
Copyright

by

Dong Li

2014

The Dissertation Committee for Dong Li
certifies that this is the approved version of the following dissertation:

Orchestrating Thread Scheduling and Cache

Management to Improve Memory System Throughput

in Throughput Processors

Committee:

Donald S. Fussell, Supervisor

Douglas C. Burger, Co-Supervisor

Stephen W. Keckler

Calvin Lin

Lizy K. John

Orchestrating Thread Scheduling and Cache

Management to Improve Memory System Throughput

in Throughput Processors

by

Dong Li, B.E.; M.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2014

To my wife, my children and my parents.

Acknowledgments

I would like to thank many people who have been helping me along my

journey to complete this dissertation. First, I would like to thank my advisor,

Doug Burger, for his excellent guidance and support during my study. Doug

is a great researcher and has been a wonderful mentor. I am grateful to him

for dedicating his time to guide my research during these years.

I would also like to thank my advisor, Don Fussell, for his great men-

toring and encouragement. Don not only shared his amazing insights into the

computer architecture research, but also provided me invaluable career ad-

vice. I am very thankful to Steve Keckler. Steve played a significant role in

my graduate study. He led me to find interesting research topics in the GPU

research area. His great guidance during these years has been a key for me to

finish my dissertation.

It has been a big pleasure and my great honor to work closely with

Doug, Don and Steve when conducting research on GPU. With the excel-

lent guidance and inspiration from three great technical leaders, I have been

enjoying every minute I spent to investigate this research field.

I would like to thank the other members of my committee, Calvin Lin

and Lizy John. They have provided helpful feedback along the way. I am also

grateful to Kathryn McKinley. Kathryn has provided great technical guidance

v

during my study. I am very thankful to my colleagues and friends who helped

me to complete this work including Jeff Diamond, Behnam Robatmili, Minsoo

Rhu, Renee Amant, Curtis Dunham, Sibi Govindan, Akanksha Jain, Ashay

Ranee, Jee Ho Ryoo, Hao Wu and Jia Chen. In particular, I’d like to thank

Jeff for his deep technical insights and great encouragement during past several

years.

Finally, I would like to thank my family. My parents have always been

supportive throughout the years. I want to thank my wife, Mei Ming, who

has constantly given me support and encouragement. I thank her for being

so understanding and for supporting me through the toughest moments of my

life. I also dedicate this Ph.D thesis to my two lovely children, Tyler and

Kevin. They bring laughs and joy into my life everyday.

DONG LI

The University of Texas at Austin

April 2014

vi

Orchestrating Thread Scheduling and Cache

Management to Improve Memory System Throughput

in Throughput Processors

Dong Li, Ph.D.

The University of Texas at Austin, 2014

Supervisors: Donald S. Fussell
Douglas C. Burger

Throughput processors such as GPUs continue to provide higher peak

arithmetic capability. Designing a high throughput memory system to keep

the computational units busy is very challenging. Future throughput pro-

cessors must continue to exploit data locality and utilize the on-chip and

off-chip resources in the memory system more effectively to further improve

the memory system throughput. This dissertation advocates orchestrating

the thread scheduler with the cache management algorithms to alleviate GPU

cache thrashing and pollution, avoid bandwidth saturation and maximize GPU

memory system throughput. Based on this principle, this thesis work proposes

three mechanisms to improve the cache efficiency and the memory throughput.

This thesis work enhances the thread throttling mechanism with the

Priority-based Cache Allocation mechanism (PCAL). By estimating the cache

miss ratio with a variable number of cache-feeding threads and monitoring

vii

the usage of key memory system resources, PCAL determines the number of

threads to share the cache and the minimum number of threads bypassing

the cache that saturate memory system resources. This approach reduces the

cache thrashing problem and effectively employs chip resources that would

otherwise go unused by a pure thread throttling approach. We observe 67%

improvement over the original as-is benchmarks and a 18% improvement over

a better-tuned warp-throttling baseline.

This work proposes the AgeLRU and Dynamic-AgeLRU mechanisms to

address the inter-thread cache thrashing problem. AgeLRU prioritizes cache

blocks based on the scheduling priority of their fetching warp at replacement.

Dynamic-AgeLRU selects the AgeLRU algorithm and the LRU algorithm

adaptively to avoid degrading the performance of non-thrashing applications.

There are three variants of the AgeLRU algorithm: (1) replacement-only, (2)

bypassing, and (3) bypassing with traffic optimization. Compared to the LRU

algorithm, the above mentioned three variants of the AgeLRU algorithm en-

able increases in performance of 4%, 8% and 28% respectively across a set of

cache-sensitive benchmarks.

This thesis work develops the Reuse-Prediction-based cache Replace-

ment scheme (RPR) for the GPU L1 data cache to address the intra-thread

cache pollution problem. By combining the GPU thread scheduling priority

together with the fetching Program Counter (PC) to generate a signature as

the index of the prediction table, RPR identifies and prioritizes the near-reuse

blocks and high-reuse blocks to maximize the cache efficiency. Compared to

viii

the AgeLRU algorithm, the experimental results show that the RPR algorithm

results in a throughput improvement of 5% on average for regular applications,

and a speedup of 3.2% on average across a set of cache-sensitive benchmarks.

The techniques proposed in this dissertation are able to alleviate the

cache thrashing, cache pollution and resource saturation problems effectively.

We believe when these techniques are combined, they will synergistically fur-

ther improve GPU cache efficiency and the overall memory system throughput.

ix

Table of Contents

Acknowledgments v

Abstract vii

List of Tables xiv

List of Figures xv

Chapter 1. Introduction 1

1.1 Memory Systems in Throughput Processors 3

1.2 Key Factors that Affect GPU Memory Throughput 4

1.2.1 Cache Management Policies 4

1.2.2 GPU Thread Scheduling 6

1.2.3 Chip Resource Saturation 7

1.3 Dissertation Contribution . 9

1.4 Dissertation Organization . 13

Chapter 2. Related Work 14

2.1 Tuning Parallelism to Improve Performance 14

2.1.1 Parallelism Tuning for GPUs 14

2.1.2 Parallelism Tuning for CPUs 16

2.2 GPU Cache Allocation and Replacement Policies 17

2.3 CPU Cache Allocation and Replacement Policies 19

Chapter 3. Background 24

3.1 Contemporary GPU Architecture 24

3.2 CUDA Programming Model 25

3.3 Thread Scheduling . 27

3.4 Application Characterization 28

x

3.4.1 Cache-Sensitive Benchmarks 29

3.4.2 Thread Scheduling Effects on Cache Efficiency and Through-
put . 29

3.5 Methodology . 36

Chapter 4. Thread Scheduler Directed Priority-based Cache Al-
location 38

4.1 Understanding How Parallelism Affects Caches Hit Ratio, Chip
Resource Saturation and Throughput 40

4.1.1 Throughput . 42

4.1.2 Cache Miss Ratio . 44

4.1.3 Memory Request Latency 46

4.1.4 Chip Resource Utilization 47

4.1.5 Identifying Performance Bottleneck 56

4.2 Motivation: Two Performance Opportunities Beyond Throttling 59

4.2.1 Understanding Throttling Techniques 59

4.2.2 Two Performance Opportunities Beyond Throttling . . . 61

4.3 Token-based Prioritized Cache Allocation (PCAL) 63

4.3.1 Strategies and Challenges 64

4.3.2 Static PCAL . 67

4.4 Dynamic Optimization Strategy Selection and Bypassing Threads
Count Prediction . 71

4.4.1 Motivation for dynamic PCAL 71

4.4.2 Overview . 72

4.4.3 Extra Bypassing Thread Number Predictor 75

4.5 Bypassing Traffic Optimization 80

4.6 Opportunistic Caching . 82

4.7 PCAL on Top of CTA Level Throttling 83

4.8 Results . 83

4.8.1 Static Priority-based Cache Allocation 84

4.8.1.1 Static PCAL with Strategy One: Increasing TLP
While Maintaining Cache Hit Ratio 87

4.8.1.2 Static PCAL with Strategy Two: Increasing Cache
Hit Ratio While Maintaining TLP 94

xi

4.8.2 Dynamic Priority-based Cache Allocation 101

4.8.3 Bypassing Traffic Optimization 103

4.8.4 Applying PCAL on both L1 and L2 108

4.8.5 Results Summary . 112

4.9 Conclusion . 113

Chapter 5. Thrashing-Resistant GPU L1 Cache Replacement
and Bypassing algorithms 116

5.1 Motivation . 117

5.2 AgeLRU, a Thread-Scheduling Aware GPU Cache Replacement
and Bypassing Policy . 123

5.2.1 Overview . 123

5.2.2 Implementing AgeLRU 126

5.3 Dynamic AgeLRU . 129

5.4 Results . 131

5.4.1 Evaluating AgeLRU . 132

5.4.1.1 Replacement algorithm 134

5.4.1.2 Bypassing algorithm 136

5.4.1.3 Bypassing algorithm with bypassing traffic opti-
mization . 138

5.4.1.4 Evaluating AgeLRU with varieties of benchmarks 140

5.4.2 Evaluating Dynamic-AgeLRU 143

5.5 Summary . 144

Chapter 6. Reuse-Prediction-based Scheduler-Aware GPU Cache
Replacement Algorithm 148

6.1 Motivation . 150

6.2 Reuse-prediction-based Replacement Algorithms 154

6.2.1 Reuse Distance and Reuse Count Predictor 155

6.2.2 Cache Block Reuse Distance Sampler 158

6.2.3 Cache Replacement Controller 160

6.2.4 Cache Block Scoring Strategy 162

6.3 Optimizing Hardware Cost . 164

6.4 Results . 166

6.5 Summary . 169

xii

Chapter 7. Conclusion 171

7.1 Dissertation Contributions . 172

7.2 Future Work . 176

7.3 Practicality Discussion . 180

7.4 Concluding Thoughts . 185

Bibliography 186

Vita 204

xiii

List of Tables

1.1 Per-thread L1 cache capacity of modern throughput processors 4

3.1 Speedup of large-cache configuration 30

3.2 Cache-sensitive CUDA benchmarks 31

3.3 Classifying Benchmarks by scheduler preference 32

3.4 Baseline GPGPU-Sim configuration. 37

4.1 warp-max and warp-opt for key benchmarks 44

4.2 Identifying the bottlenecks for key benchmarks. 60

4.3 Input and Strategy of static PCAL 68

xiv

List of Figures

3.1 Chip level overview of baseline GPU 25

3.2 Streaming multiprocessor architecture. 26

3.3 Speedup of Greedy-Then-Oldest (GTO) algorithm, normalized
to throughput of Loose-Round-Robin (LRR) Scheduling algorithm 33

3.4 Comparing L1 data cache miss rate of Greedy-Then-Oldest (GTO)
algorithm and Loose-Round-Robin (LRR) scheduling algorithm 34

3.5 Comparing L2 data cache miss rate of Greedy-Then-Oldest (GTO)
algorithm and Loose-Round-Robin (LRR) scheduling algorithm 35

4.1 Chip Resources in a GPU Memory System. 41

4.2 IPC and Speedup. Varying maximum number of warps per
scheduler. 43

4.3 L1 and global cache miss ratio. Varying maximum number of
warps per scheduler. 45

4.4 Round-trip latency of memory requests. Varying number of
warps per scheduler. 47

4.5 Network on Chip (NoC) latency. Varying the maximum number
of warps per scheduler. 49

4.6 Memory pipeline stall ratio. Varying the maximum number of
warps per scheduler. 50

4.7 Breaking down the ratio of memory pipeline stall by its two
causes: L1-Block Reservation Failure, MSHR Reservation Fail-
ure. Varying maximum number of warps per scheduler. 51

4.8 Memory partition congestion ratio. Varying the maximum num-
ber of warps per scheduler. 53

4.9 Off-Chip Bandwidth Utilization of benchmarks. Varying the
maximum number of warps per scheduler. 55

4.10 Architectural Overview of PCAL Mechanism 66

4.11 Implementation of dynamic PCAL 74

4.12 Comparing the speedup of optimal static PCAL with optimal
warp-throttling . 84

xv

4.13 Speedup for static PCAL on L1 cache 86

4.14 Round-Trip latency of memory requests fetching data from DRAM
and NoC latency when static PCAL applies strategy one . . . 88

4.15 Memory Pipeline Stall caused by L1 MSHR reservation failure
when static PCAL applies strategy one 89

4.16 Overall L1 cache miss ratio and the cache miss ratio of the cache
threads (token holder) when static PCAL applies strategy one 91

4.17 L1 cache miss ratio of the bypassing threads (non token holder)
when static PCAL applies strategy one 92

4.18 Overall L1 cache miss ratio and the cache miss ratio of the cache
threads (token holder) when static PCAL applies strategy two 96

4.19 L1 cache miss ratio of the bypassing threads (non token holder)
when static PCAL applies strategy two 97

4.20 Round-Trip latency of the memory requests fetching data from
DRAM and NoC latency when static PCAL applies strategy two 99

4.21 Ratio of Memory Pipeline Stall when static PCAL applies strat-
egy two . 100

4.22 Comparing the speedup of the best static PCAL and dynamic
PCAL . 101

4.23 Comparing speedup of static PCAL with bypassing traffic op-
timization (Static PCAL-BTO) 104

4.24 Speedup for static PCAL with bypassing traffic Optimization . 106

4.25 Comparing the speedup of the best static PCAL and dynamic
PCAL, both with bypassing traffic optimization 109

4.26 Comparing the speedup of the best static PCAL on L1 and
static PCAL on L1&L2 . 110

4.27 Comparing L1 and L2 Miss rate of the best static PCAL on L1
and static PCAL on L1&L2 111

4.28 Overall speedup (normalized to baseline with maximum warp
per scheduler) . 112

5.1 Breaking down cache hits into inter-warp and intra-warp reuses 120

5.2 Flowchart of AgeLRU Replacement and Bypassing Algorithm 125

5.3 AgeLRU Implementation . 127

5.4 Identify Inactive WID with the wrap-around counters 128

5.5 Parallel Voting Mechanism . 130

5.6 Speedup of AgeLRU replacement and BIP replacement algorithms133

xvi

5.7 L1 miss rate of LRU, AgeLRU replacement and BIP replace-
ment algorithms . 133

5.8 A case study of KMN, comparing LRU, AgeLRU and BIP . . 136

5.9 Speedup of AgeLRU bypassing and BIP bypassing algorithms 137

5.10 Memory pipeline stall ratio due to L1 block reservation failure:
AgeLRU replacement and AgeLRU bypassing 137

5.11 Speedup of AgeLRU bypassing and BIP bypassing (Both with
bypassing traffic optimization) 138

5.12 Comparing speedup of AgeLRU bypassing with/without traffic
optimization . 140

5.13 Comparing memory requests round trip latency with/without
traffic optimization . 141

5.14 Speedup of AgeLRU Replacement and Bypassing with/without
traffic optimization . 142

5.15 Speedup of AgeLRU, Dynamic-AgeLRU, BIP and Optimal-DIP
replacement algorithms . 144

5.16 Speedup of AgeLRU, Dynamic-AgeLRU, BIP and Optimal-DIP
bypassing algorithms . 145

5.17 Speedup of AgeLRU, Dynamic-AgeLRU, BIP and Optimal-DIP
bypassing algorithms (all with bypassing traffic optimization) . 145

6.1 Reuse distance distribution of memory blocks in same signature
groups . 151

6.2 Overview of implementing the reuse-prediction-based Replace-
ment mechanism . 155

6.3 L1 Miss Rate of RPR with various block score function 167

6.4 Speedup of RPR with various block score function 168

xvii

Chapter 1

Introduction

Processors that target throughput computing, such as GPUs and many-

core processors, are generally referred to as throughput processors. They have

become the dominant architecture for accelerating massively parallel applica-

tions as they offer greater instruction throughput and memory bandwidth than

conventional CPUs. Such chips are being used to accelerate desktops, work-

stations, and supercomputers, and throughput computing is now emerging as

an important factor for mobile computing.

