the tracking ability of HFRANS algorithms with different step-size

strategies, we generate the observed data vector as

r(i)





where E[r(i)rH(i)] = QΛQH , for i ≤ io

where E[r(i)rH(i)] = Q̂ΛQ̂H , for i > io

(4.24)

where Q = [q1, · · · ,qP ,qP+1, · · · ,qN ] and qi is the corresponding eigenvector of

λi, Λ = diag[λ1, · · · , λN ], and Q̂ = [qP+1, · · · ,qN ,q1, · · · ,qP ]. Let QΛQH =

C, where C is same as that given in Section 4.4.1. As in [92], we calculate a
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Fig. 4.1: Subspace estimation error for HFRANS, GHFRANS, and OHFRANS.

performance measure as

φ(i) =
1

r0

r0∑
r=1

arccos
(√

$r(i)
)

, (4.25)

where $r(i) denotes the smallest eigenvalue of WH
r (i)UnU

H
n Wr(i) in the rth run,

r0 = 1000, and the unit of φ(i) is degree. The batch EVD (eigenvalue decom-

position) is calculated as a benchmark for the tracking ability of HFRANS with

different step-size strategies. The covariance matrix T(i) used for batch EVD is

obtained as

T(i) = ζT(i− 1) + (1− ζ)r(i)rH(i), (4.26)
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Fig. 4.2: Orthogonality error for HFRANS, GHFRANS, and OHFRANS.

where T(0) is initialized as IN , and 0 < ζ < 1. To be fair in comparison, the batch

EVD is implemented at every iteration.

In Figure 4.4, we plot the dominant principal angle φ(i) for HFRANS, GH-

FRANS, OHFRANS and batch EVD. In HFRANS, α = 0.08. In GHFRANS, we

set β(0) = 0.025 and µ = 0.0000001. In OHFRANS, ν(i) is set to be 0.005, α = 1,

and γ = 0. For batch EVD, ν(i) is set to be 0.005. Further, we set io = 500

in (4.24). Observe from Figure 4.4 that φ(i) has a 90◦ sudden change at 500th

iteration because of the subspace rotation taking place in the observed data r(i).

It is shown that all the three HFRANS algorithms have good tracking ability and

are comparable with batch EVD. In particular, the OHFRANS algorithm performs

closest to batch EVD.
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Fig. 4.3: Step-size adaptation for HFRANS, GHFRANS, and OHFRANS.

4.4.3 Application to MC-CDMA System with Blind Chan-

nel Estimation

As we know, the performance of subspace-based algorithms depends, to a

large extent, on the speed and accuracy of the subspace estimation process. In

this section, the proposed OHFRANS algorithm is applied to MC-CDMA (Multi-

Carrier Code Division Multiple Access) system with blind channel estimation to

show how the improvement in subspace estimation algorithms can influence the

performance of subspace-based algorithms.

The received MC-CDMA signal vector is given by [43]

rn =
N−P∑
i=1

si
nCiFhi + Γn (4.27)
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Fig. 4.4: Dominant principal angle, φ(i), for HFRANS, GHFRANS, OHFRANS and batch EVD.

where si
n denotes the nth transmitted symbol from the ith user, (N − P ) is the

number of users, Ci is a N × N diagonal matrix whose elements are the N chips

of the code corresponding to the ith user, F is a N × M DFT (discrete Fourier

transform) matrix, hi = [hi(0), · · · , hi(M − 1)]T is the complex-valued channel im-

pulse response vector and Γn = [γn(0), · · · , γn(N − 1)]T is complex-valued additive

white Gaussian noise. We use HFRANS and OHFRANS algorithms to do blind

estimation of the impulse response of the channel. As shown in [43], the channel

can be estimated blindly as

ĥi = arg min
‖h̃i‖2=1

h̃H
i

[
FHCH

i UnU
H
n CiF

]
h̃i. (4.28)
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Since Wo = UnB, where B is a P × P unitary matrix, it is obvious that

WoW
H
o = UnU

H
n . (4.29)

Therefore, in the simulation, W(i) is obtained using HFRANS or OHFRANS al-

gorithm. Then, W(i)WH(i) is calculated to estimate UnU
H
n . Finally, the channel

can be obtained from (4.28).

In Figures 4.5, the MSE (mean-square error) of the channel estimation is

obtained for time-invariant Rayleigh fading channel. Without lost of generality, let

the first user be the desired user. The MSE is measured by

MSE(i) =
1

r0

r0∑
r=1

‖h1 − ĥH
1,r(i)h1ĥ1,r(i)‖2, (4.30)

where MSE(i) is the MSE of channel estimation at ith instant, r0 denotes the

number of Monte Carlo runs, and ĥ1,r(i) denotes ĥ1(i) in the rth run. The settings

are: N = 12, N − P = 8 and M = 4, si
n is differential binary phase shift keying

(DBPSK) modulated signal, SNR (signal to noise ratio)=10, diagonal elements of

Ci ∈ {+1,−1} and Ci 6= Cj when i 6= j. In HFRANS, α is set to be 0.025, non-

stationary condition is considered with ν(i) = 0.005. In OHFRANS, nonstationary

condition is assumed, ν(i) is set to be 0.005, α = 1, and γ = 0. As can be seen, the

optimal step-size results in increased convergence rate for the MSE of the channel

estimation.
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Fig. 4.5: MSE of channel estimation using HFRANS and OHFRANS algorithms.

4.5 Conclusion

In this chapter, we proposed a gradient adaptive step-size strategy and an op-

timal step-size strategy to enhance the performance of HFRANS algorithm. During

simulation study, we have noticed that, under stationary conditions, GHFRANS

has faster convergence and smaller steady-state error than the original HFRANS al-

gorithm and OHFRANS has smaller steady-state error than HFRANS. Under non-

stationary conditions (abrupt changes), HFRANS with proposed step-size strate-

gies exhibits improvement in tracking ability over the original HFRANS algorithm.
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Chapter 5

An Optimal Diagonal Matrix

Step-size Strategy for Adaptive

Noise Subspace Estimation

Algorithms

In this chapter, we propose an optimal diagonal-matrix step-size strategy

for two adaptive noise subspace estimation algorithms, modified Oja’s algorithm

(MOja) [105] and Yang and Kaveh’s algorithm (YK) [110]. The proposed step-

size strategy controls the updating of subspace vectors individually as compared

to conventional methods where all the subspace vectors are updated using a single

step-size parameter. Nevertheless, MOja and YK with the proposed strategy still

have issues of instability or high computational complexity that these algorithms

originally had. Several stable low cost implementations are then designed to restore
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stability while maintaining computational complexity at O(NP ). Optimal value

of the diagonal step-size matrix is obtained using the method developed in Chap-

ter 4 [see Section 4.3]. Simulation results show that this optimal diagonal-matrix

step-size strategy outperforms the original algorithms.

5.1 Introduction

For real-time applications, it is desirable for the subspace algorithm to have

a low computational complexity. In the literature, some of the well-known noise

subspace algorithms with computational complexity O(NP ) are Chen’s algorithm

[23], SMSR [37] and MOja [105]. These algorithms can estimate in parallel a num-

ber of subspace vectors. However, the step-sizes used in these algorithms are all

constant scalars. A bad choice (large value) of the step-size can lead to the algo-

rithms’ divergence. To ensure the algorithms’ convergence, normalized step-sizes

were proposed, such as the ones in NOOja [8] and HFRANS [11]. However, these

proposals use a single normalized step-size parameter to update all the subspace

vectors. As we know, the estimated subspace matrix is a rotation of the true eigen

noise subspace, and each of the estimated subspace vector has its own dynamics

since the associated eigenvalues are different. Hence, updating all the subspace vec-

tors using the same step-size could slow down the overall convergence. To tackle

this problem, we propose to use a different step-size for each of the subspace vec-

tors. Therefore, instead of the original scalar step-size, a diagonal matrix Λ with

the step-sizes of the corresponding vectors on its main diagonal is formed.

The algorithms considered in this chapter are modified Oja’s algorithm (MOja)

[105] and Yang and Kaveh’s algorithm (YK) [110]. As we claimed in Chapter
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2, if we categorize them by the cost functions used, NOOja [8] and FOOja [21]

algorithms are derived from MOja algorithm; FDPM [41] and HFRANS [11] al-

gorithms are low cost versions of YK algorithm. If we categorize them by the

low cost orthonormaliztion methods used, NOOja and HFRANS use direct or-

thonormaliztion method; FOOja and FDPM use separate orthogonalization and

normalization method. Therefore, NOOja is MOja algorithm with direct orthonor-

maliztion method; FOOja is MOja algorithm with separate orthogonalization and

normalization method; HFRANS is YK algorithm with direct orthonormaliztion

method; FDPM is YK algorithm with separate orthogonalization and normaliza-

tion method. Hence, by considering MOja and YK algorithms, we have taken into

account NOOja, FOOja, FDPM and HFRANS algorithms.

MOja is derived from its signal subspace counterpart, Oja’s algorithm [78],

by reversing the sign of the step-size. It has computational complexity O(NP ).

However, it is not stable, as it loses orthogonality rapidly. Although YK is stable,

it has computational complexity O(NP 2), which is relatively high for real-time

implementation. With the proposed diagonal matrix step-size strategy, the per-

formance of MOja and YK are improved. Nevertheless, they still have the issues

of instability and high computational complexity. To improve stability and reduce

computational cost, different implementation methods are presented. In the follow-

ing, we first design two methods to stabilize MOja with diagonal matrix step-size.

Therefore, three techniques are presented to simplify the implementation of YK

with diagonal matrix step-size.
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5.2 Diagonal Matrix Step-size Strategy (DMSS)

for MOja

The MOja algorithm is recalled in Table 5.1. Using a diagonal step-size matrix

1. y(i) = WH(i− 1)r(i)

2. p(i) = r(i)−W(i− 1)y(i)

3. TMOja(i) = W(i− 1)− βp(i)yH(i)

4. W(i) = TMOja(i)

Table 5.1: MOja algorithm [105] for noise subspace tracking.

Λ(i) = diag[β1(i) · · · βP (i)], where βk(i) is the step-size for the kth column of

W(i), MOja with diagonal matrix step-size can be expressed as in Table 5.2. If we

compare

1. y(i) = WH(i− 1)r(i)

2. ȳ(i) = Λ(i)y(i)

3. p(i) = r(i)−W(i− 1)y(i)

4. T̄MOja(i) = W(i− 1)− p(i)ȳH(i)

5. W(i) = T̄MOja(i)

Table 5.2: MOja with diagonal matrix step-size for noise subspace tracking.

