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Abstract. In the last few years, GPGPU computing has become one of the most
popular computing paradigms in high-performance computers due to its excellent
performance to power ratio. The memory requirements of GPGPU applications
widely differ from the requirements of CPU counterparts. The amount of memory
accesses is several orders of magnitude higher in GPU applications than in CPU
applications, and they present disparate access patterns. Because of this fact, large
and highly associative Last-Level Caches (LLCs) bring much lower performance
gains in GPUs than in CPUs.
This paper presents a novel approach to manage LLC misses that efficiently im-
proves LLC hit ratio, memory-level parallelism, and miss latencies in GPU sys-
tems. The proposed approach leverages a small additional Fetch and Replacement
Cache (FRC) that stores control and coherence information of incoming blocks
until they are fetched from main memory. Then, fetched blocks are swapped with
victim blocks to be replaced in the LLC. After that, the eviction of victim blocks
is performed from the FRC. This management approach improves performance
due to three main reasons: i) the lifetime of blocks being replaced is increased,
ii) the main memory path is unclogged on long bursts of LLC misses, and iii)
the average L2 miss delaying latency is reduced. Experimental results show that
our proposal increases the performance (OPC) over 25% in most of the studied
applications, reaching improvements up to 150% in some applications.

1 Introduction

In recent years, GPU (Graphics Processing Unit) architectures have acquired a great
relevance in the field of high-performance computing. The main reason has been that
GPUs are able to accelerate the execution of massively parallel applications, since they
provide a much higher level of parallelism than CPU architectures. In addition, GPUs
are energetically more efficient [1, 2] for a given performance, than its CPU counter-
parts. Because of these reasons, many supercomputers in the top 500 list [3] rely on
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GPUs. For instance, the Piz Daint supercomputer, ranked in third place of the list in
November 2017, was built with Nvidia Tesla P100 GPU devices.

GPU architectures are optimized to run applications composed of thousands of logi-
cal threads. In order to support the execution of such a high number of threads, the GPU
core must be coupled with a memory subsystem able to support a high Memory-Level
Parallelism (MLP). GPU memory subsystems are therefore designed to sustain a high
memory bandwidth. Because of the poor data temporal locality of GPGPU applications
or kernels, on a very long burst of L2 accesses many requests can miss, which cause
subsequent main memory accesses.

In this scenario, the memory subsystem of GPUs poorly performs. In this paper, we
look into the reasons explaining this behavior, and we find that one of the main sources
of performance losses of the memory subsystem is the management of L2 cache misses.
We find that conventional caches designed to address memory patterns of CPU applica-
tions do not properly meet the requirements of GPGPU applications, but they seriously
penalize their performance since they can significantly slow down the management of
L2 cache requests on long bursts of requests. The previous rationale means that improv-
ing the L2 cache management is a key design concern that should be tackled to improve
the system performance. This paper proposes a novel L2 cache design aimed at boost-
ing the memory level parallelism by adding a Fetch and Replacement Cache (FRC) that
provides additional cache lines that help unclog the memory subsystem. The FRC ap-
proach uses these extra resources to prioritize the fetch of incoming L2 cache requests
and to delay the eviction of the blocks to be replaced. The proposal has been evaluated
considering an AMD GPU based architecture, although the results would also apply in
almost all current GPU architectures as they implement a similar memory hierarchy.

The proposal has been modeled in the Multi2Sim simulation framework [4], a state-
of-the-art GPU simulator widely used in both the academia and the industry. Experi-
mental results show that FRC improves the Operations Per cycle (OPC) more than 25%
in most applications by drastically reducing the Misses Per Kilo-Operation (MPKO)
and L2 miss latency.

The remainder of this work is organized as follows. Section 2 describes the archi-
tecture of the AMD Southern Islands family of GPUs. Section 3 motivates this work by
presenting the problems that FRC tackles in current GPU memory subsystems. In Sec-
tion 4, the proposed approach is described in detail. Section 5 presents the experimental
results. Section 6 summarizes related studies about GPU memory subsystems. Finally,
in Section 7 some concluding remarks are drawn.

2 Background

This section provides some background about the architecture of modern GPUs. Since
this paper focuses on the AMD Southern Islands [5] family of GPUs, AMD terminology
is used throughout this work.

Figure 1 depicts a block diagram of an AMD Southern Islands GPU. This GPU
includes up to 32 Compute Units (CUs), each one implementing the Graphics Core Next
(GCN) [6] microarchitecture. Internally, a GCN CU consists of 4 Single Instruction
Multiple Data (SIMD) arithmetic logic units.
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Fig. 1. Diagram of an AMD Southern Islands GPU.

