
Studies on Automatic Parallelization for

Heterogeneous and Homogeneous

Multicore Processors

Feb 2012

Akihiro HAYASHI

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Waseda University Repository

https://core.ac.uk/display/286936992?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Studies on Automatic Parallelization for

Heterogeneous and Homogeneous

Multicore Processors

Feb 2012

Waseda University

Graduate School of Fundamental Science and Engineering,

Major in Computer Science and Engineering,

Research on Advanced Computing Systems

Akihiro HAYASHI

Abstract

There has been a growing interest in heterogeneous and homogeneous multicore

processors due to their excellent characteristic, higher performance and lower

power consumption than single core processors. In order to exploit the capability of

heterogeneous and homonogeneous multicore processor, an automatic paralleliza-

tion is greatly important since parallel programming by hand is time consuming

task.

This thesis proposes an innovative OSCAR (Optimally Scheduled Advanced

Multicore Processors) heterogeneous automatic parallelizing compiler, which real-

izes an automatic parallelization and a power reduction for various heterogeneous

and homogeneous multicores.

Performance evaluation and power evaluation on 15 core heterogeneous mul-

ticore RP-X using media applications attains speedups of 32.6 times with eight

SH-4A cores and four FE-GA cores, 18.8 times with two SH-4A cores and one

FE-GA core, 5.4 times with eight SH-4A cores against sequential execution by a

single SH4A core and 70% of power reduction for the optical flow.

Performance evaluation on several SMP servers using dose calculation for heavy

particle radiotherapy for cancer treatment attains good speedups of 9.0 times with

12 processor cores on Hitachi HA8000/RS220 system based on the Intel Xeon

Processor and 50.0 times with the 64 processor cores on Hitachi SR16000 system

3

based on the IBM Power 7 processor.

4

Contents

1 Introduction 15

1.1 Background and purpose . 16

1.2 Thesis outline . 19

2 OSCAR Compiler Applicable

Heterogeneous Multicore Architecture 25

2.1 Introduction . 26

2.2 Target architecture . 27

2.2.1 Identifying element in the architecture 29

2.3 Execution model on the architecture 32

2.4 Role of the OSCAR compiler and toolchains for accelerators 33

2.5 Related work . 35

2.6 Conclusion . 37

3 Compilation Framework for

the Heterogeneous Multicore Architecture 39

3.1 Introduction . 40

3.2 Compilation flow . 42

3.3 A hint directive for the OSCAR compiler 43

3.4 OSCAR parallelizing compiler . 46

5

3.4.1 Overview of the OSCAR compiler 46

3.4.2 Macro-Task generation . 47

3.4.3 Exploiting coarse grain parallelism 48

3.4.4 Processor grouping . 50

3.4.5 Macro-Task scheduling and power reduction 51

3.5 OSCAR API . 56

3.5.1 Overview of OSCAR API 56

3.5.2 The Extension of OSCAR API for heterogeneous multicores 59

3.6 Related work . 61

3.7 Conclusion . 63

4 Parallel Processing Schemes

for Media Applications

on the Heterogeneous Multicore Architecture 65

4.1 Introduction . 66

4.2 RP-X heterogeneous multicore for consumer electronics 66

4.3 Evaluated media applications . 68

4.3.1 AAC encoding . 68

4.3.2 Optical flow(OpenCV) . 69

4.3.3 Optical flow(Hand-tuned) 70

4.4 Performance evaluation . 72

4.4.1 Performance by The OSCAR compiler with accelerator com-

piler . 72

4.4.2 Performance by The OSCAR compiler with hand-tuned library 73

4.5 Power consumption evaluation . 74

4.6 Conclusion . 76

6

5 A Parallel Processing Scheme

for Dose Calculation

on SMP Servers 79

5.1 Introduction . 80

5.2 Overview of dose calculation . 81

5.3 Enhancing parallelism . 84

5.3.1 Dose calculation . 85

5.3.2 Scatter calculation . 86

5.3.3 Initialization . 88

5.3.4 Modification . 88

5.3.5 Code rewriting for enhancing scalability 89

5.4 Performance evaluation on SMP servers 89

5.4.1 Evaluation environment . 89

5.4.2 Performance on HA8000/RS220(Intel Xeon) 91

5.4.3 Performance on Hitachi SR16000(IBM Power7) 93

5.5 Conclusion . 95

6 Conclusions 99

6.1 Summary of results . 100

6.1.1 Media applications on RP-X processor 101

6.1.2 Dose calculation engine on SMP servers 101

6.2 Future works . 102

7

List of Figures

1.1 Category of Processors . 17

1.2 Development Flow . 17

2.1 OSCAR Applicable heterogeneous multicore architecture 28

2.2 OSCAR compiler cooperative heterogeneous multicore architecture 30

2.3 Specifying the module within a chip 31

2.4 Execution Model on Accelerator with its Controller 32

2.5 Execution Model on Accelerator without its Controller 33

3.1 Compilation flow of the proposed framework 42

3.2 Hint directives for the OSCAR compiler 44

3.3 Example of source code with hint directives 45

3.4 OSCAR multigrain parallelizing compiler 47

3.5 Hierarchical macro-task definition 48

3.6 Macro-flow graph and macro-task graph 49

3.7 Processor Grouping on Heterogeneous Multicores 51

3.8 An Example of Task Scheduling Result 52

3.9 Power control by compiler . 54

3.10 Compilation flow of OSCAR API 56

3.11 API List of OSCAR API 2.0 . 57

9

3.12 Example of parallelized source code with OSCAR API 60

4.1 RP-X heterogeneous multicore for consumer electronics 67

4.2 Program Structure of the AAC Encoder 69

4.3 Program Structure of the Optical Flow(OpenCV) 70

4.4 Program Structure of the Optical Flow(Hand-tuned) 71

4.5 Performance by The OSCAR compiler and FE-GA Compiler(Optical

Flow) . 72

4.6 Performance by The OSCAR compiler and Hand-tuned Library(Optical

Flow) . 73

4.7 Performance by The OSCAR compiler and Hand-tuned Library(AAC) 74

4.8 Power reduction by The OSCAR compiler’s power control (Optical

Flow) . 75

4.9 Waveforms of Power Consumption(Optical Flow) 76

4.10 Power Control for 8SH+4FE(Optical Flow) 77

4.11 Waveforms of Power Consumption(AAC) 78

5.1 Dose Calculation using pencil beam algorithm 81

5.2 Scatter Calculation . 82

5.3 The Dose Calculation . 83

5.4 The Scatter Calculation . 84

5.5 Profile results on Intel/IBM processor 85

5.6 The Parallelizable Dose Calculation 86

5.7 The Parallelizable Scatter Calculation 87

5.8 The Accumulation Calculation . 88

5.9 Evaluation Result on Intel Xeon Processor 90

10

5.10 Performance Analysis on Intel Xeon Processor 92

5.11 Evaluation Result on IBM Power7 Processor 93

5.12 Performance Analysis on IBM Power7 Processor 94

11

List of Tables

2.1 Examples of Modules . 31

4.1 Frequency Voltage Status in SH-4A 67

5.1 Evaluation environment . 97

13

Chapter 1

Introduction

15

Chapter 1 Introduction

1.1 Background and purpose

Multicore processors, which integrate multiple processors on a chip, are utilized

in wide variety of products such as cell phones, digital televisions, car navigation

systems, personal computers, workstations and supercomputers. Today, multicore

processors exist everywhere due to the following reasons: (1) Achieving speedups

by increasing core frequency is technically difficult and it results in higher power

consumption since the power consumption is proportional to the frequency times

square of the voltage. (2) Achieving speedups by increasing the number of cores

improves power efficiency by keeping the core frequency low as hardware vendors

have developed many types of multicore processors such as IBM/SONY/TOSHIBA

CELL BE[PAB+05], Renesas/Waseda RP-2[IHY+08], RP-X[YIK+10].

Multicore processors are categorized into homogeneous multicores and hetero-

geneous multicores (Fig.1.1). Homogeneous multicores integrate identical multiple

cores on a chip. On the other hand, heterogeneous multicores integrate special-

purpose accelerator cores such as dynamically reconfigurable prcessors(DRP) and

graphic processing unit(GPU) in addition to general-purpose processor cores on

a chip in order to keep up with various demands such as multimedia processing.

Especially, integrating accelerators improves power efficiency because the acceler-

ators realize high performance at low frequency and low power.

However, as shown in Fig.1.2, very hard software development efforts for mul-

ticores are required since programmers have to manually parallelize a program by

taking the following steps: (1) write a program, (2) decomposition of the program

into tasks, (3) scheduling these tasks onto general processors and accelerators by

inserting synchronization codes and data transfer codes. Especially, for heteroge-

neous multicores, programmers have to develop a unique code for each accelera-

16

1.1 Background and purpose

CPU

(a) Single-Core

Processor

CPU CPU

CPU CPU

(b) Homogeneous

Multi-Core Processor

CPU GPU

CPU DRP

(c) Heterogeneous

Multi-Core Processor

Figure 1.1: Category of Processors

Figure 1.2: Development Flow

tor using special-purpose languages like NVIDIA CUDA[GGN+08] and Khronos

OpenCL[khr] and make performance tuning by taking the characteristic of the

target accelerators into account. Facilitating programming for heterogeneous and

homogeneous multicore is greatly important since it takes several months in order

to exploit the full capability of multicores manually.

In order to make the programming for heterogeneous and homogeneous mul-

ticores easier, this thesis proposes an innovative OSCAR (Optimally Scheduled

Advanced Multicore Processors) heterogeneous automatic parallelizing compiler,

which realizes an automatic parallelization for various heterogeneous multicores

including homogeneous multicores. Recent many studies have tried to handle this

17

Chapter 1 Introduction

software development issue. In terms of homogeneous multicores, many works

have been trying to realize an automatic parallelization. Polaris compiler[EHP98],

SUIF compiler[HAA+96], IBM XL compiler and Intel compiler are an example

of automatic parallelizing compilers. However, these parallelizing compilers only

exploit the loop level parallism and are designed homogeneous multicores.

In terms of heterogeneous multicores, researchers came up with many solution

so as to facilitate the difficulty heterogeneous of parallel programming. For exam-

ple, NVIDIA and Khronos Group introduced CUDA[GGN+08] and OpenCL[khr].

Also, PGI accelerator compiler[Wol10] and HMPP[DBB07] provides a high-level

programming model for accelerators. However, these works focus on facilitating

the development for accelerators. Programmers need to distribute tasks among

general-purpose processors and accelerator cores by hand. In terms of workload

distribution, Qilin[LHK09] automatically decides which task should be executed on

a general-purpose processor or an accelerator at runtime. However, programmers

still need to parallelize a program by hand. While these works rely on program-

mers’ skills, CellSs[BPBL09] performs an automatic parallelization of a subset of

sequential C program with data flow annotations on CELL BE. CellSs automat-

ically schedules tasks onto processor elements at runtime. The task scheduler of

CellSs, however, is implemented as a homogeneous task scheduler, namely the

scheduler is executed on PPE and just distributes tasks among SPEs.

Therefore, realizing an automatic parallelization for heterogeneous and homo-

geneous multicore is required. This thesis makes the following contributions:

• A proposal in which the compilation flow of the OSCAR compiler does not

depend on the processor configuration, or the number of general-purpose

cores and accelerators.

18

1.2 Thesis outline

• A proposal, which enables the OSCAR compiler to perform an automatic

parallelization for heterogeneous multicore by utilizing existing tools and

libraries for accelerators.

• An evaluation of the processing performance and the power efficiency us-

ing widely used media applications including motion-tracking algorithm and

audio encoding software on the authors developed RP-X heterogeneous mul-

ticore chip.

• An evaluation of the processing performance using dose calculation, which

is used in a particle radiotherapy for cancer treatment on SMP servers.

1.2 Thesis outline

The thesis consists of 6 chapters.

Chapter 2 “OSCAR Compiler Applicable Heterogeneous Multicore Architec-

ture” firstly defines a generic architecture in order to build the compilation flow of

the OSCAR compiler, which can support various kinds of shared memory multi-

processor configurations. The model multicore architecture for the OSCAR com-

piler is composed of general-purpose processors, accelerators, direct memory ac-

cess controller, on-chip centralized shared memory, and off-chip CSM. Moreover,

the OSCAR heterogeneous multicore architecture can handle accelerators without

controllers and accelerators with their controllers, or general-purpose processors.

Both general-purpose processors and accelerators with controller may have a local

data memory, a distributed shared memory, a data transfer unit, frequency volt-

age control registers, an instruction cache memory and a data cache memory. The

local data memory keeps private data. The distributed shared memory is a dual

19

Chapter 1 Introduction

port memory, which enables point-to-point direct data transfer and low-latency

synchronization among processors. This chapter also shows most of existing het-

erogeneous and homogeneous multicore can be seen as a subset of the OSCAR

architecture and the OSCAR compiler can support various heterogeneous and ho-

mogeneous multicores.

Chapter 3 “Compilation Framework for the Heterogeneous Multicore Architec-

ture” describes the proposed framework including an automatic compilation flow

for the target architecture. The input of the framework is a sequential program

written in Parallelizable C, a kind of C programming style for parallelizing com-

piler, or Fortran77 and the output is an executable for a target heterogeneous and

homogeneous multicore. The compilation flow consists of 4 steps. First of all,

accelerator compilers or programmers insert hint directives immediately before

loops or function calls, which can be executed on the accelerator, in a sequential

program. Then, the OSCAR compiler parallelizes the source program considering

with hint directives. The compiler automatically performs (1) decomposition of

a program into tasks, (2) scheduling these tasks onto general processors and ac-

celerators by inserting synchronization, (3) data transfer, and (4) power control

codes which controls the frequency and the voltage of the chip. After that, the

compiler generates a parallelized C or Fortran program for general-purpose proces-

sors and accelerator cores by using OSCAR API, multicore application program

interface (API) including thread APIs, memory mapping APIs, data transfer APIs

and power control APIs. At that time, the compiler generates C or Fortran source

codes as separate files for accelerator cores. Each file includes functions to be

executed on accelerators when a function is scheduled onto accelerator by the OS-

CAR compiler. Afterwards, each accelerator compiler generates objects for its own

20

1.2 Thesis outline

target accelerator. Finally, an API analyzer prepared for each heterogeneous mul-

ticore translates OSCAR APIs into runtime library calls, such as pthread library.

Afterwards, an ordinary sequential compiler for each processor from each vender

generates an executable. This chapter also describes the proposed framework

effectively utilizes the existing accelerator compilers and hand-tuned accelerator

libraries and realizes an automatic parallelization for various multicore processors.

Chapter 4 “Parallel Processing Schemes for Media Applications on the Het-

erogeneous Multicore Architecture” describes parallel processing schemes for the

motion-tracking algorithm called optical flow and the audio encoder called ad-

vanced audio codec (AAC) encoder. This chapter also evaluates the processing

performance and the power reduction by the proposed framework on the RP-X

heterogeneous multicore, which integrates eight general-purpose processor cores,

or SH4A, and three kinds of accelerators including dynamically reconfigurable pro-

cessor (DRP) accelerators, or FE-GA. The RP-X is developed by Renesas, Hitachi,

Tokyo Institute of Technology and Waseda University . Optical flow calculates ve-

locity field between two images. This program consists of the following parts:

dividing the image into 16x16 pixel blocks, searching a similar block in the next

image for every block in the current image, shifting 16 pixels and generating the

output. The OSCAR compiler exploits the parallelism of the loop, which searches

a similar block in the next image. In addition, accelerator compiler developed by

Hitachi analyzed that the sum of absolute difference (SAD), which occupies a large

part of the program execution time, is to be executed on accelerator. Then the

OSCAR compiler schedules these tasks onto general-purpose processors and accel-

erators and applies power control. AAC encoder is based on the AAC-LC encode

program provided by Renesas and Hitachi. This program consists of filter bank,

21

Chapter 1 Introduction

midside (MS) stereo, quantization and huffman coding. The OSCAR compiler ex-

ploits the frame-level parallelism and schedules these tasks onto general-purpose

processors and accelerators and applies power control. The hand-tuned library for

filter bank, MS stereo and quantization is used for accelerator. As a result, the

framework attains speedups of 32.6 times with eight SH-4A cores and four FE-GA

cores, 18.8 times with two SH-4A cores and one FE-GA core, 5.4 times with eight

SH-4A cores against sequential execution by a single SH4A core and 70% of power

reduction for the optical flow on the RP-X. The proposed framework realizes an

automatic parallelization for various processor configurations. In addition, the

compilation time is within a few minutes even though it takes several months in

order to exploit the full capability of multicores manually.