However, the transistor density of modern processors increases much

faster than the off-chip bandwidth does [6] [76]. Throughput processors are

expected to process more data in parallel in every new generation. The gap

between the peak arithmetic capability and the off-chip bandwidth will in-

evitably grow. Since memory system throughput has become a bottleneck for

GPU performance [40], contemporary GPUs integrate an on-chip cache hierar-

chy to increase memory system throughput. With a large number of threads

sharing the cache hierarchy, GPUs can only supply less than a single cache

line on average per thread at L1 level [63] [67]. Such sharing leads to con-

tention and reduces the effectiveness of caches in exploiting locality, reducing

1

the performance improvement available to GPUs for cache-sensitive workloads.

Consequently, exploiting data locality in throughput computing systems will

increase in importance to reduce both off-chip bandwidth requirements and

power.

In throughput processors, both thread scheduler and cache manage-

ment logic play important roles in cache efficiency and memory system through-

put. The thread scheduler determines the order and time of executing in-

structions from a potentially large pool of threads. It shapes memory access

patterns directly and thus has a significant effect on cache efficiency. Without

considering the effect of the thread scheduling algorithm, applying thrashing-

resistant and pollution-resistant CPU cache algorithms directly to the GPU

cache can not effectively address GPU L1 cache thrashing and pollution prob-

lems (We discuss these issues in Chapter 5 and Chapter 6 respectively). With-

out being aware of cache performance and chip resource usage, the scheduler

may oversubscribe threads which leads to cache thrashing and resource sat-

uration problems. My research goal is to orchestrate thread schedul-

ing and cache management polices, to improve cache efficiency and

memory system throughput.

While our evaluation has simulated NVIDIA GPUs with a CUDA

programming model, other throughput processors such as many-core pro-

cessors [80] [15] are also facing the challenge of improving memory system

throughput [50] [25]. Recent many-core processors such as Intel’s many-core

Larrabee [80] and Many Integrated Core (MIC) [15] processor can support hun-

2

dreds of hardware threads. The benefits of coordinating the thread scheduling

and cache management policies may also apply to these processors.

1.1 Memory Systems in Throughput Processors

GPUs rely on massive multithreading to tolerate memory latency and

deliver high throughput. For example, a modern NVIDIA Kepler GPU [67]

can have up to 30,000 threads hardware-resident and operating simultaneously.

GPU memory systems have grown to include a multi-level on-chip cache hi-

erarchy with both hardware and software controlled cache structures. The

top-end NVIDIA Kepler chip now includes a total of nearly a megabyte of

primary cache (including both hardware and software controlled cache) and

1.5MB of L2 cache. Many-core processors, which also target throughput com-

puting instead of single-thread performance, employ limited per-core threading

and relatively larger data caches. The difference between GPUs and many-core

memory systems is highlighted in Table 1.1, which summarizes the thread and

cache capacity of contemporary throughput processors. Prior research demon-

strates that the cache hierarchy in many-core processors is still essential for

good performance and energy efficiency [25]. The primary cache capacity per

thread for GPUs is 2 to 3 orders of magnitude smaller than for a many-core

processor. GPUs can only supply less than a single cache line of space on av-

erage, per thread. As a result, keeping the working set of all threads resident

in the primary cache is infeasible on a fully occupied streaming multiprocessor

(SM);

3

Table 1.1: Per-thread L1 cache capacity of modern throughput processors

NVIDIA
Kepler
[67]

NVIDIA
Fermi [63]

Intel
Larrabee
[80]

Intel
MIC
[15]

Oracle
T3 [83]

L1 Size 48 KB L1 48 KB L1 32 KB L1 32 KB L1 8 KB L1
Threads
/Core

2,048 1,536 4 4 8

L1 Ca-
pacity
/thread

24 B 32 B 8,192 B 8,192 B 1,024 B

1.2 Key Factors that Affect GPU Memory Throughput

Memory systems have been well-known performance bottlenecks for

both CPUs and throughput processors [6] [26] [76] [40] [25] [54]. For through-

put processors, there are three major factors that affect the cache efficiency

and the memory system throughput dramatically, namely cache management

policies, GPU thread scheduling and on-chip/off-chip resource saturation.

1.2.1 Cache Management Policies

Compared to a CPU cache, a GPU cache exhibits two significant dif-

ferences. First, as we demonstrate in Section 1.1, the limited per-thread cache

capacity causes a significant cache thrashing problem. Second, the cache ac-

cess stream is a mix of requests from many threads. The reuse pattern of a

cache block is often largely affected by the scheduling priority of the threads

fetching the block.

Cache management policies, such as replacement, bypassing and allo-

4

cation algorithms etc., have a direct effect on cache efficiency and thus affect

memory system throughput significantly. Parts of this dissertation focus on

enhancing cache replacement, bypassing and allocation algorithms by coordi-

nating with the GPU thread scheduling to improve cache efficiency.

An optimal cache replacement algorithm always evicts the cache blocks

that will be referenced furthest in the future. Unfortunately, oracular knowl-

edge about the future reuse of cache blocks is not available in reality, thus cache

replacement algorithms predict the reuse interval of all blocks based on past

references. The most common replacement algorithms, such as Least Recently

Used (LRU) and its approximation Not Recently Used (NRU) [27] [87], are

often based on an assumption that cache access patterns are recency-friendly.

However throughput processors’ cache access patterns are often highly affected

by thread interleaving. The reuse pattern of a cache block could be deter-

mined by the thread scheduling algorithm which may radically change reuse

distances. For instance, the Greedy-Then-Oldest (GTO) thread scheduling

algorithm prioritizes the warps based on their fetch order (i.e. age). A reuse

in a young warp is likely to be interrupted by requests from the older warps.

The mismatch between the replacement algorithm and cache access patterns

is the root cause that leads to GPU cache inefficiency.

Cache thrashing occurs when the working set of an application is too

large to fit in the cache. It is one of the major problems that degrade GPU

cache efficiency. GPUs support tens of thousands of hardware threads and

hide long-latency operations by issuing instructions from unstalled threads.

5

Each of the GPU threads normally processes a portion of the input data. The

total working set size of a GPU program often is proportional to the number

of active threads. The limited GPU cache capacity often cannot capture the

total working set of all threads resulting in frequent cache eviction and thus

low cache efficiency.

Cache pollution is defined as the problem that occurs when cache

blocks with little reuse or no reuse evict the high-reuse blocks. The per-thread

cache capacity of the GPU is very limited. The low-reuse blocks waste the

limited cache capacity and degrade cache efficiency. It is important that the

no/low-reuse cache blocks can be identified so that the replacement algorithm

can evict them earlier than the others.

The thrashing and pollution problems often manifest themselves at the

same time [68] [91]. This requires complex replacement algorithms to learn

the reuse pattern of cache blocks and to achieve higher cache efficiency. In

this dissertation, we propose new replacement and bypassing algorithms to

improve the cache efficiency. For each block, the new algorithms consider the

scheduling priority of the fetching thread and the reuse behavior of the block

to improve the replacement and bypassing algorithms.

1.2.2 GPU Thread Scheduling

Unlike CPUs that only support a small number of hardware thread

contexts, throughput processors support a large number of hardware thread

contexts to hide the memory access latency by fast context-switching among

6

these threads. The GPU hardware thread scheduler selects warps which al-

ready have all the operands ready for execution. The scheduling algorithm has

a significant effect on cache access patterns. Simple round-robin scheduling al-

gorithms check the readiness of all warps one-by-one. Each warp gets roughly

equal time-slice. Although loose round robin policies promote fairness, GPUs,

unlike CPUs, are designed to provide high throughput. Inter-thread fairness

is not the design goal of a GPU. Furthermore, round robin policies allow all

warps to be active hence lead to a large aggregated working set, which can

result in GPU cache thrashing. Prior research proposes the Greedy then Old-

est (GTO) algorithm, which favors the oldest warp and minimizes the total

working set. It has been proven [77] that the GTO algorithm provides the

highest throughput on average compared to other common thread scheduling

policies on cache-sensitive workloads.

We observe that the cache replacement policy and the thread scheduling

policy can coordinate to increase the cache efficiency and thus improve the total

throughput. We enhance the GPU thread scheduler with a cache allocation

mechanism, which not only decides the issue order of warps but also decides

the cache allocation policy for the memory access in each warp. Our results

show the new scheduler enables GPUs to achieve significant speedup.

1.2.3 Chip Resource Saturation

If it does not hit in the L1 or L2 cache, a memory request needs a col-

lection of chip resources to fetch a data block from the main memory. In this

7

dissertation, we refer to the collection of needed resources to service memory

requests as chip resources, which include L1 cache blocks, L1 Miss Status Hold-

ing Registers (MSHR) table entries, L2 cache blocks, L2 MSHR entries, DRAM

controller scheduling queue entries, Network-on-Chip (NoC) bandwidth, and

the off-chip bandwidth. A reservation failure of any of these resources stalls

the request and limits the overall memory system throughput.

The off-chip bandwidth has not grown as fast as the transistor density.

Consequently, off-chip bandwidth is often a major performance bottleneck.

On-chip resources, such as the Network-on-Chip bandwidth and the MSHR

table, are designed to satisfy the resource requirements of the common case

not the worst case. However, when a GPU program presents a high memory

divergence, a warp instruction requests access to multiple cache lines resulting

in multiple cache misses. The memory request stream thus becomes bursty

and is likely to saturate the on-chip and off-chip memory bandwidth in a short

period. The queuing latency increases dramatically when a resource reaches its

saturation point. Furthermore, the thread scheduler issues more instructions

from other warps to hide the latency, which not only further increases the

memory access latency, but also increases the aggregated working set size.

As a result, both the off-chip and on-chip bandwidth saturation can degrade

memory system throughput.

In our research, the scheduling and replacement policies are further op-

timized to reduce NoC traffic by fetching only a portion of a cache line for

the memory requests that are characterized as bypassing requests. Experi-

8

mental results show that this is key to improving overall throughput for some

benchmarks.

1.3 Dissertation Contribution

This dissertation advocates orchestrating the thread scheduler with the

cache management algorithms for massively multi-threaded throughput pro-

cessors to alleviate GPU cache thrashing, avoid bandwidth saturation and

maximize GPU memory system throughput. Three independent mechanisms

have been proposed based on this principle. As future work, we expect the

three techniques could be combined to allow them work synergistically to fur-

ther improve the throughput. The major contributions of this work are as

follows.

1. Investigating the memory system effect of high TLP and iden-

tifying the performance bottleneck of each application

In order to investigate how parallelism affects GPU performance, the

cache hit ratio and other chip resource utilization, we characterize a set

of cache-sensitive applications by varying the maximum number of warps

that each thread scheduler allows. We analyze the Instruction Per Cycle

(IPC), L1/L2 cache miss ratio and the chip resource utilization metrics

including the memory request round trip latency, the Network-on-Chip

(NoC) transmission latency and the DRAM bandwidth utilization. We

identify the major performance bottlenecks for each application when

9

TLP is higher. Applications are grouped into categories based on the

bottlenecks.

2. Addressing cache thrashing and memory system resource satu-

ration with a thread-scheduling directed cache allocation mech-

anism

We enhance the thread throttling technique with the Priority-based

Cache Allocation (PCAL) mechanism to address inter-thread L1 cache

thrashing and memory system resource saturation. Unlike thread throt-

tling approaches which force all threads to feed the L1 cache, PCAL

explicitly determines the number of threads to allocate and fill the cache

and the minimum number of threads bypassing the cache to saturate

memory system resources. PCAL can improve performance with two

optimization strategies: either increasing TLP while maintaining cache

hit ratio, or optimizing cache hit ratio while maintaining TLP. This ap-

proach reduces the cache thrashing problem and effectively employs the

chip resources that would otherwise go unused by a pure thread throt-

tling approach. We observe 67% improvement on average over the orig-

inal as-is code and a 18% improvement on average over a better-tuned

warp-throttling baseline.

3. Developing the AgeLRU and Dynamic-AgeLRU GPU-specific

thrashing-resistant cache replacement and bypassing algorithms

We observe that applying thrashing-resistant CPU cache algorithms,

10

such as Bimodal Insertion Policy (BIP) [71] and Dynamic Insertion Pol-

icy (DIP) [71] to the GPU cache can not effectively address GPU L1

cache thrashing. The primary reasons are: (1) BIP randomly selects

memory blocks to reside in the cache. It tends to activate all warps con-

currently and thus increase the size of total working set. (2) DIP relies on

the set-dueling mechanism to evaluate two algorithms on different sets

of the same cache. In a GPU, the order of thread interleaving and cache

access patterns may change when set-dueling is applied to estimate two

algorithms.

We propose the AgeLRU and Dynamic-AgeLRU mechanisms, which are

thread scheduling-aware replacement and bypassing algorithms to over-

come the thrashing problem. When selecting a collection of memory

blocks to reside in the cache, AgeLRU minimizes the number of warps

that fetch the cache-resident blocks by prioritizing older warps at re-

placement. Dynamic-AgeLRU selects the AgeLRU or the LRU algorithm

adaptively, based on the parallel voting mechanism.

There are three variants of the AgeLRU algorithm: (1) replacement-only,

(2) bypassing, and (3) bypassing with traffic optimization. Compared to

the LRU algorithm, the above mentioned three variants of the AgeLRU

algorithm enable increases in performance of 4%, 8% and 28% respec-

tively across a set of cache-sensitive benchmarks.

Our results show that Dynamic-AgeLRU algorithms can avoid degrad-

ing the performance of non-thrashing applications by selecting the LRU

11

algorithm.

4. Proposing Reuse-Prediction based Cache Replacement Algo-

rithm

We observe that CPU cache pollution-resistant algorithms can not be

applied directly to a GPU L1 cache. The reason is that the GPU thread

scheduler has a significant effect on the GPU cache access pattern. With-

out considering the effect of the thread scheduling, a high accuracy reuse

prediction is not achievable.

We propose a Reuse-Prediction-based cache Replacement (RPR) scheme

for a GPU L1 data cache to address the intra-thread cache pollution

problem. To increase the prediction accuracy, RPR uses the GPU thread

scheduling priority to generate a signature which is the index of the

prediction table. RPR can approximate the reuse-distance-based algo-

rithm, the counter-based algorithm, and the AgeLRU algorithm with

various cache block score functions. Among these three configurations,

our results show that the reuse-distance-based algorithm outperforms the

others. Compared to the AgeLRU algorithm we propose in Section 5,

the reuse-distance-based algorithm enables a throughput improvement

of 5% on average for regular applications, and a speedup of 3.2% across

a set of cache-sensitive benchmarks.

12

1.4 Dissertation Organization

The rest of this dissertation is organized as follows: Chapter 2 discusses

the related work. Chapter 3 introduces the background of our research, and

describes the baseline GPU architecture and the CUDA programming model.

It also contains characterizations of CUDA applications. The cache sensitivity

and the scheduling algorithm sensitivity are investigated. Our experimental

methodology is also discussed. Chapter 4 describes the PCAL scheme, which

is the thread scheduler directed cache allocation mechanism to address the

inter-thread L1 cache contention and the chip resource saturation problem.

Chapter 5 proposes AgeLRU, a thread-scheduling-aware cache replacement

and bypassing scheme to address the inter-thread cache contention problem.

Chapter 6 introduces RPR, a reuse-prediction based cache replacement policy

to alleviate intra-thread cache pollution. Chapter 7 draws conclusions from

this work and discusses directions for future study.

13

Chapter 2

Related Work

This section summarizes prior parallelism tuning and cache manage-

ment work for both GPUs and CPUs.

2.1 Tuning Parallelism to Improve Performance

2.1.1 Parallelism Tuning for GPUs

Bakhoda, et al. [4] evaluate a number of workloads across several GPU

configurations in which the maximum number of supported CTAs varies. They

note that some workloads perform better when the number of concurrent CTAs

is limited, and attribute this effect to reduced contention for shared resources

(e.g. caches, interconnection network, and DRAM bandwidth). Kayiran, et

al. [39] propose a mechanism to dynamically determine the best number of

CTAs to concurrently schedule to attain the highest performance in light of

these memory system contention effects. They monitor whether a CTA is ex-

periencing a high number of memory-induced stalls or whether it is unable to

keep the machine busy, and dynamically adjust the number of CTAs allowed

to execute on an streaming multiprocessor (SM) to achieve a balance, leading

to good performance. Rogers, et al. [77] [78]directly address L1 data cache

14

contention among threads. Their cache-conscious wavefront scheduling tech-

nique monitors the L1 cache using a victim tag cache to detect when locality

is being lost due to cache contention among warps. As lost-locality is de-

tected, certain warps are made ineligible to issue additional memory requests,

thereby preserving locality for the remaining warps. Several researchers have

also proposed a variety of schedulers that preferentially schedule out of a small

pool of warps [16, 59, 18, 37]. These two-level schedulers have been developed

for a number of reasons, but all of them generally have the effect of reducing

contention in the caches and memory subsystem by limiting the number of co-

scheduled warps. Guz et al. [22] [21] describe “the performance valley” that

exists between highly-threaded systems where threading can hide the mem-

ory latency and systems in which the working set of the active threads fits

primarily within the cache.