MOja with diagonal matrix step-size suffers from instability as the original

MOja. To improve its stability, we propose two different implementations, namely

DMSS based on direct orthonormalization and DMSS based on separate orthogo-

nalization and normalization.
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5.2.1 MOja-DMSS by Direct Orthonormalization

The subspace matrix W(i) resulting from MOja with DMSS is not orthonor-

mal. To orthonormalize it, we first have

T̄H
MOja(i)T̄MOja(i) = IP + ‖p(i)‖2ȳ(i)ȳH(i), (5.1)

since p(i) is orthogonal to W(i−1), i.e. WH(i−1)p(i) = 0, when we assume that

W(i− 1) is orthonormal. Now, using [4]

(
I + xxH

)− 1
2 = I +

(
1√

1 + ‖x‖2
− 1

)
xxH

‖x‖2
, (5.2)

we obtain the inverse square root of T̄H
MOja(i)T̄MOja(i) as

(
T̄H

MOja(i)T̄MOja(i)
)− 1

2 = IP + τ̄(i)ȳ(i)ȳH(i), (5.3)

where

τ̄(i) =
1

‖ȳ(i)‖2

(
1√

1 + ‖p(i)‖2‖ȳ(i)‖2
− 1

)
. (5.4)

To make W(i) orthonormal, we set

W(i) = T̄MOja(i)
(
T̄H

MOja(i)T̄MOja(i)
)− 1

2 (5.5a)

=W(i− 1)− p̄(i)ȳH(i), (5.5b)

where p̄(i) = −τ̄(i)W(i − 1)ȳ(i) + (1 + τ̄(i)‖ȳ(i)‖2)p(i). Through simulations,

we can see (5.5b) is not stable, as it accumulates rounding errors. On the other
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hand, direct implementation of (5.5a) is computationally very expensive though it

is guaranteed to ensure stability.

To stabilize (5.5b), we propose an implementation of the algorithm based on

Householder transform, which is well recognized as a stabilization tool in subspace

estimation [11] [38]. In fact, the new implementation is a reformulation of (5.5b)

in terms of Householder transform. As shown in Appendix B.1, we can prove that

(5.5b) is mathematically equivalent to

u(i) =
p̄(i)

‖p̄(i)‖
HN(i) = IN − 2u(i)uH(i)

W(i) =HN(i)W(i− 1). (5.6)

The steps of MOja with DMSS by direct orthogonalization are summarized in Table

5.3. If we compare Table 5.3 with Table 2.14, we can see their steps are exactly

the same except for the step-size used. Since this implementation involves the use

of numerically well-behaved Householder matrix HN(i), the algorithm becomes

very stable. The new implementation still preserves computational complexity at

O(NP ).

5.2.2 MOja-DMSS by Separate Orthogonalization and Nor-

malization

In DMSS by direct orthonormalization, orthonormality of W(i) is obtained

by setting W(i) = T̄MOja(i)
(
T̄H

MOja(i)T̄MOja(i)
)− 1

2 , whose equivalent Householder

implementation is W(i) = HN(i)W(i − 1). In this section, we use an alternative

method by first orthogonalizing and then normalizing T̄MOja(i).
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1. y(i) = WH(i− 1)r(i)

2. ȳ(i) = Λ(i)y(i)

3. p(i) = r(i)−W(i− 1)y(i)

4. δ̄(i) = ‖p(i)‖2‖ȳ(i)‖2

5. ρ(i) =
√

1 + δ̄(i)

6. τ̄(i) = 1
‖ȳ(i)‖2

(
1

ρ̄(i)
− 1

)

7. p̄(i) = −τ̄(i)W(i− 1)ȳ(i) + (1 + τ̄(i)‖ȳ(i)‖2)p(i)

8. u(i) = p̄(i)
‖p̄(i)‖

9. v(i) = WH(i− 1)u(i)

10. W(i) = W(i− 1)− 2u(i)vH(i)

Table 5.3: MOja with DMSS by direct orthonormalization.

Let us set W(i) = T̄MOja(i)HP (i)D(i), where HP (i) is a P × P Householder

matrix, and D(i) is a diagonal matrix. We first determine HP (i) such that Z(i) =

T̄MOja(i)HP (i) is an orthogonal matrix, i.e. X(i) = ZH(i)Z(i) is a diagonal matrix.

To find HP (i), we use Householder reflection properties [71, Chap 8] that can be

assumed in the following lemma.

Lemma 5.1. Let u(i) and v(i) be P × 1 non-zero complex-valued vectors having

the same length. We define a vector in the direction of u(i)− v(i)ejα(i) as

a(i) = u(i)− v(i)ejα(i), (5.7)

where α(i) = angle(vHu). A matrix HP (i) of the form

HP (i) = IP − 2a(i)aH(i)

‖a(i)‖2
(5.8)
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is called Householder reflector. Then, if u(i) is pre-multiplied by HP (i), we have

v(i)ejα(i) = HP (i)u(i). (5.9)

It is easy to verify that Householder reflector is unitary and Hermitian.

If u(i) and v(i) are P ×1 non-zero real-valued vectors having the same length,

we define a(i) as

a(i) = u(i)− v(i). (5.10)

A matrix HP (i) of the form

HP (i) = IP − 2a(i)aH(i)

‖a(i)‖2
(5.11)

is called Householder reflector. Then, if u(i) is pre-multiplied by HP (i), we have

v(i) = HP (i)u(i). (5.12)

The proof of Lemma 5.1 for both complex-valued data and real-valued data

is given in Appendix B.2. In this chapter, we are analyzing complex-valued data.

So setting a(i) = ȳ(i)−‖ȳ(i)‖e1e
jangle(e1H ȳ(i)), where e1 = [1, 0, · · · , 0]H is a P × 1

vector, we have

X(i) =ZH(i)Z(i)

=HH
P (i)T̄H

MOja(i)T̄MOja(i)HP (i)

=HH
P (i)

[
IP + ‖p(i)‖2ȳ(i)ȳH(i)

]
HP (i)
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= IP + ‖p(i)‖2‖ȳ(i)‖2e1e
H
1 . (5.13)

As we can see, X(i) is a diagonal matrix. Finally, we normalize Z(i) in order to

have an orthonormal matrix. The steps of MOja with DMSS by separate orthogo-

nalization and normalization are summarized in Table 5.4. If we compare Table 5.4

with Table 2.16, we can see their steps are exactly the same except for the step-size

used.

1. y(i) = WH(i− 1)r(i)

2. ȳ(i) = Λ(i)y(i)

3. p(i) = r(i)−W(i− 1)y(i)

4. T̄MOja(i) = W(i− 1)− βp(i)ȳH(i)

5. ā(i) = ȳ(i)− ‖ȳ(i)‖e1e
jangle(e1H ȳ(i))

6. Z(i) = T̄MOja(i)− 2
‖ā(i)‖2 [TMOja(i)ā(i)] āH(i)

7. D(i) =
[
diag

(
ZH(i)Z(i)

)]− 1
2

8. W(i) = Z(i)D(i)

Table 5.4: MOja with DMSS by separate orthogonalization and normalization.

5.3 Diagonal Matrix Step-size Strategy (DMSS)

for Yang and Kaveh’s Algorithm

We recall YK algorithm [110] in Table 5.5. Using a diagonal step-size matrix

Λ(i) = diag[β1(i) · · · βP (i)], where βk(i) is the step-size for the kth column of W(i),

YK with DMSS can be expressed as in Table 5.6.

The algorithm for YK with DMSS given in Table 5.6 has computational com-
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1. y(i) = WH(i− 1)r(i)

2. TYK(i) = W(i− 1)− βr(i)yH(i)

3. W(i) = Gram-Schmidt orthonormalization(TYK(i))

Table 5.5: YK algorithm [110] for noise subspace estimation.

1. y(i) = WH(i− 1)r(i)

2. ȳ(i) = Λ(i)y(i)

3. T̄YK(i) = W(i− 1)− r(i)ȳH(i)

4. W(i) = Gram-Schmidt orthonormalization(T̄YK(i))

Table 5.6: YK with DMSS.

plexity O(NP 2), which is not appropriate for real-time implementation. To reduce

its complexity while maintaining stability, we propose three stable implementations

of YK with DMSS. The implementation methods we use for YK with DMSS are

different from the ones we used for MOja with DMSS. Recall that in MOja with

DMSS, we had to orthonormalize T̄MOja(i) where

T̄H
MOja(i)T̄MOja(i) = IP +‖p(i)‖2ȳ(i)ȳH(i)︸ ︷︷ ︸

rank 1

, (5.14)

which is an identity matrix plus a rank 1 matrix. Compared to this, in YK with

DMSS, we need to orthonormalize T̄YK(i) where

T̄H
YK(i)T̄YK(i) = IP −y(i)ȳH(i)− ȳ(i)yH(i) + ‖r(i)‖2ȳ(i)ȳH(i)︸ ︷︷ ︸

rank 2

, (5.15)

which is an identity matrix plus a rank 2 matrix. It is more difficult to orthonor-
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malize using (5.15) than (5.14). We propose three different implementations for

YK with DMSS using Givens rotation, by direct orthonormalization, and eigen

decomposition.

5.3.1 YK-DMSS by Givens Rotation

Using Lemma 5.1 and setting a(i) = ȳ(i)−‖ȳ(i)‖e1e
jangle(e1H ȳ(i)), where e1 =

[1, 0, · · · , 0]H is a P × 1 vector, we have

HP (i) = IP − 2
a(i)aH(i)

‖a(i)‖2

Z(i) = T̄YK(i)HP (i)

X(i) =ZH(i)Z(i)

=HH
P (i)

[
IP − y(i)ȳH(i)− ȳ(i)yH(i) + ‖r(i)‖2ȳ(i)ȳH(i)

]
HP (i)

= IP − ‖ȳ(i)‖d(i)eH
1 e−jangle(e1H ȳ(i)) − ‖ȳ(i)‖ejangle(e1H ȳ(i))e1d

H(i)

+‖r(i)‖2‖ȳ(i)‖2e1e
H
1 , (5.16)

where d(i) = HP (i)y(i). Note that X(i) is a Hermitian matrix and all its elements

are 0 except for those on the first column, first row and main diagonal.

To diagonalize X(i), we apply Jacobi methods [49, Chap 8]. The (l, k)th and

(k, l)th elements of X(i) can be zeroed out by applying Gk,l(i)X(i)Gl,k(i), where
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Gk,l(i) with 1 ≤ l, k ≤ P and k 6= l is the Givens rotation matrix defined as

Gl,k(i) =




1 · · · 0 · · · 0 · · · 0

...
. . .

...
...

...

0 · · · cl,k(i) · · · sl,k(i) · · · 0

...
...

. . .
...

...

0 · · · −sl,k(i) . . . cl,k(i) . . . 0

...
...

...
. . .

...