Chapter 5 “A Parallel Processing Scheme for Dose Calculation on SMP Servers”

describes a parallel processing scheme of dose calculation for particle radiother-

apy for cancer treatment and evaluates processing performance by the proposed

framework on SMP servers. This dose calculation engine is based on the clinically

used program developed by National Institute of Radiological Sciences (NIRS)

and Mitsubishi Electronics. This program simulates treatment plan for cancer:

It simulates how much particles attack the cancer but it takes long time for the

simulation. In order to reduce the simulation time by parallelization, this thesis

proposes a processing scheme for the application and enables the OSCAR com-

piler to exploit the parallelism of the calculation engine. As a result, the proposed

method attains good speedups of 9.0 times with 12 processor cores on Hitachi

HA8000/RS220 system based on the Intel Xeon Processor and 50.0 times with

the 64 processor cores on Hitachi SR16000 system based on the IBM Power 7

processor.

22

1.2 Thesis outline

Chapter 6 “Conclusions” concludes the thesis and explains future works.

23

Chapter 2

OSCAR Compiler Applicable

Heterogeneous Multicore

Architecture

25

Chapter 2 OSCAR Compiler Applicable Heterogeneous Multicore

2.1 Introduction

The demand for multicore processors has been increasing for several years in

order to improve system performance keeping power consumption low. IBM

Power7[KSSF10], Intel Single Chip Cloud[HDH+10], Renesas RP2[IHY+08], NEC

NaviEngine[MTT+07], Toshiba Venezia[NTF+08] and Fujitsu Sparc64 VIIIfx[MYK+10]

are examples of multicore processors. In addition, there has been a growing inter-

est in heterogeneous multicores which integrate special purpose accelerator cores

in addition to general-purpose processor cores on a chip. One of the reason for this

trend is that heterogeneous multicores allow us to attain high performance with

low frequency and low power consumption. Various semiconductor vendors have

released heterogeneous multicores such as CELL BE[PAB+05], GPGPU[LHG+06],

Uniphier[NYY+07], RP1[YKH+07] and RP-X[YIK+10].

However, the softwares for heterogeneous multicores generally require large de-

velopment efforts such as the decomposition of a program into tasks, the im-

plementation of accelerator code, the scheduling of the tasks onto general-purpose

processors and accelerators, and the insertion of synchronization and data transfer

codes. Long software development periods are required even for expert program-

mers.

In order to facilitate a parallel programming for heterogeneous multicore, this

thesis proposes an OSCAR automatic heterogeneous parallelizing compiler as men-

tioned in Chapter 1. Although conventional homogeneous parallelizing compilers,

such as Polaris compiler[EHP98] and SUIF compiler[HAA+96], only exploit the

loop level parallelism, the OSCAR compiler exploits multigrain parallelism includ-

ing corase-grain parallelism, loop level parallelism and fine-grain parallelism[KHM+91]

This chapter in particular discusses the importance of the OSCAR compiler

26

2.1 Introduction

cooperative heterogeneous multicore architecture and define a generic multicore

architecture to which the parallelization of the OSCAR compiler is applicable. It

is important to define a generic architecture and build a compilation framework for

the architecture since there are various kinds of heterogeneous multicore. Specif-

ically, an memory architecture design, an interconnection network design and an

accelerator design are completely depend on an architecture design. For example,

Intel Larrabee[SCS+08] integrates scalar units and wide vector units and these

units are in the same core. In addition, these units share instruction and data

caches. CELL processor[PAB+05] integrates one general puporse processor called

“PowerPC Processor Element(PPE)” and eight SIMD processors called “Synergis-

tic Processor Element(SPE)”. On-chip interconnection network called “Element

Interconnect Bus(EIB)” connects the PPE and SPEs. A DMA controller in the

SPE performs data transfer between the PPE and the SPEs. GPU[LHG+06] are

connected with off-chip interconnection network called PCI Express.

Therefore, this chaper firstly defines a generic architecture in order to build

the automatic parallelizing compilation flow, which can support various kinds of

shared memory heterogeneous and homogeneous multicore configurations.

The rest of this chapter is organized as follows. Section 2.2 describes the detail

of the architecture. Section 2.3 defines a program execution model on the archi-

tecture. Section 2.4 defines a clear distinction between the role of the OSCAR

compiler and toolchains for accelerators. Section 2.6 concludes this chapter.

27

Chapter 2 OSCAR Compiler Applicable Heterogeneous Multicore

VC(0) VC(n-1)

VC(n) VC(n+m-1) VC(n+m) VC(n+m+k-1)VC(n+m+k)

Figure 2.1: OSCAR Applicable heterogeneous multicore architecture

2.2 Target architecture

This section defines generic “OSCAR Applicable Heterogeneous Multicore Ar-

chitecture” shown in Fig.2.1. This thesis defines a term “controller” as a general-

purpose processor that controls an accelerator, that is to say, it performs part

of coarse-grain task and data transfers from/to the accelerator and offload the

task to the accelerator. The architecture is composed of general-purpose proces-

sors, accelerators(ACCs), direct memory access controller(DMAC), on-chip cen-

tralized shared memory(CSM), and off-chip CSM. Some accelerators may have

its controller, or general-purpose processor. Both general-purpose processors and

accelerators with controller may have a local data memory (LDM), a distributed

shared memory (DSM), a data transfer unit (DTU), a frequency voltage control

28

2.2 Target architecture

registers (FVR), an instruction cache memory and a data cache memory. The

local data memory is a high-speed memory and keeps processor private data. The

distributed shared memory is middle-speed memory and is a dual port memory,

which enables point-to-point direct data transfer and low-latency synchronization

among processors. The data transfer unit in general-purpose processors and accel-

erator with controller is a kind of DMA controller , which is able to overlap task

executions with data transfers. In addition, the frequency voltage control registers

in each core improves power efficiency by using dynamic voltage and frequency

scaling(DVFS).

Each existing heterogeneous multicore can be seen such as CELL BE[PAB+05],

MP211[TST+05] and RP1[YKH+07] as a subset of OSCAR API applicable ar-

chitecture. Thus, OSCAR API can support such chips and a subset of OSCAR

API applicable heterogeneous multicore. The minimum subset of the architecture

is a cache-based architecture, which means that each general-purpose processor

just consists of CPU core, instruction cache, and data cache. When the target

architecture has a local memory, the OSCAR compiler performs local memory

management for hard real-time execution. Addition of a data transfer unit and a

distributed shared memory accelerates data transfer among memories and synchro-

nization among processors, respectively. Introducing accelerator with its controller

realize higher performance than accelerator without its controller because the for-

mer can feed data to accelerator with lower cost. The full architecture showin in

Fig.2.2 is called the OSCAR compiler cooperative heterogeneous multicore archi-

tecture because the OSCAR compiler is able to utilize the data transfer units, the

local memory and the distributed shared memory[NMM+09], accelerator with its

controller and change the frequency and the voltage of the chip.

29

Chapter 2 OSCAR Compiler Applicable Heterogeneous Multicore

VC(0) VC(n-1)

VC(n)

Figure 2.2: OSCAR compiler cooperative heterogeneous multicore architecture

2.2.1 Identifying element in the architecture

This thesis also defines a term “Virtual Core(VC) number” as an ID which

identifies the processor element in the architecture.

VC number starts at zero and if there are “n” general-purpose processors, “m”

accelerators with controler and “k” accelerators without controller, the numbering

is the following:

(1) general-purpose processors: VC(0) - VC(n-1) in Fig.2.1

(2) accelerators with controller: VC(n) - VC(n+m-1) in Fig.2.1

(3) accelerators without controller: VC(n+m) - VC(n+m+k-1) in Fig.2.1

(4) the others: VC(n+m+k) - in Fig.2.1

30

2.2 Target architecture

[[chip,] vc,] MODULE_ARG_LIST

MODULE_ARG_LIST := MODULE_ARG, MODULE_ARG_LIST

MODULE_ARG := (module([sub_module])[, arg_list])

Figure 2.3: Specifying the module within a chip

Table 2.1: Examples of Modules

module corresponding module

OSCAR LDM Local Data Memory

OSCAR DSM Distributed Shared Memory

OSCAR CSM Centrilized Shared Memory

OSCAR DTU Data Transfer Unit

OSCAR DMAC Direct Memory Access Controller

OSCAR ENTIRECORE Entire Core

OSCAR ENTIRECHIP Entire Chip

In addition, this thesis also defines the way to identify modules in the processor

core such as data transfer unit and memory. This notation is used to set the

frequncy voltage of the module. Fig.2.3 shows the notation and Table.2.1 shows

the exmaple of modules.

In Fig.2.3, “chip” is chip number, “vc” is VC number, “module” is module

name, “sub module” is submodule name and “arg list” is the argument for the

specified module. Here, parameters enclosed in “[]” can be omitted. If “chip”

and “vc” is “-1”, the target module is whole chip, whole core respectively. By

using VC number and this notation, any elements in the target architecture can

31

Chapter 2 OSCAR Compiler Applicable Heterogeneous Multicore

(1)Data transfer from CPU to ACCa

(2)Accelerator Invocation

(3)Data transfer from ACCa to CPU

Figure 2.4: Execution Model on Accelerator with its Controller

be specified. For example, a local data memory in VC0 in Chip0 is expressed in

“0, 0, OSCAR LDM”. “OSCAR ENTIRECORE” specifies a VC as a whole. In

addition, “OSCAR ENTIRECHIP” specifies a chip as whole.

2.3 Execution model on the architecture

This section defines a program execution model on the target architecture. In or-

der to minimize the runtime overhead of parallel processing, the OSCAR compiler

adopts one-time single level thread creation as its execution model. This execution

model creates threads at the program start point. Execution model of accelerator

depends on whether accelerator has its own controller or not. Fig.2.4,Fig.2.5 shows

the execution model of accelerator.

As shown in Fig.2.4, in accelerator with its controller, the controller performs

data transfers and accelerator invocation. On the other hand, as shown in Fig.2.5,

in accelerator without its controller, a general-purpose processors play a role as a

controller.

In both cases, the task execution on controller is blocked until accelerator exe-

32

2.4 Role of the OSCAR compiler and toolchains for accelerators

(1)Data transfer from CPU to ACCa

(2)Accelerator Invocation

(3)Data transfer from ACCa to CPU

Figure 2.5: Execution Model on Accelerator without its Controller

cution ends.

2.4 Role of the OSCAR compiler and toolchains

for accelerators

In order to utilize accelerators, programmers generally identify which parts of an

input program is to be accelerated effectively, develop an accelerator binary using

domain specific language such as CUDA[GGN+08] and OpenCL[khr] or assem-

bler languages, and implements controller codes including data transfer between a

general-purpose processor and an accelerator, accelerator invocations, synchroniza-

tions. However, supporting all accelerator programming model is not so feasible

for the OSCAR compiler since these efforts are completely depend on the tar-

get accelerator. Therefore, it is important to define a clear distinction between

the role of the OSCAR compiler and toolchains for accelerators not to lost the

general-purpose properties.

This thesis defines an accelerator compiler has the following three properties.

33

Chapter 2 OSCAR Compiler Applicable Heterogeneous Multicore

• inserts hint directives immeadiately before loops or function calls, which can

be executed on the accelearator, in a sequential program.

• generates accelerator binary of the task, which is assigned by the OSCAR

compiler.

• generates accelerator control codes including data transfer codes, accelerator

invocation codes and synchronization codes.

In contrast, this thesis defines the OSCAR compiler has the following three

properties.

• performs coarse-grain task graph generation and task scheduling considering

with hint directives.

• generates C source codes as separate files which include functions to be

executed on accelerators when a function is scheduled onto accelerator by

the OSCAR compiler.

• generates parallelized C or Fortran program with OSCAR API.

However, not all of existing accelerator compiler support these properties. For

example, FE-GA[KTT+06] compiler developed by Hitachi suuports all properties.

PGI Accelerator Compiler[Wol10] developed by Portrand Group does not support

hint directive insertion. CUDA compiler developed by NVIDIA only supports

accelerator binary generation. In order to utilize such accelerator compilers and

existing hand-tuned libraries, the proposed framework provides another way. In

the way, programmers prepare libraries which include controllers codes and accel-

erator binary in advance and inserts hint directives manually.

34

2.5 Related work

2.5 Related work

There are many examples of heterogeneous multicores. This section shows an

overview of the existing heterogeneous multicores.

IBM/SONY/TOSHIBA CELL BE[PAB+05] integrates one general-purpose pro-

cessor called PPE and eight SIMD accelerator called SPE. PPE and SPEs are

connected to on-chip interconnection. SPE incorporates a local memory called

“Local Storage” and a direct memory access controller called “Memory Flow Con-

troller(MFC)”. Data transfers between main memory and local storage are always

done by software. SPE is an accelerator without its controller and PPE plays a role

of controller for SPE. Arizona State University/ARM SODA[LLW+06] is designed

for software defined radio and is similar to CELL BE. SODA made up of four

SIMD cores and one general-purpose ARM processor. Each SIMD core has a local

memory and DMAC and is connected to on-chip interconnection network. SIMD

core is an accelerator without its controller and ARM processor plays a role of con-

troller for SIMD core. Intel Larrabee[SCS+08] core consists of a scalar unit and

a vector unit and these units are connected to intra core network. Larrabee core

is accelerator with its controller because these units share L2 cache. University

of Michigan/Arizona State University/ARM AnySP[WSM+09] core is called PE

and consists of SIMD unit and scalar unit. Both SIMD unit and scalar unit share

a local data memory and DMAC. AnySP PE is an accelerator with its controller

because these units are also connected to intra core network. Renesas proposed

nine general-purpose processors and two matrix processors and these processors

are interconnected with on-chip interconnection network. A matrix processor is

an accelerator without its controller and general-purpose processors plays a role

of controller. University of California at Berkeley VIRAM[KP03] integrates one

35

Chapter 2 OSCAR Compiler Applicable Heterogeneous Multicore

general-purpose MIPS core and two vector arithmetic functional units. Both MIPS

core and vector units are connected to on-chip interconnection network and a vec-

tor unit is an accelerator without its controller. GPGPU such as NVIDIA Tesla

GPU, AMD Radeon GPU and Intel Graphic Media Accelerator are a massively

parallel processor and is often connected to PCI Express. GPGPU is obviously an

accelerator without its controller as well. Some GPGPUs are tightly coupled with

general-purpose processors such AMD Fusion GPUs. Universitat Politecnica de

Catalunya/University of Illinois at Urbana-Champaign CUBA is an architecture,

which includes data-parallel accelerators and general-purpose processors. CUBA

accelerator is an accelerator with its controller. Renesas/Hitachi/Tokyo Institute

of Technology/Waseda University RP-X integrates eight general-purpose SH-4A

processors, four dynamically reconfigurable FE-GA processors, two matrix proces-

sors and the other media IPs. Each SH-4A core consists of a local data memory,

a local program memory, a distributed shared memory, a data transfer unit and

frequency voltage control register. FE-GA is an accelerator without its controller.

In summary, all processor element in heterogeneous architecture can be cate-

gorized into general-purpose processor, accelerator with its controller and accel-

erator without its controller. general-purpose processors and accelerator with its

controller would have a local data memory, a local program memory, a distributed

shared memory, a data transfer unit and frequency voltage control register. This

is why the existing heterogeneous multicore architecture can be seen as a subset

of OSCAR Applicable heterogeneous multicore architecture.

36

2.6 Conclusion

2.6 Conclusion

This chapter has defined a generic architecture in order to build the compilation

flow of the OSCAR compiler, which can support various kinds of shared memory

multiprocessor configurations. The model multicore architecture for the OSCAR

compiler is composed of general-purpose processors, accelerators, direct memory

access controller, on-chip centralized shared memory, and off-chip CSM. Moreover,

OSCAR heterogeneous multicore architecture can handle accelerators without con-

trollers and accelerators with their controllers, or general-purpose processors. Both

general-purpose processors and accelerators with controller may have a local data

memory, a distributed shared memory, a data transfer unit, frequency voltage

control registers, an instruction cache memory and a data cache memory. The

local data memory keeps private data. The distributed shared memory is a dual

port memory, which enables point-to-point direct data transfer and low-latency

synchronization among processors. This chapter also has shown most of existing

heterogeneous and homogeneous multicore can be seen as a subset of the OSCAR

architecture and the OSCAR compiler can support various heterogeneous and ho-

mogeneous multicores. In addition, this chapter has defined a clear distinction

between the role of the OSCAR compiler and toolchains for accelerators and a

program execution model on the architecture.

37

Chapter 3

Compilation Framework for

the Heterogeneous Multicore

Architecture

39

Chapter 3 Compilation Framework for the Heterogeneous Multicore

3.1 Introduction

In recent years, homogeneous multicore processors and heterogeneous multicore

processors have attracted much attention due to their excellent characteristic,

higher performance and lower power consumption than single core processors.

However, programmers have to carefully find out which parts of a program

can be parallelized and decompose the program into tasks manually and schedule

these tasks onto processor cores so as to exploit the full capability of homoge-

neous and heterogeneous multicore processors. Specifically, programmers parallize

the program by using pthread and OpenMP[Opec] for shared memory multicore

processors, Message Passing Interface(MPI)[sta] for distributed memory multicore

processors, and domain specific languages such as OpenCL[khr] for accelerators.