These thread scheduling policies generally improve the performance for

cache-sensitive applications by reducing thread-level parallelism to avoid en-

tering this performance valley. Our approach does not reduce available thread-

level parallelism by throttling threads, but rather seeks to directly reduce the

memory system contention effects by providing preferential service to only a

subset of warps (e.g. those likely to be enabled in one of the thread scheduling

policies above). At the same time, our approach allows the remaining threads

to remain active, opportunistically takes advantage of inter-warp locality with

the warps holding tokens, and exploits available “spare” bandwidth through

the memory system. In effect, our approach seeks to eliminate the “perfor-

15

mance valley” - allowing high thread-level parallelism while mitigating the

memory system contention issues that affect these highly-threaded systems.

2.1.2 Parallelism Tuning for CPUs

Nieplocha, et al. [62] note that having too many threads may hurt the

performance for some scientific applications. Suleman, et al. [86] propose the

first dynamic thread throttling technique for Chip Multiprocessors (CMP). A

feedback driven threading (FDT) technique has been proposed to dynamically

decide the best number of threads of CMPs. The technique attempts to avoid

the synchronisation overhead of executing critical sections sequentially from

all threads. It also targets finding the minimum number of threads to saturate

the off-chip bandwidth. Compared to our work, this work is a pure thread

throttling technique, and it does not attempt to avoid inter-thread cache con-

tention problem.

Along with [86], several other dynamic parallelism management ap-

proaches have been proposed [84] [53] [61] [49] [101]. Among these techniques,

Sridharan, et al. [84]describe a new technique that tunes the degree of paral-

lelism dynamically adapting to execution condition changes. Luo, et al. [53]

propose to accelerate single thread applications by dynamic spawning specula-

tive threads at runtime. Nicolau, et al. [61]propose a technique to decide when

and how many threads should be spawned at runtime. Lee, et al. [49] describe

a dynamic thread throttling and merging technique which targets optimize

both cache efficiency and inter-thread communication overhead.

16

Compared to our work, all these studies [86] [84] [53] [61] [49] [101] [12],

are thread throttling techniques, the only parameter to tune the parallelism

is the total number of threads. Our PCAL work separates the concerns of

saturating different resources, the total number of threads does not have to be

the number for threads to feed the L1 cache or the L2 cache.

2.2 GPU Cache Allocation and Replacement Policies

Jia et al. [33] describe a compile-time algorithm to determine whether to

selectively enable cache allocation in the L1 data cache for each load instruction

in the program. The algorithm does not attempt to predict temporal cache

reuse, but rather focuses on the expected degree of spatial locality among the

accesses within a warp. Accesses that are anticipated to require many cache

lines to satisfy are marked to bypass the L1 data cache. In contrast to our work,

this work identifies the static loads that have the most potential to require a

large number cache evictions, and prevents these loads from disrupting the

cache. Our work focuses on adaptively determining a subset of the warps that

should be enabled to cause cache allocations - allowing temporal reuse, even

for loads performing highly divergent accesses. In addition, their compile time

analysis, unlike our dynamic system, is unable to handle situations in which

the locality is input data dependent.

Jia, et al. [34] propose two mechanisms, request-reordering and bypassing-

at-stall, to improve GPU cache efficiency. The request reordering mechanism,

applies per-warp queues to hold and group memory requests from same warp.

17

It prevents intra-warp reuse pairs from being interrupted by requests from

other warps if the reuse pairs both stay in the queue before accessing cache.

The bypassing at stall mechanism allows a memory request to bypass the cache

when all cache blocks in a cache set have been reserved. Unlike our work, the

bypassing at stall policy only considers the chip resource congestion problem.

When chip resources are not congested, memory requests from all warps still

can feed the L1 cache and lead to the cache thrashing problem. This policy

can be considered as a special case of the bypassing policy we propose for the

Priority based Cache Allocation (PCAL) mechanism.

Rhu, et al. [75] proposes an energy-efficient GPU memory hierarchy,

which predicts spatial reuse patterns of cache blocks and only fetches a portion

of each cache block to save energy consumption and reduce memory bandwidth

requirement. Our PCAL work does not predict spatial locality. PCAL only

allows bypassing loads to not fetch whole cache blocks.

GPU prefetching techniques [48] [36] [82] have been proposed to uti-

lize off-chip bandwidth more effectively and reduce memory access latency to

increase GPU occupancy. The mechanisms this dissertation proposes do not

consider prefetching. However, both AgeLRU and RPR are able to improve

cache efficiency and thus reduce off-chip bandwidth requirement. Prefetching

might complement our techniques to utilize the off-chip bandwidth.

GPU cache analytical models [69] [89] [8] have been proposed based on

stack distance [56] and reuse distance [5]. These studies demonstrate that reuse

distance and stack distance are fundamental to model GPU cache behavior.

18

This dissertation proposes RPR mechanism to predict reuse distance of GPU

cache blocks dynamically to improve GPU cache replacement decision.

Software and compiler techniques [102] [11] [88] [94] [100] [93] [99] have

been proposed to improve data layout so that memory system throughput can

be improved. These studies generally focus on software techniques to opti-

mize data locality. This dissertation proposes techniques to optimize thread

scheduler and cache management which do not change the source code. We

expect our techniques and these software techniques might work synergisti-

cally to further improve GPU cache efficiency and the overall memory system

throughput.

2.3 CPU Cache Allocation and Replacement Policies

Cache thrashing, the cache pollution and dead block problem are com-

mon issues that degrade cache efficiency. Many thrashing-resistant [51] [71]

[81] [30], pollution-resistant [47] [31] [97] [42] [81] [13] [55] [14] [35] and dead

block prediction [79] [96] [45] [46] [43] [52] techniques have been proposed to

address these problems. We summarize the most relevant CPU cache studies

and compare our work with them.

Lin, et al. [51] propose to assign low replacement priorities to prefetches.

The prefetched blocks are placed in non-MRU point of the replacement priority

chain thus they do not thrash the demand-miss blocks. Qureshi, et al. [71] pro-

pose several thrashing-resistant cache adaptive insertion algorithms. Among

them, Bimodal Insertion Policy (BIP) randomly selects a small fraction of all

19

cache blocks to reside in the Most Recently Used (MRU) state while the major-

ity of cache blocks are kept in the LRU state. BIP allows a fraction of working

set to reside in cache when the programming working set is much bigger than

the cache capacity. However, BIP hurts the performance for the no-thrashing

workload. The paper proposes the Set-Dueling mechanism which allows mul-

tiple replacement/insertion policies to be compared to select one at runtime.

Applying the Set-Dueling mechanism beyond BIP, a Dynamic Insertion Policy

(DIP) is proposed to choose between BIP and LRU adaptively. Compared to

BIP/DIP, the AgeLRU replacement policy we propose targets the thrashing

problem of GPU caches. AgeLRU considers the thread scheduler’s effect on

the memory access patterns. While BIP/DIP randomly selects cache blocks

to stay at MRU position, AgeLRU assigns higher priority to the cache blocks

fetched by the older warps.

Lee, et al. [47] propose the Least Frequently Used replacement (LRU)

algorithm to avoid no reuse memory requests from polluting the cache. It is

able to identify the no reuse or low-reuse cache blocks based on the reuse fre-

quency but cannot capture the reuse from the recency-friendly access patterns.

Jaleel, et al. [31] propose a replacement policy named Static Re-reference

Interval Prediction (SRRIP) to address the cache pollution problem, and ex-

tend SRRIP to Dynamic Re-reference Interval Prediction (DRRIP) to address

the cache thrashing problem. Both of the algorithms are implemented based

on the Not Recently Used (LRU) [27] [87] replacement algorithm. SRRIP

predicts that cache blocks that get reused after being fetched are likely to be

20

reused again. SRRIP promotes cache blocks on cache hit and partially solves

t he cache pollution problem. This paper also proposes DRRIP, which applies

the Set-Dueling mechanism to select SRRIP and LRU dynamically. However,

SRRIP can perform the promotion only if there is reuse happening. When the

length of the scan pattern is longer than the cache capacity, SRRIP does not

have an opportunity to promote reusable cache blocks and thus cannot filter

out the no-reuse blocks. Therefore, SRRIP and DRRIP only partially solve

the cache pollution problem. The root reason that SRRIP cannot fully solve

the cache pollution problem is that it can only learn the reuse behavior of a

cache block when the block is resident in cache. Even if SRRIP learns the

reuse pattern of a cache block, it cannot store it externally, thus the learned

pattern cannot be applied to this block again or to the other cache blocks that

may share similar reuse behavior.

Wu, et al. [97] propose the Signature based Hit Predictor (SHiP) to im-

prove on SRRIP [31]. Unlike SRRIP, SHiP does store the learned reuse pattern

of cache blocks. but rather stores the hit/miss history of cache blocks and as-

sociates the history with a corresponding signature. The memory references

that share the same signature are expected to share the reuse pattern. SHiP

categorizes memory references into different groups based on the signature of

selected attributes of each memory reference. For example, the signature can

be formatted by hashing the Program Counter (PC), memory region address

or instruction sequence history. As a result, SHiP can predict whether a cache

block gets reused or not based on its signature and the corresponding hit/miss

21

history of this signature. It can place a cache block in the MRU or LRU state

based on the predicted hit/miss, thus be able to avoid polluting the cache with

no-reuse block .

Keramidas, et al. [42] propose a reuse-distance prediction based cache

replacement policy. Compared with SHiP [97], it not only stores and applies

the reuse hit/miss history of cache blocks but also the reuse-distance history

of cache blocks. With the additional information, this new technique can not

only predict whether a cache block hits but also when the reuse happens.

Compared to these thrashing-resistant or pollution-resistant CPU cache

management techniques, our work, AgeLRU and RPR, not only leverage the

insights from these techniques to address similar problems for GPU caches, but

also consider GPU specific attributes to better address GPU cache problems.

For example, unlike SHiP [97] which categorizes memory references based on

PC or memory region address, our approaches also apply the age of a warp as

a factor during categorization.

Dead block problem is also one of the major problems degrading cache

efficiency. There are five types of dead block predictor that have been pro-

posed: (1) software based dead block identifying mechanism [79] [96], (2)

instruction sequence based predictor [45], (3) timing based predictor [46], (4)

counter based predictor [43], and (5) burst based predictor [52]. Compared

to these techniques, our work AgeLRU algorithm considers the effect of GPU

thread scheduling and utilizes the fetching warps ID to evict the dead cache

blocks that are fetched by inactive warps. Unlike th CPU cache dead block

22

predictors, AgeLRU does not need extra prediction table to store reuse infor-

mation.

Cache bypassing has been widely exploited in CPU to avoid pollu-

tion [19] [32] [38] [92]. These studies rely on cache controllers to make the

bypassing decision. In contrast, our work PCAL relies on the scheduler to

choose cache threads and bypassing threads.

Other research has been done on partitioning CMPs caches [70] [98] [9]

[24] [28] [103] [58] [60] [41]. This work generally deals with multi-programmed

workloads, often focusing on fairness and other quality-of-service metrics to

ensure one thread does not use a disproportionate share of cache/memory

system resources starving the remaining threads. In contrast, our work targets

GPU caches. Inter-thread fairness is not the design target of such throughput

processors.

23

Chapter 3

Background

In this chapter, we provide the necessary background for the reader.

We begin with contemporary GPU architecture and the CUDA programming

model. Next, we characterize a collection of CUDA applications. We in-

vestigate their cache sensitivity and select the subset of applications that

are cache-sensitive to evaluate our work. We also study the sensitivity of

the benchmarks to the thread scheduling policies, and demonstrate that the

Greedy-Then-Oldest (GTO) algorithm performs better than other common

scheduling algorithms. Finally, our experimental methodology is detailed.

3.1 Contemporary GPU Architecture

Using NVIDIA terminology, modern GPUs consist of many stream-

ing multiprocessor cores (SMs) on a chip, along with a logically shared but

physically banked on-chip L2 cache and multiple high-bandwidth memory con-

trollers. For example, our baseline throughput processor, NVIDIA’s GTX480

Fermi GPU, has 15 SMs, 768KB of on-chip L2 cache, and 6 GDDR5 mem-

ory controllers [63]. Figure 3.1 shows the chip level overview of such a GPU.

On this chip, each SM includes a 32KB register file, many parallel arithmetic

24

pipelines, a 64KB local SRAM that can be split between an L1 cache and

a software controlled scratchpad memory, and the capacity to execute up to

1,536 threads. Each SM can support multiple warp schedulers, and each warp

scheduler selects instructions from a subset of warps. Figure 3.2 provides a

detailed diagram of a SM. In this model, the L1 cache that can be carved out

of the local SRAM is 16KB or 48KB.

Figure 3.1: Chip level overview of baseline GPU

3.2 CUDA Programming Model

In the CUDA programming model [65], a parallel program is decom-

posed into kernels or grids that consist of multiple thread blocks or cooperative

thread arrays (CTAs). In contemporary GPUs [63] [67], a CTA contains up

25

Figure 3.2: Streaming multiprocessor architecture.

26

to 1024 threads. The execution of CTAs can be performed in any order. Pro-

grammers are encouraged to expose as much parallelism as possible as the

GPU driver and hardware handles the mapping and scheduling of parallel

tasks to the SMs. Each CTA consists of one or more warps, each of which has

32 threads that execute together in a SIMD fashion.

3.3 Thread Scheduling

When a GPU launches a CUDA application, it enqueues the kernels

into a streaming queue and dispatches them in order. In our work, GPUs

execute kernels sequentially. A global CTA scheduler [65] dispatches CTAs to

all SMs until the SMs can not support more CTAs. The maximum number

of CTAs each SM can launch simultaneously is determined by the resource

constrains on each SM including the maximum number of threads, the share

memory size and the register file size. The total size of the share memory

space that the launched CTAs declare can not exceed the share memory ca-

pacity on each SM. Similarly, the launched CTAs can not require a register

file size that is larger than the register file capacity on each SM. After a SM

launches CTAs, each warp scheduler on the SM selects and issues instructions

from a subset of warps. In this work, we study the interaction between warp

scheduling algorithms and cache management algorithms. We often refer the

warp scheduler to the thread scheduler in this dissertation.

The most commonly used thread scheduling algorithms are Loose-Round-

Robin (LRR), Two-Level (TwoLev) and Greedy-Then-Oldest (GTO). Each of

27

the algorithms is summarized briefly below:

• Loose-Round-Robin (LRR)

The LRR algorithm checks whether a warp is ready to execute in a round-

robin order, hence that each warp roughly has an equal opportunity to

execute. The LRR algorithm tends to activate all warps on each SM. All

warps actively access their data working sets, often thrashing the L1D

cache and degrading the overall throughput.

• Greedy-Then-Oldest (GTO)

The GTO algorithm prioritizes a single warp until it stalls, then it priori-

tizes the warps based on their fetch order. The GTO algorithm minimizes

the total number of active threads (i.e. the thread that has outstanding

memory requests), and the oldest warp tends to have higher priority to

execute.

• Two-Level (TwoLev)

The thread scheduler divides warps into fetch groups. During scheduling,

the scheduler prioritizes the warps in current fetch group. It does not

check the warps in the next fetch group until all warps in the current

fetch group stall.

3.4 Application Characterization

In this section, we describe the benchmarks we evaluate, introduce our

criteria to select cache-sensitive benchmarks, and analyze the effect that the

28

thread scheduling algorithms have on cache hit ratio and overall throughput.