0 · · · 0 · · · 0 · · · 1




(5.17)

with c2
l,k(i) + s2

l,k(i) = 1, where

ql,k(i) =
Xk,k(i)−Xl,l(i)

2Xl,k(i)

ll,k(i) =
sign(ql,k(i))

|ql,k(i)|+
√

q2
l,k(i) + 1

cl,k(i) =
1√

l2l,k(i) + 1

sl,k(i) = cl,k(i)ll,k(i).

We can easily verify that Gl,k(i) is unitary and Hermitian. When P > 2, the

computational complexity of Jacobi methods is high [49, Chap 8]. In this thesis,

we will focus on the special case of P = 2. The study of diagonalization method

with lower computational complexity for P > 2 will be our future focus.

When P = 2, the Givens rotation matrix can be written as

G1,2(i) =




c1,2(i) s1,2(i)

−s1,2(i) c1,2(i)


 . (5.18)
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Post-multiplying Z(i) with G1,2(i), we obtain

R(i) = Z(i)G1,2(i), (5.19)

where the product

RH(i)R(i) = G2,1(i)X(i)G1,2(i)

is a diagonal matrix which means that R(i) is orthogonal. Finally, R(i) is nor-

malized, in order to have an orthonormal matrix W(i). The complete algorithm is

presented in Table 5.7.

1. y(i) = WH(i− 1)r(i)

2. ȳ(i) = Λ(i)y(i)

3. T̄YK(i) = W(i− 1)− r(i)ȳH(i)

4. a(i) = ȳ(i)− ‖ȳ(i)‖e1e
jangle(e1H ȳ(i))

5. Z(i) = T̄YK(i)− 2 T̄YK(i)a(i)aH(i)
‖a(i)‖2

6. X(i) = ZH(i)Z(i)

7. q1,2(i) = X2,2(i)−X1,1(i)

2X1,2(i)

l1,2(i) = sign(q1,2(i))

|q1,2(i)|+
√

q2
1,2(i)+1

c1,2(i) = 1√
l21,2(i)+1

s1,2(i) = c1,2(i)l1,2(i)
where c1,2(i) and s1,2(i) generate G1,2(i) as in (5.18).

8. R(i) = Z(i)G1,2(i)

9. D(i) =
[
diag

(
RH(i)R(i)

)]− 1
2

10. W(i) = R(i)D(i)

Table 5.7: YK with DMSS by Givens rotation for the case P = 2.
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5.3.2 YK-DMSS by Direct Orthonormalization

Using a similar method as MOja with DMSS by direct orthonormalization, we

have

W(i) = T̄YK(i)
(
T̄H

YK(i)T̄YK(i)
)− 1

2 , (5.20)

where

T̄H
YK(i)T̄YK(i) = IN + R(i) (5.21)

R(i) =−y(i)ȳH(i)− ȳ(i)yH(i) + ‖r(i)‖2ȳ(i)ȳH(i). (5.22)

It is obvious that R(i) is a rank 2 Hermitian matrix. Fast computation of (5.20) is

obtained using the following lemma [17, 19]. The proof of Lemma 5.2 can be found

in [3].

Lemma 5.2. Let R be a d-rank Hermitian matrix with its range space spanned by

column vectors p1, · · · ,pd. Then eigendecomposition of R is given by R = B̄DB̄H ,

where D = diag(κ1, · · · , κd) and B̄ (orthonormal) are computed by

P, [p1, · · · ,pd]

M=
(
PHP

)−1
PHRP = TDT−1

B=PT = [b1, · · · ,bd]

Σ= diag[
1

‖b1‖ , · · · ,
1

‖bd‖ ]

B̄=BΣ (5.23)
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Let N = I + R. Then an inverse square root of N is given by

N− 1
2 = I + B̄D̄B̄H (5.24)

where

D̄ = diag(
1√

1 + κ1

− 1, · · · ,
1√

1 + κd

− 1). (5.25)

Applying Lemma 5.2 on (5.22), we obtain the inverse square root of T̄H
YK(i)T̄YK(i)

through the following steps

P(i) = [y(i) ȳ(i)] (5.26)

M(i) =
(
PH(i)P(i)

)−1
PH(i)R(i)P(i)

M(i) =T(i)




κ1(i) 0

0 κ2(i)


T−1(i) (5.27)

B(i) =P(i)T(i) = [b1(i) b2(i)]

Σ(i) =




1/‖b1(i)‖ 0

0 1/‖b2(i)‖




B̄(i) =B(i)Σ(i) = [b̄1(i) b̄2(i)]

(
T̄H

YK(i)T̄YK(i)
)− 1

2 = IN + B̄(i)D̄(i)B̄H(i), (5.28)

where

D̄(i) =




1√
1+κ1(i)

− 1 0

0 1√
1+κ2(i)

− 1


 . (5.29)
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P(i) in (5.26) may not be full-rank always since it is possible thats ȳ(i) is linearly

independent on y(i). To solve this problem, we need to check for every instant i

that at least 2 elements on the main diagonal of Λ(i) are not equal or too close.

For example, the two step-sizes with closest values are βm(i) and βn(i). If |1 −
βm(i)/βn(i)| < ς, the bigger one between βm(i) and βn(i) will be increased.

Since M(i) is a 2 × 2 Hermitian matrix (denote M(i) by




a(i) b(i)

c(i) a(i)


), by

solving

det(κI2 −M) = 0, (5.30)

κ1(i) and κ2(i) in (5.27) can be easily obtained as

κ1(i) = a(i) +
√

b(i)c(i) and κ2(i) = a(i)−
√

b(i)c(i). (5.31)

By solving

(κ1(i)I2 −M(i))t1(i) = 0

(κ2(i)I2 −M(i))t2(i) = 0, (5.32)

T(i) = [t1(i) t2(i)] in (5.27) can be obtained as

T(i) =




1 1

κ1(i)− a(i) κ2(i)− a(i)


 . (5.33)
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By substituting (5.28) into (5.20), we obtain

W(i) =W(i− 1) + τ1(i)W(i− 1)b̄1(i)b̄
H
1 (i) + τ2(i)W(i− 1)b̄2(i)b̄

H
2 (i)− r(i)ȳH(i)

−τ1(i)r(i)ȳ
H(i)b̄1(i)b̄

H
1 (i)− τ2(i)r(i)ȳ

H(i)b̄2(i)b̄
H
2 (i). (5.34)

Since B̄(i) is orthonormal as claimed by Lemma 5.2, we obtain

T̄(i) =T(i)Σ(i). (5.35)

Hence, we can write

T̄−1(i) = B̄H(i)P(i) =




t11 t12

t21 t22


 . (5.36)

Using this in P(i) = B̄(i)T̄−1(i) = [y(i) ȳ(i)], we get

ȳ(i) = t12b̄1(i) + t22b̄2(i). (5.37)

Finally, substituting (5.37) in (5.34), we obtain

W(i) = W(i− 1) + d(i)b̄H
1 (i) + h(i)b̄H

2 (i) (5.38)

where

d(i) = τ1(i)W(i− 1)b̄1(i)− (τ1(i) + 1)t12r(i)

h(i) = τ2(i)W(i− 1)b̄2(i)− (τ2(i) + 1)t22r(i). (5.39)
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Table 5.8 gives the steps of YK with DMSS by direct orthonormalization.

1. y(i) = WH(i− 1)r(i)

2. ȳ(i) = Λ(i)y(i)

3. R(i) = −y(i)ȳH(i)− ȳ(i)yH(i) + ‖r(i)‖2ȳ(i)ȳH(i)

4. P(i) = [y(i) ȳ(i)]

5. M(i) =
(
PH(i)P(i)

)−1
PH(i)R(i)P(i)

6. Denote M(i) by

[
a(i) b(i)
c(i) a(i)

]

κ1(i) = a(i) +
√

b(i)c(i) κ2(i) = a(i)−
√

b(i)c(i)

T(i) =

[
1 1

κ1(i)− a(i) κ2(i)− a(i)

]

7. B(i) = P(i)T(i) = [b1(i) b2(i)]

8. Σ(i) =

[
1/‖b1(i)‖ 0

0 1/‖b2(i)‖
]

9. B̄(i) = B(i)Σ(i) = [b̄1(i) b̄2(i)]

10. T̄(i) = T(i)Σ(i)

11. τ1(i) = 1√
1+κ1(i)

− 1 τ2(i) = 1√
1+κ2(i)

− 1

12. T̄−1(i) =

[
t11 t12
t21 t22

]

13. d(i) = τ1(i)W(i− 1)b̄1(i)− (τ1(i) + 1)t12r(i)

14. h(i) = τ2(i)W(i− 1)b̄2(i)− (τ2(i) + 1)t22r(i)

15. W(i) = W(i− 1) + d(i)b̄H
1 (i) + h(i)b̄H

2 (i)

Table 5.8: YK with DMSS by direct orthonormalization.

Unfortunately, (5.38) still suffers from numerical instability. To limit the effect

of rounding error, numerically well behaved Householder matrix is employed based

on Lemma 5.3 [17, 19]. The proof of Lemma 5.3 can be found in [18].

Lemma 5.3. Step 15 in Table 5.8 can be reformulated as

W(i) = H1(i)H2(i)W(i− 1) (5.40)
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where H1(i) and H2(i) are the Householder matrices given by

H1(i) = IN − 2
a1(i)a

H
1 (i)

‖a1(i)‖2

H2(i) = IN − 2
a2(i)a

H
2 (i)

‖a2(i)‖2
(5.41)

where a1(i) and a2(i) are the eigenvectors of W(i) −W(i − 1) and H1(i)W(i) −
W(i− 1), respectively.

Following the above lemma, a1(i) is calculated as the principal left singular

eigenvector of

Q̄(i) = W(i)−W(i− 1) = d(i)b̄H
1 (i) + h(i)b̄H

2 (i) (5.42)

Equivalently, a1(i) can be seen as the eigenvector of the rank 2 Hermitian matrix

RQ(i) = Q̄(i)Q̄H(i) = d(i)d(i)H + h(i)h(i)H . (5.43)

According to Lemma 5.2, since RQ(i) is a rank 2 matrix, the eigen matrix B̄Q(i)

of RQ(i) can be obtained as

Q(i) = [d(i) h(i)]

Π(i) =



‖d(i)‖2 hH(i)d(i)

dH(i)h(i) ‖h(i)‖2


 =




π11(i) π12(i)

π21(i) π22(i)




Q2(i) =RQ(i)Q(i)

= [π11(i)d(i) + π12(i)h(i) π21(i)d(i) + π22(i)h(i)]

=Π(i)Q(i)
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MQ(i) =
(
QH(i)Q(i)

)−1
QH(i)RQ(i)Q(i)

=
(
QH(i)Q(i)

)−1
QH(i)Q2(i)

=TQ(i)




κQ1(i) 0

0 κQ2(i)


T−1

Q (i) (5.44)

BQ(i) =Q(i)TQ(i) = [bQ1(i) bQ2(i)]

ΣQ(i) =




1
‖bQ1(i)‖ 0

0 1
‖bQ2(i)‖




B̄Q(i) =BQ(i)ΣQ(i) = [b̄Q1(i) b̄Q2(i)], (5.45)

where step (5.44) can be implemented using method proposed in (5.33). Note that

both the eigenvectors of RQ(i) can do, so may we choose either a1(i) = b̄Q1(i) or

a1 = b̄Q2(i).

