109 research outputs found

    Improving GPU cache hierarchy performance with a fetch and replacement cache

    Get PDF
    In the last few years, GPGPU computing has become one of the most popular computing paradigms in high-performance computers due to its excellent performance to power ratio. The memory requirements of GPGPU applications widely differ from the requirements of CPU counterparts. The amount of memory accesses is several orders of magnitude higher in GPU applications than in CPU applications, and they present disparate access patterns. Because of this fact, large and highly associative Last-Level Caches (LLCs) bring much lower performance gains in GPUs than in CPUs. This paper presents a novel approach to manage LLC misses that efficiently improves LLC hit ratio, memory-level parallelism, and miss latencies in GPU systems. The proposed approach leverages a small additional Fetch and Replacement Cache (FRC) that stores control and coherence information of incoming blocks until they are fetched from main memory. Then, fetched blocks are swapped with victim blocks to be replaced in the LLC. After that, the eviction of victim blocks is performed from the FRC. This management approach improves performance due to three main reasons: (i) the lifetime of blocks being replaced is increased, (ii) the main memory path is unclogged on long bursts of LLC misses, and (iii) the average L2 miss delaying latency is reduced. Experimental results show that our proposal increases the performance (OPC) over 25% in most of the studied applications, reaching improvements up to 150% in some applications

    Heterogeneous CPU/GPU Memory Hierarchy Analysis and Optimization

    Get PDF
    In this master thesis, we propose a scheduling reordering for heterogeneous processors based on a hysteresis detector to give some fairness and speedup to the memory request threads taking advantage of the bank level parallelism at the memory system organization

    Doctor of Philosophy

    Get PDF
    dissertationThe internet-based information infrastructure that has powered the growth of modern personal/mobile computing is composed of powerful, warehouse-scale computers or datacenters. These heavily subscribed datacenters perform data-processing jobs under intense quality of service guarantees. Further, high-performance compute platforms are being used to model and analyze increasingly complex scientific problems and natural phenomena. To ensure that the high-performance needs of these machines are met, it is necessary to increase the efficiency of the memory system that supplies data to the processing cores. Many of the microarchitectural innovations that were designed to scale the memory wall (e.g., out-of-order instruction execution, on-chip caches) are being rendered less effective due to several emerging trends (e.g., increased emphasis on energy consumption, limited access locality). This motivates the optimization of the main memory system itself. The key to an efficient main memory system is the memory controller. In particular, the scheduling algorithm in the memory controller greatly influences its performance. This dissertation explores this hypothesis in several contexts. It develops tools to better understand memory scheduling and develops scheduling innovations for CPUs and GPUs. We propose novel memory scheduling techniques that are strongly aware of the access patterns of the clients as well as the microarchitecture of the memory device. Based on these, we present (i) a Dynamic Random Access Memory (DRAM) chip microarchitecture optimized for reducing write-induced slowdown, (ii) a memory scheduling algorithm that exploits these features, (iii) several memory scheduling algorithms to reduce the memory-related stall experienced by irregular General Purpose Graphics Processing Unit (GPGPU) applications, and (iv) the Utah Simulated Memory Module (USIMM), a detailed, validated simulator for DRAM main memory that we use for analyzing and proposing scheduler algorithms

    Studies on automatic parallelization for heterogeneous and homogeneous multicore processors

    Get PDF
    制度:新 ; 報告番号:甲3537号 ; 学位の種類:博士(工学) ; 授与年月日:2012/2/25 ; 早大学位記番号:新587
    corecore