3.4.1 Cache-Sensitive Benchmarks

Benchmark Selection Criteria: To evaluate our work, we select cache-

sensitive benchmarks from a large collection of applications that include NVIDIA

SDK [64], PolyBench [20], Parboil [85], Mars [23], Rodinia [10], LonestarGPU [7]

and CoMD [29]. Due to long simulation periods, we execute some applica-

tions only up to the point where overall IPC exhibits small variations among

different iterations of the kernel. We select cache-sensitive benchmarks us-

ing the following criteria: all the benchmarks are simulated with the baseline

configuration as in Table 3.4 plus a large-cache configuration where the L1

and L2 capacity are increased to 16 times larger of the baseline configuration.

An application is classified as cache-sensitive if the large-cache configuration

achieves a speedup of 2X or higher compared to the baseline configuration.

For applications from different benchmark sets but with similar functionality,

only one of multiple instances is kept. Table 3.1 shows the speedup that the

large-cache configuration achieves over the baseline configuration. Table 3.2

lists the selected cache-sensitive benchmarks based on the benchmark selection

criteria.

3.4.2 Thread Scheduling Effects on Cache Efficiency and Through-
put

GPU cache access patterns are largely shaped by the thread sched-

uler. The scheduling algorithm affects the cache efficiency significantly. Cache

29

Table 3.1: Speedup normalized to the baseline Fermi configuration, when in-
creasing L1 and L2 cache capacity to 16X

Benchmark Speedup Benchmark Speedup
2DCONV 1.00 MM 1.11
3DCONV 1.39 MONTECARLO 1.13

3MM 1.07 MRI-GRIDDING 1.01
ATAX 2.99 MRI-Q 1.00

BACKPROP 1.10 MST 1.52
BFS 2.30 MUM 1.47
BH 1.08 MUMMERGPU 1.48

BICG 2.70 MVT 2.90
B+TREE 1.10 MYOCYTE 1

CFD 2.23 NN 1.02
COMD 2.45 NQU 1
CORR 1.01 NW 1.14

COVAR 1.00 PARTICLEFILTER 1.14
CUTCP 1.00 PVC 1.98

FASTWT 0.97 PVR 1.91
FDTD-2D 1.01 RAY 1.03

GAUSSIAN 1 SAD 0.99
GEMM 1.10 SCALARPROD 1.00

GESUMMV 3.36 SGEMM 1.07
GRAMSCHM 1.15 SM 1.63
HEARTWALL 1.03 SP 2.05

HISTO 1.37 SPMV 1.76
HOTSPOT 0.99 SRAD V1 1.44

IBFS 3.38 SRAD V2 1.01
II 5.05 SS 2.38

KMEANS 1.59 SSSP 2.20
KMN 7.46 STENCIL 1.05
LBM 1.08 STO 1

LEUKOCYTE 0.99 SCLUSTER 6.14
LIB 1.77 SYRK D 5.28
LPS 1.01 TPACF 1.00

LS BFS 2.09 WC 2.73
LUD 1.01 AVG 1.78

30

Table 3.2: Cache-sensitive CUDA benchmarks

Abbreviation Description Ref.
CoMD Molecular Dynamics [29]

II Inverted Index [23]
BFS Breadth first search [7]
CFD CFD solver [10]
KMN K-means [77]
SM String Match [23]
SS Similarity Score [23]

SCLUSTER Streamcluster [10]
SSSP Single-source shortest paths [7]
ATAX Matrix-transpose-vector multiply [20]
BICG BiCGStab linear solver sub-kernel [20]

GESUMMV Scalar-vector-matrix multiply [20]
MVT Matrix-vector-product transpose [20]

SP Survey Propagation, a heuristic SAT-solver [7]
WC Word Count [23]

31

Table 3.3: Classifying Benchmarks by scheduler preference

Groups Definition Number
of Bench-
marks

LRR-Preferred LRR algorithm outperforms GTO
by more than 5%

5

GTO-Preferred GTO algorithm outperforms LRR
by more than 5%

18

No Preference The throughput difference be-
tween LRR and GTO is less than
5%

42

oblivious replacement algorithms including LRU are not able to capture the

scheduler-algorithm specific reuse patterns. Prior research [77] demonstrates

that the GTO algorithm performs best among these scheduling algorithms.

We evaluate the LRR, GTO and TwoLev scheduling algorithms across 65

benchmarks.

Figure 3.3 shows the speedup of the GTO algorithm normalized to the

LRR algorithm. A benchmark with a speedup value smaller than one means

the benchmark works better with the LRR algorithm. Likewise, a speedup

value bigger than one means the corresponding benchmark works better with

the GTO algorithm. To better understand the thread scheduling algorithm

effects on performance, we classify all benchmarks into three categories by

their scheduling algorithm preference. The results are shown in Table 3.3.

Among the 65 benchmarks we evaluate, 42 benchmarks are not sensitive to

the scheduling algorithm. 18 benchmarks achieve more than 5% speedup with

the GTO algorithm while there are only 5 benchmarks that perform better

with the LRR algorithm. Figure 3.4 compares the L1 data cache miss rate

32

Figure 3.3: Speedup of Greedy-Then-Oldest (GTO) algorithm, normalized to
throughput of Loose-Round-Robin (LRR) Scheduling algorithm

33

Figure 3.4: Comparing L1 data cache miss rate of Greedy-Then-Oldest (GTO)
algorithm and Loose-Round-Robin (LRR) scheduling algorithm

34

Figure 3.5: Comparing L2 data cache miss rate of Greedy-Then-Oldest (GTO)
algorithm and Loose-Round-Robin (LRR) scheduling algorithm

35

between the GTO algorithm and the LRR algorithm. Similarly, Figure 3.5

compares the L2 miss rate for these two scheduling algorithms. As shown

in these figures, the benchmarks that prefer GTO algorithms do so mostly

because they get lower L1 and L2 data cache miss rates when the GTO algo-

rithm is applied.These results match prior studies [77] in terms of scheduling

algorithm preference. Therefore, we choose the GTO algorithm as the default

thread/warp scheduling algorithm in our study. In this dissertation, we advo-

cate that the cache replacement and bypassing algorithm must consider the

effect of the thread scheduling algorithm. Based on the scheduling algorithm

comparison, we select GTO as the most effective scheduling algorithm. In

Chapter 5 and Chapter 6, we develop thrash-resistant and pollution-resistant

GPU cache algorithms adapting to the GTO thread scheduling algorithm.

3.5 Methodology

We model the proposed architecture using GPGPU-Sim (version 3.2.1) [1,

4], which is a cycle-level performance simulator of a general purpose GPU ar-

chitecture supporting CUDA [65]4.2 and its PTX ISA [66]. The GPU simulator

is configured to be similar to NVIDIA GTX480 [63] using the configuration file

provided with GPGPU-Sim [2]. Compared with NVIDIA GPUs, GPGPU-Sim

obtains IPC correlation of 97.3% on Rodinia benchmarks [10]. Key microarchi-

tectural parameters of the baseline configuration are summarized in Table 3.4.

We augment the baseline GPGPU-Sim model with cache set index hash-

ing to improve memory system robustness. We implement set hashing at the

36

Table 3.4: Baseline GPGPU-Sim configuration.

Number of SMs 15
Threads per SM 1536
Threads per warp 32
SIMD lane width 32
Registers per SM 32768
Shared memory per SM 48KB
Schedulers per SM 2
Warps per schedulers 24
Warp scheduling policy Greedy-Then-oldest [77]
L1 cache (size/assoc/block size) 16KB/4-way/128B
L2 cache (size/assoc/block size) 768KB/16-way/128B
Number of memory channels 6
Memory bandwidth 179.2 GB/s
Memory controller Out-of-order (FR-FCFS)

L1 and L2 to better distribute memory accesses among cache banks to mitigate

the effect of bank conflicts and reduce “bank camping” where regular access

patterns produce excessive contention for a small subset of cache banks. Any

additional deviations to the baseline model are described in the context of the

architecture sensitivity studies in the related chapters.

37

Chapter 4

Thread Scheduler Directed Priority-based

Cache Allocation

In this chapter, we enhance the GPU thread scheduler with a mecha-

nism called Priority-based Cache Allocation (PCAL) to address inter-thread

L1 cache thrashing and the chip resource saturation problem.

First we motivate this research by investigating how the parallelism that

a GPU supports affects the throughput and the chip resource utilization. We

demonstrate that throttling techniques [39] [77] are able to reduce the cache

miss rate and improve the overall performance, however throttling techniques

leave memory bandwidth and other chip resources significantly under-utilized.

We observe that the underutilized resources could be sufficient to support extra

threads without further polluting the cache.

Next, based on the observations, we propose PCAL to alleviate the L1

cache thrashing problem and the memory system resource saturation. The

PCAL-enhanced scheduler separates the concerns of the cache thrashing and

the chip resource saturation problem by allowing the total number of threads

to be be different with the number of threads to allocate the cache. PCAL

exploits the available performance improvement with two optimization strate-

38

gies, either increasing Thread-Level Parallelism (TLP) while maintaining cache

hit ratio, or optimizing cache hit ratio while maintaining TLP. PCAL assigns

tokens to threads to indicate their privilege to allocate space in the cache, and

gives preferential access to the cache and other on-chip resources to a subset of

the threads (i.e. Token-holder threads), allows another subset of threads (i.e.

Non-token holder threads) to bypass the caches, and throttles the remaining

threads to avoid additional memory access latency. This approach reduces the

cache thrashing problem and effectively employs the chip resources that would

otherwise go unused by a pure thread throttling approach [39] [77].

Next, we describe the mechanisms for implementing PCAL. We intro-

duce an initial implementation of this technique with a static optimization

strategy and parameter selection, called static PCAL. We develop a priority-

based cache management strategy tailored to the needs of massively threaded

processors with limited per-thread cache capacity. Priority tokens are assigned

to warps and grant priority to perform various cache actions, including alloca-

tion (fill) and replacement (eviction). We describe how priority tokens can be

used to influence caching and scheduling policy. We describe mechanisms and

policies for assignment, transfer, and release of these cache priority tokens.

Next, we introduce a variant of PCAL with a dynamic parameter se-

lection mechanism, called dynamic PCAL, to adaptively determine the pa-

rameters of PCAL . Dynamic PCAL monitors the key statistics of memory

system including cache miss ratio, memory pipeline stall, Miss Status Holding

Registers (MSHR) reservation failure, L1 block reservation failure, Network-

39

on-Chip (NoC) transmission latency. Based on this statistics, it dynamically

determines the number of threads to allocate the cache and the number of

threads bypassing the cache.

We then describe several extensions to the baseline design, such as

optimization bypassing traffic by only fetching a portion of the cache block

and applying PCAL to the L2 in addition to the L1. At the end, we analyze

the experimental results, and observe 67% improvement over the original as-is

code and a 18% improvement over a better-tuned warp-throttling baseline.

4.1 Understanding How Parallelism Affects Caches Hit
Ratio, Chip Resource Saturation and Throughput

GPGPU programming models, such as CUDA [65] and OpenCL [3],

encourage the programmers to expose a large amount of parallelism. However

GPU often can not achieve a high occupancy due to control divergence [16] [17]

[57] [90] [59] [72] [74] [73] [95] and insufficient memory throughput [57] [39] [77].

This work aims to improve cache efficiency to achieve higher GPU memory

system throughput. Mapping the maximum amount of parallel work that

the hardware can support often leads to cache thrashing and chip resources

saturation problem and thus does not necessarily ensure the best overall per-

formance.

Figure 4.1 shows the chip resources that a GPU memory system inte-

grates, including the L1 and L2 cache blocks (Ê and Í in Figure 4.1), the L1

and L2 MSHR tables (Ë and Î in Figure 4.1), the Network-on-Chip bandwidth

40

Figure 4.1: Chip Resources in a GPU Memory System.

(Ì in Figure 4.1), the DRAM controller scheduling queue (Ï in Figure 4.1)

and the Off-chip bandwidth (Ð in Figure 4.1). A memory request, depend-

ing on whether it hits the L1 or L2 cache, consumes a subset of these chip

resources to fetch a data block from the GPU memory system. For instance,

when a load request misses both the L1 and L2 caches, in order to fetch a

data block from the main memory, it needs to reserve a L1 cache block, a L1

MSHR table entry, a L2 cache block, a L2 MSHR entry and a DRAM con-

troller scheduling queue entry. It consumes both the NoC bandwidth and the

off-chip bandwidth. If the resources are already in use, the request stalls until

the resource become available again.

To investigate how parallelism affects the cache hit ratio, memory sys-

tem utilization and the GPU performance, we characterize a set of cache-

sensitive applications by statically varying the maximum number of warps

that each thread scheduler allows. Our baseline GPU, simulating a contem-

41

porary Fermi GPU, allows up to 24 warps per scheduler. When we limit the

number of warps per scheduler, we limit the number of warps that a scheduler

can select instruction from.

4.1.1 Throughput

Figure 4.2 shows how the Instruction-Per-Cycle (IPC) and the speedup

vary with hardware-resident warp count per scheduler for a subset of the bench-

marks. For many applications, running with the maximum thread-level par-

allelism that the hardware can support does not result in the best application

performance. For instance, CoMD performs best with only 6 of 24 warps

enabled. Others, like KMN, show no benefit from additional warps beyond

one.

To establish a firmer baselines for comparison, we define warp-max as

the maximum number of warps that fit per scheduler and warp-opt as the

number of warps per scheduler that provides the best performance. The value

of warp-max is not only limited by the number of threads a SM supports, but

also by the other resource constrains such as the total share memory size that

all threads declare can not exceed the share memory capacity that the GPU

supports. Roughly, warp-max represents naive code and warp-opt represents

software better tuned to our machine configuration. Table 4.1 summarizes

the default (max) warp count and performance-optimal warp count.Compared

to the warp-max configurations, the speedups that warp-opt configurations

provide are also summarized in the table.

42

(a) IPC

(b) Speedup

Figure 4.2: IPC and Speedup. Varying maximum number of warps per sched-
uler.

43

Table 4.1: warp-max and warp-opt for key benchmarks

.

application warp-max warp-opt Speedup

CoMD 16 6 1.53
II 24 2 1.24

BFS 24 8 1.02
KMN 24 1 2.68
SM 24 2 1.18
SS 24 2 1.11

SSSP 24 8 1.05
SCLUSTER 24 4 2.44

ATAX 4 4 1
BICG 4 4 1

GESUMMV 4 1 1.69
MVT 4 4 1

4.1.2 Cache Miss Ratio

Figure 4.3a and Figure 4.3b demonstrate how the local L1 miss rate

and the global miss rate (ratio of memory requests that miss both L1 and

L2 cache) vary with hardware-resident warp count per scheduler. When warp

count per scheduler increases from one to maximum, the total TLP increases.

However, for many applications, both the L1 and global miss rate increase

dramatically with a higher TLP. In this case, the cache thrashing prevents the

L1 data cache from capturing most data reuse. The overall cache miss ratio

also increase significantly with a higher TLP. For instance, the L1 miss rate

of CoMD increases from 7% to 64% when warp count per scheduler increases

from one to eight. The global miss rate of CoMD increase from 3% to 48%,

44

(a) L1 miss ratio

(b) Global miss ratio (L1 miss ratio * L2 miss ratio)

Figure 4.3: L1 and global cache miss ratio. Varying maximum number of
warps per scheduler.

45

showing a very similar trend as L1 miss rate with a higher TLP. The optimal

warp count per scheduler is a trade-off between overall TLP and cache miss

ratio. For example, CoMD performs best with 6 warps per scheduler, which

leads to neither highest TLP nor lowest cache miss ratio.

4.1.3 Memory Request Latency

When a resource in the GPU memory system is saturated by the out-

standing memory requests, the memory requests can not move forward until

the resource becomes available again. This saturation-induced latency in-

creases dramatically with a higher TLP. We measure this effect with the aver-

age round-trip latency of the memory requests that miss both the L1 and L2

cache. The round-trip latency of a memory request is defined as the number

of cycles after the request misses the L1 cache for it to go through the memory

hierarchy to fetch the data block from the main memory and come back to the

SM.

Figure 4.4 shows the average round-trip latency of all memory requests

when varying the number of warps per scheduler. The minimal round-trip

latency is about 200 cycles. However, when the total TLP increases, some

benchmarks experience dramatic round-trip latency increases. For instance,

when the TLP increases, the round-trip latency of CoMD increases from less

than 200 cycles to more than 600 cycles. In this case, the memory system gets

saturated and becomes a performance bottleneck of the GPU.