Next, we observe from (5.40) and (5.41) that

Z(i) = H1(i)W(i)−W(i− 1) = −2a2(i)a
H
2 (i)W(i− 1) (5.46)

is a rank 1 matrix. All column vectors of H1(i)W(i)−W(i− 1) are equal to a2(i)

up to scalar constant. Hence, it is sufficient to set a2(i) as the first column of Z(i).

Using (5.38) in (5.46), Z(i) can be obtained as

Z(i) =H1(i)W(i)−W(i− 1)

=
(
IN − 2a1(i)a

H
1 (i)

) (
W(i− 1) + d(i)b̄H

1 (i) + h(i)b̄H
2 (i)

)−W(i− 1)

=d(i)b̄H
1 (i) + h(i)d̄H

2 (i)− 2a1(i)a
H
1 (i)

(
W(i− 1) + d(i)b̄H

1 (i) + h(i)d̄H
2 (i)

)

(5.47)

97



CHAPTER 5. An Optimal Diagonal Matrix Step-size Strategy for Adaptive Noise Subspace Estimation
Algorithms

Therefore, a2(i) can be obtained as

a2(i) = b̄∗1,1(i)d(i) + b̄∗2,1(i)h(i)− 2aH
1 (i)[(b̄∗1,1(i) + b̄∗2,1(i))d(i) + w1(i− 1)]a1(i),

(5.48)

where b̄1,1(i) and b̄2,1(i) are the first elements of b̄1(i) and b̄2(i), respectively, and

w1(i− 1) is the first column of W(i− 1). The proposed method is called YK with

DMSS by direct orthonormalization. We summarize the steps in Table 5.9.

Following Step 14 of Table 5.8:
1. Q(i) = [d(i) h(i)]

2. Π(i) =

[ ‖d(i)‖2 hH(i)d(i)
dH(i)h(i) ‖h(i)‖2

]
=

[
π11(i) π12(i)
π21(i) π22(i)

]

3. Q2(i) = [π11(i)d(i) + π12(i)h(i) π21(i)d(i) + π22(i)h(i)]

4. MQ(i) =
(
QH(i)Q(i)

)−1
QH(i)Q2(i)

5. Denote MQ(i) by

[
a(i) b(i)
c(i) a(i)

]

κQ1(i) = a(i) +
√

b(i)c(i) κQ2(i) = a(i)−
√

b(i)c(i)

TQ(i) =

[
1 1

κQ1(i)− a(i) κQ2(i)− a(i)

]

6. BQ(i) = Q(i)TQ(i) = [bQ1(i) bQ2(i)]

7. a1(i) =
bQ1(i)

‖bQ1(i)‖
8. a2(i) = b̄∗1,1(i)d(i) + b̄∗2,1(i)h(i)− 2aH

1 (i)[(b̄∗1,1(1) + b̄∗2,1(1))d(i)
+ w1(i− 1)]a1(i)

9. W(i) =
(
IN − 2a1(i)a

H
1 (i)

) (
IN − 2a2(i)a

H
2 (i)

)
W(i− 1)

Table 5.9: Stable YK with DMSS by direct orthonormalization with Householder implementation.
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5.3.3 DMSS by Eigendecomposition

Applying Lemma 5.1, and setting a(i) = ȳ(i) − ‖ȳ(i)‖e1e
jangle(e1H ȳ(i)), where

e1 = [1, 0, · · · , 0]H is a P × 1 vector, we have

HP (i) = IP − 2
a(i)aH(i)

‖a(i)‖2

Z(i) = T̄YK(i)HP (i)

X(i) =ZH(i)Z(i)

=HH
P (i)

[
IP − y(i)ȳH(i)− ȳ(i)yH(i) + ‖r(i)‖2ȳ(i)ȳH(i)

]
HP (i)

= IP − ‖ȳ(i)‖d(i)eH
1 e−jangle(e1H ȳ(i)) − ‖ȳ(i)‖e1e

jangle(e1H ȳ(i))dH(i)

+‖r(i)‖2‖ȳ(i)‖2e1e
H
1 , (5.49)

where d(i) = HP (i)y(i). Note that X(i) is a Hermitian matrix and all its elements

are 0 except for those on the first column, first row and main diagonal.

To diagonalize X(i), an unitary matrix Q(i) which can make QH(i)X(i)Q(i)

diagonal is required. To obtain Q(i), we first solve for the eigenvalues of X(i) by

det (λIP −X(i)) = 0. (5.50)

It is equivalent to solving for λ in

[
(λ− 1)2 + b(i)(λ− 1) + c(i)

]
(λ− 1)P−2 = 0, (5.51)
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where

b(i) = 2‖ȳ(i)‖Re(d1(i)e
−jangle(e1H ȳ(i)))− ‖r(i)‖2‖ȳ(i)‖2

c(i) =−‖ȳ(i)‖2

P∑

k=2

|dk(i)e
−jangle(e1H ȳ(i))|2,

and dk(i) is the kth element of d(i). The eigenvalues are

λ1(i) = 1 +
−b(i) +

√
b2(i)− 4c(i)

2

λ2(i) = 1 +
−b(i)−

√
b2(i)− 4c(i)

2

λ3(i) = 1,

where λ3 has multiplicity P − 2. Solving (λi(i)IP −X(i))qi(i) = 0, where i = 1, 2,

we obtain the eigenvectors of X(i) corresponding to λ1 and λ2 as

q1(i) =




λ1(i)− 1

−‖ȳ(i)‖d2(i)e
−jangle(e1H ȳ(i))

...

−‖ȳ(i)‖dP (i)e−jangle(e1H ȳ(i))




q2(i) =




λ2(i)− 1

−‖ȳ(i)‖d2(i)e
−jangle(e1H ȳ(i))

...

−‖ȳ(i)‖dP (i)e−jangle(e1H ȳ(i))




,
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respectively. Normalizing q1(i) and q2(i), we obtain

q̄1(i) =
q1(i)

‖q1(i)‖ and q̄2(i) =
q2(i)

‖q2(i)‖ .

Solving (λ3(i)IP − X(i))q3(i) = 0, the eigenvectors of X(i) corresponding to λ3

satisfies

q3,1(i) = 0 and
P∑

k=2

q3,k(i)d
∗
k(i) = 0, (5.52)

where q3,k(i) is the kth element of q3(i). Define q̄3(i) as q̄3(i) = q3(i)
‖q3(i)‖ . Therefore,

Q(i) can be obtained as

Q(i) =

[
q̄1(i), q̄2(i), Q̄3(i)

]
, (5.53)

where Q̄3(i) is P × (P − 2) matrix spanned by q̄3(i). As we can see, the product

QH(i)X(i)Q(i) =




λ1(i)

λ2(i)

1

. . .

1




is diagonal. Finally, R(i) = Z(i)Q(i) is normalized (since RH(i)R(i) is a diagonal

rather than an identity matrix), in order to have an orthonormal matrix W(i).

The complete algorithm is presented in Table 5.10.
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1. y(i) = WH(i− 1)r(i)

2. ȳ(i) = Λ(i)y(i)

3. T̄YK(i) = W(i− 1)− r(i)ȳH(i)

4. a(i) = ȳ(i)− ‖ȳ(i)‖e1e
jangle(e1H ȳ(i))

5. HP (i) = IP − 2a(i)aH(i)
‖a(i)‖2

6. Z(i) = T̄YK(i)HP (i)

7. d(i) = HP (i)y(i)

b(i) = 2‖ȳ(i)‖Re(d1(i)e
−jangle(e1H ȳ(i)))− ‖r(i)‖2‖ȳ(i)‖2

c(i) = −‖ȳ(i)‖2
∑P

k=2 |dk(i)e
−jangle(e1H ȳ(i))|2

λ1(i) = 1 +
−b(i)+

√
b2(i)−4c(i)

2

λ2(i) = 1 +
−b(i)−

√
b2(i)−4c(i)

2

q1(i) =




λ1(i)− 1

−‖ȳ(i)‖d2(i)e
−jangle(e1H ȳ(i))

...

−‖ȳ(i)‖dP (i)e−jangle(e1H ȳ(i))




q2(i) =




λ2(i)− 1

−‖ȳ(i)‖d2(i)e
−jangle(e1H ȳ(i))

...

−‖ȳ(i)‖dP (i)e−jangle(e1H ȳ(i))




q̄1(i) = q1(i)
‖q1(i)‖ and q̄2(i) = q2(i)

‖q2(i)‖
q3,1(i) = 0 and

∑P
k=2 q3,k(i)d

∗
k(i) = 0

q̄3(i) = q3(i)
‖q3(i)‖ Q̄3(i) is spanned by q̄3(i)

Q(i) = [q̄1(i), q̄2(i), Q̄3(i)]

8. R(i) = Z(i)Q(i)

9. D(i) =
[
diag

(
RH(i)R(i)

)]− 1
2

10. W(i) = R(i)D(i)

Table 5.10: YK with DMSS by eigendecomposition.
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5.4 Estimated Optimal Diagonal-matrix Step-size

In Sections 5.2 and 5.3, we developed the DMSS for MOja and YK with

different implementations. However, how to choose the individual step-size βk was

not addressed. In this section, we address by deriving derive an optimal value for

the diagonal step-size matrix.

The cost function of YK is

J(i) = E
[
Tr

(
W(i)HCW(i)

)]
. (5.54)

Omitting the orthonormalization step, we can approximate the cost function by

E
[
Tr

(
T̄YK(i)HCT̄YK(i)

)]
, where T̄YK(i) = W(i − 1) − r(i)yH(i)Λ(i). Plugging

T̄YK(i) into (5.54), we obtain

J(i) = E
[
Tr

(
WH(i− 1)CW(i− 1)

)]− 2E

[
Re

(
P∑

k=1

βk(i)yk(i)r
H(i)Cwk(i− 1)

)]

+E

[
P∑

k=1

β2
k(i)|yk(i)|2rH(i)Cr(i)

]
, (5.55)

where yk(i) = wH
k (i − 1)r(i) is the kth element of y(i). To compute the optimal

step-size βk, we need to solve the following system of equations:

∂J(i)

∂βk(i)
= 0 for k = 1, · · · , P. (5.56)

The derivative of J(i) with respect to βk(i) gives

∂J(i)

∂βk(i)
=−2E

[
Re

(
yk(i)r

H(i)Cwk(i− 1)
)]

+2E
[
βk(i)|yk(i)|2rH(i)Cr(i)

]
. (5.57)
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Setting the derivative in (5.57) to zero leads to

βo,k(i) =
E

[
Re

(
yk(i)r

H(i)Cwk(i− 1)
)]

E [|yk(i)|2rH(i)Cr(i)]
.