GPU applications or kernels are composed of a massive number of threads or work-
items. These threads are organized in 64-thread bundles, named wavefronts, which are
allocated to SIMD units. During most of the execution time of a kernel, the GPU ensures
that each SIMD unit is assigned tens of wavefronts. In this way, SIMD units can switch
among wavefronts in a fine-grain basis, which helps hide memory latencies.

A SIMD unit executes instructions from threads of a wavefront in a lockstep man-
ner. That is, at a given point of the execution time a SIMD unit is performing the same
arithmetic instruction in the 64 threads of the same wavefront. Memory reference in-
structions are also executed following the SIMD paradigm; that is, a wavefront can
generate up to 64 memory requests at the same time. To reduce the overall amount of
memory requests, those referencing the same 64-byte cache block are coalesced into a
single memory request, which is issued to the memory subsystem.

As in a conventional processor, the memory subsystem is organized hierarchically.
After being coalesced, memory requests access the L1 data cache of the correspond-
ing CU. Those requests that miss the L1 cache are forwarded to a multi-banked L2
cache, acting as Last-Level Cache (LLC). L2 banks contain interleaved block addresses
at a granularity of 256 bytes, and each bank is connected to a dual-channel memory
controller that manages the corresponding off-chip GDDR5 main memory. This design
reduces the number of channel conflicts and increases the memory bandwidth utiliza-
tion.

3 Motivation

The coalesce mechanism reduces the number of requests to the memory subsystem.
However, GPGPU applications generate enormous amounts of memory traffic; for in-
stance, a typical GPU can issue thousands of memory requests in a given cycle. These
amounts yield conventional cache organizations to significant performance losses. The
main reason is that the massive number of threads is executing in parallel causes sudden
bursts of memory transactions, which involve a high number of cache replacements. As
a consequence, in a relatively short interval of time, a given cache line can suffer a long
number (e.g. in the order of tens) of consecutive block replacements, each one involv-
ing different actions such as coherence invalidations or accesses to lower levels of the
memory hierarchy. Since these actions are serialized at the cache line, the management
of cache replacements becomes a major performance bottleneck, which can heavily
reduce the MLP and the L2 hit ratio.

To help understand the problem, Figure 2 depicts a time diagram with the events
involved in three consecutive replacements all targeting the same L2 victim line. The
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Fig. 2. Sequence of events involved in three consecutive replacements targeting the same L2 cache
line for both the conventional and the proposed approaches.

three requests causing these replacements have been labeled as Req. B, C, and D, and
have been generated at cycles 0, 90, and 240, respectively, after the requests miss the
L1 cache and are forwarded to the L2 cache.

As can be seen in Figure 2a, which shows the behavior of a conventional replace-
ment approach, Req. B triggers the replacement of the currently stored block (block A).
From this moment, the victim line is in a transient state (represented by dashed lines),
preventing other requests from accessing the line. To manage the replacement, depend-
ing on the state of A, an invalidation to the L1 cache and an L2 cache eviction must
be performed. Once the victim line is freed, the requested incoming block (B), must be
fetched from main memory and allocated to this line.

While block B is being fetched, Req. C arrives to L2, which triggers another re-
placement in the same victim line. However, because of the line is in a transient state,
Req. C must be enqueued. Thus, Req. C cannot be attended until cycle 210, delaying its
completion until cycle 400. This serialization also affects Req. D at cycle 240.

Moreover, the hit ratio is also reduced, since i) the invalidation and eviction of the
contents of a victim line are performed before fetching the requested block and ii) the
fetch operation is the longest one involved in a replacement due to the high main mem-
ory latencies. As an example, even if a complex protocol allows reading the contents
of a cache line while it is in a transient state, a load requesting block A would only hit
between cycles 0 and 90, and would miss afterwards.

Although theoretically possible, it is very rare that this situation occurs in a conven-
tional CPU processor since there is likely a non-transient line in the same cache set that
can be selected as a victim, which avoids the serialization of replacements. In contrast,
in GPUs, it is often the case that a burst of misses triggers replacements in all the lines
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of the same cache set. Therefore, further misses targeting the same set cannot be served
from memory, which impacts on the exploited memory parallelism.

A naive solution to this problem is blindly increasing cache associativity so that a
set has more available lines. However, this approach incurs in high latencies and energy
penalties since associative tag lookups do not scale well with the number of ways.
Moreover, although such a solution may alleviate the problem, larger sets can also be
blocked provided that bursts of misses affecting the same cache set are large enough.

