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Abstract—In this paper, three different centralized control
designs that vary on complexity are presented to damp inter-
area oscillations in large power systems. All the controls are
based on phasor measurements. The first two proposed archi-
tectures use simple proportional gains that consider availability
of measurements from different areas of the system and fulfill
different optimization functions. The third controller is based
on a more sophisticated Linear Quadratic Gaussian approach
which requires access to the state space model of the system
under investigation. The novelty of the proposed scheme resides
in designing a single control to command the most influence
group of machines in the system. To illustrate the effectiveness
of the proposed algorithms, simulations results in the IEEE New
England model are presented.

Index Terms—Inter-area Oscillation, Particle Swarm Opti-
mization, Linear Quadratic Gaussian, Dynamic Stability, Modal
Analysis.

I. INTRODUCTION

With the general trend of massive penetration of renewable
sources in power systems and the expected decommissioning
of nuclear based energy as in Switzerland [1], the future evo-
lution of power grids is a current topic of interest worldwide.
Particularly, there is the question if future power systems
should evolve in the form of micro-grids, which means to
have multi-autonomous small geographical areas where load
and generation are integrated locally or continuing developing
to even larger super-grids. Each bifurcation has benefits and
limitations, for instance micro-grids lack of long distance inter-
connections having as result absence of inter-area oscillations,
however such systems are prone to frequency and other issues
if the balance between generation and demand is not meet.
On the other hand, super-grids are more robust networks and
also significantly more complex to operate. In Europe, the
interest for super-grids is evident as demonstrated with the
interconnection of Turkey in 2010 to the already complex
network of continental Europe [2]. In addition, there is the
potential to grow the interconnection to include areas such as
the Nordic region or the UK grid, profiting from the existing
HVDC connections and building even more [3]. However,
despite the robustness and reliability that extra large power
systems provide, seldom events like those reported by ENTSO-
E in December 2016 on continental Europe, trigger large inter-

area oscillation causing severe negative effects on the system
[4]. For this reason, damping of inter-area oscillations is a
topic of interest within the transmission system operators in
Europe, particularly in Switzerland as power system centrally
located in the hart of Continental Europe.

Facing inter-area oscillations is not a new topic and most
of the solutions proposed can be divided in two directions:
improvement of Power System Stabilizer (PSS) by tuning
[5], [6] or redesigning [7] its parameters and developing new
central schemes such as Wide Area Damping Controllers
(WADC) [8], [9] to command generators based on their
participation in such events. Designing WADC can vary from
simple PID to sophisticate H2/H∞ controllers. In this paper,
based on the assumption that readjusting parameters on every
existing PSS in a large power grid is ideal but unrealistic,
the effects of a new centralized WADC to damp inter-area
oscillations is proposed. Three designs that go from a simple
proportional gain to a more sophisticated Linear Quadratic
Gaussian controller are proposed and explained in detail in
section II. The methods for tuning the proposed algorithms and
system identification are presented in section III and finally,
section IV presents a validation of the methodologies.

II. PROPOSED CONTROL APPROACH

To deal with the problem of inter-area oscillations, as
introduced in Section I, an algorithm based on the idea of
adding a centralized WADC to the control loop, as initially
suggested in [9], is presented. The proposed WADC receives
measurements from Phasor Measurement Units (PMUs) and
defines a new input for the excitation system, which is added
to the existing controls as PSS. The proposed control sequence
of one area, which is used in a multi-area grid is presented
by Fig. 1. To illustrate how the proposed approach works,
consider first a simple system with only two areas such as
the New England IEEE 39 bus system [10], or the widely
known Kundur system models [11], respectively. Then, three
control variations for the design of a WADC are derived based
on different assumptions related to the availability of PMU
measurements to feed the WADC system as follows and full
details are given in the subsequent subsections:
• Control A (CA): Measurements from only one area;



Fig. 1. Control sequence of an area with n Generators (Gen) in a multiple area
power systems. The Average Voltage Regulator (AVR) includes the excitation
system. The Governor (GOV) is in charge of speed regulation.

• Control B (CB): Measurements from both areas;
• Control C (CC): Measurements from both areas and

a model of the interactions between the two areas is
available.