46

Figure 4.4: Round-trip latency of memory requests. Varying number of warps
per scheduler.

4.1.4 Chip Resource Utilization

When the TLP increases, the GPU memory system throughput de-

grades for two reasons: (1) cache thrashing, which we discussed in Section 4.1.2,

(2) chip resource saturation, which often leads to a large memory latency in-

creases. These two problems often happen simultaneously. Cache thrashing

leads to more outstanding requests and more resource saturations, which in

turn increases memory latencies and activates more memory requests to further

thrash the cache. In this section, we measure the NoC latency, the memory

pipeline stall ratio, the memory partition congestion ratio and the off-chip

bandwidth utilization, to identify the most severe bottlenecks.

47

NoC latency

We define the NoC latency as the sum of the average sending latency and the

average receiving latency of all packets transmitted through the NoC. When

the NoC bandwidth becomes a bottleneck, the NoC latency exhibits significant

increases.

Figure 4.5 shows the NoC latency of all memory requests when varying

the number of warps per scheduler. When the NoC is not saturated, the NoC

latency in general is smaller than 20 cycles. For instance, when no throttling

technique is applied, the NoC latency of most applications is not greater than

20 except CoMD, KMN, SS and SM. Even for these four benchmarks, the NoC

latency is less than 20 when the maximum warp count per scheduler is one.

However, when the total TLP increases, CoMD, KMN, SS and SM experience

dramatic NoC latency increases. There are three reasons for the NoC latency

increase when TLP is higher. Not only are there more active threads, but also

the per-thread cache miss ratio increases dramatically. Additionally, other

saturated resource could propagate a back pressure signal to the NoC output

to keep the requests in the NoC from transmitting to the next stage, and thus

causes the NoC latency increase.

Memory pipeline stall ratio

For a thread scheduler, a memory pipeline stall cycle happens when the sched-

uler finds at least one ready memory instruction to issue, but the memory

pipeline is stalled. The memory pipeline stall ratio is the average ratio across

48

Figure 4.5: Network on Chip (NoC) latency. Varying the maximum number
of warps per scheduler.

all schedulers in all SMs of overall cycles when the scheduler finds ready mem-

ory instructions but fails to issue them because of a memory pipeline stall.

Memory pipeline stalls happen mainly because of back pressure from the L1

cache. When a memory request misses the L1 cache, it needs to first reserve

a L1 cache block. Next, it reserves a MSHR entry if there are no previous

outstanding memory requests pending on the same memory block. Failing to

reserve the cache block or the MSHR causes the load-store unit to hold the

instruction and stall the memory pipeline.

Figure 4.6 shows the memory pipeline stall ratio of the key benchmarks

when varying the number of warps per scheduler. For this warp-max GPU

configuration, the benchmarks experience 51% memory stall cycles on aver-

49

Figure 4.6: Memory pipeline stall ratio. Varying the maximum number of
warps per scheduler.

age. More than half of all the execution time, some resources in the memory

system are saturated and propagate the back pressure to the warp scheduler so

that the scheduler can not issue any instruction. For these memory-intensive

benchmarks, significant opportunities exist to manage the parallelism explic-

itly to avoid unnecessary delays caused by any chip resource saturation and

thus improve the memory system throughput significantly.

Figure 4.7 breaks down the memory pipeline stall ratio by the cause of

the stall. Figure 4.7a shows memory pipeline stalls ratio due to the reservation

failure of the L1 cache block. Figure 4.7b demonstrates memory pipeline

stalls ratio due to the reservation failure of the MSHR entry. For most of the

benchmarks except SCLUSTER, MSHR reservation failure is the major cause

50

(a) Memory pipeline stall caused by the L1-Block Reservation Failure

(b) Memory pipeline stall caused by MSHR Reservation Failure

Figure 4.7: Breaking down the ratio of memory pipeline stall by its two causes:
L1-Block Reservation Failure, MSHR Reservation Failure. Varying maximum
number of warps per scheduler.

51

of memory pipeline stalls. When the baseline configuration is applied, the

schedule allows up to 24 warps to be scheduled, The L1-Block caused memory

pipeline stall ratio is mostly lower than 15%. SCLUSTER is an exception, most

of its memory pipeline stalls are caused by the L1 block reservation failure.

The reason is that SCLUSTER experiences more conflict misses. Before it

reserves all MSHR entries, some sets of the cache are accessed more often and

lead to reservation failure of the L1 blocks.

For most applications, MSHR reservation failures happen more often

than L1 block reservation failures. The major reason is that the baseline GPU

configuration enables 128 L1 cache blocks and 32 MSHR entries. Each MSHR

entry allows up to 8 requests pending on the same entry. For most of the

benchmarks, each MSHR entry only has one pending request for most of the

time. In this case, the MSHR table can hold up to 32 outstanding requests,

while the number of L1 blocks is 128, it is four times bigger than the number

of outstanding memory requests that the MSHR table can practically hold.

Consequently, the L1 MSHR reservation failure happens more often than the

L1 block reservation failure.

Memory partition congestion ratio

When a memory request transmits to the NoC output, it applies to enter a

memory partition which consists of the L2 banks and the DRAM controller.

The memory partition may respond with a busy signal to indicate it can not

accept new request at the time. We define the memory partition congestion

52

ratio to be the average ratio across all memory partitions of overall cycles

when the interconnect outputs to DRAM channel is congested. A high mem-

ory partition congestion ratio means some resources in the memory partition

are saturated. These resources include the L2 cache blocks, MSHR, DRAM

controller scheduling queue or the off-chip memory bandwidth.

Figure 4.8: Memory partition congestion ratio. Varying the maximum number
of warps per scheduler.

Figure 4.8 shows that the memory partition congestion ratios of the key

benchmarks when varying the number of warps per scheduler. Most bench-

marks, except CoMD, II, KMN and SS, show less than 5% memory partition

congestion. This indicates that these benchmarks are not bottlenecked by

the resources related to memory partition, such as off-chip bandwidth or L2

MSHR table etc. For the other four benchmarks, CoMD, II, KMN and SS, the

53

memory partition congestion ratio is also lower than 5% when the schedule

only allows one warp to be scheduled. However, when TLP is higher, this

congestion ratio increases significantly. They all show more than 10% memory

partition congestion when the baseline configuration (24 warps per scheduler)

is applied. The congestion ratio increase is caused by both L1/L2 thrashing

with the high TLP.

Off-Chip bandwidth utilization

DRAM controllers communicate with DRAM chips through the off-chip bus.

The ratio of overall cycles when the off-chip bus is busy is referred to off-

chip bandwidth utilization. A low off-chip bandwidth utilization does not

necessarily means the off-chip bandwidth has not been a bottleneck during the

execution. When the memory requests become bursty, the off-chip bandwidth

becomes saturated in a short period. However, the busy period might only

be a small portion of overall execution time. The overall off-chip utilization

might still be low.

Figure 4.9 shows how the off-chip bandwidth utilization varies with

hardware-resident warp count per scheduler. For most applications, the band-

width utilization increases with the higher TLP. The reasons are two-fold.

First, higher TLP leads to more outstanding memory requests and requires

more memory bandwidth. Second, higher TLP results in the higher cache

miss ratios and thus more data needs to be fetched from off-chip DRAM mod-

ules. When a throttling technique selects the best warp count per scheduler,

54

Figure 4.9: Off-Chip Bandwidth Utilization of benchmarks. Varying the max-
imum number of warps per scheduler.

the maximum TLP is often not enabled.

Summary

As we have discussed in this section, memory-intensive applications stress the

GPU memory system extensively. Cache thrashing and chip resource satura-

tion happen simultaneously. On one hand, when the TLP is higher, the cache

thrashing problem leads to more outstanding memory requests. More memory

requests require more storage to keep the data blocks and the meta data and

more on-chip/off-chip bandwidth to transmit the requests and the data blocks.

When the related chip resources get saturated, the memory request round-trip

latency increases significantly. The thread scheduler activates more threads to

find more instructions to hide the memory request latency.

55

We observe that the number of threads that thrash the cache is often

different than the number of threads that saturate the chip resources. Cache

thrashing is only affected by the cache access patterns. It happens when most

reuse distances exceed the cache capacity. Chip resource saturation is not only

caused by the access pattern, but also affected by the ratio of the memory

instructions(i.e. memory intensity). For instance, if an application travels a

1-million node link-list in order for 10 times, our baseline GPU can not capture

the locality because the average reuse distance of memory requests is much

larger than the cache capacity. Consequently, the cache is thrashed. However,

if the memory intensity of this application is 1
1 million

, there would not be many

active outstanding memory requests. Consequently, chip resource is not likely

to be saturated.

It is desirable to separate the concerns for the cache thrashing and the

memory system resource saturation. When the cache is thrashed but the chip

resources are underutilized, new mechanisms are needed to utilize the resources

more effectively without further thrashing the cache.

4.1.5 Identifying Performance Bottleneck

In this section, we analyze the performance, the L1/L2 cache miss ratio

and the chip resource utilization metrics varying maximum TLP allowed on

each scheduler. We identify the major performance bottlenecks for each ap-

plication when TLP is higher. Applications are grouped into categories based

on the bottlenecks.

56

The cache thrashing and the chip resource saturation problem happen

simultaneously, most of these memory-intensive applications not only thrash

the cache but also saturate some chip resource. The saturation of different chip

resources also affect one other. For instance, when the NoC bandwidth be-

comes a bottleneck, the memory access latency increases and thus the memory

requests reserve the cache blocks and the MSHR entries longer. As a result,

the NoC saturation problem increases the number the cache block and MSHR

reservation failures and thus causes more memory pipeline stalls. Therefore,

an application can have more than one bottleneck at the same time.

We analyze application bottlenecks as follows.

• Step 1: Parallelism starvation

For a given application, we compare warp-opt and warp-max. If they are

equal, it means the application reaches the highest performance with the

highest TLP. Although we can not determine whether the performance

can keep increasing with a TLP higher than warp-max, we identify the

bottleneck of the application to be parallelism starvation.

• Step 2: Chip resource saturation

The chip resource saturation problem puts a hard limit for the GPU

throughput. To investigate why performance degrades when TLP ex-

ceeds warp-opt, we compare the statistics when the TLP equals warp-opt

+∆ and the ones when the TLP equals warp-opt, where warp-opt +∆

is the minimum warp number profiled that is bigger than warp-opt. For

57

instance, the warp-opt value of KMN is one and the warp-opt +∆ value

of KMN is two.

– Step 2.1: Memory partition congestion ratio

If the memory partition congestion ratio increases more than 30%

and exceeds 20%, we identify memory partition congestion as one

of the bottlenecks of the benchmark.

– Step 2.2: NoC latency.

If the NoC latency increases more than 30% and exceeds 20%, we

identify the NoC bandwidth as one of the bottlenecks of the bench-

mark.

– Step 2.3: MSHR reservation failure.

If the memory pipeline stall ratio due to L1 MSHR reservation fail-

ures increases more than 30% and exceeds 20%, we identify the L1

MSHR reservation failure as one of the bottlenecks of the bench-

mark.

– Step 2.4: L1 block reservation failure.

If the memory pipeline stalls due to the L1 block reservation fail-

ures increases more than 30% and exceeds 20%, we identify L1

cache blocks reservation failure as one of the bottlenecks of the

benchmark.

• Step 3: Cache thrashing

For a given application, we compare the L1 miss ratio when the TLP

58

equals warp-opt and the one when the TLP is equal to one. If the nor-

malized number of the cache misses increases more than 2X and the cache

miss ratio exceeds 30%, we identify cache thrashing as the bottleneck of

the benchmarks.

We apply these steps to our benchmark set. Table 4.2 summarizes

the major bottlenecks of the benchmarks. The performance bottlenecks, such

as the cache thrashing, the L1 block/MSHR reservation and the NOC band-

width saturation problems happen simultaneously. It is common that some

benchmarks exhibit multiple performance bottlenecks. These bottlenecks are

specific to the application running on this GPU configuration. Changing the

GPU configuration can change the bottlenecks of the benchmarks.

4.2 Motivation: Two Performance Opportunities Be-
yond Throttling

In this section, we motivate our research based on our bottleneck anal-

ysis. We first explain why throttling the total number of threads can improve

the overall performance. Next, we discuss two opportunities that can further

improve the performance beyond the known throttling techniques.

4.2.1 Understanding Throttling Techniques

The massive amount of parallelism that GPU hardware supports has

both positive and negative effects on GPU performance. On one hand, a higher

TLP enables a GPU to tolerate more long latency operations by fast context

59

Table 4.2: Identifying the bottlenecks for key benchmarks when increasing
TLP beyond warp-opt. The acronyms are defined as follows, ParStrv: Par-
allelism Starvation, MemCong: Memory Partition Congestion, NoC: NoC Band-
width Saturation, L1MSHR: L1 cache MSHR reservation failure, L1Blk: L1
cache block reservation failure. L1Thrash: L1 cache thrashing problem

.

Application ParStrv MemCong NoC L1MSHR L1Blk L1Thrash

CoMD Y Y
II Y Y

BFS Y Y
KMN Y Y
SM Y Y
SS Y

SSSP Y Y
SCLUSTER Y

ATAX Y Y
BICG Y Y

GESUMMV Y
MVT Y Y

60

switch among threads. On the other hand, the TLP affects L1 miss rate and

L2 miss rate dramatically. When the maximum warp count per scheduler is

allowed, both cache thrashing and resource saturation often become major

problems that degrade overall throughput.

Application performance can be improved by throttling the TLP from

warp-max to warp-opt. The optimal warp count per scheduler is a trade-

off between overall TLP, cache miss ratio and degree of resource saturation.

For example, CoMD performs best with 6 warps per scheduler, which leads

to neither the highest TLP, nor the lowest cache miss ratio nor the lowest

resource congestion ratio.

4.2.2 Two Performance Opportunities Beyond Throttling

Although the throttling techniques can improve the overall throughput

for some applications, they rely on tuning only one parameter, the total num-

ber of threads, to balance the total TLP, the cache miss ratio and different

resources in the memory system. The trade-often is often sub-optimal. As we

observe, there are two opportunities to improve the performance beyond the

throttling techniques.

1. Increasing parallelism without thrashing caches

When the TLP is higher, cache thrashing and the reservation failure

of L1 block/MSHR have negative effects on performance. The throt-

tling techniques balance the overall performance among the TLP, the

cache miss ratio and cache resource reservation. When TLP is equals to

61

warp-opt, many chip resources are still underutilized, such as the NoC

bandwidth and the off-chip bandwidth etc.

For example, SCLUSTER performs best with 4 warps per scheduler.

As shown in Table 4.2, its major bottleneck is the L1 block reservation

failure. Both the NoC bandwidth and the off-chip bandwidth are not

limiting the performance. If extra threads beside the 4 warps can be

enabled without reserving more L1 blocks, the performance of the origi-

nal 4 warps should not decrease. The extra threads can utilize the spare

NoC bandwidth to reach L2, and utilize the spare off-chip bandwidth to

access the main memory. Consequently, the extra threads can achieve

extra throughput beyond the throttling techniques.

2. Increase cache hit ratio without decreasing TLP

Throttling techniques allow all threads to access the cache. When opti-

mal throttling is applied, many benchmarks already experience the cache

thrashing problem. There is opportunity to alleviate this thrashing prob-

lem. If a subset of threads have higher priority to utilize the cache, their

working sets might fit in the cache to get a high cache hit ratio. Al-

though the other threads experience a lower cache hit ratio, the overall

cache hit ratio might be higher.

62

4.3 Token-based Prioritized Cache Allocation (PCAL)

To address the cache thrashing and the chip resource saturation prob-

lem of many-threaded GPGPU architectures, throttling techniques have been

proposed to select the optimal number of threads to alleviate these problems.

However, trashing techniques rely on tuning only one parameter, the

total number of threads, to balance the total TLP, the cache miss ratio and

different resources in the memory system. As we discuss in Section 4.2, the

trade-¿offs that throttling techniques make are often sub-optimal. We develop

Priority-based cache allocation (PCAL), to separate the concerns of the cache

thrashing and resource saturation problems, to exploit the two opportunities

we discuss in Section 4.2.2. PCAL is orthogonal to previous thread-throttling

mechanisms as it can synergistically be adopted on top of previous schemes.