Programmers often confront with many difficulty such as race conditions, dead

locks. Therefore, long software development periods are required even for expert

programmers.

Recent many studies have tried to handle this software development issue. In

terms of homogeneous multicores, many works have been trying to realize an au-

tomatic parallelization. Polaris compiler[EHP98], SUIF compiler[HAA+96], IBM

XL compiler and Intel compiler are an example of automatic parallelizing compil-

ers. However, these parallelizing compilers only exploit the loop level parallelism

and are designed for homogeneous multicores.

In terms of heterogeneous multicores, researchers came up with many solution

so as to facilitate the difficulty heterogeneous of parallel programming. For exam-

ple, NVIDIA and Khronos Group introduced CUDA[GGN+08] and OpenCL[khr].

Also, PGI accelerator compiler[Wol10] and HMPP[DBB07] provides a high-level

programming model for accelerators. However, these works focus on facilitating

40

3.1 Introduction

the development for accelerators. Programmers need to distribute tasks among

general-purpose processors and accelerator cores by hand. In terms of workload

distribution, Qilin[LHK09] automatically decides which task should be executed on

a general-purpose processor or an accelerator at runtime. However, programmers

still need to parallelize a program by hand. While these works rely on program-

mers’ skills, CellSs[BPBL09] performs an automatic parallelization of a subset of

sequential C program with data flow annotations on CELL BE. CellSs automat-

ically schedules tasks onto processor elements at runtime. The task scheduler of

CellSs, however, is implemented as a homogeneous task scheduler, namely the

scheduler is executed on PPE and just distributes tasks among SPEs.

In the light of above facts, further explorations are needed since it is the respon-

sibility of programmers to parallelize a program and to optimize a data transfer

and a power consumption for heterogeneous multicores.

The goal is to realize a fully automatic parallelization of a sequential C or

Fortran77 program for heterogeneous multicores. Unlike conventional paralleliz-

ing compilers, the OSCAR paralleling compiler exploits multi-level parallelism

for homogeneous multicores such as SMP servers and real-time multicores[KOI00,

KMM+09, MOKK10]. The OSCAR compiler realizes automatic parallelization of

programs written in Fortran77 or Parallelizable C, a kind of C programming style

for parallelizing compiler, and power reduction with the support of both the OS-

CAR compiler and OSCAR API(Application Program Interface)[kas], which sup-

ports partioned global address space(PGAS) including local memory, distributed

shared memory centrized shared memory, DMA controller. This thesis realizes an

automatic parallization and a power reduction for the generic architecture defined

in Chapter 2.

41

Chapter 3 Compilation Framework for the Heterogeneous Multicore

Figure 3.1: Compilation flow of the proposed framework

The rest of this chapter is organized as follows. Section 3.2 provides the compi-

lation flow based on the OSCAR compiler and toolchains for accelerators. Section

3.3 explains the hint directives for the OSCAR compiler. Section 3.4 describes the

OSCAR compiler. Section 3.5 describles OSCAR API. Section 3.7 concludes this

chapter.

3.2 Compilation flow

Fig.3.1. shows the compilation flow of the proposed OSCAR heterogeneous

compiler framework. The input is a sequential program written in Parallelizable C

or Fortran77 and the output is an executable for a target heterogeneous multicore.

The following describes each step in the proposed compilation flow.

Step 1: Accelerator compilers or programmers insert hint directives immediately

before loops or function calls , which can be executed on the accelerator, in

a sequential program.

Step 2: the OSCAR compiler parallelizes the source program considering with

hint directives: the compiler schedules coarse-grain tasks[WHM+08] to pro-

42

3.3 A hint directive for the OSCAR compiler

cessor or accelerator cores and apply the low power control[KMM+09]. Then,

the compiler generates a parallelized C or Fortran program for general-

purpose processors and accelerator cores by using OSCAR API. At that

time, the compiler generates C source codes as separate files for accelerator

cores. Each file includes functions to be executed on accelerators when a

function is scheduled onto accelerator by the compiler.

Step 3: Each accelerator compiler generates objects for its own target accelerator.

Note that each accelerator compiler also generates both data transfer code

between controller and accelerator, and accelerator invocation code.

Step 4: An API analyzer prepared for each heterogeneous multicore translates

OSCAR APIs into runtime library calls, such as pthread library. After-

wards, an ordinary sequential compiler for each processor from each vender

generates an executable.

It is important that the framework also allows programmers to utilize existing

hand-tuned libraries for the specific accelerator. This paper defines a term “hand-

tuned library” as an accelerator library which includes computation body on the

specific accelerator and both data transfer code between general-purpose proces-

sors and accelerators and accelerator invocation code.

3.3 A hint directive for the OSCAR compiler

This section explains the hint directives for the OSCAR compiler that advice the

OSCAR compiler which parts of the program can be executed by which accelerator

core.

43

Chapter 3 Compilation Framework for the Heterogeneous Multicore

oscar_hint accelerator_task (accelerator_type) \

cycle(number, [((trans_mode))]) \

[workmem(memory_name, number)] \

[in(list of input variables)] [out(list of output variables)]

new-line

oscar_comment "string" new-line

Figure 3.2: Hint directives for the OSCAR compiler

The list of hint directives is shown in the Fig3.2. Here, parameters enclosed

in “[]” can be omitted. The first one is “accelerator task” directive which in-

dicates specified block(e.g. loop, subroutine, basic block) is able to be executed

on the specified accelerator. “accelerator type” specifies the name of the acceler-

ator(e.g. GPU, FE-GA[KTT+06]). “cycle” specifies the number of clock cycles

required for the block on the accelerator. “trans mode” specifies the device trans-

ferring between general-purpose processors and accelerators(e.g. DMAC, DTU).

If “trans mode” is omitted, the controller performs the data transfer from/to the

accelerator. Note that the cost of a data transfer is included in the number of

clock cycles. Some accelerator compiler might allocate the memory for variables

that are to be used to control the accelerator. “workmem” specifies the kind of

memory utilized and the size of variables allocated by the accelerator compiler.

“in” and “out” annotate input/output variables of the block. The second one is

“oscar comment” directive. This directive is inserted so that either programmers

or accelerator compilers give a comment to accelerator compiler through the OS-

CAR compiler. This comment is helpful for the accelerator compiler to optimize

the accelerator code. For example, programmers may insert the directive for an

44

3.3 A hint directive for the OSCAR compiler

int main() {

 int i, x[N], var1 = 0;

 /* loop1 */

 for (i = 0; i < N; i++) { x[i] = i; }

 /* loop2 */

#pragma oscar_hint accelerator_task (ACCa) \

 cycle(1000,((OSCAR_DMAC()))) workmem(OSCAR_LDM(), 10)

 for (i = 0; i < N; i++) { x[i]++; }

 /* function3 */

#pragma oscar_hint accelerator_task (ACCb) \

 cycle(100, ((OSCAR_DTU()))) in(var1,x[2:11]) out(x[2:11])

 call_FFT(var1, x);

 return 0;

}

void call_FFT(int var, int* x) {

#pragma oscar_comment "XXXXX"

 FFT(var, x); //hand-tuned library call

}

Figure 3.3: Example of source code with hint directives

accelerator compiler like PGI accelerator compiler.

Fig.3.3. shows an example code. As shown in Fig.3.3., there are two types of hint

directives inserted to a sequential C program, namely “accelerator task” and “os-

car comment”. In this example, there are “#pragma oscar hint accelerator task

(ACCa) cycle(1000, ((OSCAR DMAC()))) workmem(OSCAR LDM(), 10)” and

“#pragma oscar hint accelerator task (ACCb) cycle(100, ((OSCAR DTU()))) in(var1,

x[2:11]) out(x[2:11])”. In these directives, accelerators represented as “ACCa” and

“ACCb” is able to execute a loop named “loop2” and a function named “func-

tion3”, respectively. The hint directive for “loop2” specifies that “loop2” requires

1000 cycles including the cost of a data transfer performed by DMAC if the loop

is processed by “ACCa”. This directive also specifies that 10 bytes in local data

memory are required in order to control “ACCa”. Similarly, for “function3”, it

takes 100 cycles including the cost of a data transfer by DTU. Input variables

are scalar variable “var1” and array variable “x” ranging 2 to 11. Also, output

45

Chapter 3 Compilation Framework for the Heterogeneous Multicore

variable is array variable “x”. “oscar comment” directive is inserted so that ei-

ther programmers or accelerator compilers give a comment to accelerator compiler

through the OSCAR compiler.

3.4 OSCAR parallelizing compiler

This section describes the OSCAR compiler. The OSCAR compiler exploits

multi-level parallelism including coarse grain parallelism, loop level parallelism,

and fine grain parallelism. In addition, the OSCAR compiler is the only compiler,

which is able to apply power control to the target architecture, by inserting a

dynamic voltage frequency scaling(DVFS) instruction for power efficiency.

3.4.1 Overview of the OSCAR compiler

As shown in Fig.3.4 the OSCAR compiler consists of the three phases: front

end(FE), middle path(MP), and back end(BE). The front end performs lexical

analysis and syntax analysis and generates intermediate representation(IR). The

middle path performs many parallelization and power reduction techniques includ-

ing control flow analysis, data dependency analysis, task generation, task schedul-

ing and generate intermediate representation. The back end generates a binary

for a target machine or a C/Fortran source code with OSCAR API[KMM+09].

Specifically, the middle path performs the following scheme:

• Macro-Task Generation

• Exploiting Coarse Grain Parallelism

• Processor Grouping

46

3.4 OSCAR parallelizing compiler

Fortran Frontend

Middle Path
Coarse grain task Parallelization

Loop level Parallelization

Data Localization

Data transfer overlapping

Power Reduction

Static Scheduling

Dynamic Scheduler Generation

Near-fine grain Parallelization

Fortran77 OpenMP Fortran C

C Frontend

Intermediate Representation

OSCAR API
Fortran / C
Backend

OpenMP
Fortran / C
Backend

MPI
Fortran / C
Backend

OSCAR
Machine

Code

MPI
Fortran / C

OpenMP
Fortran / C

OSCAR API
Fortran / C

OSCAR
Backend

SH
Machine

Code

SH
Backend

SPARC
Machine

Code

SPARC
Backend

Intermediate Representation

Figure 3.4: OSCAR multigrain parallelizing compiler

• Macro-Task Scheduing and Power Reduction

The detail is described in the Section 3.4.2, 3.4.3, 3.4.4, 3.4.5.

3.4.2 Macro-Task generation

The compiler decomposes a program into coarse grain tasks, namely macro-tasks

(MTs), such as basic block (BPA), loop (RB), and function call or subroutine call

(SB).

47

Chapter 3 Compilation Framework for the Heterogeneous Multicore

BPA

RB

SB

Program

Near fine grain parallelism

Loop level parallelism

Coarse grain parallelism

Coarse grain parallelism

all system
 1st layer
 2nd layer
 3rd layer

Near fine grain parallelism

in loop body

BPA

RB

SB

BPA

RB

SB

BPA

RB

SB

BPA

RB

SB

BPA

RB

SB

BPA

RB

SB

Figure 3.5: Hierarchical macro-task definition

Macro-tasks can be hierarchically defined inside each sequential loop, which

can’t be parallelized, and a subroutine block as shown in Figure 3.5. Repeating

this macro-task generation hierarchically, a original program is decomposed into

nested macro-tasks as in Figure 3.5.

3.4.3 Exploiting coarse grain parallelism

After generation of macro-tasks, data dependencies and control flow among

macro-tasks are analyzed in each nested layer, and hierarchical macro-flow graphs

(MFGs) representing control flow and data dependencies among macro-tasks are

generated as shown in Figure 3.6(a)[HIK90, KHM+91, Kas03]. In this figure, nodes

represent macro-tasks, solid edges represent data dependencies among macro-tasks

and dotted edges represent control flow. A small circle inside a node represents a

conditional branch.

48

3.4 OSCAR parallelizing compiler

Data Dependency
Extended Contorol Dependency
Conditional Branch

OR
AND

Original Control Flow

1

2 3

4

5

6

7

8

910 11

12

13

14

Data Dependency

Control Flow

Conditional Branch

1

2 3

4

5

6

7

8

9 10

11

12

13

14

(b) Macro Task Graph (MTG)(a) Macro Flow Graph (MFG)

Figure 3.6: Macro-flow graph and macro-task graph

Next, to extract coarse grain task parallelism among macro-tasks, Earliest Exe-

cutable Condition analysis [HIK90, KHM+91, Kas03, KHIH90, KHN90] is applied

to each macro-flow graph. It analyzes control dependencies and data dependen-

cies among macro-tasks simultaneously and determines the conditions on which

macro-tasks may begin their execution earliest. By this analysis, a macro-task

graph (MTG) [HIK90, KHM+91, Kas03, KHIH90] is generated for each macro-flow

graph. This graph represents coarse grain task parallelism among macro-tasks.

Here, nodes in a macro-task graph are macro-tasks, a small circle is conditional

branch and solid edges represent data dependencies. Dotted edges represent ex-

tended control dependencies. Extended control dependency means an ordinary

49

Chapter 3 Compilation Framework for the Heterogeneous Multicore

control dependency and the condition on which a data dependent predecessor

macro-task is not executed. A solid arc represents that edges connected by the arc

are in AND relationship. A dotted arc represents that edges connected by the arc

are in OR relation ship.

For example, the earliest executable condition of macro-task 6 in Figure 3.6(b)

is “the conditional branch of macro-task 2 jumps to macro-task 4 or the execution

of macro-task 3 is finished.”

When the compiler cannot analyze the input source for some reason, like hand-

tuned accelerator library call, “in/out” clause of “accelerator task” gives the data

dependency information to the OSCAR compiler. Then, the compiler calculates

the cost of MT and finds the layer which is expected to apply coarse-grain parallel

processing most effectively. “cycle” clause of “accelerator task” tells the cost of

accelerator execution to the compiler.

3.4.4 Processor grouping

The OSCAR compiler logically divides given processors into processor group(PG)

in order to execute hierarchical macro-task graphs efficiently. A processor group

consists of processor elements(PE), which are equivalent to physical general-purpose

processors. A coarse grain task(MT) is assigned to processor group. On the other

hand, a loop iteration and a near fine grain task are assigned to a processor ele-

ment. Processor grouping is applied recursively so as to exploit the many kinds

of parallelism in a whole program. That is why the OSCAR compiler realizes the

multi grain parallel processing. Because the number of accelerators are normally

fewer than the number of general-purpose processors, accelerators are independent

from the processor grouping. In other words, macro task in any layer is assigned

50

3.4 OSCAR parallelizing compiler

Figure 3.7: Processor Grouping on Heterogeneous Multicores

to accelerators.

Fig.3.7 shows an example of processor grouping for the architecture which inte-

grates four general-purpose processors, two dynamically reconfigurable processors

and two digital signal processors. As shown in Fig.3.7, general-purpose proces-

sors are divided into two processor groups(PG1 0 and PG1 1) in the first layer,

which means each processor group has two processor elements. In the second layer,

PG1 0 is divided into two processor groups(PG1 2 0 and PG1 2 1) in order to per-

form coarse grain parallel processing. On the other hand, PG1 1 is not divided

into new processor group because there are loop level or fine grain parallelism.

3.4.5 Macro-Task scheduling and power reduction

The task scheduler of the compiler statically schedules macro-tasks to each

core[WHM+08].

The scheduling algorithm are the following[WHM+08].

Step 1. Preparation.

Step 1-1. Calculate the cost of macro-task on a general-purpose processor

51

Chapter 3 Compilation Framework for the Heterogeneous Multicore

T
im

e

MT1

for CPU

MT2

for CPU

MT3

for CPU

MT4

for ACC
MT5

for ACC

MT6

for CPU

MT7

for ACC

MT8

for CPU

MT9

for ACC

MT10

for ACC

MT11

for CPU

MT12

for ACC

MT13

for ACC

EMT

MT1

MT2

MT8

MT11

MT3

MT6

MT13

MT4
MT5
MT7

MT9

MT10

MT12

MT13

CPU0 CPU1 CPU2
+

ACCa

Figure 3.8: An Example of Task Scheduling Result

and each accelerator.

Step 1-2. Calculate the critical path length as the scheduling priority.

Step 2. Initialization.

Step 2-1. Set the scheduling time to zero.

Step 2-2. Add the 1st layer macro-task graph to the list of macro-task

graphs which is under scheduling process.

Step 3. Get ready macro-tasks from the list in Step 2-2. Ready tasks satisfy

earliest executable condition[KHM+91] at current scheduling time. If there

is no ready Macro-Task, then go to Step 8.

52

3.4 OSCAR parallelizing compiler

Step 4. Select a macro-task to be scheduled from the ready macro-tasks according

to the priorities.

Step 5. Estimate execution completion time of the macro-task on

• each general-purpose processor which is free at current scheduling time

• each accelerator which can execute the macro-task

Step 6. Assign the macro-task to a general-purpose processor or an accelerator

which gives the earliest completion time.