A. Description of Control A (CA)

In the first control variation, the PMUs are measuring
variables only in the area of interest. In this case, the WADC
controller will be an additional control that minimizes the gap
between the measured frequency and its reference during an
event. To achieve this goal and at the same time deal with
the original objective of simplification in power grid control,
a simple proportional gain as WADC is used. The control
architecture of variation A is presented on Fig. 2. A conven-

Fig. 2. Design A of WADC. The PMUs are measuring variables of the area of
interest and the WADC is an additional control to stabilize frequency (speed).

tional approach for tuning the parameters kai , i ∈ [1, n] in the
WADC is doing manually, however, this is not straightforward
nor simple task for the reason that each generator in the
power system under investigation has different participation
factor during inter-area oscillations. Thus, more sophisticated
algorithms such as the Particle Swarm Optimization (PSO)
are available to achieve this task. PSO is a widely used
method for power systems regulators tuning [5], [6], [8], [12]
and therefore, in this work is used. An introduction and full
overview of PSO approach is presented in Section III.

B. Description of Control B (CB)

In the second design, it is assumed that there are PMU
measurements available from both areas. Thus, the control has

the capability to minimize the differences between generators
by minimizing the frequency variation between the two areas.
To deal with the restrictions of (CA) aforementioned in II-A, a
proportional controller depicted on Fig. 3 is proposed. To find
the most appropriate value of the parameters kbi , i ∈ [1, n],
PSO approach is also used.

Fig. 3. Design B of WADC. The PMUs are measuring variables in both
areas and the WADC is an additional control to minimize the gap between
frequencies (speed) of both areas.

C. Description of Control C (CC)

In the third control variation, in addition to the assumptions
described for (CB), the following state-space representation of
the system is also considered to be available:{

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k)

(1)

From this representation, a Linear Quadratic Regulator (LQR)
controller is proposed based on its flexibility to adapt to the
state space system (1). Since this control scheme requires
the knowledge of the state vector x(k), which in the case of
power systems correspond to generator speeds and angles as
well as magnitudes and angles of bus voltages, the association
with a Linear Quadratic Estimator (LQE) is required to form
the so called Linear Quadratic Gaussian (LQG) control. As
demonstrated in [7], the solution of the LQG controller has
two components:
• One control sequence u = −Kx with K as the solution

of the quadratic minimization problem;
• One Kalman gain G such that (2), for
x(k) = x̂(k) then x(k + 1) = x̂(k + 1) else,

lim
n→+∞

(x(k + n)− x̂(k + n))→ 0{
x̂(k + 1) = Ax̂(k) +Bu(k) + G(y(k)− ŷ(k))
ŷ(k) = Cx̂(k)

(2)
The block diagram of the third design of WADC is depicted
in Fig. 4. Subsequent section III introduce the process for
identification of matrices A, B and C, respectively.

III. METHODOLOGY

After the three different variations to designs a WADC
have been defined, the PSO methodology and its application
in power systems to tune controllers is presented. Then,
subsection III-C presents the identification of a state-space



Fig. 4. Design C of WADC. The PMUs are measuring variables in both
areas and a state-space representation of interactions between the two areas
is available. The WADC is based on the Linear Quadratic Gaussian theory,
K is the regulator gain and G is the Kalman gain to estimate states x.

representation of the interactions between two areas in the
IEEE New England system. The model identification process
is required to calculate the gains K and G introduced on
Section II

A. Particle Swarm Optimization theory

The Particle Swarm Optimization is one of the Swarm
method for solving optimization problems. It is an optimiza-
tion technique, first presented by Eberhat and Kennedy in 1995
[13], inspired by the natural movement of bird and fish groups.
The idea of this algorithm is to define a number of particles
n where every particle represents a candidate solution for the
defined optimization problem J , which is represented by an
objective function to minimize in this case. Every particle i is
characterized by three different factors:

1) Position Pi and Velocity Vi;
2) A measure of quality J(Pi);
3) A best solution since the launch of the algorithm Pbesti

If all particles are considered, an extra parameter defined
as Pbest is introduced, which correspond to the global or
best possible position that satisfy the inequality J(Pbest) ≤
J(Pbesti)∀i from the launch of the algorithm.