4 FRC Approach

The proposed approach is aimed at increasing MLP and LLC hit ratio. With this aim,
we introduce a Fetch and Replacement Cache (FRC) to each L2 cache bank. The FRC
provides additional cache lines that allow i) start fetching from memory as soon as
an L2 miss rises, increasing MLP, and ii) performing invalidation and eviction actions
after fetching the requested block, which increases the lifetime of victim blocks and the
overall hit ratio.

Figure 2b shows how the FRC can help improve the management of consecutive
replacements affecting the same line. By cycle 10, when Req. B misses in L2, instead
of immediately invalidating the victim line, a free FRC entry (FRC0) is allocated and
used to fetch block B. After this block is fetched, the contents of the victim line and
FRC0 are swapped. Then, the invalidation and eviction of block A are performed from
FRC0, which becomes free when the eviction is completed. In this way, fetch actions
can be performed as long as there are free FRC entries (e.g. the fetch of block C can
start in parallel at cycle 90). To ensure that there are free FRC entries, they are recycled.
Thus, after block A has been replaced, FRC0 is freed, which allows this entry to be
used later by Req. D.

The swap operation guarantees that the victim line is never in a transient state (note
that it is not represented with dashed lines in Figure 2b), and that the invalidation and
eviction of its contents are performed after the requested block is fetched. Consequently,
FRC supports a higher cache level parallelism that allows responding to several requests
at the same time. Furthermore, compared to the conventional approach, the lifetime of
the victim block becomes longer when FRC is used.

Tags and control bits of blocks in transient state are stored in the FRC. Thus, to
reduce tag lookup overhead, FRC is organized as a conventional cache, although its
geometry (i.e. associativity and number of sets) can be different from that of the L2
cache. L2 accesses must search the requested block both in the target L2 bank and its
associated FRC. A hit in the L2 bank is performed as in the conventional approach,
while a hit in FRC for a block being fetched is enqueued until the fetch operation
completes.

As shown in Figure 3, the FRC approach modifies the classical miss management
by adding the events highlighted in gray color. On an L2 miss (both in the L2 bank and
the FRC), and if there are free entries in the FRC’s set mapped to the missing block,
the block is assigned to a FRC ’s entry and the access is immediately propagated to
the lower memory hierarchy level (early fetch). Once the fetch has been performed, the
miss can be already served. In this way, the victim block eviction is taken out of the
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critical path. To manage the eviction without leaving L2 cache lines in a transient state,
the data stored in the FRC’s entry and the victim line are swapped. Thereby, the eviction
is done from the FRC’s entry. Once the eviction has finished, the FRC’s entry is set as
free to handle subsequent L2 misses.

Finally, note that in case there is not any free entry in the FRC’s set targeted by
the missing block, the proposed approach operates like the conventional approach. In
addition, FRC does not change the state of blocks stored in the cache, but only modifies
the resources they are using. Thus, it does not affect the coherence protocol.

Overall, as experimental results will show, FRC has three main impacts on perfor-
mance: i) new requests do not wait (or wait much less) for cache block’s evictions,
which reduces the memory access latency, ii) the lifetime of an L2 block becomes
longer, decreasing the number of misses, and iii) a higher MLP is achieved, since FRC
allows immediate access to lower memory levels as long as there are free FRC entries.

5 Experimental Evaluation

To evaluate the proposal, we have modeled the FRC approach with the Multi2Sim [4]
simulation framework. We focus on the Southern Islands GPU architecture from AMD,
which is one of the most recent GPU architectures modeled on a detailed simulation
framework. In particular, we model the characteristics of an HD7770 GPU [6], includ-
ing CUs, L1 and L2 caches, memory controllers, and GDDR5 memory [7]. The L2
cache consists of two 16-way 128KB banks, which is our baseline configuration. In
addition, to evaluate the impact on performance of cache associativity and capacity,
we evaluate two additional conventional L2 caches consisting of two 32-way 256KB
banks and two 32-way 512KB banks. Both configurations are compared to the FRC
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Fig. 4. Operations Per Cycle (OPC) across the studied applications.

one, which is composed of the baseline configuration plus two additional FRCs (1 per
bank). We analyze the sensitivity our proposal to the number of FRC entries, which
ranges between 4 and 512. All the evaluated FRC configurations, except the smallest
one with 4 entries, are organized with 8-way sets.

Notice that the FRC approach represents a minor area increase over the baseline,
since the area occupied by an additional FRC is much smaller than doubling or qua-
drupling the cache bank capacity, which would present roughly the same cost in area
as adding 2048 and 6144 entries, respectively. Nevertheless, we conservatively assume
that all the analyzed L2 cache configurations have the same access time.