Step 7. If the assigned macro-task has macro-task graphs to be applied coarse

grain parallel processing inside, add it to the list in Step 2-2.

Step 8. Updating the scheduling time.

Step 8-1. Update the scheduling time until the time when a macro-task is

completed next.

Step 8-2. If there is a macro-task graph that all of the Macro-Tasks inside

have been completed at the updated scheduling time, remove it from

the list in Step 2-2.

Step 8-3. If all of the macro-tasks are completed, then exit. If not, then go

to Step 3.

Fig.3.8. shows an example of heterogeneous task scheduling result. First the

scheduler gets ready macro-tasks from MTG(MT1 in Fig.3.8 in initial state).

Ready tasks satisfy earliest executable condition[KHM+91]. Then, the scheduler

selects a macro-task to be scheduled from the ready macro-tasks and schedules the

macro-task onto general-purpose processor or accelerator considering data transfer

53

Chapter 3 Compilation Framework for the Heterogeneous Multicore

CPU0

MT1

FULL

CPU1

MT2

FULL

MT3

FULL

T
im

e

CPU0

MT1

LOW

CPU1

MT2

FULL

MT3

FULL

T
im

e

CPU0

MT1

FULL

CPU1

MT3

FULL

T
im

e Power

OFF

Power

OFF

CPU0

MT1

FULL

CPU1

MT2

FULL

T
im

e

CPU0

MT1

LOW

CPU1

MT2

MIDT
im

e
CPU0

MT1

FULL

CPU1

MT2

FULL

T
im

e

Power

OFF
Power

OFF

MT2

FULL

T
im

e

T
im

e

Deadline Deadline Deadline

Figure 3.9: Power control by compiler

overhead, according to the priorities, namely CP length. The scheduler performs

above sequences until all macro-tasks are scheduled. Note that a task for an ac-

celerator is not always assigned to the accelerator. At this case, the task may be

assigned to general-purpose processor to minimize total execution time.

After task scheduling, the compiler tries to minimize total power consumption

by changing frequency and voltage(DVFS) or shutting power down the core during

the idle time considering transition time[SOW+07]. The OSCAR compiler assumes

a target architecture has the following properties:

• Frequency of each processor can be changed in several levels such as FULL,

MID and LOW

• Voltage can be changed with Frequency

• Each processor can be powered on and off individually

54

3.4 OSCAR parallelizing compiler

• Frequency, voltage and power status can be changed by software, which

means the OSCAR compiler controls frequency voltage control register shown

in Fig.2.1

As shown in Fig.3.9, there are two modes for compiler-controlled power saving.

The first one is called “Fastest Execution Mode” and the compiler determines

suitable voltage and frequency for a task which does not belong to critical path

in this mode. In this example, there is an idle time after MT1 execution on

CPU0. The OSCAR compiler applies “FV Control” or “Power Control” for the

idle time. “FV Control” means MT1 is executed in LOW mode. On the other

hands, “Power Control” means CPU0 is powered off after MT1 finishes in order to

avoid leakage power dissipation. The OSCAR compiler selects the best control to

minimize power consumption. The second one is called “Deadline mode for real

time execution” and the compiler determines suitable voltage and frequency for

each macro-task based on the result of static task assignment in order to satisfy the

deadline for real-time execution. The OSCAR compiler also applies “FV Control”

or “Power Control” and selects the best control. In Fig.3.9., FULL is 648MHz,

MID is 324MHz, and LOW is 162MHz respectively. Each of which is applicable

in RP-X processor described in Section 4.

Finally, the compiler generates parallelized C or Fortran program with OSCAR

API. The OSCAR compiler generates the function which includes original source

for accelerator. Generation of data transfer codes and accelerator invocation code

is responsible for accelerator compiler.

The OSCAR compiler uses processor configurations, such as number of cores,

cache or local memory size, available power control mechanisms, and so on. This

information is provided by compiler options.

55

Chapter 3 Compilation Framework for the Heterogeneous Multicore

Backend compiler

API
Analyzer

Existing
sequential

compiler

Application Program
Fortran or Parallelizable C

(Sequential program)

Machine
codes

Proc0

Thread 0

Machine
codesBackend compiler

API
Analyzer

Existing
sequential

compiler

Code with

directives

Proc1

Thread 1

Code with

directives

E
xe

cu
ta

b
le

 o
n
 v

ar
io

u
s

m
u
lt
ic

o
re

s

Backend compiler

OpenMP
Compiler

Figure 3.10: Compilation flow of OSCAR API

3.5 OSCAR API

This section describes OSCAR API in detail.

3.5.1 Overview of OSCAR API

This subsection describes an overview of OSCAR API. Fig.3.10 shows a brief

overview of the compilation flow using OSCAR API. As described in Section 3.2,

The OSCAR compiler generates the parallelized Fortran or C program with OS-

CAR API and API analyzer translates OSCAR APIs into runtime library calls,

such as pthread library. Afterwards, an sequential compiler generates an exe-

cutable. That’s why OSCAR API is multiplatform multicore API. Fig.3.11 shows

the list of OSCAR API. OSCAR API consists of parallel execution APIs, memory

mapping APIs, data transfer APIs, power control APIs, synchronization APIs,

timer APIs, cache control APIs and accelerator APIs. Note that the notation

56

3.5 OSCAR API

Figure 3.11: API List of OSCAR API 2.0

described in Section 2.2.1 for specifying modules in the target architecture.

Parallel execution API

Parallel execution APIs support thread creation and mutual exclusion by us-

ing “parallel sections” API, “flush” API, “critical” API on the target platform.

All API except “execution” API derived from OpenMP. “execution” API means

specified function is executed by the specified VC.

Memory mapping API

Memory mapping APIs enable the OSCAR compiler to map variables and arrays

to specified memory. “threadprivate” API, “distributedshared” API, “onchip-

shared” API map specified variables and arrays to a local memory, distributed

shared memory, and on-chip centralized shared memory respectively.

57

Chapter 3 Compilation Framework for the Heterogeneous Multicore

Data transfer API

The OSCAR compiler also inserts codes which perform data transfer by using

data transfer unit. “dma contiguous parameter” API for a contiguous transfer and

“dma stride parameter” API for a stride transfer means a data transfer among

processors and memories. These APIs are enclosed by “dma tranfer” API, The

completion of the transfer is to be notified and checked by using “dma flag check”

and “dma flag send”.

Power control API

Frequency and voltage of chip can be changed and monitered by using “fvcon-

trol” and “get fvstatus”. For example, “#pragma fvcontrol (0, 0, OSCAR ENTIRECORE,

-1)” turn off VC0 in Chip0.

Synchronization API

Synchronization API realizes hardware-supported barrier synchronization for

low-latency synchronization. “groupbarrier” API performs hardware barrier syn-

chronization among specified VCs.

Timer API

Timer API provides an interface of timer unit. “get current time” API returns

current timestep in the architecture. The returned timer value is usually used for

real-time execution.

58

3.5 OSCAR API

Cache control API

Cache control APIs supports non-coherent cache architechtures which do not

have hardware supported cache coherent mechanism such as RP-2[IHY+08], RP-

X[YIK+10] and Rigel[KJJ+09]. “cache writeback” API writes back a cache line of

specified variable. “cache selfinvalidate” API invalidates a cache line of specified

variable. “complete memop” API ensures the completion of a memory operation.

Accelerator API

Accelerator API provides an interface between the OSCAR compiler and accel-

erator compilers. The detail is described in Section 3.5.2.

3.5.2 The Extension of OSCAR API for heterogeneous

multicores

This subsection describes API extension for heterogeneous multicores to be the

output of the OSCAR compiler. Thee extension is very simple. Only one direc-

tive “accelerator task entry” is added to OSCAR API. This directive specifies the

function’s name where general-purpose processor invokes an accelerator.

Let us consider an example where the compiler parallelizes the program in

Fig.3.3. We assume a target multicore includes two general-purpose processors,

one ACCa as an accelerator with its controller and one ACCb as an accelerator

without its controller. One of general-purpose processors, namely CPU1, is used

as controller for ACCb in this case. Fig.3.12. shows as example of the parallelized

C code with OSCAR heterogeneous directive generated by the OSCAR compiler.

As shown in Fig.3.12., functions named “MAIN CPU0()”, “MAIN CPU1()” and

59

Chapter 3 Compilation Framework for the Heterogeneous Multicore

int main() {

#pragma omp parallel sections

 {

#pragma omp section

 { MAIN_CPU0(); }

#pragma omp section

 { MAIN_CPU1(); }

#pragma omp section

 { MAIN_CPU2(); }

 }

 return 0;

}

int MAIN_CPU1() {

 ...

 oscartask_CTRL1_call_FFT(var1, &x);

 ...

}

int MAIN_CPU2() {

 ...

 oscartask_CTRL2_call_loop2(&x);

 ...

}

#pragma oscar accelerator_task_entry controller(2) \

 oscartask_CTRL2_loop2

void oscartask_CTRL2_loop2(int *x) {

 int i;

 for (i = 0; i <= 9; i += 1) { x[i]++; }

}

#pragma oscar accelerator_task_entry controller(1) \

 oscartask_CTRL1_call_FFT

void oscartask_CTRL1_call_FFT(int var1, int *x) {

#pragma oscar_comment "XXXXX"

 oscarlib_CTRL1_ACCEL3_FFT(var1, x);

}Source Code for CPUs

Source Code for ACCa

Source Code for ACCb

Figure 3.12: Example of parallelized source code with OSCAR API

“MAIN CPU2()” are invoked in omp parallel sections. These functions are ex-

ecuted on general-purpose processors. In addition, hand-tuned library “oscar-

task CTRL1 call FFT()” executed on ACCa is called by controller “MAIN CPU1()”.

“MAIN CPU2” also calls kernel function “oscartask CTRL2 call loop2()” exe-

cuted on ACCb. “accelerator task entry” directive specifies these two functions.

“controller” clause of the directive specifies id of general-purpose CPU which con-

trols the accelerator. Note that there exist “oscar comment” directives at same

place shown in Fig.3.3.. “oscar comment” directives may be used to give accelera-

tor specific directives, such as PGI accelerator directives, to accelerator compilers.

Afterwards, accelerator compilers generates the source code for the controller and

objects for the accelerator, interpreting these directives.

60

3.6 Related work

3.6 Related work

Recent many studies have tried to realize an automatic parallelization.

In terms of homogeneous multicores, University of Illinois at Urbana-Champaign

Polaris compiler[EHP98] exploits loop level parallelism by using symbolic analysis,

array privatization, interprocedual analysis. Stanford University SUIF compiler[HAA+96]

exploits loop level parallelism and performs an optimization for data locality by

using unimodular transform and affine partitioning[WL91, LCL99]. IBM XL com-

piler and Intel compiler also exploits loop level parallelism. However, these paral-

lelizing compilers only exploit the loop level parallism and are designed for homoge-

neous multicores. Universitat Politecnica de Catalunya NANOS compiler[GMO+00]

exploits multi-level parallelism from Fortran program. Waseda University OSCAR

compiler also exploits multi-level parallelism from C or Fortran program[KOI00,

KMM+09, MOKK10].

In terms of heterogeneous multicores, researchers came up with many solution so

as to facilitate the difficulty heterogeneous of parallel programming. A core assign-

ment strategy for Single-ISA heterogeneous multicore processsor is proposed to im-

prove performance efficiency[KTR+04]. NVIDIA and Khronos Group introduced

CUDA[GGN+08] and OpenCL[khr], a programming model for GPGPU. Program-

mers develop a program for accelerator by using these special-purpose languages.

On the other hand, PGI accelerator compiler[Wol10] and CAPS HMPP[DBB07]

compiler PGI, Cray, NVIDIA, and CAPS OpenACC[Opea] provide a high-level

programming model for accelerators, which means that these compiler generates

an accelerator binary from a C or Fortran program with annotation directives.

FE-GA compiler[HWW+11] also generates an accelerator binary from a C pro-

gram without any annotation. OmpSs[FPB+11] proposes OpenMP extensions to

61

Chapter 3 Compilation Framework for the Heterogeneous Multicore

deal with GPGPU. EXOCHI[WCC+07] provides a programming model that facil-

itates heterogeneous programming by extending OpenMP pragmas. Merge, which

extends EXOCHI, also provides a programming model and dynamically chooses

function-intrinsics for each processor to utilize all available heterogeneous proces-

sors. Qilin[LHK09] automatically decides which task should be executed on a

general-purpose processor or an accelerator at runtime. CIGAR[KGM+07] allows

programmer to map an application into CPU/FPGA platform by using profiling.

CellSs[BPBL09] performs an automatic parallelization of a subset of sequential

C program with data flow annotations on CELL BE. CellSs automatically sched-

ules tasks onto processor elements at runtime. PEPPHER[BPT+11] provides the

variant-based programming model and realize performance portability across ar-

chitecture. StarPU[ATNW11] provides a task abstraction called “codelet” and

schedules these codelet onto heterogeneous multicore as efficiently as possible.

62

3.7 Conclusion

3.7 Conclusion

This chapter has described the proposed framework including the OSCAR auto-

matic parallelizing compiler, an accelerator compiler, and API analyzer and inter-

faces among them. The input of the framework is a sequential program written in

Parallelizable C, a kind of C programming style for parallelizing compiler, or For-

tran77 and the output is an executable for a target heterogeneous and homogeneous

multicore. The compilation flow consists of 4 steps. First of all, accelerator com-

pilers or programmers insert hint directives immediately before loops or function

calls, which can be executed on the accelerator, in a sequential program. Then, the

OSCAR compiler parallelizes the source program considering with hint directives.

The compiler automatically performs (1) decomposition of a program into tasks,

(2) scheduling these tasks onto general processors and accelerators by inserting

synchronization, (3) data transfer, and (4) power control codes which controls the

frequency and the voltage of the chip. After that, the compiler generates a paral-

lelized C or Fortran program for general-purpose processors and accelerator cores

by using OSCAR API, multicore application program interface (API) including

thread APIs, memory mapping APIs, data transfer APIs and power control APIs.

At that time, the compiler generates C or Fortran source codes as separate files for

accelerator cores. Each file includes functions to be executed on accelerators when

a function is scheduled onto accelerator by the OSCAR compiler. Afterwards,

each accelerator compiler generates objects for its own target accelerator. Finally,

an API analyzer prepared for each heterogeneous multicore translates OSCAR

APIs into runtime library calls, such as pthread library. Afterwards, an ordinary

sequential compiler for each processor from each vender generates an executable.

63

Chapter 4

Parallel Processing Schemes

for Media Applications

on the Heterogeneous Multicore

Architecture

65

Chapter 4 Parallel Processing Schemes for Media Applications

4.1 Introduction

Multimedia applications such as audio encoding/decoding, movie encoding/decoding,

and image processing have been used for car navigation systems, cell phones, digi-

tal televisions in recent years. Furthermore, these applications have to be executed

immediately with low power.

Heterogeneous multicore is greatly good platform due to its characteristic, higher

performance and lower power consumption by utlizing accelerators.

The OSCAR compiler automatically parallelizes a C or Fortran program and

applies power control for heterogeneous multicores as described in Chapter 2 and

Chapter 3. This Chapter evaluates the performance of the proposed framework

on 15 core heterogeneous multicore RP-X[YIK+10] using media applications.

The rest of this chapter is organized as follows. Section 4.2 explains the RP-X

processor. Section 4.3 describes the details of evaluated applications. Section 4.4

evaluates the processing performance on the RP-X processor. Section 4.5 evaluates

the power consumption on the RP-X processor. Section 4.6 concludes this chapter.

4.2 RP-X heterogeneous multicore for consumer

electronics

This section describes the RP-X processor. The RP-X processor is composed

of eight 648MHz SH-4A general-purpose processor cores and four 324MHz FE-

GA accelerator cores, the other dedicated hardware IP such as matrix processor

“MX-2” and video processing unit “VPU5”, as shown in Fig.4.1.. Each SH-4A

core consists of a 32KB instruction cache, a 32KB data cache, a 16KB local in-

66

4.2 RP-X heterogeneous multicore for consumer electronics

SH-X3 SH-X3 SH-X3 SH-4A

I$ D$

ILM

CPU FPU

URAM

CRU

DLM

SH-4A

DTU

MX2
#0-1

SHPB

HPB
LBSC SATA SPU2 PCI

exp

DBSC
#0

DMAC
#0

DMAC
#1

DBSC
#1

FE
#0-3 VPU5

SHwy#0(Address=40,Data=128) SHwy#1(Address=40,Data=128)

SHwy#2(Address=32,Data=64)

SNC

SH-X3 SH-X3 SH-X3 SH-4A

L2C

Figure 4.1: RP-X heterogeneous multicore for consumer electronics

Table 4.1: Frequency Voltage Status in SH-4A

Frequency Voltage

FULL 648MHz 1.3V

MID 324MHz 1.1V

LOW 162MHz 1.0V

VLOW 81MHz 1.0V

struction/data memory(ILM and DLM in Fig.4.1.), a 64KB distributed shared

memory(URAM in Fig.4.1) and a data transfer unit. Furthermore, FE-GA is used

as an accelerator without controller because FE-GA is directly connected with

on-chip interconnection network named “SHwy#1”, a split transaction bus. With

regard to the power reduction control mechanism of RP-X, DVFS and clock gating

for each SH-4A core can be controlled independently using special power control

register by a user. This hardware mechanism is low overhead, for example fre-

67

Chapter 4 Parallel Processing Schemes for Media Applications

quency change needs a few clocks. Table 4.1 shows the frequency voltage status

in SH-4A. As shown in Table 4.1, “FULL”, “MID”, “LOW”, and “VLOW” means

648MHz on 1.3V, 324MHz on 1.1V, 162MHz on 1.0V, 81MHz on 1.0V respectively.