During the first iteration, particles are randomly placed in
the searching space restricted by limitations in the position
and a its velocity is randomly defined. Then, at each iteration
k the position Pi and velocity Vi of the ith particle is updated
using equation (3):

Vi(k + 1) = H × Vi(k)
+c1 × r × (Pi(k)− Pbesti)
+c2 × r × (Pi(k)− Pbest)

Pi(k + 1) = Pi(k) + Vi(k + 1)

(3)

where H is the inertia, c1 and c2 are weighting coefficients
and r is a random number that changes value at each iteration.
From (3) is possible to understand that PSO approach operates
according to three principles as follows:

1) Momentum, who corresponds to the influence of the
current motion related to the inertia H;

2) A cognitive part, which corresponds to the attraction to
the particle with best solution Pbesti ;

3) A social section, related to the amount of attraction to
the best position of the tribune (or swarm) Pbest.

In [5], a good representation of the PSO behavior is proposed
as depicted on Fig. 5.

Fig. 5. Representation of Particle Swarm Optimization behavior from [5].
Every particle move following three part: momentum, cognitive and social

Since PSO formulation has some random variables, its per-
formance depends mainly on the number of particles defined.
Indeed, the more particles are used, the more space will be
cover after the first iteration and the more likely it is to find the
global optimum. Nevertheless, is also worth mentioning that
the more particles used, the longer will take to the algorithm
to converge. One simulation per particle is required at each
iteration and thus, more computational time demanded. To
ensure the stability of the algorithm, parameters c1 and c2 must
be appropriately tuned to control the velocity of the particles.

B. Particle Swarm Optimization applied in power systems
PSO has been widely used for power systems controls

tuning [?], [5], [6], [8]. Its convergence and stability in
case of multidimensional space has been proven in [14].
For this reason, to tune the proposed controllers defined in
Sections II-A and II-B, respectively, PSO is applied defining
every particle as a n dimensional particle (with n positions)
corresponding to the n parameters k(a/b)i , i ∈ [1, n]. In this
form, every particle corresponds to a WADC configuration.
The particularity of PSO and the quality of its results arises
from the definition of the measure of quality J(Pi) introduced
on Section III-A.

Considering as a main priority improving the effects of low
frequency (0.1-0.9 Hz) inter-area oscillations in the system
[15], two different methods for the definition of optimization
function J are considered:

1) First, as proposed in [6], the eigenvalue (λi = σi ± jω)
based multi-objective function defined in equation (4)
is considered. Given that improving the damping (ξ)
for a particular mode may cause a negative effect on
other sensitives modes, the group Θ denotes the critical
modes (within frequency range of interest), which are
selected following a simulation without WADC. The
final objective is then to drive the selected eigenvalues
towards a desired location in the complex plain, repre-
sented by shifting the real part σ0 of the eigenvalue λ0

and consequently improving its damping ratio ξ0.

J1 =
∑
i∈Θ

[σ0 − σi]2 + β
∑
i∈Θ

[ξ0 − ξi]2 (4)



where ξi the damping ratio of the ith eigenvalue and β
a scaling factor.

2) The second method is based on measuring the quality
of the actual measurements. Since the proposed controls
CA and CB are based on generator speed measurements,
the objective function in equation (5) is used to minimize
the differences between generators rotor speed (ωr) in
the two areas while maintaining the regulation to the
nominal value ωref and minimizing the number of
oscillations Nosc.

J2 =
∑
i∈a2

[ωa1−ωi]
2

+
∑
i∈a2

[ωi−ωref ]
2

+ βNosc (5)

where ωa1
is the average speed in area one and β a

scaling factor.

C. Identification of inter-area interactions

In this section, identification of the state-space representa-
tion of the interaction of the inter-area oscillations is proposed.
In our previous work [7] it has been proved that accurate
dynamic identification of the system allows to design an
adaptive control and then to improve the damping of inter-
area oscillations. Due to the fact that in this work power
system simulations have been performed using the commer-
cial software DigSilent PowerFactory, the proposed adaptive
control requires co-simulation with Matlab, which has been
proved to be computational expensive, specially for large
power systems. Considering that the dynamic identification
approach presented in [7], which is referred as Eigensystem
Realization Algorithm (ERA), has the drawback of relying
on an impulse as control input. For this reason, in this work
a more conventional identification method to design the third
control architecture introduced on Section II-C was selected. In
order to find an good representation of the inter-area oscillation
interactions, one possibility is to consider the state-space (1)
with y ∈ <n corresponding to variations between generator
rotor speeds of the n generators in area 2 with the average
speed of area 1 and u ∈ <n as the PSS output, corresponding
to upss in Fig. 1. To achieve this goal, it is possible to use state-
space identification subroutines such as the MATLAB/N4SID.