For evaluation purposes, a subset of the OpenCL SDK 2.5 benchmarks [8] has been
used, covering all the possible performance behaviors from the entire benchmark suite.
These benchmarks are executed until completion.

5.1 Performance Analysis

System performance has been quantified in terms of Operations Per Cycle (OPC), which
is analogous to its counterpart IPC used to evaluate CPU processors [7]. This metric ac-
counts for the number of single scalar operations each GPU instruction executes during
the workload execution. For instance, if a given vector instruction is internally executed
as 64 individual scalar operations, this metric accounts for 64 operations instead of only
one instruction.

Figure 4 shows the OPC for the studied benchmarks. The red bar on the left side
of each plot represents the 2×128KB L2 baseline cache, and the two red bars on the
right side represent the 2×256KB L2 cache and the 2×512KB L2 cache, respectively.
The black bars show results of the FRC configuration varying the number of entries
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Fig. 5. Misses Per Kilo-Operation (MPKO) in the L2 cache.

per FRC ranging from 4 to 512, labeled as +Ne, where N indicates the number of en-
tries. The proposed approach achieves, across most of the studied applications, OPC
improvements higher than 25% compared to the baseline, reaching improvements up
to 150% in applications such as FastWalshTransform and MersenneTwister.
In general, it can be observed that almost all the applications achieve their highest OPC
with around 32 or 64 entries, which represents by 64× and 32× less area, respectively,
than doubling the cache bank size to 256KB. Moreover, in most applications, the per-
formance achieved by FRC is much higher than that obtained by blindly increasing the
L2 cache capacity with a higher associativity degree.

Three main behaviors can be appreciated:

– Smooth OPC increase. The OPC of applications exhibiting this behavior, which is
the common one, increases in small steps with additional FRC entries until a given
saturation point. This is the case of benchmarks such as FastWalshTransform,
MersenneTwister, and DCT.

– Sharp OPC increase. Applications presenting this behavior show significant perfor-
mance increase with just 4 FRC entries, but no remarkable OPC improvement is
observed with additional entries. This is the case of MatrixMultiplication.

– Similar OPC. Applications in this category experience the same performance across
all the studied cache approaches. This is the case of BinomialOption and
URNG, mainly due to their low number of memory accesses as discussed below.
Obviously, the OPC of this type of applications is also not affected when enlarging
the L2 cache size and associativity.
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Fig. 6. Average L2 miss delaying latency quantified in processor cycles.

5.2 Analysis of Memory Subsystem Metrics

To provide insights into the OPC trend shown by the studied applications, we ana-
lyze the following metrics: number of misses measured in Misses Per Kilo-Operation
(MPKO), percentage of misses served by FRC additional entries, and the L2 miss la-
tency penalty.

Misses Per Kilo-Operation. We define the metric MPKO for GPUs with analogous
meaning to the MPKI (Misses Per Kilo-Instruction), widely used when studying the
cache hierarchy of the CPU counterparts. Figure 5 plots the results. It can be observed
that the baseline configuration shows high MPKO values, which can be notably reduced
by adding FRC entries. This fact confirms the benefits on performance brought by the
FRC approach by keeping victim blocks in a non-transient state until fetch actions are
completed. As a consequence, the hit ratio is improved compared to the conventional
approach.

Overall, a clear inverse correlation between OPC and MPKO can be appreciated.
However, in a few applications like DwtHaar1D and Reduction, a significant MPKO
reduction over the baseline with a few FRC entries has a minimal effect on OPC.
On the other hand, as observed, BinomialOption and URNG present a near-zero
MPKO, meaning that no OPC gains can be achieved in these applications by act-
ing on the L2 cache. However, there are applications like BlackScholes, DCT,
QuasiRandomSequence, and SobelFilter, with a relatively low MPKO (be-
low 1.5) in the baseline which improve their OPC with an FRC. In order to explain
these behaviors, the MLP and memory latency are analyzed below.
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L2 Miss Latency. L2 cache misses can be handled either by normal cache entries or
by FRC entries. Misses handled by FRC entries can be considered as fast L2 misses
since, as explained in Section 4, they are able to access to main memory with a min-
imum delay. In other words, the more misses handled by FRC entries the better the
performance. Figure 6 plots the results of the L2 miss latency (excluding the actual
main memory access time), quantified in processor cycles.