DVFS for FE-GAs cannot be applicable.

This paper evaluates both generating the object code by accelerator compiler

and using the hand-tuned library on RP-X processor.

4.3 Evaluated media applications

This section explains the detail of the evaluated media application. AAC en-

coding program, optical flow from OpenCV[opeb], optical flow from Hitach Ltd

and Tohoku university are used for the evaluation.

4.3.1 AAC encoding

AAC encoding program is based on the AAC-LC encode program provided by

Renesas Technology and Hitachi Ltd. The algorithm is a type of an audio com-

pression system. The input is a PCM file and the output is a compressed AAC

format file. The program is modified in Parallelizable C[MOKK10].

Fig.4.2 shows the program structure of the AAC encoder. As shown in Fig.4.2,

this program consists of filter bank, midside(MS) stereo, quantization and huffman

coding. These processes are applied to each frame.

The OSCAR compiler parallelizes the main loop which encodes a frame. The

hand-tuned library for filter bank, MS stereo and quantization is used for FE-GA.

Data transfer between SH-4A and FE-GA is performed by DTU via distributed

shared memory.

68

4.3 Evaluated media applications

input

Filter bank(F)

MS Stereo(M)

Quan za on(Q)

Huffman coding(H)

Bit Stream

Genera on(B)

Output

Figure 4.2: Program Structure of the AAC Encoder

4.3.2 Optical flow(OpenCV)

Optical flow program is from OpenCV[opeb]. The algorithm is a type of an

object tracking system. The input is two images and the output is a velocity field

between two images . The program is modified in Parallelizable C[MOKK10].

Fig.4.3 shows the program structure of the optical flow. The algorithm divides

a image into small block. Then for every block in the first image the algorithm

tries to find a block of the same size in the second image that is most similar to

the block in the first image[Cor].

The block size is 16x16 pixels and sum of absolute difference calculation(SAD

calculation) is used for comparing simirality between two blocks. Amount of block

shifting is 16 pixel.

The OSCAR compiler parallelizes the loop for Y-direction in searching block. In

addition, FE-GA compiler developed by Hitachi analyzed that SAD calculation,

which occupies a large part of the program execution time, is to be executed

69

Chapter 4 Parallel Processing Schemes for Media Applications

Loop for Y-direction

Loop for X-direction

SAD Calculation

Block Shift

Output Image

with Optical Flow Vector

Start

End

16 x 16pixel block

Searching block

Figure 4.3: Program Structure of the Optical Flow(OpenCV)

on FE-GA. As described in Chapter 3, FE-GA compiler automatically inserts

the hint directives to the C program. The OSCAR compiler generates parallel

C program with OSCAR API. The parallel program is translated into parallel

executable binary by using API analyzer which translates the directives to library

calls and sequential compiler and FE-GA compiler translates the program parts

in the accelerator files to FE-GA binary. Input images are two 320x352 bitmap

images. Data transfer between SH-4A and FE-GA is performed by SH-4A via data

cache.

4.3.3 Optical flow(Hand-tuned)

Another Optical flow program is developed by Hitachi Ltd and Tohoku Uni-

versity. As described in the previous subsection, the algorithm is a type of an

object tracking system. The difference between OpenCV version and this version

70

4.3 Evaluated media applications

Loop for Y-direction

Loop for X-direction

SAD Calculation

Pixel Shift

Output Image

with Optical Flow Vector

Next Frame

Start

End

N

Y

Figure 4.4: Program Structure of the Optical Flow(Hand-tuned)

is (1) the input is sequence of images, (2) amount of block shifting is 1 pixel. The

program is modified in Parallelizable C[MOKK10].

Fig.4.4 shows the program structure of the optical flow. As shown in Fig.4.4,

for a sequence of images the algorithm calculates the optical flow. The block size

is 16x16 pixels and sum of absolute difference calculation(SAD calculation) is also

used for comparing simirality between two blocks.

The OSCAR compiler parallelizes the same loop, which is shown in the previous

subsection. The hand-tuned library, which executes 81 SAD functions in parallel, is

used for FE-GA. The hint directives are inserted to the parallelizable C program by

the programmer. The OSCAR compiler generates parallel C program with OSCAR

API or directives for these library function calls. The directives in the parallel

program is translated to library calls by using API analyzer. Then, sequential

compiler generates the executables linking with hand-tuned library for SAD. Input

71

Chapter 4 Parallel Processing Schemes for Media Applications

0

3.75

7.50

11.25

15.00

1SH 2SH 4SH 8SH 2SH+1FE 4SH+2FE 8SH+4FE

12.36

5.48

2.65

5.64

3.46

1.90
1.00

Figure 4.5: Performance by The OSCAR compiler and FE-GA Compiler(Optical

Flow)

image size, number of frames and block size is 352x240, 450, 16x16, respectively.

Data transfer between SH-4A and FE-GA is performed by SH-4A via data cache.

4.4 Performance evaluation

4.4.1 Performance by The OSCAR compiler with acceler-

ator compiler

Fig.4.5. shows parallel processing performance of the optical flow on RP-X.

The horizontal axis shows the processor configurations. For example, 8SH+4FE

represents for the configuration with eight SH-4A general-purpose cores and four

FE-GA accelerator cores. The vertical axis shows the speedup against the sequen-

tial execution by a SH-4A core. As shown in Fig.4.5, the proposed compilation

framework achieves speedups of up to 12.36x with 8SH+4FE.

72

4.5 Power consumption evaluation

0

10

20

30

40

1SH 2SH 4SH 8SH 2SH+1FE 4SH+2FE 8SH+4FE

32.65

26.71

18.85

5.40
3.092.29

1.00

Figure 4.6: Performance by The OSCAR compiler and Hand-tuned Li-

brary(Optical Flow)

4.4.2 Performance by The OSCAR compiler with hand-

tuned library

Fig.4.6 shows parallel processing performance of the optical flow at RP-X. The

horizontal axis shows the processor configurations. For example, 8SH+4FE repre-

sents for the configuration with eight SH-4A general-purpose cores and four FE-GA

accelerator cores. The vertical axis shows the speedup against the sequential ex-

ecution by a SH-4A core. As shown in Fig.4.6, the proposed framework achieved

speedups of up to 32.65x with 8SH+4FE.

Fig.4.7. shows parallel processing performance of the AAC at RP-X. As shown in

Fig.4.7, the proposed framework achieved speedups of up to 16.08x with 8SH+4FE.

73

Chapter 4 Parallel Processing Schemes for Media Applications

0

5

10

15

20

1SH 2SH 4SH 8SH 2SH+1FE 4SH+2FE 8SH+4FE

16.08

8.77

4.60

6.33

3.86

1.98
1.00

Figure 4.7: Performance by The OSCAR compiler and Hand-tuned Library(AAC)

4.5 Power consumption evaluation

This section evaluates a power consumption by using optical flow and AAC en-

coding for real-time execution on RP-X. Fig.4.8 shows the power reduction by The

OSCAR compiler’s power control, under the condition satisfying the deadline. The

deadline of the optical flow is set to 33ms for each frame processing so that stan-

dard 30 [frames/sec] for moving picture processing can be achieved. The minimum

number of cores required for the deadline satisfaction of optical flow calculation

is 2SH+1FE. As shown in Fig.4.8, OSCAR heterogeneous multicore compiler re-

duces from 65% to 75% of power consumption for each processor configuration.

Although power consumption is increased by the augmentation of processor core,

the proposed framework reduces the power consumption.

Fig.4.9 shows the waveforms of power consumption in the case of optical flow

using 8SH+4FE. The horizontal axis and the vertical axis show elapsed time and

a power consumption, respectively. In the Fig.4.9, the arrow shows a processing

74

4.5 Power consumption evaluation

Without Power Control With Power Control

0

0.5

1.0

1.5

2.0

2SH+1FE 4SH+2FE 8SH+4FE

0.450.46
0.55

1.68
1.63

1.55

-65% -75%-72%

Figure 4.8: Power reduction by The OSCAR compiler’s power control (Optical

Flow)

period for one frame, or 33ms. In the case of applying power control(shown in

Fig.4.9. b), each core executes the calculation by changing the frequency and

the voltage on a chip. As a result, the consumed power ranges 0.3 to 0.7[W] by

the OSCAR compiler’s power control. On the contrary, in the case of applying

no power control(shown in Fig.4.9. a), the consumed power ranges 2.25[W] to

1.75[W].

Fig.4.10 shows the summary of frequency and voltage status for optical flow

calculation with 8SH+4FE. In this figure, FULL is 648MHz with 1.3V, MID is

324MHz with 1.1V, and LOW is 162MHz with 1.0V. Each box labeled “MID” and

“timer” “Sleep” represents macro-task. As shown in Fig.4.10., four SAD tasks

are assigned to each FE-GA, and the tasks are executed at MID. All SH-4A core

except “CPU0” is shutdown until the deadline comes. “CPU0” executes “timer”

task for satisfying the deadline. In other words, “CPU0” boot up other SH-4A

75

Chapter 4 Parallel Processing Schemes for Media Applications

0

0.5

1

1.5

2

2.5

0 200 400 600 800 1000

P
o

w
e

r[
W

]

Time

33[ms]
0

0.5

1

1.5

2

2.5

0 200 400 600 800 1000

P
o

w
e

r
[W

]

Time

33[ms]

a) Without Power Saving(Average:1.68W) b) With Power Saving(Average:0.45W)

Figure 4.9: Waveforms of Power Consumption(Optical Flow)

cores when the program execution reaches the deadline. Note that FE-GA core is

not shutdown after task execution because DVFS is only applicable.

For AAC program, an audio stream is processed per frame. The deadline of

AAC is set to encode 1 [sec] audio data within 1 [sec]. Fig.4.11 shows the wave-

forms of power consumption in the case of AAC using 8SH+4FE. In the case of

applying power control(shown in Fig.4.11. b)), each core executes the calculation

by changing the frequency and the voltage on a chip. As a result, the consumed

power ranges 0.4 to 0.55[W]. On the contrary, in the case of applying no power

control(shown in Fig.4.11. a), the consumed power ranges 1.9[W] to 3.1[W]. In

summary, the proposed framework realizes the automatically power reduction of

heterogeneous multicore for several applications.

4.6 Conclusion

This chapter has described parallel processing schemes for the motion-tracking

algorithm called optical flow and the audio encoder called advanced audio codec

76

4.6 Conclusion

CPU0 CPU1 CPU2 CPU3 CPU FE-GA00 CPU FE-GA11 CPU FE-GA22 CPU FE-GA3

Sleep

Timer

Sleep Sleep Sleep

Sleep SleepSleepMID MID MID MID

0

T
im

e

3

cycle

Sleep

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

Deadline

=1fps

=33ms

FV state example : FULL= 648MHz@1.3V, MID = 324MHz@1.1V, LOW = 162MHz@1.0V

Figure 4.10: Power Control for 8SH+4FE(Optical Flow)

(AAC) encoder. This chapter also has evaluated the processing performance and

the power reduction by the proposed framework on the RP-X heterogeneous mul-

ticore, which integrates eight general-purpose processor cores, or SH4A, and three

kinds of accelerators including dynamically reconfigurable processor (DRP) accel-

erators, or FE-GA. The RP-X is developed by Renesas, Hitachi, Tokyo Institute of

Technology and Waseda University . As a result, the framework attains speedups

of 32.6 times with eight SH-4A cores and four FE-GA cores, 18.8 times with two

SH-4A cores and one FE-GA core, 5.4 times with eight SH-4A cores against se-

quential execution by a single SH4A core and 70% of power reduction for the

optical flow on the RP-X. The proposed framework has realized an automatic

parallelization for various processor configurations.

77

Chapter 4 Parallel Processing Schemes for Media Applications

0

0.5

1

1.5

2

2.5

3

3.5

0

P
o

w
e

r
[W

]

Time

0

0.5

1

1.5

2

2.5

3

3.5

0 100 200 300 400 500

P
o

w
e

r
[W

]

Time

a) Without Power Saving(Average:1.9W) b) With Power Saving(Average:0.38W)

0.46[s]

0.46[s]

Figure 4.11: Waveforms of Power Consumption(AAC)

78

Chapter 5

A Parallel Processing Scheme

for Dose Calculation

on SMP Servers

79

Chapter 5 A Parallel Processing Scheme for Dose Calculation

5.1 Introduction

Cancer is the primary cause of a person’s death in Japan. One in three people

died of cancer according to an investigation by the Ministry of Health, Labor and

Welfare. Recently, there has been a growing interest in heavy particle radiotherapy

due to its excellent recovery rate. This is because heavy particle radiotherapy is

capable of giving much more damage to abnormal cells and less damage to normal

cells than conventional X-ray radiotherapy. Many hospitals, from the National In-

stitute of Radiological Sciences (NIRS) perform this treatment in Japan. Because

the affected area depends on a patient, a doctor must perform dose calculation,

which calculates optimal angle of beam and quantity of irradiance, by using com-

puter in advance. This calculation performs 3-D physical simulations, which is

called “Dose calculation engine”. It is necessary to repeat the dose calculation in

order to maximize the effect of the therapy during the planning process. However,

the dose calculation is time consuming, which means that only a small number of

patients is treated.

From a computer science points of view, multicore processors have attracted

much attention over years in order to attain high performance with low power

consumption. Multicore processors must be able to execute the dose calculation in

shorter time by parallelization. However, a parallel programming is greatly difficult

because a programmer have to decompose a program into tasks, and schedule these

tasks onto processor elements by inserting synchronization and data transfer codes.

In previous work, manual parallelization only achieves 2.8 times speedup by using

eight general-purpose processors[YA10]. It is essential to achieve good speedups

with the increase of general-purpose processors.

As described in Chapter 3, the OSCAR compiler is able to parallelize a Fortran

80

5.2 Overview of dose calculation

Voxels

Pencil
Beams

Figure 5.1: Dose Calculation using pencil beam algorithm

77 or Parallelizable C, a kind of programming style of C language, and automat-

ically generates a parallelized program for various kinds of multicore including

homogeneous and heterogeneous multcores.

This chapter proposes a parallel processing scheme of the dose calculation, and

evaluates a performance of automatically parallelized dose calculation program

on SMP servers by using OSCAR API. The rest of the chapter is organized as

follows: Section 5.2 describes an overview of the dose calculation. Section 5.3

proposes a parallel processing scheme of the dose calculation. Section 5.4 evaluates

a performance on several SMP servers. Section 5.5 conclude this chapter.

5.2 Overview of dose calculation

This section describes an overview of the dose calculation engine and profile

result of the dose calculation.

The calculation engine is developed by National Institute of Radiological Sci-

81

Chapter 5 A Parallel Processing Scheme for Dose Calculation

Voxels

Pencil
Beams

Figure 5.2: Scatter Calculation

ences (NIRS) and Mitsubishi Electric Corporation[YAT+10, TAS+10]. The dose

calculation engine realizes accurate dose calculation using an algorithm which sim-

ulates a natural phenomenon such as scatter in addition to a dose calculation

algorithm called pencil beam methodology.

The calculation engine calculates quantity of dose for each 3-D voxel. The input

are 3-D computerizing tomograph(CT) images and an outline of the cancer affected

area. The output is quantity of dose for each voxel. Although an original program

is written C++ language, the calculation engine is written in Parallelicable C.

The calculation engine consists of initialization, dose calculation, scatter calcu-

lation and modify calculation. The algorithms are the following:

step 1: An initialization of data

Allocate arrays which correspond to voxels. Each element of arrays is ini-

tialized to zero.

step 2: Dose Calculation using Pencil Beam Methodology

Fig.5.1 shows an image of the dose calculation. Particle beams which irradi-

ates to a patient are expressed in the composition of small pencil beam. In

82

5.2 Overview of dose calculation

for (the number of pencil beams)

for (the number of passed voxels) {

// Dose Calculation

dose = dcalc();

Voxel1[xyz] += dose;

}

Figure 5.3: The Dose Calculation

Fig.5.1, “Voxels” and “Pencil Beams” are 3-D voxel arrays and pencil beams

respectively.