The IEEE-39 bus system depicted on Fig. 6 has 5 inter-area
modes in the range of [0.59− 0.97] Hz. In this work, special
attention is placed to the mode with smallest frequency since
it is the weakest and represents the interaction between G1
(Area 1) gainst rest of the generators (area 2). In this system,
the following event was simulated: A 29 sec simulation was
performed, where at 1 sec the line 16 was suddenly tripped
and the WADC controller was disable. After performing the
simulation, the frequency of G1 was compared against the
frequency of the nine remaining machines and the vector y(k)
in (1) was formed. In the commercial software PowerFactory,
is also possible to have access to the PSSs output and build
the control vector u(k). Since there is no information a priory
about the actual order of the system, a model reduction
process is performed and the results are depicted on Fig. 7-
(a). From this subplot, it can be observed that a new system

of order 20 provides the lowest error between the reduced
model and the original system. Figs. 7-(b-j) are a comparison
between the simulation of the estimated state-space and the
real measurement in the rest of the generators.

Fig. 6. Representation of Particle Swarm Optimization behavior from [5].
Every particle move following three part: momentum, cognitive and social
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Fig. 7. Representation of Particle Swarm Optimization behavior from [5].
Every particle move following three part: momentum, cognitive and social

IV. POWER SYSTEMS APPLICATION & MAIN RESULTS

To demonstrate the effectiveness of the proposed control
schemes presented on Section II, the IEEE New England
system depicted on Fig. 6 has been used. The power system
has been subject to a randomly selected 3-phase short-circuit
at line 16 after 1 sec of simulation and the fault was cleared
after 180 msec. Note that the proposed controls CA, CB ,
and CC have different methodology and thus, the software
configuration depends of the control to be applied.

A. Performance Evaluation of Controls CA & CB

To find the optimal parameters for controls CA and CB ,
respectively, PSO method was applied. To integrate the control
objectives into the DigSilent PowerFacrtory environment, the
Application Programming Interface (API) that link python



with the power system software was operated. The principle
is to launch a python code that controls parameters within
PowerFactory whenever is requited, and at the same time to
have access into the stored results. Hence, a subroutine for a
application of PSO with p number of particles for i iterations
was developed and the flow chart of the subroutine is depicted
on Fig. 8. In this figure, blue instructions represent special
actions for the evaluation of the optimization function J1,
while red instructions represent special actions for the eval-
uation of the optimization function J2 and black instructions
are common actions for both optimization functions .

Fig. 8. Subroutine to apply PSO with python and PowerFactory. The blue
actions are specials for J1 evaluation, the red ones for J2 and the black one
are common actions.

From 250 tests, the optimal configuration for tuning of vari-
ables in equation (3) was found and the results are summarized
on table I.

TABLE I
PARTICLE SWARM OPTIMIZATION BEST CONFIGURATION

Inertia c1 c2 Number of Number of Range of
H Particles iteration k(a/b)i
0.3 0.9 1.1 100 70 [0.01− 100]

Using this configuration, the tuning of the proposed controls
CA and CB for implementation of the objective functions
J1 and J2, was carried on and the final results are depicted
on Table II. For comparisons purposes, the value of the
objective functions without WADC are J1 = 550.651 and
J2 = 62154.2, respectively.