(5.58)

Assuming wk(i− 1) and r(i) to be independent, we get the practical realization of

the optimal step-size as

β̂o,k(i) = γ
hk(i)

bk(i) + ε
, (5.59)

with

hk(i) = αhk(i− 1) + (1− α)|Re(yk(i)θ(i)φk(i))|

bk(i) = αbk(i− 1) + (1− α)|yk(i)|2|θ(i)|2

θ(i) = ‖rH(i)‖2

φk(i) = rH(i)wk(i− 1), (5.60)

where α (0 < α < 1) is a forgetting factor, and γ and ε are two positive constants

(0 < γ < 1) which help improve the numerical stability of the algorithm.

The optimal step-size for MOja with DMSS is obtained by minimizing the

mean square error (MSE)

J(i) = E‖r(i)−W(i)W(i)r(i)‖2

= Tr(C)− 2Tr(W(i)HCW(i)) + Tr(WH(i)CW(i)WH(i)W(i)). (5.61)
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When WH(i)W(i) = IP , the MSE equation in (5.61) is equal to

J(i) = Tr(C)− Tr(W(i)HCW(i)). (5.62)

Omitting the orthonormalization step, we can approximate W(i) in (5.62) by

T̄MOja = W(i − 1) − p(i)ȳH(i), where p(i) = r(i) − W(i − 1)y(i). Following

similar steps as the optimal step size of YK with DMSS, we get the optimal step-

size for MOja with DMSS as

β̂o,k(i) = γ
hk(i)

bk(i) + ε
, (5.63)

with

hk(i) = αhk(i− 1) + (1− α)|Re(pk(i)θ(i)φk(i))|

bk(i) = αbk(i− 1) + (1− α)|pk(i)|2|θ(i)|2

θ(i) = ‖rH(i)‖2

φk(i) = rH(i)wk(i− 1), (5.64)

where α (0 < α < 1) is a forgetting factor, and γ and ε are two positive constants

(0 < γ < 1).
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5.5 Simulation Results and Discussion

In our simulations, we set the covariance matrix to

C =




0.9 0.4 0.7 0.3

0.4 0.3 0.5 0.4

0.7 0.5 1.0 0.6

0.3 0.4 0.6 0.9




,

where N = 4 and P = 2. The generation of the observed data r(i) is generated as

mentioned in Section 2.5.1.

In this section, we perform several simulations to demonstrate the effect of

the proposed DMSS with different implementations on performance. We start by

comparing the performance of our proposed MOja with DMSS by direct orthonor-

malization and by separate orthogonalization and normalization with MOja [105],

NOOja [8], and FOOja [21]. Then, we continue with the comparison of YK with

DMSS by Givens rotation, by direct orthonormalization and by eigendecomposition

with YK, HFRANS and FDPM.

5.5.1 Simulation Results and Discussion for MOja with

DMSS

In Figures 5.1 and 5.2, we compare the performance of MOja with DMSS

by direct orthonormalization and NOOja, since the former can be considered as

NOOja with DMSS. In NOOja, β(i) = 0.017
‖r(i)‖2−‖y(i)‖2+0.04

. In MOja with DMSS

by direct orthonormalization, α = 0.998, γ = 0.01, and ε = 0.01. As we can

see MOja with DMSS by direct orthonormalization has faster convergence, smaller
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estimation error and similar orthogonality error compared to NOOja.
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Fig. 5.1: Subspace estimation error for MOja with DMSS by direct orthonormalization and
NOOja.

In Figures 5.3 and 5.4, we compare the performance of MOja with DMSS by

separate orthogonalization and normalization and FOOja, since the former can be

considered as FOOja with DMSS. In FOOja, β(i) = 0.01. In MOja with DMSS by

separate orthogonalization and normalization, α = 0.998, γ = 0.005, and ε = 0.

As we can see MOja with DMSS by separate orthogonalization and normalization

has faster convergence and similar orthogonality error compared to FOOja.

In Figures 5.5 and 5.6, the performance of MOja with DMSS by direct or-

thonormalization and MOja with DMSS by separate orthogonalization and nor-

malization are compared. Their settings are the same as those of the earlier sim-

ulations in this section. As can been seen, they have similar estimation error

performance. As far as orthogonality error is concerned, the orthogonality error
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Fig. 5.2: Orthogonality error for MOja with DMSS by direct orthonormalization and NOOja.

of MOja with DMSS by direct orthonormalization slightly grows with iterations,

whereas the orthogonality error of MOja with DMSS by separate orthogonalization

and normalization remains stable.

5.5.2 Simulation Results and Discussion for YK with DMSS

In Figures 5.7 and 5.8, we compare performance of YK, YK with DMSS by

Givens rotation, YK with DMSS by direct orthonormalization, and YK with DMSS

by eigendecomposition. In YK, β = 0.0045. In YK with DMSS by Givens rotation,

α = 0.998, γ = 0.15, and ε = 0. In YK with DMSS by direct orthonormalization,

α = 0.998, γ = 0.18, and ε = 0.001. To make sure that P(i) is of full rank, we will

check for every instant whether |1−β1(i)/β2(i)| < 0.15. If |1−β1(i)/β2(i)| < 0.15,

the bigger one between β1(i) and β2(i) will be increased to 1.2 times its original

108



CHAPTER 5. An Optimal Diagonal Matrix Step-size Strategy for Adaptive Noise Subspace Estimation
Algorithms

10
0

10
1

10
2

10
3

10
4

−40dB

−30dB

−20dB

−10dB

0dB

number of iterations

su
bs

pa
ce

 e
st

im
at

io
n 

er
ro

r 
σ

 

 

FOOja
MOja with DMSS by seperate orthogonalization and normalization

Fig. 5.3: Subspace estimation error for MOja with DMSS by separate orthogonalization and
normalization and FOOja.

value. In YK with DMSS by eigendecomposition, α = 0.998, γ = 0.15, and

ε = 0. As we can see YK with the different proposed DMSS strategies have faster

convergence and similar orthogonality error as the original YK algorithm.

5.6 Conclusion

In this chapter, we have proposed a new optimal diagonal-matrix step-size

strategy for MOja and YK algorithms. The proposed optimal step-size matrix

controls the updating rate of the subspace vectors individually. MOja and YK

with this proposed step-size strategy still cannot give satisfactory results, since

they suffer from either instability or computational complexity issues. Two imple-

mentations were proposed to stablize MOja with optimal step-size matrix. And
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Fig. 5.4: Orthogonality error for MOja with DMSS by separate orthogonalization and normaliza-
tion and FOOja.

three implementations were designed to reduce the computational complexity of

YK with optimal step-size matrix. Simulation results show that the proposed step-

size strategies result in faster convergence rate and/or smaller steady-state error

than the original algorithms, while retaining O(NP ) computational complexity

and keeping good stability. The proposed methods can also be extended to other

algorithms.
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Fig. 5.5: Subspace estimation error for MOja with DMSS by direct orthonormalization and MOja
with DMSS by separate orthogonalization and normalization.
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Fig. 5.7: Subspace estimation error for YK, YK with DMSS by Givens rotation, YK with DMSS
by direction orthonormalization, and YK with DMSS by eigendecomposition.
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Chapter 6

Adaptive Noise Subspace

Estimation Algorithm Suitable for

VLSI Implementation

In this chapter, we propose a noise subspace estimation algorithm called

SFRANS, which is suitable for VLSI implementation since SFRANS does not re-

quire square-root and division operations. The proposed algorithm is based on

FRANS [9], but with much better stability. Through ODE analysis, we show that

SFRANS is stable on the manifold and is bounded at the equilibrium point.

6.1 Introduction

As we have mentioned in Chapter 3, FRANS [9] is a low cost implementation

of Yang and Kaveh’s algorithm [110] with computational complexity O(NP ). How-
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ever, it suffers from instability due to accumulation of roundoff errors [68]. To im-

prove its numerical stability while retaining computational complexity at O(NP ),

HFRANS is proposed using numerically well-behaved Householder transform [11].

Nevertheless, HFRANS requires 4 divisions and 1 square-root operation at each it-

eration which make it unfriendly for VLSI implementation [44], since square-roots

or division operations require far more computational effort than multiplications.

Therefore, it is highly desirable to minimize the number of square-roots and divi-

sions required in algorithms.

In this chapter, a VLSI friendly approach (free from square-root or division

operations) is proposed to stabilize FRANS, while retaining its low computational

complexity. To achieve this goal, we first approximate FRANS using Taylor’s series

approximation. The resulting algorithm does not require square-root or division

operations. However, it loses orthonormality rapidly as FRANS. The conventional

orthonormalization techniques include matrix inverse square-root method or ma-

trix inverse method, where square-roots and divisions are inevitable [55]. Instead

of the conventional method, a simple stabilizing factor is added to the update

equation. The obtained algorithm is called SFRANS (stabilized FRANS algo-

rithm). An ordinary differential equation (ODE) analysis is provided to prove that

if the received signal is stationary, the estimated noise subspace remains orthonor-

mal. Performance and computational complexity of the proposed algorithm are

compared with the self-stabilized minor subspace rule (SMSR) [37], which is also

a stable noise subspace estimation algorithm suitable for VLSI implementation.

Simulation results show when SMSR and SFRANS have similar estimation error

performance, the proposed algorithm has smaller orthogonality error than SMSR

with similar computational complexity.
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In this chapter, we first propose SFRANS algorithm in Section 6.2. In Section

6.3 an ODE analysis is provided to analyze the orthonormality of SFRANS. Sim-

ulation results and discussions are given in Section 6.4. The chapter is concluded

in Section 6.5.

6.2 Proposed SFRANS Algorithm

To facilitate our derivation, let us recall the complete steps of FRANS in Table

6.1. As we can see from Table 6.1, FRANS requires 2 divisions and 1 square-root

Initialization: choose W(0) such that WH(0)W(0) = IP

1. y(i) = WH(i− 1)r(i)

2. β(i) = α/‖r(i)‖2

3. δ(i) = 4β(1− β‖r(i)‖2)‖y(i)‖2

4. ρ(i) =
√

1− δ(i)

5. τ(i) = 1
‖y(i)‖2 (

1
ρ(i)

− 1)

6. p(i) = −τ(i)W(i− 1)y(i)/β + 2r(i)(1 + τ(i)‖y(i)‖2)

7. W(i) = W(i− 1)− βp(i)yH(i)

Table 6.1: FRANS for noise subspace estimation.

operation at each iteration which arise from the calculation of τ(i). The division in

Step 5 of Table 6.1 is not counted, because p(i) will be multiplied by β in Step 6.