The use of FRC entries reduce the average L2 miss latency for almost all the appli-
cations. As observed, with just 4 FRC entries, latency is largely reduced with respect
to the 256KB and 512KB cache configurations. In fact, the largest FRC configuration
completely reduces the L2 contention in most benchmarks. Nevertheless, it can be seen
that just 4 FRC entries only provide a slight latency improvement in some applications,
thus large-sized FRCs are preferred. However, DwtHaar1D and ScanLargeArrays
suffer an increase in latency as the number of FRC entries grows over around 8 entries.
This is because the parallelism level is higher than the baseline, which increases the
memory contention. Notice that, in spite of this increase, the higher MLP turns into
OPC improvements.

Percentage of Misses Served by the FRC. Since the service of misses is not stalled
in case of consecutive replacements over the same victim line, MLP is also improved.
Figure 7 shows the percentage of misses served by the FRC. As observed, FRC with
only 64 entries handles by 75% of misses in most applications. Moreover, this percent-
age significantly rises, even to almost 100% in some benchmarks, for configurations
smaller than the +512e configuration.
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The applications Matrixtranspose and BinomialOption show an unex-
pected behavior as the percentage of misses handled by FRC entries saturate in a rel-
atively low number of entries, that is, this percentage does not increase even if more
entries are added. In other words, the L2 cache misses are mostly handled by the cache
itself instead of by FRC entries. This is due to two different reasons. First, the ker-
nel of Matrixtranspose presents bursts of accesses targeting the same FRC set.
This behavior can be improved by increasing FRC associativity (8-way in these exper-
iments). Second, BinomialOption makes important use of the local memory of the
CU, which significantly reduces the number of accesses to main memory.

6 Related Work

The GPU memory subsystem performance has been widely analyzed in recent years
from different angles, including memory scheduling strategies [9–11], cache bypassing
techniques [12, 13], and optimizing the memory subsystem design [14–18]. This section
summarizes prior work in this regard.

Elastic-Cache [14] supports fine-grained L1 cache line management for those ker-
nels with irregular memory access patterns that do not efficiently exploit cache space.
Auxiliary tags for fine-grained cache line management are stored in unused shared
memory space, which is not fully occupied in many kernels.

Gebhart et al. [15] propose to dynamically adjust the storage partitioning among
registers, primary caches, and scratchpads depending on the kernel memory require-
ments, resulting in a reduction of the on-chip access latencies.

IBOM [16] is an integrated architecture that leverages unused register file entries
with lightweight ISA support to enlarge the L1 cache size. With enough cache capacity,
a set balancing technique exploits underutilized sets to improve cache usage.

Other works have proposed additional memory structures to improve GPU perfor-
mance. Wang et al. [17] incorporate a victim cache between L1 and L2 that presents the
same capacity and associativity as the L1 cache. Reused blocks are kept in the L1 cache
by enabling swap operations with the victim cache. Since a victim cache so large would
impact on energy and area, unused entries from the register file and shared memory are
proposed as an alternative to holding data that otherwise would remain in the victim
cache.

In [18], the authors propose to allocate TinyCaches between each lane in a CU and
the L1 cache to filter out memory requests to lower memory levels for energy saving
purposes. By leveraging intrinsic characteristics of CUDA and OpenCL programming
models, these caches are kept non-coherent to avoid incurring additional overheads.

All the above works primarily focus on L1 caches. In contrast, our proposed FRC
design targets LLCs where all accesses from L1 are merged and contention greatly
limits MLP. Furthermore, the FRC approach can be easily implemented in different
memory subsystem architectures, since it does not change the actions required to handle
misses, but the locations where these actions are performed (i.e. FRC entries).
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7 Conclusions

This paper has presented a novel GPU cache subsystem design that leverages a small
Fetch and Replacement Cache (FRC) between the Last-Level Cache (LLC) and the
main memory. The design provides additional cache lines that allow prioritizing the
fetch of incoming LLC cache blocks over the replacement of victim blocks. The pro-
posed design boosts the system performance by increasing the Memory-Level Paral-
lelism (MLP) and enlarging the lifetime of the victimized blocks.

FRC attacks by design three main cache performance related events, which results
in a much better L2 cache management: i) it reduces the number of Misses Per Kilo-
Operation (MPKO) by keeping victim blocks in cache until fetch actions are completed,
ii) it reduces the miss latency by starting the fetch actions from main memory as soon
as a miss rises, and iii) it increases the MLP by unclogging new block requests whose
victim line is already being replaced.

Experimental results have shown that, compared to a conventional LLC design, FRC
increases the Operations Per Cycle (OPC) over 25% in all the applications suffering
contention in main memory.
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