B. Performance Evaluation of Controls CC

The control CC has fewer constraints than controllers CA

and CB and therefore no co-simulations are required, which

TABLE II
TUNING OF CONTROLS CA AND CB FOR DIFFERENT OBJECTIVE

FUNCTIONS (OF)

k(a/b)i CA CB CA CB

OF-Ji OF-J1 OF-J1 OF-J2 OF-J2
k(a/b)1 0.01 94.600 68.804 91.231
k(a/b)2 20.768 25.736 37.954 29.245
k(a/b)3 39.475 97.177 20.969 96.021
k(a/b)4 93.687 58.6967 23.569 49.568
k(a/b)5 49.713 6.841 57.285 10.254
k(a/b)6 79.819 85.303 1.116 82.187
k(a/b)7 26.635 92.851 0.090 96.329
k(a/b)8 78.989 11.678 0.01 9.548
k(a/b)9 87.928 72.948 11.857 68.245

OF 516.885 274.804 50857.4 40533.6

speed-up simulation time and hence only PowerFactory is
required. The main challenge related to this controller is a
limitation from the power system software related to how
matrix calculations are handled. To overcome this issue, the
reduced order model of the IEEE New England system of
20 states was built from scratch as a new DSL model within
DigSilent Power Factory [16].

C. Main Results

In this section, the performance of the proposed controllers
are presented for different optimization functions (OF − Ji),
as presented on Table II. In total, five possible combinations
using the three different controllers were investigated:
• Case study 1: CA for OF − J1;
• Case study 2: CA for OF − J2;
• Case study 3: CB for OF − J1;
• Case study 4: CB for OF − J2;
• Case study 5: CC .

To compare the performance of the proposed controllers under
different case studies, generators speed measurements from
both areas in the IEEE New England system during RMS
simulations are presented. For sake of simplicity, Fig. 9 (a)-
(d) compares the speed variation of one generator from each
area: G1 vs G6 (randomly selected) following a 3-phase
fault of 180 msec applied to line 16 as in the previous
case. Fig. 9 (a) depicts the simulation result without WADC.
Fig. 9 (b) presents the results of the case studies 1 and 3.
Fig. 9 (c) show the simulation results for case studies 2 and
4 and finally, Fig. 9 (d) depicts the simulation results for case
study 5, which is the CC LQG controller. From the results
presented on Fig. 9, the following remarks are derived:
• When no control is used, the inter-area mode with a

frequency of 0.59 Hz is clearly visible in the response of
the generators, which generates active power fluctuation
in the order of 500 MW that can severely affect the
objectives defined in the optimizing problem.

• From subplot 9 (b) it can be observed that CA minimize
the amplitude of the oscillations, but do not improve the
stability of the inter-area mode in G1. The measure of
J1 for CA in Table II confirm this, with no significant



Fig. 9. (a) No control, (b) CA and CB to minimize OF − J1, (c) CA and
CB to minimize OF − J2 and (d) LQG control.

improvement compared to the case without WADC. On
the other hand, CB presents significant improvement,
damping the oscillation fast (approximately 2.5 seconds
after the fault). Since J1 is designed only to improve
the stability of selected eigenvalues, CB has no internal
characteristics to automatically reduce the amplitude of
the oscillations and hence the final amplitudes are not
significantly reduced for this example.

• From subplot 9 (c), it can be seen that the results are
similar to subplot 9 (b). The main difference is that, the
objective function J2 described on equation (5), includes
a component to minimize the amplitude. For this reason
CA and CB provide better performance than in the
previous case. Another remark is that the first element of
J2, is used to minimize the difference between generator
speeds in both areas and based in the simulation results,
it can be concluded that this effect is as efficient as the
eigenvalue based multi-objective function.

• Subplot 9 (d) demonstrates the effectivenes of CC for
case study 5. The controller reduce the amplitude of the
oscillations and provide a significant damping in about 3
seconds.

The proposed controllers present different behavior from
which CA provides the weakest performance to damp inter-
area oscillations. CA can positively influence the amplitudes of
the oscillations, but cannot improve the stability of the system,
which is the main objective in this work. On the other hand,
CB and CC are the most efficient control schemes in terms of
minimize oscillation amplitude while significantly improving
the damping of the system, the challenge to implement the
proposed architectures is that they require global measurement
and a global communication with PMUs, which can be prone
to communication problems.