As stated in [44], square-root and division operations are not appropriate for VLSI

implementation. Therefore, in the following, we first try to remove the square-root

and divisions in the calculation of τ(i).

Using a truncated Taylor’s series expansion and keeping only up to second-
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order terms in β, we can simplify ρ(i) in Table 6.1 as

√
1− 4β(1− β‖r(i)‖2)‖y(i)‖2 ≈ 1− 2β‖y(i)‖2 + 2β2e(i)‖y(i)‖2,

where e(i) = ‖r(i)‖2 − ‖y(i)‖2. Similarly, we can simplify 1
ρ(i)

as

1

1− 2β‖y(i)‖2 + 2β2e(i)‖y(i)‖2

≈ 1 + 2β‖y(i)‖2 − 2β2‖r(i)‖2‖y(i)‖2 + 6β2‖y(i)‖4.

Hence, we can approximate τ(i) as

τ(i) ≈ 2β(1− β‖r(i)‖2 + 3β‖y(i)‖2). (6.1)

Injecting these approximations into Step 6 of Table 6.1 and keeping only up to

second-order terms in β, the weight updating equation becomes

W(i) =W(i− 1) + 2β(1− β‖r(i)‖2 + 3β‖y(i)‖2)W(i− 1)y(i)yH(i)

−2β(1 + 2β‖y(i)‖2)r(i)yH(i). (6.2)

Unfortunately, (6.2) is as unstable as the original FRANS algorithm. In [37],

Douglas proposes a self-stabilized noise subspace estimation algorithm

W(i) =W(i− 1) + β
[
W(i− 1)y(i)yH(i)− r(i)yH(i)WH(i− 1)W(i− 1)

·WH(i− 1)W(i− 1)
]
. (6.3)

Using a similar technique as in [37], (6.2) can be stabilized by post-multiplying the
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third term on the RHS of (6.2) a stabilizing factor WH(i − 1)W(i − 1)WH(i −
1)W(i − 1). The algorithm resulting from this stabilization step, which we call

stabilized FRANS (denoted by SFRANS), is given as in Table 6.2. The complete

steps of SFRANS are given in Table 6.2.

Initialization: choose W(0) such that WH(0)W(0) = IP

1. u(i) = W(i− 1)y(i)

2. x(i) = WH(i− 1)u(i)

3. z(i) = W(i− 1)x(i)

4. d(i) = WH(i− 1)z(i)

5. W(i) = W(i− 1) + β
[
2(1− β‖r(i)‖2 + 3β‖y(i)‖2)u(i)yH(i)

−2(1 + 2β‖y(i)‖2)r(i)dH(i)
]

Table 6.2: SFRANS for noise subspace estimation.

Comparing (6.3) and Table 6.2, we see that they are similar in form. In fact, if

we eliminate all the update terms on the RHS of Step 5 that are second order in β,

we will get (6.3). Note that SFRANS given in Table 6.2 has O(NP ) computational

complexity and is completely free from division and square-root operations.

6.3 Convergence Analysis of SFRANS

Based on the stochastic approximation theorem [29, Chap 5] mentioned in

Chapter 3 [65], we use first order approximation analysis assuming the step-size to

be very small. In addition, an ODE analysis has also been developed for SFRANS.
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6.3.1 Stability at the Equilibrium Points

Let us first introduce the following two lemmas [94] which will be used in our

analysis. Their proof can be found in [94].Although we use these two lemmas, our

ODE analysis is totally different from that in [94]. Because the analysis in [94]

is for principal component analysis, while ours is for noise subspace estimation.

Besides, the ODE equation under evaluation is different.

Denote a permutation of {1, · · · , N} by π, that is π(i) ∈ {1, 2, · · · , N} with

π(i) 6= π(j) for i 6= j and {π(1), · · · , π(N)} = {1, · · · , N}. A permutation is called

identity and is denoted by 1N if π(i) = i for all i = 1, · · · , N .

Lemma 6.1 : Let Γ be a diagonal matrix of size N ×N and G be an arbitrary

matrix of size N×N . Let π be a permutation such that ππ = π2 = 1N . Then GΓG

is diagonal if and only if the only non-zero elements of G are given by (i, π(i)) for

i = 1, · · · , N . This matrix G is called a nonunitary permutation matrix.

Lemma 6.2 : Let G be a Hermitian nonunitary permutation matrix of size

N × N and π be the corresponding permutation. Let [G]i,π(i) = [G]π(i),i = gi.

Then the eigenvalues of G are given by ±|gi| for i 6= π(i) and gj for j = π(j), for

i, j = 1, · · · , N .

We write the singular value decomposition (SVD) of W as W = UΣVH ,

where U is a N ×P orthogonal matrix, Σ is a P ×P diagonal matrix with positive

entries {σ2
1, · · · , σ2

P}, and V is a P×P orthogonal matrix. The ODE corresponding

to SFRANS is

dW

dt
= −CWWHWWHW + WWHCW. (6.4)

Equation (6.4) is exactly the same as the ODE corresponding to (6.3). An ODE
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analysis of (6.4) is given in [37], however it uses a false assumption as shown in [5].

So an approach that is different from that in [37] will be used here.

At equilibrium point, (6.4) satisfies dW
dt

= 0. Using the SVD of W, we can

write

dW

dt
= −CUΣ5VH + UΣ2UHCUΣVH = 0. (6.5)

Pre- and post-multiplying the above equation by UH and V, respectively, leads to

UHCUΣ5 = Σ2UHCUΣ. (6.6)

Assume that C has nonzero distinct eigenvalues λ1 < · · · < λN . Let Λ be

a diagonal matrix given as Λ = diag[λπ(1), · · · , λπ(N)], where π is a permutation

of 1, · · · , N . Then the eigenvalue decomposition (EVD) of C can be given as

C = PΛPH , where P is a unitary matrix containing the eigenvectors corresponding

to Λ. Using the EVD of C in (6.6), we have

XHΛXΣ5 = Σ2XHΛXΣ, (6.7)

where X = PHU. Let A = XHΛX. Then, we have

Σ4 = Σ−1A−1Σ2AΣ (6.8)

which implies that Σ−1A−1Σ2AΣ is symmetric, i.e.

Σ−1A−1Σ2AΣ = ΣAΣ2A−1Σ−1, (6.9)
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which yields

Σ2AΣ2A = AΣ2AΣ2. (6.10)

Let bij = [AΣ2A]ij. Then we have σ2
i bij = σ2

j bij, which implies that bij = 0

when i 6= j. This shows that AΣ2A is a diagonal matrix. From Lemma 6.1, A is

a Hermitian nonunitary permutation matrix. Since A = XHΛX and Λ contains

distinct positive entries, A is positive definite. From Lemma 6.2, A must be a

diagonal matrix with distinct positive entries. Therefore, X must be a rectangular

permutation matrix. Moreover, because A is diagonal, we get from (6.9)

Σ−1A−1Σ2AΣ = Σ2. (6.11)

Comparing (6.8) and (6.11), we get

Σ4 = Σ2. (6.12)

Since Σ is a diagonal matrix with all positive entries, Σ = IP . Finally, we have

the equilibrium points of SFRANS as

Ẇ = UΣVH = (PX)VH , (6.13)

where PX represents a N × P matrix whose columns correspond to eigenvectors

of C in arbitrary order without duplication, and V is a P × P unitary matrix.

We now investigate the stability of SFRANS at the equilibrium point. Let
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Z = PHWV. Pre and post-multiplying (6.4) by PH and V, respectively, we have

dZ

dt
= −ΛZZHZZHZ + ZZHΛZ. (6.14)

Without lost of generality, let PX consist of the first P columns of P at the

equilibrium point Ẇ = PXVH , since the first P columns of P are eigenvectors

of C in arbitrary order. Then, it is clear that Ż = PHẆV is also an equilibrium

point and it is clear that Ż = [IP ,0P,N−P ]H .

We consider the ODE of the perturbation E(t) at the equilibrium point

dE

dt
=

dZ

dt

∣∣∣
Z=Ż+E

=−Λ
(
Ż + E

)(
ŻH + EH

)(
Ż + E

)(
ŻH + EH

)(
Ż + E

)

+
(
Ż + E

)(
ŻH + EH

)
Λ

(
Ż + E

)

=−Λ
(
ŻŻHŻŻHŻ + ŻEHŻŻHŻ + EŻHŻŻHŻ

+ŻŻHEŻHŻ + ŻŻHŻEHŻ + ŻŻHŻŻHE
)

+
(
ŻŻHΛŻ + ŻEHΛŻ + EŻHΛŻ + ŻŻHΛE

)
+O (‖E‖2

)
, (6.15)

where O(‖E‖2) is a matrix containing terms with E in second or larger order. We

assume that O (‖E‖2) is negligibly small.

Let [E]ij = eij. Note that Ż = [IP ,0P,N−P ]H . Then, for 1 ≤ j ≤ P < i ≤ N ,

the ODE of the element eij can be expressed using (6.15) as

deij

dt
= −eij

(
λπ(i) − λπ(j)

)
. (6.16)

The solution to (6.16) is eij(t) = Ce−(λπ(i)−λπ(j)), where C = ±eC1 and C can be
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either positive or negative. It follows that if and only if λπ(i) > λπ(j), eij(t) will

converge to 0. Thus, for eij(∞) to go to 0, we must have π(j) ∈ {1, 2, · · · , P} for

1 ≤ j ≤ P . For 1 ≤ i, j ≤ P , we obtain using (6.15)

deij

dt
=

(−2λπ(i) + λπ(j)

)
eij +

(−2λπ(i) + λπ(j)

)
e∗ji, (6.17)

where e∗ji is the conjugate of eji. Similarly, switching the position of i and j in

(6.17), we obtain

deji

dt
=

(−2λπ(j) + λπ(i)

)
e∗ij +

(−2λπ(j) + λπ(i)

)
eji. (6.18)

Rearranging (6.17), we have

eji =
1

−2λπ(i) + λπ(j)

[
de∗ij
dt

− (−2λπ(i) + λπ(j)

)
e∗ij

]
. (6.19)

Injecting (6.19) into (6.18), we obtain

deji

dt
=

(−2λπ(j) + λπ(i)

)
e∗ij +

−2λπ(j) + λπ(i)

−2λπ(i) + λπ(j)

[
de∗ij
dt

− (−2λπ(i) + λπ(j)

)
e∗ij

]
.(6.20)

From (6.17), we have

d2e∗ij
dt2

=
(−2λπ(i) + λπ(j)

) de∗ij
dt

+
(−2λπ(i) + λπ(j)

) deji

dt
. (6.21)

Replacing
deji

dt
in (6.21) by (6.20), we obtain the following second-order ODE of eij

as

d2eij

dt2
+

(
λπ(i) + λπ(j)

) deij

dt
= 0 for 1 ≤ i, j ≤ P. (6.22)
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The solution of the above ODE is eij(t) = C1 + C2e
−(λπ(i)+λπ(j))t, where C1 and C2

are real numbers depending on the initial conditions eij(0) and
deij

dt
|t=0. The term

e−(λπ(i)+λπ(j))t will go to 0 since λπ(i) > 0 for all i. But the residue error C1 will

remain. As can be seen from simulation results in Section 6.4, the estimation error

of W(i) with large iteration number i is stable and small, which means the residue

error C1 is negligibly small.