The pseudo code in Fig.5.3 shows that for each voxel and pencil beam the

value calculated by function called“dcalc” is added to array called “Voxel1”.

In this code, “Voxel1” represents the voxel array, “xyz” indicates one voxel

in the voxel array.

step 3: Scatter Calculation Fig.5.2 shows an image of scatter calculation. quan-

tity of scatter values which influences on neighbor voxels are added to voxel

arrays calculated in the previous step.

Scatter phenomenon influences on all axes and the scattered value depends

on a quantity of dose in a voxel.

Fig.5.2 shows a pencil beam influences upon neighbor cell.

The pseudo code in Fig.5.4 shows that for each voxel the scattered value

calculated by function called “scalc” is added to array called “Voxel2”. In

this code, “xyz” indicates one voxel in the voxel array.

step 4: Modify Calculation

83

Chapter 5 A Parallel Processing Scheme for Dose Calculation

for (Z-Axis)

for (Y-Axis)

for (X-Axis) {

scatter = scalc(Voxel1);

for (neighbor voxels) {

// scatter is added to Voxel2

Voxel2[xyz] += scatter;

}

}

Figure 5.4: The Scatter Calculation

Modify calculation performs modification of dose values.

Fig.5.5 shows a profile result of the calculation engine on Intel Xeon processor

and IBM Power 7 processor. The parameter of these processors are described in

Section 5.4.

As shown in Fig.5.5, the dose calculation occupies 90% time of a whole execution

time on both processors. The scatter calculation is second in the execution time.

“The others” in Fig.5.5 means percentage of initialization and modification part.

5.3 Enhancing parallelism

This section proposes a parallel processing scheme of the dose calculation and

apply a tuning in order to improve a parallelism of the dose calculation.

The dose calculation is consists of an initialization, dose calculation, scatter

calculation and modify calculation as described in the previous section. This

84

5.3 Enhancing parallelism

Dose: 94.9% Dose: 92.4%

Scatter: 4.75% The Others: 0.35% Scatter: 7.6% The Others: 0.0%

(a) intel Nehalem-EP (b) IBM Power 7

Figure 5.5: Profile results on Intel/IBM processor

section explores a possibility of enhancing parallelism in terms of a code rewriting

because the original code can limit the potential parallelism without any change.

Each of the following sections explains the code rewriting details for each step.

5.3.1 Dose calculation

In the dose calculation, it is essential to exploit the beam level parallelism be-

cause the number of beams is a large number.

However, because transit area of each beam interferes with each other and the

subscript of the accessed array is not available at compile-time due to an indirect

array access, exploiting the parallelism of the dose calculation is difficult. To

expands the dimension of voxel arrays can enhance the parallelism of the loop. In

other words, each processor calculates the dose value from a part of given pencil

beams in parallel. This rewriting causes a side effect, which means that each

array calculated in parallel has to be accumulated to one array. The code which

accumulates each array is moved to the scatter calculation. The pseudo code in

Fig.5.6 shows that parallelizable version of the dose calculation.

85

Chapter 5 A Parallel Processing Scheme for Dose Calculation

/* parallelizable loop */

for (p = 0; p < nCPUs; p++)

for (the number of pencil beams/nCPUs)

for (the number of passed voxels) {

// Dose calculation

dose = dcalc();

Voxel1[xyz][p] += dose;

}

Figure 5.6: The Parallelizable Dose Calculation

In this code , “nCPUs” means the number of processors, “p” means the ID

of each processor. This rewriting allow the compiler to exploit the loop level

parallelism in the outer most loop because transit area of pencil beams calculated

by each processor does not interfere.

5.3.2 Scatter calculation

Scatter calculation calculates an influence on neighbor voxels depending on

amount of the dose value.

However, the subscript of the accessed array is not available at compile-time be-

cause an influenced voxel cannot be identified statically. Exploiting the parallelism

of the scatter calculation is difficult.

To expands the dimension of voxel arrays also can enhance the parallelism of

the loop as described in the previous subsection. The pseudo code Fig.5.7 shows

that parallelizable version of the scatter calculation.

86

5.3 Enhancing parallelism

/* parallelizable loop */

for (p = 0; p < nCPUs; p++)

for (Z-Axis/nCPUs)

for (Y-Axis)

for (X-Axis) {

for (q = 0; q < nCPUs; q++) {

Voxel1_1[xyz] += Volel1[xyz][q];

}

scatter = scalc(Voxel1_1);

for (nrighbor voxels) {

// scatter is added to Voxel2

Voxel2[xyz] += scatter;

}

}

Figure 5.7: The Parallelizable Scatter Calculation

In this code, “q” indicates the 1-D array for each processor from the expanded

2-D array, “Voxel1 1” means the array to which each 1-D is accumulated, and

“Voxel2” means represent the voxel array.

This rewriting allow the compiler to exploit the loop level parallelism in the

outer most Z-Axis loop because the scatter influence calculated by each processor

does not interfere. In other words, each processor calculates the scatter value to

neighbor voxels in parallel.

This rewriting also causes a side effect, which means that each array calculated

in parallel has to be accumulated to one array. The code in Fig.5.8 accumulates

87

Chapter 5 A Parallel Processing Scheme for Dose Calculation

/* parallelizable loop */

for (p = 0; p < nCPUs; p++) {

for (all voxel/nCPUs) {

Voxel3[xyz] += Voxel2[p][xyz];

}

}

Figure 5.8: The Accumulation Calculation

each array.

5.3.3 Initialization

In the initialization, arrays which corresponds to voxels is allocated by using

“malloc” function and are initialized to zero by using for-loop. “malloc” function

is changed to static allocation in order to avoid an overhead of “malloc” function

including heap-locking cost and initialization cost as described in Section 5.3.5.

5.3.4 Modification

The modification calculation modifies the value depending on the result of the

scatter calculation.

However, this part is not parallelized because the percentage of the modification

part is less than 0.15% in both Intel and IBM processor as shown in Fig.5.5.

A parallelization of this part is needed when 512 or more CPUs are used theo-

retically. In detail, if using 512 CPUs achieves 512 times speedups of the dose and

the scatter calculation ideally the accelerated cost equals to the cost of modifica-

88

5.4 Performance evaluation on SMP servers

tion calculation. Therefore the modification calculation is not parallelized in this

thesis.

5.3.5 Code rewriting for enhancing scalability

It is essential to parallelize program and to enhance its parallelism in the whole

program in order to exploit the capability of SMP server. Although small part

of the program limits the parallelism when many CPUs are utilized, parallelizing

the whole program is not always leads to speedups. Parallelizing for-loop which

allocates 2-D array by using “malloc” function must be avoided because “malloc”

function internally locks heap-area and it leads to performance degradation. That

is why “malloc” function is changed to static allocation.

5.4 Performance evaluation on SMP servers

This section evaluates the performance of the dose calculation engine, the par-

allelism of which is enhanced, automatically parallelized by the OSCAR compiler,

on SMP servers and analyze the results.

5.4.1 Evaluation environment

This section evaluates the dose calculation engine on two SMP servers: these

are SR16000, which integrates IBM Power 7 processors and HA8000/RS220, which

integrates Intel Xeon processors. Table 5.1 shows the configuration of each server.

Parallelized program is capable of executing on the SMP servers by native com-

pilers for each server because the OSCAR compiler works as a source-to-source

89

Chapter 5 A Parallel Processing Scheme for Dose Calculation

0

3.75

7.50

11.25

15.00

original 1CPU 2CPU 6CPU 12CPU

13.39

9.39

3.72

1.94
2.37

8.96

5.08

1.91

1.000.99

2.372.372.352.382.37

Processor Configuration

Sp
ee

du
pR

at
io

OSCAR+gccicc auto para OSCAR+icc

Figure 5.9: Evaluation Result on Intel Xeon Processor

compiler and generates OSCAR API, which extends the subset of OpenMP[Opec]

as described in Section 3.5.

As shown in Table 5.1, GNU GCC compiler, IBM XLC compiler, ICC compiler

are used for generating the executables. In addition, this section also evaluates

the performance of an automatic parallelization by XLC and ICC because XLC

and ICC are able to perform an automatic parallelizaton.

Note that a compiler option which means the compiler generates 32-bit binary

is used for Intel processor because there is not the 64-bit shared library which is

linked with the dose calculation engine.

90

5.4 Performance evaluation on SMP servers

5.4.2 Performance on HA8000/RS220(Intel Xeon)

Fig.5.9 shows the parallel processing performance of the dose calculation engine

at HA80000/RS220. The horizontal axis shows the processor configurations, “orig-

inal” means a sequential performance of the original code by using ICC and GCC,

“nCPU” means a sequential and parallel performance of the parallelism-enhanced

code as described in Section 5.3 by using the OSCAR compiler for a paralleliza-

tion and by using ICC and GCC for generating the executables. Note that the

performance of an automatic parallelization by ICC shows the performance of the

original code because the performance is better than enhanced code. The vertical

axis shows the speedup against the sequential execution by 1CPU with GCC.

As shown in Fig.5.9, the performance by an automatic parallelization by ICC

does not show the scalability such as 2.37x with 12CPUs. On the other hand,

the performance by the OSCAR compiler shows the good scalability such as 6.89x

with 12CPUs and ICC, 8.96x with 12CPUs and GCC.

Fig 5.10 shows an analysis for the execution time of the dose calculation en-

gine. The horizontal axis shows the processor configurations, “gcc” and “icc” is a

native compiler which generates the executables. The vertical axis shows a rela-

tive execution time which is normalized to the execution time of the original code

compiled by gcc. As described in Section 5.2, the dose calculation and the scatter

calculation occupies more than 96% time of a whole execution.

For GCC compiler, as the number of the CPUs increase from 1CPU to 12CPUs,

the execution time of the dose calculation decreases from 93.70 to 9.05 and the

execution time of the scatter calculation decreases from 5.25 to 1.9.

For ICC compiler, as the number of the CPUs increase from 1CPU to 12CPUs,

the execution time of the dose calculation decreases from 47.60 to 5.45 and the

91

Chapter 5 A Parallel Processing Scheme for Dose Calculation

original 1CPU 2CPU 8CPU 16CPU

Dose Scatter Init Mod

Proessor Configuration

0

20

40

60

80

100

original 1CPU 2CPU 6CPU 12CPU

gcc icc gcc icc gcc icc gcc icc gcc icc

re
la

tiv
e

tim
e

Figure 5.10: Performance Analysis on Intel Xeon Processor

execution time of the scatter calculation decreases from 3.35 to 1.45.

That is why the OSCAR compiler realize good scalability.

In terms of an automatic parallelization by ICC, ICC does not show the scalabil-

ity as shown in Fig.5.9. According to a parallelization report by ICC, ICC does not

parallelize important loops in the dose and scatter calculation due to loop carried

dependences. Although some loops in the scatter and modification calculation are

analyzed to be parallelized, ICC actually does not parallelize these loops because

the number of the iterations is insufficient. As a result, ICC achieves speedups of

2.45x for the dose calculation and 1.60x for the scatter calculation by a automatic

vectorization compared to sequential execution by GCC. In contrast, the OSCAR

compiler parallelizes important loops in the dose and scatter calculation due to its

rich analysis, pointer analysis and so on.

92

5.4 Performance evaluation on SMP servers

0

17.50

35.00

52.50

70.00

original 1CPU 32CPU 64CPU

67.58

42.18

1.411.85

49.93

28.09

1.001.04 1.821.821.821.85

Processor Configuration

Sp
ee

du
pr

at
io

OSCAR+gccxlc auto para OSCAR+xlc

Figure 5.11: Evaluation Result on IBM Power7 Processor

5.4.3 Performance on Hitachi SR16000(IBM Power7)

Fig.5.11 shows the parallel processing performance of the dose calculation en-

gine at SR16000. The horizontal axis shows the processor configurations, “origi-

nal” means a sequential performance of the original code by using XLC and GCC,

“nCPU” means a sequential and parallel performance of the parallelism-enhanced

code as described in Section 5.3 by using the OSCAR compiler for a paralleliza-

tion and by using XLC and GCC for generating the executables. Note that the

performance of an automatic parallelization by XLC shows the performance of the

original code because the performance is better than enhanced code. The vertical

axis shows the speedup against the sequential execution by 1CPU with GCC.

As shown in Fig.5.11, the performance by an automatic parallelization by XLC

does not show the scalability such as 1.82x with 64CPUs. On the other hand, the

93

Chapter 5 A Parallel Processing Scheme for Dose Calculation

0

20

40

60

80

100

original 1CPU 32CPU 64CPU

Dose Scatter Init Mod

Processor Configuration

gcc xlc gcc xlc gcc xlc gcc xlc

re
la

tiv
e

tim
e

Figure 5.12: Performance Analysis on IBM Power7 Processor

performance by the OSCAR compiler shows the good scalability such as 48.06x

with 64CPUs and XLC, 49.93x with 64CPUs and ICC.

Fig 5.12 shows an analysis for the execution time of the dose calculation en-

gine. The horizontal axis shows the processor configurations, “gcc” and “xlc” is a

native compiler which generates the executables. The vertical axis shows a rela-

tive execution time which is normalized to the execution time of the original code

compiled by gcc. As described in Section 5.2, the dose calculation and the scatter

calculation occupies more than 96% time of a whole execution.

For GCC compiler, as the number of the CPUs increase from 1CPU to 64CPUs,

the execution time of the dose calculation decreases from 95.90 to 1.69 and the

execution time of the scatter calculation decreases from 7.60 to 0.35.

For XLC compiler, as the number of the CPUs increase from 1CPU to 64CPUs,

the execution time of the dose calculation decreases from 62.60 to 1.2 and the

94

5.5 Conclusion

execution time of the scatter calculation decreases from 11.00 to 0.29.

That is why the OSCAR compiler realize good scalability.

In terms of an automatic parallelization by XLC, XLC does not show the scala-

bility as shown in Fig.5.9. According to a parallelization report by XLC, XLC does

not parallelize important loops in the dose and scatter calculation due to loop car-

ried dependences. Some loops in the initialization, dose, scatter and modification

calculation are analyzed to be parallelized, As a result, XLC achieves speedups of

1.30x for the initialize calculation, 1.77x for the dose calculation and 1.57x for the

scatter calculation compared to sequenatial execution by GCC. In contrast, the

OSCAR compiler parallelizes important loops in the dose and scatter calculation

due to its rich analysis, pointer analysis and so on.

5.5 Conclusion

This chapter has described a parallel processing scheme of dose calculation for

heavy particle radiotherapy for cancer treatment and evaluates processing perfor-

mance by the proposed framework on SMP servers. This dose calculation engine

is based on the clinically used program developed by National Institute of Radio-

logical Sciences (NIRS) and Mitsubishi Electronics. This calculation performs 3-D

physical simuations, which is called “Dose calculation engine”. It is necessary to

repeat the dose calculation in order to maximize the effect of the therapy during

the planning process. In order to reduce the simulation time by parallelization,

this thesis has proposed a processing scheme for the application and enables the

OSCAR compiler to exploit the parallelism of the calculation engine. As a result,

the proposed method attains good speedups of 9.0 times with 12 processor cores

95

Chapter 5 A Parallel Processing Scheme for Dose Calculation

on Hitachi HA8000/RS220 system based on the Intel Xeon Processor and 50.0

times with the 64 processor cores on Hitachi SR16000 system based on the IBM

Power 7 processor.

96

5.5 Conclusion

Table 5.1: Evaluation environment

SR16000 HA8000/RS220

CPU

IBM Power 7
((4.00GHz × 8)

× 4) × 4
Intel Xeon X5670

(2.93GHz × 6) × 2

L1 D-Cache 32KB / 1 CPU 32KB / 1 CPU

L1 I-Cache 32KB / 1 CPU 32KB / 1 CPU

L2 cache 256KB / 1 CPU 256KB / 1 CPU

L3 cache 32MB / 8 CPU 12MB / 6 CPU

Operating
System

Red Hat
Enterprise Linux

Ubuntu
Linux

Native
Compiler1

GNU C Compiler
version 4.4.5

GNU C Compiler
version 4.4.3

Compile
Option 1 -O3 -m32 -fopenmp -O3 -m32 -fopenmp

Native
Compiler2

IBM
XLC Compiler 11.0

Intel
Parallel Studio 12.0

Compile
Option 2-1

-q64 -qsmp=omp
-O4 -qarch=pwr7
-qmaxmem=-1 -m32 -fast -openmp

Compile
Option 2-2

-q64 -qsmp=auto
-O4 -qarch=pwr7
-qmaxmem=-1 -m32 -fast -parallel

Voxel
Size 0.5mm 1.5mm

of
Beam 165018 18369

97

Chapter 6

Conclusions

99

Chapter 6 Conclusions

6.1 Summary of results

This thesis has proposed the automatic parallelizing compiler framework for

various heterogeneous multicores.

The input of the framework is a sequential program written in Parallelizable C,

a kind of C programming style for parallelizing compiler, or Fortran77 and the

output is an executable for a target heterogeneous and homogeneous multicore.