V. CONCLUSIONS

Three different designs for WADC to damp inter-area os-
cillations have been presented. The first two architectures are
based on proportional gains that consider availability of PMU
measurements from different areas of the system and fulfill

different optimization functions. The third controller is based
on a more sophisticated Linear Quadratic Gaussian approach,
which requires access to the state space model of the system
under investigation. Performance of control CA indicates that
measurements from one area are not sufficient to damp inter-
area oscillations. Similarly, simulation results based on CB

and CC demonstrate that with measurements from more than
one area is possible to significantly improve damping of inter-
are modes. Moreover, from the results obtained with control
CB based on OF − J1 and OF − J2 it can be noticed that
is possible to enhance stability of the system as good as with
approaches based on modal analysis.

ACKNOWLEDGMENT

The authors acknowledge the Swiss National Science Foun-
dation (SNSF) under the program Ambizione Energy Grant
(AEG). This research is also part of the activities of SCCER
FURIES, which is financially supported by the Swiss Innova-
tion Agency (Innosuisse-SCCER program)

REFERENCES

[1] Energy Strategy 2050, Swiss Federal Office
of Energy (SFOE), 2017. [Online]. Available:
http://www.bfe.admin.ch/energiestrategie2050/index.html?lang=en

[2] I. A. Nassar and H. Weber, ”System analysis of the Turkish power
system for interconnection with continental Europe,” IFAC Proceedings
Volumes, vol. 45, no. 21, pp. 168 - 173, 2012.

[3] Trans-European Infrastructure - Projects of Common
Interest, European Commission, 2014. [Online]. Available:
https://ec.europa.eu/inea/sites/inea/files/download/publications /pciener-
superfinal.pdf

[4] Analysis of ce inter-area oscillations of 1st
december 2016, entsoe, 2016, available at
https://docstore.entsoe.eu/Documents/SOC20documents/Regional
GroupsContinentalEurope/2017/CEinter-
areaoscillationsDec1st2016PUBLICV7.pdf.

[5] S. Panda and N. P. Padhy, ”Coordinated design of tcsc controller and
pss employing particle swarm optimization technique,” vol. 1, no. 4, pp.
706-714, 2007.

[6] A. Stativa, M. Gavrilas, and V. Stahie, ”Optimal tuning and placement
of power system stabilizer using particle swarm optimization algorithm,”
in Electrical and Power Engineering (EPE), 2012.

[7] J. Dobrowolski, F. R. Segundo, F. A. Zelaya, and M. R. A. Patern-
ina, ”Inter-area Oscillation Control Based on Eigensystem Realization
Approach,” in 2018 IEEE Autumn Meeting on Power, Electronics
and Computing (ROPEC 2018), Ixtapa, Mexico, Nov. 2018. [Online].
Available: https://hal-iogs.archives-ouvertes.fr/hal-01926442

[8] M. Zamani, N. Sadati, and M. K. Ghartemani, ”Design of an h∞ pid
controller using particle swarm optimization,” International Journal of
Control, Automation and Systems, vol. 7, no. 2, pp. 273-280, 2009.

[9] Y. Zhang and A. Bose, ”Design of wide-area damping controllers for
inter-area oscillations,” IEEE Transactions on Power Systems, Aug 2008.

[10] S. Dutta and S. P. Singh, ”Optimal rescheduling of generators for
congestion management based on particle swarm optimization,” IEEE
Transactions on Power Systems, 2008.

[11] M. Klein, G. J. Rogers, and P. Kundur, ”A fundamental study of
inter-area oscillations in power systems,” IEEE Transactions on Power
Systems, vol. 6, no. 3, pp. 914-921, Aug 1991.

[12] TZ.-L. Gaing, ”A particle swarm optimization approach for optimum
design of pid controller in avr system,” IEEE transactions on energy
conversion, vol. 19, no. 2, pp. 384-391, 2004.

[13] J. Kennedy, ”Particle swarm optimization,” pp. 760-766, 2011.
[14] M. Clerc and J. Kennedy, ”The particle swarm-explosion, stability, and

convergence in a multidimensional complex space,” IEEE transactions
on Evolutionary Computation, vol. 6, no. 1, pp. 58-73, 2002.

[15] P. Kundur, N. J. Balu, and M. G. Lauby, Power system stability and
control. McGraw-hill New York, 1994, vol. 7.

[16] DIgSILENT, Power Factory Users Manual, DIgSILENT GmbH, 2018.