For the above analysis of the behavior of eij(t) for 1 ≤ i ≤ P < i ≤ N or

1 ≤ i, j ≤ P , we can conclude that we must have π(j) ∈ {1, 2, · · · , P} for the

perturbation error to be bounded. This implies that the eigenvectors in PX at the

equilibrium point Ẇ = PXVH must be the eigenvectors corresponding to the P

smallest eigenvalues.

6.3.2 Stability on the Manifold

If the signal is stationary (i.e., the correlation matrix C = E[r(i)rH(i)] is

independent of iteration index i), we can prove that the proposed algorithm can

estimate the noise subspace on the manifold S =
{
W|WHW = IP

}
. Stability on

the manifold is a desirable property for adaptive algorithms, since orthogonality of

W is guaranteed by the manifold.

Using (6.4), we get

d
(
WHW

)

dt
=WH dW

dt
+

dWH

dt
W

=−WHWWHWWHCW + WHCWWHW

−WHCWWHWWHW + WHWWHCW. (6.23)

We consider the variation δW(t) from a point Ŵ on the manifold S, where δW(t)
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is assumed to be small. At the point W(t) = Ŵ + δW(t), we have (dropping

second-order variation terms)

WH(t)W(t) ≈ I + ŴHδW(t) + δWH(t)Ŵ. (6.24)

To analyze the stability of (6.4) on the manifold, we shall investigate the behavior

of the variation δ
(
WHW

)
(t). After dropping second-order variation terms, we

obtain

δ
(
WHW

)
(t) ≈ ŴHδW(t) + δWH(t)Ŵ. (6.25)

Comparing (6.24) and (6.25), we can obtain

WH(t)W(t) ≈ I + δ
(
WHW

)
(t). (6.26)

Therefore, we get

dδ
(
WHW

)
(t)

dt
≈ d

(
WHW

)

dt

∣∣∣
W=Ŵ+δW(t)

. (6.27)

In view of (6.27), we can obtain the ODE of δ
(
WHW

)
(t) by injecting W(t) =

Ŵ + δW(t) into (6.23). Thus, we get

dδ
(
WHW

)
(t)

dt
≈

(
H + ŴHCŴδ

(
WHW

))
+

(
H + δ

(
WHW

)
ŴHCŴ

)

−
(
H + 2ŴHCŴδ

(
WHW

))−
(
H + 2δ

(
WHW

)
ŴHCŴ

)

≈−ŴHCŴδ
(
WHW

)− δ
(
WHW

)
ŴHCŴ, (6.28)
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where H = WHCW. The detailed derivation of (6.28) is given in Appendix C.1.

In terms of vector operator, the above equation can be rewritten as

dvec
[
δ
(
WHW

)
(t)

]

dt
≈ −

(
I⊗ ŴHCŴ + ŴHCŴ ⊗ I

)
vec

[
δ
(
WHW

)
(t)

]
.

(6.29)

Since C is positive definite, ŴHCŴ is also positive definite. Also, since the

variation is assumed to be small, removal of second-order variation terms will

not influence stability of the manifold. Therefore,
(
I⊗ ŴHCŴ +ŴHCŴ ⊗ I

)

is also positive definite based on Lemma 1 of Tanaka’s paper [94]. Hence, as

vec
[
δ
(
WHW

)
(t)

] → 0, we have δ
(
WHW

)
(t) → 0 when t → ∞. This com-

pletes our proof that the manifold is stable under perturbation in the learning rule

(6.4).

6.4 Simulation Results and Discussion

In this section, the performance of the proposed SFRANS algorithm is com-

pared with FRANS [9] and the self-stabilized minor subspace rule (SMSR) proposed

by Douglas et al. [37]. In our simulations, we set the covariance matrix to

C =




0.9 0.4 0.7 0.3

0.4 0.3 0.5 0.4

0.7 0.5 1.0 0.6

0.3 0.4 0.6 0.9




,
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where N = 4 and P = 2. The observed data r(i) is generated as stated in Section

2.5.1.

Figure 6.1 shows the average evolution of the estimation error σ(i) [see (2.35)

in Chapter 2] for FRANS, SMSR and SFRANS. The step-size β is chosen to be

0.002 for SMSR, 0.001 for FRANS and 0.001 for SFRANS. The step-sizes are chosen

such that all the algorithms have no observable difference in convergence rate, so

as to make the comparison fair. Note that the sudden drop in estimation error of

FRANS indicates that the estimated subspace is divergent from the true one after

around 6× 104 iterations.

To show the divergence of FRANS after around 6×104 iterations, we introduce

projection error υ(i) as

υ(i) =
1

r0

r0∑
r=1

‖Wr(i)Wr(i)
H −UnU

H
n (i)‖2

F , (6.30)

where r0 denotes the number of Monte Carlo runs, Wr(i) denotes the estimated

subspace matrix W(i) in the rth run, ‖.‖F denotes the Frobenius norm, and Un

is the noise subspace of the underlying covariance matrix C. Here, υ(i) measures

the projection error of Wr(i) with respect to the true noise subspace Un. As can

be seen from Figure 6.2, there is a sudden increase of υ(i) for FRANS after around

6× 104 iterations, indicating the divergence of FRANS.

Figure 6.3 shows the average evolution of the orthogonality error η(i) [see

(2.36) in Chapter 2] for the three algorithms. The proposed SFRANS has a signif-

icantly smaller orthogonality error than SMSR, whereas FRANS quickly loses its

orthogonality due to numerical error buildup.

The computational complexities of the three algorithms are compared in Table

126



CHAPTER 6. Adaptive Noise Subspace Estimation Algorithm Suitable for VLSI Implementation

10
0

10
1

10
2

10
3

10
4

10
5

−50dB

−40dB

−30dB

−20dB

−10dB

0dB

number of iterations

su
bs

pa
ce

 e
st

im
at

io
n 

er
ro

r 
σ

 

 

SMSR β=0.002
SFRANS β=0.001
FRANS β=0.001

FRANS

Fig. 6.1: Estimation error σ(i) for SMSR, FRANS and SFRANS.
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Fig. 6.2: Projection error υ(i) for SMSR, FRANS and SFRANS.

6.3. Note that they all have O(NP ) complexity, whereas SMSR and SFRANS

involve no square-root or division. Therefore, we conclude that when they have
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similar convergence rate in estimation error, SFRANS has smaller orthogonality

error than SMSR with similar computational complexity, and is superior to FRANS

in terms of stability.

multiplication division square-root
SMSR 6NP 0 0

FRANS 4NP 3 1
SFRANS 6NP 0 0

Table 6.3: Computational complexities for SMSR, FRANS and SFRANS.

6.5 Conclusion

In this chapter, we have considered the problem of developing a VLSI friendly

noise subspace estimation algorithm. We have proposed a stable and low cost
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noise subspace estimation algorithm, SFRANS, which requires no square-root or

division operation. The proposed algorithm is derived from FRANS through Taylor

series approximation, but with similar computational complexity and much better

stability. An ODE analysis is given to estabilish the stability of the proposed

algorithm.
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Chapter 7

Conclusion and Proposals for

Future Work

7.1 Conclusion

In the literature, many of the existing noise subspace algorithms lose their

orthogonality gradually and no longer extract the true subspace. Therefore, our

study of this thesis starts from analyzing the stability of FRANS algorithm [9] to

have a better understanding of how to make noise subspace estimation algorithms

stable. More recently, several stable algorithms with computational complexity

O(NP ) were proposed. However, they converge slowly since they are gradient

based and non-optimal step-sizes are used to update all the subspace vectors at

the same speed. They also require division and square-root operations which make

them difficult for real-time implementation. Therefore, in this thesis, we propose

novel approaches that result in stable fast subspace estimation algorithms, some of

which are even VLSI friendly, to enhance the performance of bandwidth efficient
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high speed communications systems.

In Chapter 2, we started with a short review of the mathematical preliminaries,

which will be needed in the subsequent chapters. It is followed by a review of the

existing signal subspace algorithms and noise subspace algorithms. Data generation

method and performance measures used for simulations in this thesis are also given

in Chapter 2.

In Chapter 3, we showed that the instability of FRANS is due to the round-

off error accumulation, given that the noise subspace estimate is orthonormally

initialized. Therefore, with finite precision calculation, there is no way to stabi-

lize FRANS. However, HFRANS based on Householder transformation displays a

much better numerical behavior. Therefore, HFRANS algorithm is suitable for

noise subspace estimation applications, especially since it has a low computational

complexity of O(NP ) multiplications, 1 square-root and 4 division operations per

iteration.

Chapter 4 presented two different step-size adaptation approaches for HFRANS.

The first one is a stochastic gradient-descent based approach. It offers smaller

steady-state estimation error, faster convergence speed, similar orthogonality and

comparable computational complexity as compared with HFRANS at the same

convergence speed. The second one is based on the estimation of optimal step-size

at each instant, and it is less dependant on the initial conditions of the step-size

adaptation. Both these step-size strategies can achieve smaller error in the steady-

state. And they are not limited to HFRANS, but can be applied to other algorithms

as well.

We proposed an optimal diagonal-matrix step-size strategy for MOja and Yang

and Kaveh’s algorithms [105, 110] in Chapter 5. The proposed step-size strategy
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controls the decoupled subspace vectors individually as compared to conventional

methods where all the subspace vectors are updated using the same step-size value.

Nevertheless, MOja and YK with the proposed strategy still have instability or

high computational complexity issue as the original algorithms. Several stable low

cost implementations were then developed to restore stability while maintaining

computational complexity at O(NP ). An optimal value of the diagonal step-size

matrix is also obtained using the method developed in Chapter 4.

Chapter 6 focused on developing a VLSI friendly algorithm. Because of the use

of Householder matrix, it is difficult to simplify HFRANS while retaining its sta-

bility. So we proposed a stabilized FRANS algorithm, called SFRANS. It achieves

a good tradeoff between FRANS and HFRANS algorithm, since it is much more

stable than FRANS and requires no square-root or division operations.

7.2 Future Work

Extensions to this work seem to be possible in the following directions.