The compilation flow consists of the following 4 steps.

Step 1: Accelerator compilers or programmers insert hint directives immediately

before loops or function calls , which can be executed on the accelerator, in

a sequential program.

Step 2: the OSCAR compiler parallelizes the source program considering with

hint directives: the compiler schedules coarse-grain tasks[WHM+08] to pro-

cessor or accelerator cores and apply the low power control[KMM+09]. Then,

the compiler generates a parallelized C or Fortran program for general-

purpose processors and accelerator cores by using OSCAR API. At that

time, the compiler generates C source codes as separate files for accelerator

cores. Each file includes functions to be executed on accelerators when a

function is scheduled onto accelerator by the compiler.

Step 3: Each accelerator compiler generates objects for its own target accelerator.

Note that each accelerator compiler also generates both data transfer code

between controller and accelerator, and accelerator invocation code.

Step 4: An API analyzer prepared for each heterogeneous multicore translates

OSCAR APIs into runtime library calls, such as pthread library. After-

100

6.1 Summary of results

wards, an ordinary sequential compiler for each processor from each vender

generates an executable.

This thesis has evaluated the performance and the power consumption

Results of this thesis are summarized as follows.

6.1.1 Media applications on RP-X processor

This thesis has evaluated the performance of the proposed framework on 15 core

heterogeneous multicore RP-X[YIK+10] using media applications.

The framework attains speedups of 32.6 times with eight SH-4A cores and four

FE-GA cores, 18.8 times with two SH-4A cores and one FE-GA core, 5.4 times

with eight SH-4A cores against sequential execution by a single SH4A core and

70% of power reduction for the optical flow on the RP-X.

6.1.2 Dose calculation engine on SMP servers

This thesis has proposed a parallel processing scheme of dose calculation for

heavy particle radiotherapy for cancer treatment and evaluates processing perfor-

mance by the proposed framework on SMP servers. This dose calculation engine

is based on the clinically used program developed by National Institute of Radi-

ological Sciences (NIRS) and Mitsubishi Electronics. As a result, the proposed

method attains good speedups of 9.0 times with 12 processor cores on Hitachi

HA8000/RS220 system based on the Intel Xeon Processor and 50.0 times with

the 64 processor cores on Hitachi SR16000 system based on the IBM Power 7

processor.

101

Chapter 6 Conclusions

6.2 Future works

This thesis has realized an automatic parallelization for heterogeneous multi-

cores.

The future work is the following:

• Fully Automatic Parallelization of C program

Fully automatic parallelization of C program by enhancing analyzer such as

pointer analyzer is important because real applications usually use struc-

tures/unions.

• Power capping control

Power capping control by a compiler is required for battery powered mobile

devices including solar-powered devices

• Automatic detection of acceleration part

Detecting which parts of the program can be executed on specified acceler-

ator automatically is important because many frameworks leave it to pro-

grammers.

• Compiler-Directed Local Memory Management for Heterogeneous Multicore

Utilizing local memory by compiler is necessary for real-time heterogeneous

multicores.

102

Bibliography

[ATNW11] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-

André Wacrenier. StarPU: A Unified Platform for Task Scheduling on

Heterogeneous Multicore Architectures. Concurrency and Computa-

tion: Practice and Experience, Special Issue: Euro-Par 2009, Vol. 23,

pp. 187–198, February 2011.

[BPBL09] P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta. Cellss: a

programming model for the cell be architecture. In Proceedings of

the 2006 ACM/IEEE Conference on Supercomputing(SC’06), pp. 5–

5, 2009.

[BPT+11] S. Benkner, S. Pllana, J.L. Traff, P. Tsigas, U. Dolinsky, C. Augonnet,

B. Bachmayer, C. Kessler, D. Moloney, and V. Osipov. Peppher:

Efficient and productive usage of hybrid computing systems. Micro,

IEEE, Vol. 31, No. 5, pp. 28 –41, sept.-oct. 2011.

[Cor] Intel Corporation. Open source com-

puter vision library reference manual.

http://itee.uq.edu.au/ iris/CVsource/OpenCVreferencemanual.pdf.

103

Bibliography

[DBB07] R. Dolbeau, S. Bihan, and F. Bodin. Hmpp(tm):a hybrid multi-core

parallel programmingg environment. In GPGPU ’07: Proceedings of

the 1st Workshop on General Purpose Processing on Graphics Pro-

cessing Units, 2007.

[EHP98] R. Eigenmann, J. Hoeflinger, and D. Padua. On the automatic par-

allelization of the perfect benchmarks(r). Parallel and Distributed

Systems, IEEE Transactions on, Vol. 9, No. 1, pp. 5 –23, jan 1998.

[FPB+11] Roger Ferrer, Judit Planas, Pieter Bellens, Alejandro Duran, Marc

Gonzalez, Xavier Martorell, Rosa M. Badia, Eduard Ayguade, and

Jesus Labarta. Optimizing the exploitation of multicore processors

and gpus with openmp and opencl. In Proceedings of the 23rd interna-

tional conference on Languages and compilers for parallel computing,

LCPC’10, pp. 215–229, Berlin, Heidelberg, 2011. Springer-Verlag.

[GGN+08] M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick,

S. Morton, E. Phillips, Y. Zhang, and V. Volkov. Parallel computing

experiences with cuda. IEEE Micro, Vol. 28, No. 4, pp. 13–27, 2008.

[GMO+00] Marc Gonzalez, Xavier Martorell, Jose Oliver, Eduard Ayguade, and

Jesus Labarta. Code generation and run-time support for multi-level

parallelism exploitation. In In Proc. of the 8th International Workshop

on Compilers for Parallel Computing, 2000.

[HAA+96] M.W. Hall, J.M. Anderson, S.P. Amarasinghe, B.R. Murphy, Shih-

Wei Liao, and E. Bu. Maximizing multiprocessor performance with

the suif compiler. Computer, Vol. 29, No. 12, pp. 84 –89, dec 1996.

104

Bibliography

[HDH+10] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl,

D. Jenkins, H. Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Ja-

cob, S. Yada, S. Marella, P. Salihundam, V. Erraguntla, M. Konow,

M. Riepen, G. Droege, J. Lindemann, M. Gries, T. Apel, K. Henriss,

T. Lund-Larsen, S. Steibl, S. Borkar, V. De, R. Van Der Wijngaart,

and T. Mattson. A 48-core ia-32 message-passing processor with dvfs

in 45nm cmos. In Solid-State Circuits Conference Digest of Technical

Papers (ISSCC), 2010 IEEE International, pp. 108 –109, feb. 2010.

[HIK90] H. Honda, M. Iwata, and H. Kasahara. Coarse grain parallelism de-

tection scheme of a fortran program. Trans. of IEICE, Vol. J73-D-1,

No. 12, pp. 951–960, Dec. 1990.

[HWW+11] Akihiro Hayashi, Yasutaka Wada, Takeshi Watanabe, Takeshi

Sekiguchi, Masayoshi Mase, Jun Shirako, Keiji Kimura, and Hironori

Kasahara. Parallelizing compiler framework and api for power reduc-

tion and software productivity of real-time heterogeneous multicores.

In Proceedings of the 23rd international conference on Languages and

compilers for parallel computing, LCPC’10, pp. 184–198, Berlin, Hei-

delberg, 2011. Springer-Verlag.

[IHY+08] M. Ito, T. Hattori, Y. Yoshida, K. Hayase, T. Hayashi, O. Nishii,

Y. Yasu, A. Hasegawa, M. Takada, H. Mizuno, K. Uchiyama,

T. Odaka, J. Shirako, M. Mase, K. Kimura, and H. Kasahara. An

8640 mips soc with independent power-off control of 8 cpus and 8

rams by an automatic parallelizing compiler. In Solid-State Circuits

105

Bibliography

Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE In-

ternational, pp. 90 –598, feb. 2008.

[kas] kasahara.cs.waseda.ac.jp. Oscar-api v1.0.

http://www.kasahara.cs.waseda.ac.jp/.

[Kas03] Hironori Kasahara. Advanced automatic parallelizing compiler tech-

nology. IPSJ MAGAZINE, Apr 2003.

[KGM+07] J. H. Kelm, I. Gelado, M. J. Murphy, N. Navarro, S. Lumetta, and

W. M Hwu. Cigar: Application partitioning for a cpu/coprocessor ar-

chitecture. In 16th International Conference on Parallel Architecture

and Compilation Techniques, PACT 2007, pp. 317–326, 15 September

2007 through 19 September 2007 2007.

[KHIH90] H. Kasahara, H. Honda, M. Iwata, and M. Hirota. A compilation

scheme for macro-dataflow computation on hierarchical multiproces-

sor system. Proc. Int Conf. on Parallel Processing, 1990.

[KHM+91] H. Kasahara, H. Honda, A. Mogi, A. Ogura, K. Fujiwara, and

S. Narita. A multi-grain parallelizing compilation scheme for OS-

CAR (Optimally scheduled advanced multiprocessor). In Proceedings

of the Fourth International Workshop on Languages and Compilers

for Parallel Computing, pp. 283–297, August 1991.

[KHN90] H. Kasahara, H. Honda, and S. Narita. Parallel processing of near

fine grain tasks using static scheduling on OSCAR. Proceedings of

Supercomputing ’90, Nov. 1990.

[khr] khronos.org. Opencl. http://www.khronos.org/opencl/.

106

Bibliography

[KJJ+09] John H. Kelm, Daniel R. Johnson, Matthew R. Johnson, Neal C.

Crago, William Tuohy, Aqeel Mahesri, Steven S. Lumetta, Matthew I.

Frank, and Sanjay J. Patel. Rigel: an architecture and scalable pro-

gramming interface for a 1000-core accelerator. SIGARCH Comput.

Archit. News, Vol. 37, pp. 140–151, June 2009.

[KMM+09] K. Kimura, M. Mase, H. Mikami, T. Miyamoto, and J. Shirako H.

Kasahara. Oscar api for real-time low-power multicores nad its per-

formance on multicores and smp servers. Proc of The 22nd Interna-

tional Workship on Languages and Compilers for Parallel Comput-

ing(LCPC2009), 2009.

[KOI00] H. Kasahara, M. Obata, and K. Ishizaka. Automatic coarse grain task

parallel processing on smp using openmp. Proc of The 13th Interna-

tional Workship on Languages and Compilers for Parallel Comput-

ing(LCPC2000), 2000.

[KP03] C.E. Kozyrakis and D.A. Patterson. Scalable, vector processors for

embedded systems. Micro, IEEE, Vol. 23, No. 6, pp. 36 – 45, nov.-dec.

2003.

[KSSF10] R. Kalla, B. Sinharoy, W.J. Starke, and M. Floyd. Power7: Ibm’s

next-generation server processor. Micro, IEEE, Vol. 30, No. 2, pp. 7

–15, march-april 2010.

[KTR+04] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I.

Farkas. Single-isa heterogeneous multi-core architectures for multi-

threaded workload performance. In Proceedings -31st Annual Inter-

107

Bibliography

national Symposium on Computer Architecture, pp. 64–75, 19 June

2004 through 23 June 2004 2004.

[KTT+06] T. Kodama, T. Tsunoda, M. Takada, H. Tanaka, Y. Akita, M. Sato,

and M. Ito. Flexible engine: A dynamic reconfigurable accelerator

with high performance and low power consumption. In Proc. of 9th

IEEE Symposium on Low-Power and High-Speed Chips(COOL Chips

IX), Apr. 2006.

[LCL99] Amy W. Lim, Gerald I. Cheong, and Monica S. Lam. An affine

partitioning algorithm to maximize parallelism and minimize com-

munication. In Proceedings of the 13th international conference on

Supercomputing, ICS ’99, pp. 228–237, New York, NY, USA, 1999.

ACM.

[LHG+06] D. Luebke, M. Harris, N. Govindaraju, A. Lefohn, M. Houston,

J. Owens, M. Segal, M. Papakipos, and I. Buck. Gpgpu: General-

purpose computation on graphics hardware. In 2006 ACM/IEEE

Conference on Supercomputing, SC’06, 11 November 2006 through

17 November 2006 2006.

[LHK09] C. Luk, S. Hong, and H. Kim. Qilin: Exploiting parallelism on

heterogeneous multiprocessors with adaptive mapping, microarchitec-

ture. 2009. MICRO-42. Proceedings. 42th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture, pp. 45–55, 2009.

[LLW+06] Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge,

C. Chakrabarti, and K. Flautner. Soda: A low-power architecture for

108

Bibliography

software radio. In 33rd International Symposium on Computer Archi-

tecture, ISCA 2006, Vol. 2006, pp. 89–100, 17 June 2006 through 21

June 2006 2006.

[MOKK10] M. Mase, Y. Onozaki, K. Kimura, and H. Kasahara. Parallelizable c

and its performance on low power high performance multicore proces-

sors. In Proc. of 15th Workshop on Compilers for Parallel Computing,

Jul. 2010.

[MTT+07] YOSHIDA Masayasu, SUGIHARA Takeshi, TAKAHASHI Toshiaki,

KOUMOTO Yasuhiko, and ISHIHARA Toshinori. Naviengine 1, sys-

tem lsi for smp-based car navigation systems. NEC TECHNICAL

JOURNAL, Vol. 2, No. 4, 2007.

[MYK+10] T. Maruyama, T. Yoshida, R. Kan, I. Yamazaki, S. Yamamura,

N. Takahashi, M. Hondou, and H. Okano. Sparc64 viiifx: A new-

generation octocore processor for petascale computing. Micro, IEEE,

Vol. 30, No. 2, pp. 30 –40, 2010.

[NMM+09] H. Nakano, T. Momozono, M. Mase, K. Kimura, and H. Kasahara.

Local memory management scheme by a compiler on a multicore pro-

cessor for coarse grain task parallel processing. Trans. of IPSJ on

Computing Systems(in Japanese), Vol. 2, No. 2, pp. 63–74, 2009.

[NTF+08] S. Nomura, F. Tachibana, T. Fujita, Chen Kong Teh, H. Usui,

F. Yamane, Y. Miyamoto, C. Kumtornkittikul, H. Hara, T. Ya-

mashita, J. Tanabe, M. Uchiyama, Y. Tsuboi, T. Miyamori, T. Ki-

tahara, H. Sato, Y. Homma, S. Matsumoto, K. Seki, Y. Watanabe,

109

Bibliography

M. Hamada, and M. Takahashi. A 9.7mw aac-decoding, 620mw h.264

720p 60fps decoding, 8-core media processor with embedded forward-

body-biasing and power-gating circuit in 65nm cmos technology. In

Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Tech-

nical Papers. IEEE International, pp. 262 –612, feb. 2008.

[NYY+07] M. Nakajima, T. Yamamoto, M. Yamasaki, T. Hosoki, and M. Sumita.

Low power techniques for mobile application socs based on integrated

platform ”uniphier”. In ASP-DAC ’07: Proceedings of the 2007 Asia

and South Pacific Design Automation Conference, 2007.

[Opea] OpenACC. Openacc. http://www.openacc-standard.org/.

[opeb] opencv.org. Opencv. http://opencv.org/.

[Opec] OpenMP.org. Openmp. http://www.openmp.org/.

[PAB+05] D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P. Hofstee, C. Johns,

J. Kahle, A. Kameyama, J. Keaty, Y. Masubuchi, M. Riley, D. Shippy,

D. Stasiak, M. Suzuoki, M. Wang, J. Warnock, S. Weitzel, D. Wendel,

T. Yamazaki, and K. Yazawa. The design and implementation of a

first-generation cell processor. In 2005 IEEE International Solid-State

Circuits Conference, ISSCC, Vol. 1, pp. 184–592, 6 February 2005

through 10 February 2005 2005.

[SCS+08] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,

S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Gro-

chowski, T. Juan, and P. Hanrahan. Larrabee: A many-core x86

110

Bibliography

architecture for visual computing. ACM Transactions on Graphics,

Vol. 27, No. 3, 2008.

[SOW+07] J. Shirako, N. Oshiyama, Y. Wada, H. Shikano, K. Kimura, and

H. Kasahara. Compiler control power saving scheme for multi core

processors. Lecture Notes in Computer Science 4339, pp. 362–376,

2007.

[sta] The Message Passing Interface(MPI) standard. Mpi.

http://www.mcs.anl.gov/research/projects/mpi/.

[TAS+10] Takatani, Abe, Sakamoto, Kondo, Fuji, Yamaji, Hamada, Takahashi,

Yamamoto, Adachi, and Kanematsu. Development of radiation treat-

ment planning system for heavy-ion therapy. Technical Report of

Japan Society of Medical Physics(in Japanese), 2010.

[TST+05] S. Torii, S. Suzuki, H. Tomonaga, T. Tokue, J. Sakai, N. Suzuki,

K. Murakami, T. Hiraga, K. Shigemoto, Y. Tatebe, E. Obuchi,

N. Kayama, M. Edahiro, T. Kusano, and N. Nishi. A 600mips 120mw

70microa leakage triple-cpu mobile application processor chip. ISSCC,

2005.