The warp-level-throttling can tune the overall all parallelism at finest granu-

larity to achieve better performance than CTA-level-throttling. Therefore, we

conduct the experiments of PCAL on top of optimal warp-level throttling.

The key idea of PCAL is that the thread scheduler identifies the per-

formance bottleneck, then categorizes all memory references to two groups

by warps: (1) the cache-thread group that allocates cache capacity. (2) the

bypassing-thread group that needs to bypass cache. The cache controller on

the other hand, gives the cache threads preferential access to the cache. The

bypassing threads are forced to bypass the caches. We use tokens to represent

priorities in the memory hierarchy (cache system). Only the memory refer-

ences from the cache thread group are token-holders, the remaining ones are

63

the non-token holders.

4.3.1 Strategies and Challenges

Two Strategies

As we discuss in Section 4.2.2, there are two basic strategies to improve the

overall performance. An application might be feasible for one, both or none

of them. PCAL exploits both of the two opportunities as follows.

1. Strategy one: Increasing TLP while maintaining cache hit ratio

PCAL keeps the number of the cache threads equal to warp-opt, and

selects the minimum number of extra bypassing threads to saturate the

chip resources. In this case, the cache hit ratio of the cache threads does

not change, these threads are expected to maintain the same throughput

as the throughput with the throttling mechanism. The extra bypassing

threads enable PCAL to utilize chip resources more effectively and get

extra throughput beyond that provided by the throttling mechanism.

2. Strategy two: Increasing cache hit ratio while maintaining TLP

PCAL keeps total TLP equal to warp-opt and reduces the number

threads to allocate the cache. The subset of threads that share the

cache are the token-holder threads, which keep their working sets in

cache. The remaining threads are the bypassing threads which do not

thrash the cache.

64

Key challenges

The major challenges of PCAL are two-fold as follows.

1. Identify the bottleneck and deciding the basic strategy

There are two basic strategies to improve the overall performance. For

an application, PCAL needs to choose and configure one or neither of

the two strategies adaptively. PCAL collects the statistics such as IPC,

cache miss ratio and chip resource usage metrics etc. PCAL investi-

gates the feasibility of strategy one, increasing parallelism while

maintaining cache hit ratio. PCAL estimates whether the spare

resources are sufficient for adding extra bypassing threads. If resource

saturations happens, PCAL considers strategy two, increasing cache

hit ratio while maintaining TLP. If PCAL speculates that neither

of the two strategies can help improve the performance, it keeps the

application running with the pure throttling technique.

2. Decide the size of the cache thread group size and the bypass-

ing thread group

After PCAL selects the right strategy to improve the performance, it

configures the number of the cache threads and the number of bypassing

threads. Finding the right parameters is critical for PCAL to achieve

higher throughput. For strategy one, PCAL can achieve the best per-

formance when the number of the bypassing threads is the minimum

number of extra bypassing threads need to saturate the chip resources.

65

For strategy two, the overall cache hit ratio can be increased only if the

total working set of the cache threads can fit in the L1 cache.

Figure 4.10: Architectural Overview. Paths potentially effected by token pri-
orities are shown.

Initially, we consider software-directed optimization strategy selection

and parameter assignment on a per-kernel basis. The size of the thread groups

may be selected by the developer or the compiler/auto-tuner/profiler and is

supplied to a kernel at launch time with other kernel launch parameters. We

also develop a dynamic mechanism, namely Dynamic PCAL, which decides the

strategy and the size of the thread groups adaptively at runtime.

66

4.3.2 Static PCAL

In this section, we consider the software-directed static solution, Static

PCAL. For this research, our baseline is the optimal static warp throttling, which

provides warp-opt as the number of warps per scheduler that enables the best

performance. Static PCAL allows the programmer to choose the strategy from

(1)Strategy one: Increasing TLP while maintaining cache hit ratio or

(2)Strategy two: Increasing cache hit ratio while maintaining TLP

To make the programming interface clear, static PCAL requires the

programmer to provide only one parameter: the Extra Bypassing Thread

Number (EBTNum). Static PCAL decodes the parameter as follows: If

EBTNum == 0, static PCAL limits itself to the pure warp-level-throttling.

It does not enable any extra bypassing thread. If EBTNum > 0, static PCAL

enables strategy one, increasing TLP while maintaining cache hit ratio. static

PCAL sets the size of the cache thread group to be warp-opt and sets the

size of the bypassing thread group to be EBTNum. If EBTNum < 0,

static PCAL enables strategy two, increasing cache hit ratio while main-

taining TLP. static PCAL sets the size of the cache thread group to be

warp-opt + EBTNum and sets the size of the bypassing thread group to

be (−1) ∗ EBTNum. The calculation is summarized in Table 4.3.

Figure 4.10 illustrates the basic PCAL implementation. PCAL can be

enabled or disabled for the L2 cache. The implementation of PCAL in the L2

cache is similar to its implementation in the L1 cache and thus is not shown in

the figure. The initial PCAL implementation is applied only at the L1 cache.

67

Table 4.3: Input and Strategy of static PCAL. Strategy one and two are
introduced in Section 4.3.1. EBTNum is the acronym of the Extra Bypassing
Thread Number

.

Input Strategy Size of

cache thread

group (token

number)

Size of

bypassing thread

group (non-token

thread number)

EBTNum == 0 Warp-
Throttling

warp-opt 0

EBTNum > 0 Strategy
one

warp-opt EBTNum

EBTNum < 0 Strategy
two

warp-opt +
EBTNum

(−1) ∗ EBTNum

In the rest part of the section, if not specified explicitly, we refer PCAL on L1

only as PCAL.

At a high level, PCAL gets the Extra Bypassing Thread Number (EBTNum)

from either the programmer or the dynamic thread group partition unit. The

token assignment unit decodes the EBTNum value into the size of the cache

thread group and the size of the bypassing thread group. It is also responsible

for allocating tokens to threads/warps. For each warp, beside its normal sched-

uler status bits, the Priority bits (Pb) are added to indicate the warp’s token

value. The priority bits are also added to the memory request packet format,

as well as per-line storage of priority token meta-data for the L1 cache. Token

data may be transmitted with any memory request or message to propagate

status. Cache control logic uses token bits to determine which requests may

allocate space in the cache. The token assignment unit in the warp scheduler

is responsible for allocating tokens. The major components of static PCAL

68

implementation are as follows.

Strategy Selection and Token count calculation Static PCAL takes

EBTNum as an input parameter. The input parameter EBTNum may be

selected by the developer or the compiler/autotuner/profiler and is supplied

to a kernel at launch time with other kernel launch parameters. Static PCAL

calculates the size of cache thread group i.e. Token Number) and the size of

the bypassing thread group i.e. Non-Token group size) using the formulas in

Table 4.3.

Token assignment: Tokens may be assigned by various mechanisms, in-

cluding statically by software or dynamically by hardware. Our implementa-

tion assigns N tokens to the N oldest warps.

Token Release: Once assigned a token, a warp retains the token until com-

pletion. Tokens are released at warp termination and assigned to the oldest

warp that doesn’t currently hold a token.

Token implementation: A warp scheduler keeps scheduler state bits for

each active warp. Tokens assigned to warps are represented as a bit or bits

stored along with the scheduler state bits in the SM-level warp scheduler.

When a memory request is generated, the appropriate token priority is at-

tached to the request. The memory system (e.g., cache) uses the priority to

influence policy.

69

PCAL provides preferential cache capacity to the token holder threads,

and allows other threads to execute with low or no access to the cache. To

achieve this goal, PCAL employs the priority tokens to determine caching

policies.

Cache allocation policy: When token holders access the cache, they are

allowed to allocate cache blocks so that the working data sets of the corre-

sponding threads resident in the cache and can be further reused. The no-

token holders are not allowed to fill any cache block to avoid any pollution in

our initial implementation.

Cache eviction policy: Similar to the cache allocation policy, In our initial

implementation, possessing a priority token indicates a warp has permission

to initiate replacement (eviction). While the no-token holders are not allowed

to perform eviction.

Hardware implementation overhead In the simplest case, possession of

a token (or lack thereof) can be represented by a single bit. Each warp-

level scheduler entry needs to track this additional bit. A small amount of

logic is required to allocate and manage tokens. Additionally, memory request

messages will need to be tagged with this additional data. Usually, several

unused ”reserved” bits exist in message formats to permit future extensions

such as these. Minimal logic overhead is required for managing the assignment

of tokens.

70

4.4 Dynamic Optimization Strategy Selection and By-
passing Threads Count Prediction

In this section, we propose a dynamic thread group partition mechanism

with PCAL, Dynamic PCAL. As we discuss in Section 4.3.1, PCAL can exploit

two opportunities, either increasing TLP while maintaining cache hit ratio

or increasing cache hit ratio while maintaining TLP, to improve the GPU

throughput beyond the best throttling technique. Static PCAL allows the

programmer to set just one parameter, the Extra Bypassing Thread Number

(EBTNum). Both the strategy and the size of thread groups can be decided

as shown in Table 4.3. Dynamic PCAL chooses the strategy and EBTNum

for each application adaptively at runtime.

Section 4.4.1 first motivates the needs of a dynamic PCAL scheme.

Next, the high level implementation of the scheme is described in Section 4.4.2.

Finally, the detailed algorithm is explained in Section 4.4.3.

4.4.1 Motivation for dynamic PCAL

Static PCAL is an effective tool for allowing experienced programmers

to tune the performance of GPU applications. The experienced programmers

are able to configure the parameter EBTNum to enable higher throughput.

However, finding the best value of the EBTNum requires programmers to have

a deep understanding of GPU microarchitectures. It is challenging for normal

programmers to apply static PCAL, especially for applications where the best

EBTNum value depends on input set or specific GPU microarchitectural pa-

71

rameters. It is desirable for the normal programmers to have a dynamic scheme

that can ease their burden. The goal of dynamic PCAL is to determine the

value of EBTNum dynamically and achieve speedups similar to those provided

by static PCAL.

4.4.2 Overview

At a high level, dynamic PCAL is static PCAL augmented with an

Extra Bypassing Thread Number (EBTNum) predictor. Figure 4.11 shows

the implementation of such a predictor. A EBTNum predictor chooses the

right value of EBTNum. It requires the predictor not only predicts the best

strategy to improve the performance, but also decides the size of the cache

thread group and the bypassing thread group. The warp scheduler and the

cache manager work as in the static PCAL scheme that the warp scheduler

assigns tokens to a set of warps. The cache manager prioritizes the memory

accesses with token to reserve and fill cache blocks.

The EBTNum predictor consists of a phase detector (Ê in Figure 4.11),

a statistics collector (Ë in Figure 4.11) and a state-machine based control unit

(Ì in Figure 4.11). The phase detector triggers the control unit at every new

program phase. The control unit chooses the optimization strategy from two

options, (1) increase TLP while maintaining cache hit ratio and (2) increase

cache hit ratio while maintaining TLP. It also needs to decide the best value

of ENTNum for the chosen strategy based on the statistics collected by the

statistics collector.

72

If the control unit finds that there is no sufficient resource to support

a bypassing thread, it applies strategy two to optimize the cache hit ratio.

For instance, the NoC bandwidth is already saturated or the memory pipeline

stalls often due to MSHR reservation failure. In this case, increasing TLP is not

a good option to improve the performance. Dynamic PCAL starts to apply

the optimization strategy two: removing some threads from cache threads

group so that the cache threads can reside their working set in the cache.

Dynamic PCAL searches the best number of the cache threads that minimizes

the overall cache miss ratio with the parallel voting algorithm. Dynamic PCAL

assigns a different value of EBTNum to each SM. Each SM is able to test the

performance effect for a particular EBTNum value. Next, the throughput of

all tested EBTNum value are collected and compared. The EBTNum value

which leads to the highest throughput for the corresponding SM is voted to

be the optimal value of EBTNum. This value is applied to all schedulers in

all SMs.

When the control unit finds that the spare resources are sufficient to

support extra bypassing threads, it exploits optimization strategy one to in-

crease TLP while maintaining cache hit ratio. Dynamic PCAL searches for the

minimum number of extra bypassing threads that saturate the chip resources

using a classic hill-climbing algorithm. The control unit increases the value of

EBTNum by one at every sampling period until it finds that the new value

of EBTNum leads to a lower throughput compared to the performance of the

previous sampling period.

73

The hill-climbing algorithm takes multiple sampling periods to find

the target value, while the parallel-voting algorithm normally only needs one

sampling period. However, the parallel-voting can not be applied to decide the

extra bypassing thread number when the strategy one is applied to increase

TLP. The reason is that some chip resources, such as the NoC bandwidth,

are shared among all SMs. The saturation of such resources is induced by the

total number of the memory requests, not the number of requests from a single

SM. Therefore, the parallel-voting algorithm can not identify the best value

of EBTNum when the extra bypassing threads saturate the chip resources

shared by all SMs.

‘

Figure 4.11: Implementation of dynamic PCAL.

74

4.4.3 Extra Bypassing Thread Number Predictor

The phase detector samples runtime statistics periodically, including

L1/L2 cache miss rate and instruction per cycle (IPC). When the relative

changing ratio compared to previous sampled values is bigger than a predefined

threshold, the phase detector understands either the program has potentially

entered a new phase. It identifies a new coming program phase only if the

change lasts for several sampling period.

The statistics collector is a collection of programmer counters to diag-

nose the GPU memory system status. It collects runtime statistics periodically,

including the available warps per shader, the memory partition congestion ra-

tio, the NoC latency and the memory pipeline stall ratio, as we have discussed

in Section 4.1.4.

The control unit is implemented as a state machine. It is triggered

by the phase changing signal, identifies the resource bottleneck based on the

statistics, chooses the strategy to improve the performance and decides the

value of EBTNumb. On a new program phase, the controller first checks

the feasibility of the two optimization strategies. If there are sufficient chip

resources to increase TLP, the controller applies a hill-climbing algorithm (Ï

in Figure 4.11) to find the best number of extra bypassing threads that can

be added to the system. It increases EBTNum by one at every sampling

period until the performance is no longer increasing. If the controller finds the

chip resources are already saturated and are not sufficient to support a higher

TLP, it applies the parallel-voting algorithm (Ð in Figure 4.11), exploiting the

75

possibility to increase the cache hit ratio.

The state, the transition conditions and the actions of the state machine

are introduced as follows.

• Init State(Î in Figure 4.11). This state indicates the program is at the

beginning of a new program phase. When an application starts, this is

the default state. No optimization is applied and the application runs

with a default configuration. For instance, when the warp-throttling is

applied as the baseline, the application runs with TLP = warp-opt.

The statistics collector samples the chip resource utilization to allow the

control unit to estimate whether spare resources are sufficient to support

extra bypassing threads.

Transition After the application stays at this state for at least one

sampling period, the state machine moves to the next state by following

rules:

– When increasing TLP is feasible (Ò in Figure 4.11), it

moves to the Hill-Climbing State (Ï in Figure 4.11)

When the following three conditions are all satisfied, the controller

predicts that there are sufficient spare resources to support extra

bypassing threads. It allows increasing the TLP to improve the

throughput. (1) the NoC latency is not higher than a predefined

threshold. (2) the memory pipeline stall ratio is not higher than a

76

predefined threshold. (3) there are warps throttled so that adding

TLP is possible.

Action before transition: The controller unit starts to apply

the hill-climbing algorithm to search an optimal positive value for

EBTNum, it sets EBTNum = 1 before moving to the Hill-Climbing

state.

– When increasing cache hit ratio is preferred (Ó in Fig-

ure 4.11), it moves to the Parallel-Voting State (Ð in Fig-

ure 4.11)

When the controller predicts that there is not sufficient spare re-

source to support a bypassing thread, it tries to optimize the cache

hit ratio to avoid the thrashing.

Action before transition: The controller unit applies the par-

allel voting algorithm to search for an optimal negative value for

EBTNum. Initially, before moving to the Hill-Climbing state, the

controller assigns a different value of EBTNum to each SM. There-

fore, each SM is able to test the performance effect for a particular

value of EBTNum. The predictor does not have to test all possible

values of EBTNum, instead it can test every other token number

to minimize the test period.

• Hill-Climbing State(Ï in Figure 4.11). This state indicates that the

controller is applying the hill-climbing algorithm to search for an optimal

positive value for EBTNum. At this state, EBTNum is the positive

77

number that decides the number of extra bypassing threads that the

spare resources can maintain without saturation happening.