• By comparing HFRANS and SFRANS algorithms, we feel that there might be

a general form for stable Householder based noise subspace estimation algorithms.

If it is true, any algorithm in this general form can converge to the noise subspace.

They should only differ in the speed and accuracy of convergence. Therefore, we

need to investigate the existence of a general algorithm and the corresponding op-

timum algorithm.

• While developing SFRANS algorithm, we made the assumption that the step-size

is small. However, the variable step-size strategy developed in Chapter 4 is based

on a large step-size in the beginning. Hence, we need to examine if the assumptions
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in SFRANS permit the development of a variable step-size strategy, such as that

in Chapter 4, for SFRANS.

• The SFRANS algorithms developed in this thesis are for noise subspace estima-

tion. We could explore the development of a unified SFRANS for estimation of

signal and noise subspaces.

• Since part of the difficulty we face in doing an exact analysis of HFRANS is due

to the constrained cost function, it is easier in terms of calculation if we can find

an unconstrained cost function as in [79], and solve the unconstrained optimization

problem. The convergence analysis can be possibly done through ODE analysis.

• HFRANS algorithm converges slow, since it is a gradient based algorithm. New-

ton type algorithms are known to converge faster than gradient based algorithms.

Mathew et al. [72] estimated all or some of the orthogonal eigenvectors with a

quasi-Newton method. However, it has O(N2) complexity. Therefore, we need to

investigate the development of a low complexity quasi-Newton algorithm for noise

subspace estimation.

• The recently proposed minimum noise subspace (MNS) method [1, 56] is an

alternative to the conventional noise subspace estimation method. The MNS tech-

nique was first introduced as a computationally efficient subspace technique which

exploits a minimum number of noise vectors for multichannel blind system identi-

fication. However, most of the MNS algorithms proposed so far are not adaptive

and the noise subspace estimated is non-orthogonal, and therefore are not suitable

for applying to wireless communications problems. Therefore, we may explore the

development of adaptive MNS algorithms which can estimate noise subspace with

orthogonal basis.

• In this thesis, what we dealt with is a special case of the problem of subspace
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estimation, where dimension of the noise subspace is known. We can also design

subspace estimation algorithms, where subspace dimension is unknown. The moti-

vation for developing estimation schemes for this case is that in CDMA systems the

noise subspace dimension could be unknown and vary with time. This is because

noise subspace depends on the number of users occupying the channel and this

number is variable, since users keep entering or exiting the system.
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Appendix A

Appendices to Chapter 4

A.1 Gradient Adaptive Step-size Method with

Real-valued Data

If the received data source is real-valued, i.e. r̃k, r̃l and r̃m are independent
and zero mean real-valued Gaussian random variables, equation (4.8) now becomes

E
(
r̃kr̃

∗
l |r̃m|2

)
=





0 for k 6= l
λkλmδ(k − l) [1− δ(l −m)] for k = l, l 6= m
3λ2

kδ(k − l)δ(k −m) for k = l = m.

(A.1)

Based on (4.7) and (A.1), the (k, k)th element of G is of the form

gk,k = λk

N∑
m=1

λ2
m + 2λ3

k, (A.2)

and gk,l = 0 if k 6= l. Therefore, according to (4.6), we can get

Tr
(
WH

o E [R(i)]Wo

)
=

P∑

k=1

N∑
m=1

λkλ
2
m + 2

P∑

k=1

λ3
k. (A.3)

The bounds of µR are found to be

0 < µR <
1

4
(∑P

k=1

∑N
m=1 λkλ2

m + 2
∑P

k=1 λ3
k

) . (A.4)
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Using (4.14), a practical bound of µR(i) with real-valued received data can be
obtained as

0 < µR(i) <
1

4(θ1(i)θ3(i) + 2θ2(i))
. (A.5)

The step-size adaptation steps with real-valued received data are the same as
complex-valued received data as in (4.17).

A.2 Optimal Step-size with Real-valued Data

If the received data are real-valued, following (A.3) and (4.18), we have the
theoretical optimal step-size as

E[βo,R(i− 1)] =

∑P
k=1 λ2

k

2
∑P

k=1 λk

(
2λ2

k +
∑N

m=1 λ2
m

) , (A.6)

Thus, the estimated optimal step-size for HFRANS with real-valued received data
at each instant is obtained as

β(i)R =
θ4(i)

2 (2θ2(i) + θ1(i)θ3(i))
. (A.7)
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Appendices to Chapter 5

B.1 Mathematical Equivalence of Eq. (5.5b) and

Eq. (5.6)

To prove that (5.5b) can be rewritten as (5.6), we need to prove that p̄(i)ȳH(i) =
2p̄(i)p̄H(i)W(i)/‖p̄(i)‖2. Assuming WH(i−1)W(i−1) = IP and pH(i)W(i−1) =
0, we can write p̄(i)p̄H(i)W(i) as

p̄(i)p̄H(i)W(i) = p̄(i)
[−τ̄(i)W(i− 1)ȳ(i) + (1 + τ̄(i)‖ȳ(i)‖2)p(i)

]H
W(i)

=−τ̄(i)p̄(i)ȳ(i) (B.1)

Then we only need to prove ‖p̄(i)‖2 = −2τ̄(i). We can write ‖p̄(i)‖2 as

‖p̄(i)‖2 = τ̄ 2(i)‖ȳ(i)‖2 + (1 + τ̄(i)‖ȳ(i)‖2)2‖p(i)‖2,

and in view of (5.4) we can write

(1 + τ̄(i)‖ȳ(i)‖2)2 =
1

1 + ‖p(i)‖2‖ȳ(i)‖2
. (B.2)

Therefore, ‖p̄(i)‖2 is equal to

‖p̄(i)‖2 = τ̄ 2(i)‖ȳ(i)‖2 +
‖p(i)‖2

1 + ‖p(i)‖2‖ȳ(i)‖2

= τ̄ 2(i)‖ȳ(i)‖2 +
1

‖ȳ(i)‖2

(
1− 1

1 + ‖p(i)‖2‖ȳ(i)‖2

)

147



CHAPTER B. Appendices to Chapter 5

=
τ̄ 2(i)‖ȳ(i)‖4 + 1− (1 + τ̄(i)‖ȳ(i)‖2)2

‖ȳ(i)‖2

=−2τ̄(i). (B.3)

B.2 Proof of Lemma 5.1

B.2.1 Proof of Lemma 5.1 with Complex-valued Data

Using (5.7), we can obtain

uH(i)v(i) = |uH(i)v(i)|e−jα(i)

vH(i)u(i) = |uH(i)v(i)|ejα(i)

‖a(i)‖2 = 2‖u(i)‖2 − 2|uH(i)v(i)|.



 (B.4)

Using (5.7) and (5.8), we have the RHS of (5.9) as

HP (i)u(i) =

[
IP − 2

a(i)aH(i)

‖a(i)‖2

]
u(i)

=
‖a(i)‖2u(i)− 2a(i)aH(i)u(i)

‖a(i)‖2

=
‖a(i)‖2u(i)− 2

[
u(i)− v(i)ejα(i)

] [
uH(i)− vH(i)e−jα(i)

]
u(i)

‖a(i)‖2

=
‖a(i)‖2 − 2‖u(i)‖2 + 2vH(i)u(i)e−jα(i)

‖a(i)‖2
u(i)

−2
vH(i)u(i)− ‖u(i)‖2ejα(i)

‖a(i)‖2
v(i). (B.5)

By using (B.4) in (B.5), we can obtain

HP (i)u(i) = v(i)ejα(i), (B.6)

which proves Lemma 5.1 with complex-valued data.

B.2.2 Proof of Lemma 5.1 with Real-valued Data

Using (5.10), we can obtain

uH(i)v(i) = vH(i)u(i)
‖a(i)‖2 = 2‖u(i)‖2 − 2uH(i)v(i).

}
(B.7)
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Using (5.10) and (5.11), we have the RHS of (5.12) as

HP (i)u(i) =

[
IP − 2

a(i)aH(i)

‖a(i)‖2

]
u(i)

=
‖a(i)‖2u(i)− 2a(i)aH(i)u(i)

‖a(i)‖2

=
‖a(i)‖2u(i)− 2 [u(i)− v(i)]

[
uH(i)− vH(i)

]
u(i)

‖a(i)‖2

=
‖a(i)‖2 − 2‖u(i)‖2 + 2vH(i)u(i)

‖a(i)‖2
u(i)− 2

vH(i)u(i)− ‖u(i)‖2

‖a(i)‖2
v(i).

(B.8)

By using (B.7) in (B.8), we can obtain

HP (i)u(i) = v(i), (B.9)

which proves Lemma 5.1 with real-valued data.
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Appendices to Chapter 6

C.1 Derivation of (6.28)

Using (6.23) in (6.27), we obtain

d
(
WHW

)

dt

∣∣∣
W=Ŵ+δW(t)

=−WHWWHWWHCW + WHCWWHW

−WHCWWHWWHW + WHWWHCW

=X1 + X2 + X3 + X4, (C.1)

where WHW = IP and

X1 = −WHWWHWWHCW, X2 = WHCWWHW (C.2)

X3 = −WHCWWHWWHW, X4 = WHWWHCW. (C.3)

Since X1 = XH
3 and X2 = XH

4 , we only need to analyze X1 and X2.
Let H = WHCW and keeping only first-order variation terms, we have

X1 =−
(
Ŵ + δW(t)

)H (
Ŵ + δW(t)

)(
Ŵ + δW(t)

)H (
Ŵ + δW(t)

)
H

≈−
(
IP + ŴHδW(t) + δWH(t)Ŵ

)(
IP + ŴHδW(t) + δWH(t)Ŵ

)
H.

(C.4)

Since δ
(
WHW

)
(t) ≈ ŴHδW(t) + δWH(t)Ŵ because of (6.25), we obtain from

(C.4)

X1≈−
(
IP + δ

(
WHW

)
(t)

) (
IP + δ

(
WHW

)
(t)

)
H
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≈− (
IP + 2δ

(
WHW

)
(t)

)
H

≈−H− 2δ
(
WHW

)
(t)ŴHCŴ. (C.5)

Similarly, we have X2 as

X2 =H
(
Ŵ + δW(t)

)H (
Ŵ + δW(t)

)

≈H
(
IP + ŴHδW(t) + δWH(t)Ŵ

)

≈H
(
IP + δ

(
WHW

)
(t)

)

≈H + ŴHCŴδ
(
WHW

)
(t). (C.6)

Using X1 = XH
3 and X2 = XH

4 , we have

X3 =−H− 2ŴHCŴδ
(
WHW

)
(t) (C.7)

X4 =H + δ
(
WHW

)
(t)ŴHCŴ. (C.8)

Using (C.5), (C.6), (C.7) and (C.8) in (C.1), we obtain (6.28).
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