[WCC+07] P. H. Wang, J. D. Collins, G. N. Chinya, H. Jiang, X. Tian, M. Girkar,

N. Y. Yang, G. Y Lueh, and H. Wang. Exochi: Architecture and pro-

gramming environment for a heterogeneous multi-core multithreaded

system. In PLDI’07: 2007 ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, pp. 156–166, 10 June

2007 through 13 June 2007 2007.

111

Bibliography

[WHM+08] Y. Wada, A. Hayashi, T. Masuura, J. Shirako, H. Nakano, H. Shikano,

K. Kimura, and H. Kasahara. Parallelizing compiler cooperative het-

erogeneous multicore. In Proceedings of Workshop on Software and

Hardware Challenges of Manycore Platforms, SHCMP’08, Jun. 2008.

[WL91] M.E. Wolf and M.S. Lam. A loop transformation theory and an al-

gorithm to maximize parallelism. Parallel and Distributed Systems,

IEEE Transactions on, Vol. 2, No. 4, pp. 452 –471, oct 1991.

[Wol10] Michael Wolfe. Implementing the pgi accelerator model. In GPGPU

’10: Proceedings of the 3rd Workshop on General-Purpose Computa-

tion on Graphics Processing Units, 2010.

[WSM+09] Mark Woh, Sangwon Seo, Scott Mahlke, Trevor Mudge, Chaitali

Chakrabarti, and Krisztian Flautner. Anysp: anytime anywhere any-

way signal processing. SIGARCH Comput. Archit. News, Vol. 37, pp.

128–139, June 2009.

[YA10] Yamamoto and Adachi. The development of a dose calculation engine

for a particle therapy. Technical Report of MSS(in Japanese), Vol. 21,

pp. 36–42, december 2010.

[YAT+10] Yamamoto, Adachi, Takatani, Abe, Sakamoto, and Kanematsu. De-

velopment of dose calculation engine for heavy-ion therapy. Technical

Report of Japan Society of Medical Physics(in Japanese), 2010.

[YIK+10] Y. Yuyama, M. Ito, Y. Kiyoshige, Y. Nitta, S. Matsui, O. Nishii,

A. Hasegawa, M. Ishikawa, T. Yamada, J. Miyakoshi, K. Terada,

T. Nojiri, M. Satoh, H. Mizuno, K. Uchiyama, Y. Wada, K. Kimura,

112

Bibliography

H. Kasahara, and H. Maejima. A 45nm 37.3gops/w heterogeneous

multi-core soc. IEEE International Solid-State Circuits Conference,

ISSCC, pp. 100–101, Feb. 2010.

[YKH+07] Y. Yoshida, T. Kamei, K. Hayase, S. Shibahara, O. Nishii, T. Hat-

tori, A. Hasegawa, M. Takada, N. Irie, K. Uchiyama, T. Odaka,

K. Takada, K. Kimura, and H. Kasahara. A 4320mips four-processor

core smp/amp with individually managed clock frequency for low

power consumption. IEEE International Solid-State Circuits Con-

ference, ISSCC, pp. 100–590, Feb. 2007.

113

Acknowledgements

First of all, I express my sincere appreciation to Professor Hironori Kasahara of

Waseda University for his encouragement, constant guidance and support during

this work. I also express deep thanks to Associate Professor Keiji kimura of Waseda

University for his kind advices and help through my doctoral course. I also express

my gratitude to Professor Satoshi Goto and Professor Nozomu Togawa of Waseda

University for reviewing this work. A part of this research has been supported by

NEDO “Advanced Heterogeneous Multiprocessor”, NEDO “Heterogeneous Multi-

core for Consumer Electronics”, and MEXT project “Global COE Ambient Soc”.

I would like to express sincere appreciation for their valuable technical discussion

to Dr. Kunio Uchiyama, Dr. Toru Nojiri, Mr. Koichi Terada, Dr. Hiroaki Shikano

from Hitachi, Mr. Jun Hasegawa, Mr. Masayuki Ito from Renesas Electronics, Dr.

Moriyuki Takamura from Fujitsu laboratories, Mr. Takahiro Kumura from NEC

Corporation, Dr. Masato Edahiro from Nagoya University. Dr. Makoto Sato from

Renesas Solutions, Mr. Yasuyuki Takatani from Mitsubishi electric corporation,

Mr. Hironori Saki and Mr. Keiji Yamamoto from Mitsubishi space software, Mr.

Kenji Nishikawa, Mr. Shigeru Sasaki and Mr. Mitsuo Sawada from Toyota motor

corporation, Mr. Yuji Mori, Mr. Mitsuhiro Tani from denso corporation.

I express my sincere thanks to Dr. Yasutaka Wada from Waseda University

for his direct guidance, helpful support and continuous encouragement during the

115

researches. I would like to deep thank to Dr. Hirofumi Nakano Dr. Jun Shirako

Dr. Fumiyo Takano Dr. Takamichi Miyamoto Dr. Masayoshi Mase for many kind

advices and supports. I also would like to thank to the all students and alumni in

Kasahara and Kimura Laboratory, Waseda University.

I would like to give a special thanks to Prof Takeshi Ikenaga from Waseda Uni-

versity, Mr. Keita Miyamura from IBM, Mr. Yoichi Matsuyama from Waseda

University, Ms. Miki Yajima from NTT comware, Mr. Hiroaki Tano from SONY,

Mr. Yuta Murata from SONY, Mr. Toru Hotta from Yahoo, Mr. Shingo Morita

from IBM, Mr. Shu Miyakita from NTT communications, Mr. Kenichi Honma

from NTT communications, Mr. Atsushi Yamasaki from KDDI, Mr. Norihiro

Sugimoto from NTT data, Mr. Tetsuma Yoshino from SONY, Mr. Takeshi Ma-

suura from SONY, Mr. Teruo Kamiyama from Panasonic, Mr. Masato Hayashi

from Hitachi, Mr. Takeshi Watanabe from Fujitsu, Mr. Tetsuya Yamamoto from

Japan management system, Mr. Takeshi Sekiguchi from Panasonic.

Finally, I thank my family for their kind support over the years.

116

Publications

Papers

○ Akihiro Hayashi, Mamoru Shimaoka, Hiroki Mikmi, Masayoshi Mase, Yasutaka

Wada, Jun Shirako, Keiji Kimura, and Hironori Kasahara, “OSCAR Parallelizing

Compiler and API for Real-time Low Power Heterogeneous Multicores”, The 16th

Workshop on Compilers for Parallel Computing(CPC2012), January 11-13, 2012,

Padova, Italy.

○Akihiro Hayashi, Yasutaka Wada, Takeshi Watanabe, Takeshi Sekiguchi,Masayoshi

Mase, Jun Shirako, Keiji Kimura, and Hironori Kasahara, “Parallelizing Compiler

Framework and API for Heterogeneous Multicores”, Trans. of IPSJ on Computing

Systems, Vol.5(ACS36), 2012 (in Japanese)

○Akihiro Hayashi, Yasutaka Wada, Takeshi Watanabe, Takeshi Sekiguchi,Masayoshi

Mase, Jun Shirako, Keiji Kimura, and Hironori Kasahara, “Parallelizing Compiler

Framework and API for Power Reduction and Software Productivity of Real-time

Heterogeneous Multicores”, Lecture Notes in Computer Science, Springer, Vol.

6548, pp.184-198,Feb., 2011.

117

Publications

○Akihiro Hayashi, Yasutaka Wada, Takeshi Watanabe, Takeshi Sekiguchi, Masayoshi

Mase, Jun Shirako, Keiji Kimura and Hironori Kasahara, “Parallelizing Compiler

Framework and API for Power Reduction and Software Productivity of Real-time

Heterogeneous Multicores”, The 23rd International Workshop on Languages and

Compilers for Parallel Computing (LCPC2010), Rice University, Houston, Texas,

Oct. 2010.

Hiroki Mikami, Shumpei Kitaki, Masayoshi Mase, Akihiro Hayashi, Mamoru

Shimaoka, Keiji Kimura, Masato Edahiro, and Hironori Kasahara, “Evaluation

of Power Consumption at Execution of Multiple Automatically Parallelized and

Power Controlled Media Applications on the RP2 Low-power Multicore”, The

24th International Workshop on Languages and Compilers for Parallel Computing

(LCPC2011), Colorado State University, Fort Collins, Colorado, Sept 8-10, 2011.

Yasutaka Wada, Akihiro Hayashi, Takeshi Masuura, Jun Shirako, Hirofumi Nakano,

Hiroaki Shikano, Keiji Kimura, and Hironori Kasahara, “A Parallelizing Compiler

Cooperative Heterogeneous Multicore Processor Architecture”, Transactions on

High-Performance Embedded Architectures and Compilers IV, Lecture Note in

Computer Science, Springer, Vol. 6760, pp. 215-233, Nov., 2011.

Takumi Nito, Yoichi Yuyama, Masayuki Ito, Yoshikazu Kiyoshige, Yusuke Nitta,

Osamu Nishii, Atsushi Hasegawa, Makoto Ishikawa, Tetsuya Yamada, Junichi

Miyakoshi, Koichi Terada, Tohru Nojiri, Masashi Takada, Makoto Satoh, Hi-

royuki Mizuno, Kunio Uchiyama, Yasutaka Wada, Akihiro Hayashi, Keiji Kimura,

Hironori Kasahara, Hideo Maejima, “A 45nm Heterogeneous Multi-core SoC Sup-

118

Publications

porting an over 32-bits Physical Address Space for Digital Appliance”, Proc. of

13th IEEE Symposium on Low-power and High-Speed Chips(COOL Chips XIII),

Yokohama, Japan, Apr. 2010.

Hiroki Mikami, Jun Shirako, Masayoshi Mase, Takamichi Miyamoto, Hirofumi

Nakano, Fumiyo Takano, Akihiro Hayashi, Yasutaka Wada, Keiji Kimura, Hi-

ronori Kasahara, “Performance of OSCAR Multigrain Parallelizing Compiler on

Multicore Processors”, The 14th Workshop on Compilers for Parallel Comput-

ing(CPC 2009), Zurich, Switzerland Jan. 2009.

Yasutaka Wada, Akihiro Hayashi, Takeshi Masuura, Jun Shirako, Hirofumi Nakano,

Hiroaki Shikano, Keiji Kimura, Hironori Kasahara, “Parallelizing Compiler Coop-

erative Heterogeneous Multicore”, Proc. of Workshop on Software and Hardware

Challenges of Manycore Platforms (SHCMP 2008), Beijing, China, Jun. 2008.

Yasutaka Wada, Akihiro Hayashi, Takeshi Masuura, Jun Shirako, Hirofumi Nakano,

Hiroaki Shikano, Keiji Kimura, Hironori Kasahara, “Parallelization of MP3 En-

coder using Static Scheduling on a Heterogeneous Multicore. Trans. of IPSJ on

Computing Systems, Vol. 49(ACS22), 2008 (in Japanese)

Hiroaki Shikano, Masaki Ito, Kunio Uchiyama, Toshihiko Odaka,　Akihiro Hayashi,

Takeshi Masuura, Masayoshi Mase, Jun Shirako, Yasutaka Wada, Keiji Kimura,

Hironori Kasahara “Software-Cooperative Power-Efficient Heterogeneous Multi-

Core for Media Processing” The 13th Asia and South Pacific Design Automation

Conference(ASP-DAC2008), Seoul, Korea, Jan. 2008.

119

Publications

Technical Reports (in Japanese)

Akihiro Hayashi, Takuji Matsumoto, Hiroki Mikami, Keiji Kimura, Keiji Ya-

mamoto, Hironori Saki, Yasuyuki Takatani, Hironori Kasahara, “Automatic Par-

allelization of Dose Calculation Engine for A Particle Therapy on SMP Servers”

Technical Report of IPSJ, Vol.2011-ARC189HPC132-2(HOKKE2011), Nov. 2011

Akihiro Hayashi, Takeshi Sekiguchi, Masayoshi Mase, Yasutaka Wada, Keiji Kimura,

Hironori Kasahara, “Hiding I/O overheads with Parallelizing Compiler for Media

Applications”, Technical Report of IPSJ, Vol.2011-ARC-195OS117-14, Apr. 2011.

Takuya Sato, Hiroki Mikami, Akihiro Hayashi, Masayoshi Mase, Keiji Kimura,

Hironori Kasahara, “Evaluation of Parallelizable C Programs by the OSCAR API

Standard Translator”, Technical Report of IPSJ, Vol.2010-ARC-191-2, Oct. 2010.

Akihiro Hayashi, Yasutaka Wada, Takeshi Watanabe, Takeshi Sekiguchi, Masayoshi

Mase, Keiji Kimura, Masayuki Ito, Jun Hasegawa, Makoto Sato, Toru Nojiri, Ku-

nio Uchiyama, Hironori Kasahara, “A Compiler Framework for Heterogeneous

Multicores for Consumer Electronics”, Technical Report of IPSJ, Vol.2010-ARC-

190-7(SWoPP2010), Aug. 2010.

Yasutaka Wada, Akihiro Hayashi, Takeshi Watanabe, Takeshi Sekiguchi, Masayoshi

Mase, Jun Shirako, Keiji Kimura, Masayuki Ito, Jun Hasegawa, Makoto Sato,

120

Publications

Toru Nojiri, Kunio Uchiyama, Hironori Kasahara, “Performance of Power Reduc-

tion Scheme by a Compiler on Heterogeneous Multicore for Consumer Electronics

RP-X”, Technical Report of IPSJ, Vol.2010-ARC-190-8(SWoPP2010), Aug. 2010.

Teruo Kamiyama, Yasutaka Wada, Akihiro Hayashi, Masayoshi Mase, Hirofumi

Nakano, Takeshi Watanabe, Keiji Kimura, Hironori Kasahara, “Performance Eval-

uation of Parallelizing Compiler Cooperated Heterogeneous Multicore Architecture

Using Media Applications”, Technical Report of IPSJ, Vol.2009-ARC-173, Jan.

2009.

Yasutaka Wada, Akihiro Hayashi, Taketo Iyoku, Jun Shirako, Hirofumi Nakano,

Hiroaki Shikano, Keiji Kimura, Hironori Kasahara, “A Hierarchical Coarse Grain

Task Static Scheduling Scheme on a Heterogeneous Multicore” Technical Report

of IPSJ, Vol.2007-ARC-174-17(SWoPP2007), Aug. 2007.

Akihiro Hayashi, Taketo Iyoku, Ryo Nakagawa, Shigeru Matsumoto, Kaito Ya-

mada, Naoto Oshiyama, Jun Shirako, Yasutaka Wada, Hirofumi Nakano, Hiroaki

Shikano, Keiji Kimura, Hironori Kasahara, “Compiler Control Power Saving for

Heterogeneous Multicore Processor”, Technical Report of IPSJ, Vol.2007-ARC-

174-18(SWoPP2007), Aug. 2007.

121

Publications

Symposium

Akihiro Hayashi, Takuji Matsumoto, Hiroki Mikami, Keiji Kimura, Keiji Ya-

mamoto, Hironori Saki, Yasuyuki Takatani, Hironori Kasahara, “Automatic Paral-

lelization of Dose Calculation Engine for A Particle Therapy”, IPSJ Symposium on

High Performance Computing and Computer Science(HPCS2012), Jan 2012.(with

review)

Akihiro Hayashi, “OSCAR Parallelizing Compiler Cooperative Heterogeneous

Multi-core Architecture”, The 5th Ambient GCOE Symposium “Software Tech-

nologies and its Service for Ambient SoC”, Sep., 2009.

Posters

Akihiro Hayashi, Yasutaka Wada, Hiroaki Shikano, Jun Shirako, Keiji Kimura, Hi-

ronori Kasahara, “Compiler Cooperative Heterogeneous Multicore Architecture”,

Poster session of Waseda University Global COE Program the 2nd International

Symposium “Ambient SoC; Recent Topics and Nano-Technology and Information

Technology Applications”., Jul. 2008.

Akihiro Hayashi, Yasutaka Wada, Hiroaki Shikano, Teruo Kamiayama, Takeshi

Watanabe, Takeshi Sekiguchi, Masayoshi Mase, “OSCAR Parallelizing Compiler

Cooperative Heterogeneous Multi-core Architecture”, The Eighteenth Interna-

tional Conference on Parallel Architectures and Compilation Techniques (PACT2009),

Raleigh, North Carolina., Sep., 2009.(with review)

122

Publications

Invited Talks

Akihiro Hayashi, Yoichi Matsuyama, Ri Goto, The 6th Ambient GCOE Sympo-

sium “Toward the Realization of Ambient SoC”, Jun. 2010(in Japanese)

Akihiro Hayashi, “Orchestrating multi-core processors is difficult. How can we

cope with them?”, Global COE Workshop for RA Members., Jan., 2010.

123