The controller compares the performance of the current sampling period

to the performance of the previous sampling period to figure out whether

EBTNum needs to increase.

Transition The state machine moves to the next state using following

rules.

– IPCcurrent > 110% ∗ IPClastSampling, It stays at Hill-Climbing

State (Ï in Figure 4.11)

It means that enabling more bypassing threads leads to a higher

performance. The controller predicts TLP needs to be higher. It

increases the bypassing thread number again.

Action before transition: It increases EBTNum by one.

– IPCcurrent < 97%∗IPClastSampling, It moves to the Stable state

(Ñ in Figure 4.11)

It means that enabling more bypassing threads leads to a lower

performance. The controller predicts TLP needs to be lower. It

removes one bypassing thread

Action before transition: It decreases EBTNum by one.

– 97% ∗ IPClastSampling < IPCcurrent < 110% ∗ IPClastSampling, It

moves to the Stable state (Ñ in Figure 4.11)

78

It means that enabling more bypassing threads does not lead to

a significant performance change. The controller considers current

TLP to be optimal. The current EBTNum value is kept until a

new programing phase comes.

Action before transition: None.

• Parallel Voting State(Ð in Figure 4.11). This state indicates that

the controller is applying the parallel voting algorithm to search for an

optimal negative value for EBTNum to improve the cache performance.

Before the state machine moves to this state, the controller assigns dif-

ferent value of EBTNum to each SM. Each SM tests the performance

effect for a particular value of EBTNum. After the parallel voting unit

tests all preferred token numbers, the best value of EBTNum can be

voted out based on any predefined goal, such as minimize energy con-

sumption. In our experiment, the goal to select the best EBTnum is to

maximize the IPC. At the end of this sampling period, the throughputs

for all tested EBTNum values are collected and compared. The value

which leads to the highest throughput for the corresponding shader is

voted to be the best value of EBTNum.

Transition the state machine moves to the next state by following

rules:

– It moves to the Stable state (Ñ in Figure 4.11)

The EBTNum value which leads to the highest throughput among

79

all SMs is voted to be the best value of EBTNum.

Action before transition:All SMs then feed the best EBTNum

value to their warp schedulers.

• Stable mode. This state indicates the program is in the middle of a

stable program phase. The best value of EBTNum has already been set

at the beginning of current phase. The phase detector keeps sampling

runtime statistics to identify new phase.

Transition the state machine moves to the next state only when a new

phase is detected.

Action before transition:All optimizations are disabled. It allows the

application to run under the default configuration. EBTNum is set to

be zero.

4.5 Bypassing Traffic Optimization

In this section, we propose an optimization of PCAL, namely bypassing

traffic optimization (BTO), to reduce the size of the bypassing traffic and save

NoC bandwidth.

As we discuss in Section 4.1.5, memory intensive GPU applications

sometimes saturate chip resources, which often limits the overall GPU through-

put. The PCAL mechanism exploits two strategies to optimize system through-

put. The first optimization strategy is to enable extra bypassing threads until

80

some chip resources get saturated. NoC bandwidth is one of these common

bottlenecks. The bypassing traffic optimization aims to utilize the spare NoC

bandwidth more effectively and allow the reserved resources such as L1 blocks

and MSHR entries to be released earlier. Consequently, PCAL can activate

more bypassing threads to achieve a higher throughput.

In a memory hierarchy, when a load request misses the cache, it nor-

mally fetches the whole cache block to capture the spatial locality of the mem-

ory access streams. However, when PCAL enables extra bypassing threads,

the memory requests from the bypassing threads do not allocate cache blocks,

so a bypassing memory request does not need to fetch the whole cache block.

Instead, it only needs to fetch the data that has been really required by the

instruction. For instance, a memory request may only need to fetch a single

word. However, a data cache is normally implemented with SRAM blocks,

each cache block normally consists of several data segments. The size of a

segment is normally bigger than a byte or a word. Our baseline simulator con-

figuration sets the L1 data block size to be 128 bytes which are implemented

as 4 32-byte segments. We optimize the PCAL mechanism by allowing the

bypassing memory accesses to only fetch the corresponding segments instead

of the whole cache block.

This bypassing traffic optimization can improve the throughput of PCAL

in two ways. First, it reduces the NoC latency. When static PCAL or dynamic

PCAL adds more threads as the bypassing threads, the bypassing traffic op-

timization reduces the possibility that the NoC bandwidth saturates. Conse-

81

quently, when the bottleneck resource is the NoC bandwidth, PCAL is able

to add more bypassing threads to achieve higher throughput. Second, this

optimization reduces the NoC latency. The round-trip latency of all memory

requests is likely to decrease. The resources that reserved by the memory

requests from cache threads, such as cache blocks and MSHR entries can be

released earlier. Therefore, when the L1 block and MSHR reservation fail-

ure are major bottlenecks, this optimization can help PCAL to enable more

bypassing threads.

4.6 Opportunistic Caching

We consider allowing cache blocks to be allocated opportunistically.

That is, a non-token-holding thread can fill data into the cache if there are

open cache blocks not currently used by token holders.

When cache blocks are allocated to certain number of threads, some

cache blocks may not be touched by the prioritized threads during certain

period. To exploit the opportunity, PCAL allows the de-prioritized threads

to reserve and fill the unused cache blocks to utilize the cache more effec-

tively. Clearing the priority information of each cache block when all prior-

itized threads that have accessed the block finishes, may allow more cache

block be utilized by the de-prioritized threads. We evaluate several types of

token clearing approaches. (1) flushing when a kernel ends, (2) flushing when

all owners end, (3) flushing when the last owner ends, (4) flushing periodically.

Our results show that all four methods perform similarly. Consequently, we

82

choose the simplest design to flush the cache block priority information when

the kernel ends.

4.7 PCAL on Top of CTA Level Throttling

PCAL is orthogonal to existing thread-throttling mechanisms as it can

synergistically be adopted on top of previous schemes. We conduct the ex-

periments of PCAL on top of optimal warp-level throttling because warp is

the finest granularity of execution. Prior researchers also propose to throttle

the thread-level parallelism at CTA granularity. Compared to the CTA-level

throttling, warp-level-throttling can tune the overall all parallelism at finer

granularity to achieve better performance. Therefore, warp-throttling outper-

forms CTA-throttling for most benchmarks.

The implementation of PCAL on top of CTA-level throttling are very

similar to implement PCAL on top of warp level throttling. Therefore the

implementation details are not described again.

4.8 Results

In this section we present results for our priority-based cache allocation

mechanism. As described in section 3.4, we compare to both warp-max and

warp-opt in our results. We first analyze the results of static PCAL, apply-

ing each of the two optimization strategies we discuss in Section 4.3.1. We

investigate the speedup, the cache miss ratio, the round-trip memory request

83

latency, the NoC latency and the resource reservation failure, when varying

the number of Extra Bypassing Threads (EBTN). We discuss the reason that

each application can or can not benefit from the static PCAL strategies.

Next, we explore a mechanism to dynamically select the optimization

strategy and the number of extra bypassing threads to assign. We then evalu-

ate using our bypassing traffic optimization mechanism to save the NoC band-

width and improve the overall throughput.

4.8.1 Static Priority-based Cache Allocation

Figure 4.12: Comparing the speedup of optimal static PCAL with optimal
warp-throttling. The value EBTNum is selected statically to maximize the
throughput.

First, we evaluate the effectiveness of priority-based cache allocation at

84

the L1 level. Figure 4.12 compares the speedup of static PCAL with optimal

EBTNum value, with the speedup of optimal warp throttling warp-opt. The

results are normalized to the original code as-is with warp-max warps allowed

per scheduler in each SMs. We also show warp-opt for comparison. Among the

12 benchmarks, static PCAL enables 7 benchmarks to achieve non-negligible

speedup (i.e. a speedup that is larger than 5%) over the optimal warp throt-

tling technique. Compared to the optimal warp level throttling, static PCAL

with the best EBTNum value achieves an extra 15% throughput on average

across all the benchmarks.

Figure 4.13 shows the detailed performance gain for our static priority-

based cache allocation scheme (Static PCAL) when varying the value of EBTNum.

Figure 4.13a and Figure 4.13b show the speedup of static PCAL when apply-

ing the optimization strategy one or two, which we discuss in Section 4.3.1.

In these figures, EBTNum = 0 means that only warp-throttling is applied

as warp-opt, which is the baseline of our research. Among the applications,

SLUCSTER benefits from the first optimization strategy where extra bypass-

ing threads are enabled to increase TLP while not polluting the L1 cache.

CoMD, BFS, SS, SSSP, ATAX, BICG and MVT achieve higher throughput

with the second optimization strategy where overall TLP is not changing while

the cache hit ratio has been optimized. The other benchmarks can not benefit

from any of the optimizations. We investigate the reason that each applica-

tion can or can not benefit from the static PCAL strategies in rest part of this

section.

85

(a) Speedup, when strategy one is applied to add extra bypassing threads
to increase TLP

(b) Speedup, when strategy two is applied to remove threads from cache
thread group to increase cache hit ratio

Figure 4.13: Speedup for static PCAL on L1 cache, as EBTNum varies. Note
EBTNum = 0 means that only warp-throttling is applied

86

4.8.1.1 Static PCAL with Strategy One: Increasing TLP While
Maintaining Cache Hit Ratio

Figure 4.13a shows the speedup for static PCAL, when strategy one

is applied. Extra bypassing threads are added to increase the TLP without

polluting the L1 data cache. The bypassing threads do not reserve cache

blocks. They do not degrade the cache hit ratio or increase the L1 block

reservation failure. However they still require chip resources to fetch data

blocks from the L2 cache or the main memory. The necessary resources for

bypassing threads including the L1 MSHR entry, the NoC bandwidth, etc. We

analyze the bottlenecks of benchmarks when optimal warp throttling is applied

in Section 4.1.5. If any of the resources that a bypassing thread requires

is already saturated, adding more bypassing threads leads to performance

degradation instead of improvement. As shown in Figure 4.13a, among the

benchmarks, SCLUSTER shows a non-negligible speedup. Other benchmarks

can not benefit from the extra bypassing threads because of memory system

resource saturation. The results match the bottleneck analysis results we show

in Table 4.2.

Memory requests round-trip latency and NoC latency

As shown Table 4.2, CoMD, KMN and SM cannot support extra by-

passing threads due to lack of NOC bandwidth. Figure 4.14 shows the round-

trip latency of memory requests that fetch data from DRAM, and the average

87

(a) Round-Trip latency of memory requests fetching data from DRAM
when static PCAL applies strategy one: adding extra bypassing threads

(b) NoC latency when static PCAL applies strategy one: adding extra
bypassing threads

Figure 4.14: Round-Trip latency of memory requests fetching data from
DRAM and NoC latency when static PCAL applies strategy one: adding
extra bypassing threads

88

NoC latency when static PCAL applies strategy one to add extra bypassing

threads. When the warp throttling is applied, CoMD reaches highest perfor-

mance with 6 warps enabled by each scheduler. When one bypassing thread

is added where EBTNum = 1, the NoC latency of CoMD increases from 66

to 155. The round-trip latency of CoMD increases to 339. This indicates

that the NoC is highly congested. Consequently, the extra bypassing thread

can not enable any extra throughput. KMN and SM experience similar NoC

congestion problems as shown in the figure.

Memory pipeline stall caused by L1 MSHR reservation failure

Figure 4.15: Memory Pipeline Stall caused by L1 MSHR reservation failure
when static PCAL applies strategy one: adding extra bypassing threads

89

Figure 4.15 shows the average Memory Pipeline Stall caused by L1

MSHR reservation failure when static PCAL applies strategy one to add ex-

tra bypassing threads. In the current PCAL implementation, the memory

requests from the bypassing threads reserve the MSHR entries along with the

token-holder threads. Our baseline GPU configuration, as shown in Table 3.4,

integrates a MSHR table with only 32 entries in each SM. As shown Table 4.2,

when optimal throttling is applied without adding more bypassing threads,

II, BFS, SS and SSSP are already bottlenecked by the L1 MSHR reserva-

tion problem. The extra bypassing threads cause significant MSHR saturation

except in SCLUSTER. Enlarging MSHR table capacity might enable PCAL

to achieve higher performance on more benchmarks. We leave this study for

future work.

Overall, cache threads and bypassing threads L1 cache miss ratio

With optimization strategy one, static PCAL adds extra bypassing

threads to increase the TLP. We expect the cache threads (token holder

threads) to maintain the cache hit ratio as if only optimal warp throttling

is applied.

Figure 4.16 shows the overall L1 cache miss ratio and the cache miss

ratio of the cache threads (token holder) when static PCAL applies strategy

one to add extra bypassing threads. As shown in Figure 4.16b, when static

PCAL enables extra bypassing threads, the cache hit ratio of the cache threads

90

(a) Overall L1 cache miss ratio when static PCAL applies strategy one:
adding extra bypassing threads

(b) L1 cache miss ratio of the cache threads (token holder) when static
PCAL applies strategy one: adding extra bypassing threads

Figure 4.16: Overall L1 cache miss ratio and the cache miss ratio of the cache
threads (token holder) when static PCAL applies strategy one: adding extra
bypassing threads

91

Figure 4.17: L1 cache miss ratio of the bypassing threads (non-token holder)
when static PCAL applies strategy one: adding extra bypassing threads

92

does not increase except in GESUMMV. GESUMMV is not bottlenecked by

most chip resources. We expect GESUMMV to benefit from adding extra

bypassing threads. However, when one extra bypassing thread is added, the

L1 hit ratio of the cache threads increases from 17% to 34% which is not as

we expect. The reason is that the opportunistic caching optimization allows

the non-token holder to reserve cache blocks when the block is not occupied

by token holders.

The current PCAL implementation allows the bypassing threads to

probe the L1 cache so that the bypassing threads have the possibility to hit

the cache when they share data with the cache threads. Figure 4.17 shows the

L1 cache miss ratio of the bypassing threads when static PCAL enables extra

bypassing threads. As shown in this figure, ATAX, BICG and MVT achieves

their highest performance with their highest TLP, there is no bypassing thread

that can be enabled. Consequently, their bypassing thread L1 hit ratio is zero.

The bypassing threads from CoMD, SS and SCLUSTER show non-negligible

cache hits. Other benchmarks show a nearly 100% cache miss ratio which

means that allowing bypassing threads does not increase their cache hit ratio.

Parallel Starvation

As shown in Table 4.1 and Table 4.2, ATAX, BICG and MVT achieve

their highest performance at the maximum number of threads allowed. They

experience the parallel starvation problem thus there is no extra bypassing

93

thread can be added even the scheduler allows a larger maximum number of

threads. Therefore, these four benchmarks can not benefit from extra bypass-

ing threads.

4.8.1.2 Static PCAL with Strategy Two: Increasing Cache Hit Ra-
tio While Maintaining TLP

As we discuss in Section 4.8.1.1, when the spare chip resources are not

sufficient to support extra bypassing threads, static PCAL can not enable

bypassing threads. In this case, optimization strategy two is applied. Some

of the cache threads are changed to bypassing threads to avoid thrashing the

cache while the total TLP is maintained.

Figure 4.13b shows the speedup for static PCAL, when optimization

strategy two is applied. When static PCAL reduces the number of the cache

threads, CoMD, BFS, SSSP, ATAX, BICG and MVT exhibit significant through-

put improvement. The other applications do not get benefits from this opti-

mization. We analyze them in the rest of this section.

Benchmarks with parallel starvation problem, such as ATAX, BICG

and MVT etc., can not benefit from optimization strategy one, because no

extra bypassing threads can be added. For these benchmarks, static PCAL can

apply strategy two to reduce the cache miss ratio to improve the performance.

As shown in Figure 4.13b, ATAX, BICG and MVT achieve higher performance

when static PCAL applies strategy two.

94

Overall, cache threads and bypassing threads L1 cache miss ratio

With optimization strategy two, static PCAL reduces the number of

cache threads to improve the cache hit ratio and maintain the overall TLP. We

expect the working set of the cache threads (token holder threads) to reside

in the cache to minimize their cache misses. The bypassing threads have to

experience more cache misses. However, when an application experiences cache

thrashing, keeping a fraction of data resident in cache is expected to improve

the overall cache hit ratio.

