18,847 research outputs found

    Centralized wide area damping controller for power system oscillation problems

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper, three different centralized control designs that vary on complexity are presented to damp inter-area oscillations in large power systems. All the controls are based on phasor measurements. The first two proposed architectures use simple proportional gains that consider availability of measurements from different areas of the system and fulfill different optimization functions. The third controller is based on a more sophisticated Linear Quadratic Gaussian approach which requires access to the state space model of the system under investigation. The novelty of the proposed scheme resides in designing a single control to command the most influence group of machines in the system. To illustrate the effectiveness of the proposed algorithms, simulations results in the IEEE New England model are presented

    Multi-objective particle swarm optimization algorithm for multi-step electric load forecasting

    Get PDF
    As energy saving becomes more and more popular, electric load forecasting has played a more and more crucial role in power management systems in the last few years. Because of the real-time characteristic of electricity and the uncertainty change of an electric load, realizing the accuracy and stability of electric load forecasting is a challenging task. Many predecessors have obtained the expected forecasting results by various methods. Considering the stability of time series prediction, a novel combined electric load forecasting, which based on extreme learning machine (ELM), recurrent neural network (RNN), and support vector machines (SVMs), was proposed. The combined model first uses three neural networks to forecast the electric load data separately considering that the single model has inevitable disadvantages, the combined model applies the multi-objective particle swarm optimization algorithm (MOPSO) to optimize the parameters. In order to verify the capacity of the proposed combined model, 1-step, 2-step, and 3-step are used to forecast the electric load data of three Australian states, including New South Wales, Queensland, and Victoria. The experimental results intuitively indicate that for these three datasets, the combined model outperforms all three individual models used for comparison, which demonstrates its superior capability in terms of accuracy and stability

    Particle Swarm Optimization: An efficient method for tracing periodic orbits in 3D galactic potentials

    Full text link
    We propose the Particle Swarm Optimization (PSO) as an alternative method for locating periodic orbits in a three--dimensional (3D) model of barred galaxies. We develop an appropriate scheme that transforms the problem of finding periodic orbits into the problem of detecting global minimizers of a function, which is defined on the Poincar\'{e} Surface of Section (PSS) of the Hamiltonian system. By combining the PSO method with deflection techniques, we succeeded in tracing systematically several periodic orbits of the system. The method succeeded in tracing the initial conditions of periodic orbits in cases where Newton iterative techniques had difficulties. In particular, we found families of 2D and 3D periodic orbits associated with the inner 8:1 to 12:1 resonances, between the radial 4:1 and corotation resonances of our 3D Ferrers bar model. The main advantages of the proposed algorithm is its simplicity, its ability to work using function values solely, as well as its ability to locate many periodic orbits per run at a given Jacobian constant.Comment: 12 pages, 8 figures, accepted for publication in MNRA
    • …
    corecore