Figure 4.18b shows the L1 miss ratio of the cache threads (token holder)

when static PCAL applies strategy two to reduce the number of cache threads

to improve the cache hit ratio. Most benchmarks, except KMN, GESUMMV

and SCLUSTER, exhibit much lower L1 miss ratios for the cache threads when

the number of cache threads is reduced. Our baseline configuration is the

optimal warp level throttling. As Shown in Table 4.1, the warp-opt value of

KMN and GESUMMV is one. The current PCAL implementation maintains

at least one thread to feed the cache. Therefore, for KMN and GESUMMV,

the actual number of cache threads does not change even when the value of

EBTNum = 0 changes from −1 to −6. There are no bypassing threads

enabled for these two benchmarks when static PCAL applies optimization

strategy two.

SCLUSTER exhibits a different trend in the cache threads L1 miss

ratio. Unlike the other benchmarks, its L1 miss ratio increases when the

95

(a) Overall L1 cache miss ratio when static PCAL applies strategy two:
reducing the number of the cache threads to improve the cache hit ratio.

(b) L1 cache miss ratio of the cache threads (token holder) when static
PCAL applies strategy two: reducing the number of the cache threads to
improve the cache hit ratio

Figure 4.18: Overall L1 cache miss ratio and the cache miss ratio of the cache
threads (token holder) when static PCAL applies strategy two: reducing the
number of the cache threads to improve the cache hit ratio

96

Figure 4.19: L1 cache miss ratio of the bypassing threads (non-token holder)
when static PCAL applies strategy two: reducing the number of the cache
threads to improve the cache hit ratio

97

number of cache threads is reduced. The reason is that SCLUSTER has a large

amount of inter-warp data locality. Reducing the number of cache threads

degrades the opportunity to capture inter-warp locality and thus leads to a

higher miss ratio.

Figure 4.18a shows the overall L1 cache miss ratio when static PCAL

applies strategy two to reduce the number of cache threads to improve the

cache hit ratio. As shown in this figure, several applications show a bath-tub-

shaped L1 miss ratio function as the number of cache threads is reduced. The

overall L1 miss ratio is a mixed effect of the cache threads’ miss ratio reduction

and the bypassing threads’ cache miss increase. This shows that the overall

cache hit ratio is sensitive to the EBTNum value.

Round-Trip Latency and NoC Latency

Static PCAL applies strategy two to reduce the number of the cache threads

and improve cache hit ratio. At the same time, the total TLP does not in-

crease. Consequently, when optimization strategy two is enabled, static PCAL

reduces the number of outstanding memory requests and thus alleviates the

chip resource contention problem.

Figure 4.20a shows the round-trip latency of the memory requests that

fetch data from DRAM, and the average NoC latency when static PCAL

applies strategy two to reduce the L1 miss ratio. The applications for which

this optimization strategy enables lower L1 miss ratio, such as CoMD and SSS

etc. show lower round-trip latency as we expect. The other benchmarks that

98

(a) Round-Trip latency of the memory requests fetching data from DRAM
when static PCAL applies strategy two

(b) NoC latency when static PCAL applies strategy two

Figure 4.20: Round-Trip latency of the memory requests fetching data from
DRAM and NoC latency when static PCAL applies strategy two: reducing
the number of the cache threads to improve the cache hit ratio

99

do not achieve higher throughput with this optimization, such as SCLUSTER

and SS etc. do not show noticeable round-trip latency increase. Figure 4.20b

shows the NoC latency when static PCAL applies strategy two. It mostly

exhibits a similar trend as the round-trip latency does.

Memory pipeline stall Ratio

Figure 4.21: Ratio Memory Pipeline Stall when static PCAL applies strategy
two:reducing the number of the cache threads to improve the cache hit ratio

Using strategy two to reduce the cache miss ratio, static PCAL can

reduce the number of outstanding memory requests and is expected to expe-

rience less chip resource saturation. Figure 4.21 shows the average memory

100

pipeline stall ratio of static PCAL when applying strategy two. All benchmarks

experience smaller or the same ratio of memory pipeline stalls as expected.

4.8.2 Dynamic Priority-based Cache Allocation

Figure 4.22: Comparing the speedup of the best static PCAL and dynamic
PCAL:(1) optimal Warp Throttling (2) optimal static PCAL (3) dynamic
PCAL. Normalized to baseline which allows max warp/scheduler

To evaluate the performance of dynamic PCAL, we compare the speedup

for the following mechanisms, all results have been normalized to the baseline.

• Baseline. All schedulers launch the maximum number of warps that

the on-chip resources allow (warp-max).

• Optimal Warp Throttling: Throttling with the optimal warp number

(warp-opt). All schedulers launch the optimal number of warps that

101

results in the highest throughput.

• Optimal static PCAL: Bypassing-L1 with the optimal warp number

and optimal token number. All schedulers launch the optimal number

of warps and apply the bypassing-L1 scheme with the optimal number

of tokens

• Dynamic PCAL: Bypassing-L1 with Dynamic token allocation. Appli-

cations have been throttled by warp, warp-opt is known as an input. The

dynamic token allocation algorithm detects and configures the number

of extra bypassing threads (EBTNum) that the bypassing-L1 scheme

can apply. Rogers, et al. [77] propose a dynamic warp throttling scheme.

We approximate the dynamic warp throttling mechanism with the opti-

mal warp number and show that the dynamic token allocation algorithm

over a warp throttling scheme can achieve almost the same performance

improvement that the scheme with optimal warp and optimal EBTNum

can reach.

Figure 4.22 compares the speedup of the 3 mechanisms. As shown in

the figure, for most of the applications, the speedups of Static PCAL and

Dynamic PCAL are very close. This figure demonstrates that the dynamic

PCAL scheme is able to achieve the majority of the performance improvements

that the best static PCAL can achieve for most applications.

SCLUSTER is the exception. When dynamic PCAL is enabled, it

does not achieve any speedup beyond optimal warp throttling. The reason is

102

two-fold. (1) the throughput of SCLUSTER is very sensitive to the number

of the extra bypassing threads PCAL enables. (2) SCLUSTER consists of

many unstable program phases so that dynamic PCAL can not determine the

optimal value of EBTNum.

As we discuss in Section 4.8.1.1, static PCAL applies optimization

strategy one for SCLUSTER to add the minimum number of extra bypassing

threads that saturates chip resources. As shown in Figure 4.13a, the optimal

value of EBTNum for SCLUSTER is 4. However, the speedup of SCLUSTER

is very sensitive to the number of extra bypassing threads. When EBTNum

increases from 4 to 6, its speedup drops significantly from 345% to 237%, which

is lower than the speedup of the optimal warp throttling.

As we discuss in Section 4.8.1.2, Dynamic PCAL applies a Hill-Climbing

algorithm to decide the best value of EBTNum. However, SCLUSTER con-

sists of unstable program phases, so dynamic PCAL can not find the best value

of EBTNum before new phase is detected. As a result, dynamic PCAL fails

to improve the performance of SCLUSTER.

4.8.3 Bypassing Traffic Optimization

As we discussed in Section 4.5, we optimize the PCAL mechanism by

allowing the bypassing memory accesses to only fetch the corresponding data

segments they need instead of the whole cache blocks. The bypassing traffic

optimization (BTO) is able to utilize the spare NoC bandwidth more effec-

tively. This optimization helps PCAL in two ways. (1) more threads can be

103

added as the bypassing threads and thus the system achieves a higher through-

put. (2) it allows the reserved resources such as L1 blocks and MSHR entries

to be released earlier thus benchmarks bounded by these resources can benefit.

Figure 4.23: Comparing the speedup of optimal warp level throttling, opti-
mal static PCAL and static PCAL with with NoC traffic optimization (Static
PCAL-BTO).(Normalized to baseline which allows max warp/SM)

Figure 4.23 compares the speedup of three mechanisms: (1) warp throt-

tling with optimal warp number per scheduler (warp-opt), (2) static PCAL

with optimal EBTNum value, (3) static PCAL with optimal EBTNum value.

Bypassing traffic optimization enabled (Static PCAL-BTO). All the results are

normalized to the original code as-is with warp-max warps allowed per sched-

uler in each SM.

Compared to the baseline which allows the maximum warp count per

SM, warp level throttling, static PCAL and static PCAL-BTO achieve average

104

speedups of 41%, 56% and 67% respectively across the 12 applications. The

bypassing traffic optimization improves the performance of static PCAL signif-

icantly. As shown in the figure, when the NoC traffic is optimized, 10 out of the

12 benchmarks can benefit from the PCAL technique. KMN and GESUMMV,

unlike the other benchmarks, still can not benefit from PCAL even when the

NoC traffic has been optimized. The reason is that, when PCAL applies strat-

egy one, even the bypassing threads only fetch the data segments that the

memory instructions require instead of the whole cache line, the spare chip

resources are still not sufficient to support an extra bypassing thread. When

PCAL applies strategy two, the optimal warp number per scheduler of both

these two benchmarks is one. As we indicated previously, PCAL keeps at least

one thread as a cache thread. Consequently, neither strategy one nor strategy

two of PCAL can help KMN and GESUMMV to achieve extra throughput

beyond pure warp level throttling.

Among the 12 benchmarks, static PCAL enables 7 benchmarks to

achieve non-negligible speedup (i.e. a speedup that is larger than 5%) be-

yond optimal warp level throttling. II, SM, SS, KMN and GESUMMV can

not achieve higher throughput by the static PCAL mechanism. Static PCAL-

BTO, which enables the bypassing traffic optimization, not only improves the

performance of the 7 benchmarks that benefit from static PCAL but also im-

prove the performance of SS, SM and II. We investigate the performance effect

of the bypassing traffic optimization across our benchmarks in the rest of this

section.

105

(a) Speedup, when strategy one is applied to add extra bypassing threads
to increase TLP

(b) Speedup, when strategy two is applied to remove threads from cache
thread group to increase cache hit ratio

Figure 4.24: Speedup for static PCAL with bypassing traffic optimization, as
EBTNum varies. Note EBTNum = 0 means that only warp-throttling is
applied

106

Figure 4.24a and Figure 4.24b show the speedup of static PCAL-BTO

when applying the two optimization strategies discussed, which we discuss in

Section 4.3.1. When strategy one is applied, PCAL allows more threads to be

enabled as bypassing threads. The bypassing traffic optimization minimizes

the amount of bypassing traffic thus it can allow more bypassing threads to

achieve higher throughput. For instance, without the bypassing traffic opti-

mization, static PCAL can enable two bypassing threads for SCLUSTER (as

shown in Figure 4.13a), which leads to a speedup of 3.45X for SCLUSTER.

When the bypassing traffic optimization is enabled, as shown in Figure 4.24a,

four bypassing threads can be enabled without degrading performance. It

leads to a speedup of 3.67X for SCLUSTER. Another example is SM, where

static PCAL can not improve its performance beyond the speedup of 18% that

the warp level throttling enables, because the spare resources are not sufficient

for even one bypassing thread. Static PCAL-BTO with the bypassing traffic

optimization enabled, in contrast, enables two bypassing threads and achieves

a speedup of 23% for SM. Similarly, static PCAL-BTO enables SS and II to

achieve a higher throughput by allowing more bypassing threads.

When strategy two is applied, PCAL reduces the number of cache

threads to improve the cache hit ratio while maintaining the overall TLP.

The benchmarks that benefit from strategy two are in general chip resource

bound, which makes adding more threads as with strategy one not applicable.

The bypassing traffic optimization minimizes the amount of bypassing traffic

thus the NoC latency and the overall round-trip latency decrease. As a result,

107

these benchmarks become less bounded thus achieve higher throughput.

For instance, for BFS, static PCAL without the bypassing traffic opti-

mization applies strategy two, reduces the number of cache threads from 8 to

3, decreases the overall L1 miss ratio from 83% to 76% and achieves a speedup

of 13%. As a contrast, optimal warp throttling only enables a speed up of

2.2% (as shown in Figure 4.13b). When the bypassing traffic optimization is

enabled, as shown in Figure 4.24b, Static PCAL-BTO maintains a L1 miss ra-

tio of 77% similar to that of static PCAL. However, compared to static PCAL,

static PCAL-BTO reduces the NoC latency from 18 to 7 and reduces the av-

erage round-trip latency from 209 to 193. As a result, we obtain a speedup

of 20% for BFS. Similarly, static PCAL-BTO enables SSSP, CoMD, ATAX,

BICG and MVT to achieve higher throughput by reducing the NoC latency

and the round-trip access latency.

4.8.4 Applying PCAL on both L1 and L2

Figure 4.26 compares the speedup of the optimal static PCAL on L1

and optimal static PCAL on L1&L2. Compared to static PCAL on L1, static

PCAL on L1&L2 gets a lower throughput for eight benchmarks. Among them,

five benchmarks’ throughput decrease more than 5%. BFS, SSSP, ATAX,

BICG, and MVT experience performance degradation of 10%, 10%, 9%,8% and

7% respectively. For the other benchmarks, static PCAL on L1&L2 enables

similar speedup as static PCAL on L1 does.

The reason that static PCAL on L1&L2 leads to a significant perfor-

108

Figure 4.25: Comparing the speedup of the best static PCAL and dynamic
PCAL both with bypassing traffic optimization:(1) optimal Warp Throttling
(2) optimal static PCAL (3) dynamic PCAL. Normalized to baseline which
allows max warp/scheduler

109

Figure 4.26: Comparing the speedup of the best static PCAL on L1 and static
PCAL on L1&L2. Normalized to baseline which allows max warp/scheduler

mance degradation is that static PCAL on L1&L2 forces the bypassing threads

to not only bypass the L1 cache but also the L2 cache. If the L2 cache is not

saturated, bypassing L2 leads to a higher L2 miss ratio. Figure 4.27 compares

the L1 and L2 miss rate of optimal static PCAL on L1 and optimal static

PCAL on L1&L2. The L1 miss rate between these two schemes are very close

as we expect. Figure 4.27b compares the L2 miss rate of these two schemes.

The L2 miss ratio of static PCAL on L1&L2 scheme is 44%. As a contrast, the

L2 miss ratio of static PCAL on L1 is 31%. Among these benchmarks, KMN

and GESUMMV achieve their highest performance when there is no bypassing

thread. Therefore, static PCAL on L1&L2 does not degrade the L2 miss ratio

of these two benchmarks.

110

(a) Comparing L1 miss rate of the best static PCAL on L1 and static
PCAL on L1&L2.

(b) Comparing L2 miss rate of the best static PCAL on L1 and static
PCAL on L1&L2.

Figure 4.27: Comparing L1 and L2 miss rate of the best static PCAL on L1
and static PCAL on L1&L2.

111

Allowing bypassing threads to bypass L2 might be helpful when the

L2 cache is already saturated by the cache threads. Therefore, there might

be a further performance opportunity available if the decision can be made

adaptively. We leave the adaptive L2 bypassing as future work.

4.8.5 Results Summary

In this section, we have evaluated the static PCAL, dynamic PCAL,

bypassing traffic optimization and static PCAL on L1&L2. As we show, com-

pared to PCAL on L1, PCAL on L1& L2 leads to performance degradation for

most of the benchmarks. Therefore we only summarize the speedup of other

schemes here.

Figure 4.28: Overall speedup (normalized to baseline with maximum warp per
scheduler)

112

Figure 4.28 summarizes our best performance for a variety of configu-

rations on each application. For each configuration, we show results for the

best performing warp throttling, optimal static PCAL, optimal static PCAL

with bypassing traffic optimization, Dynamic PCAL and dynamic PCAL with

bypassing traffic optimization. Overall, we observe substantial improvements

vs. off-the shelf applications, especially when the bypassing traffic optimiza-

tion is applied. The dynamic PCAL scheme is able to achieve the majority

part of the performance improvements that the best static PCAL can achieve

for most applications. While warp-throttling can provide benefit over the orig-

inal applications, our approach provides additional improvement. Overall, for

these applications, we observe 56% improvement over the original as-is code,

a 16% improvement over a better-tuned warp-throttling baseline.

4.9 Conclusion

While massively threaded processors such as GPUs are able to provide

high throughput, implementing a high throughput memory system becomes

very challenging for two reasons. First, the gap between the peak arithmetic

capability and the off-chip bandwidth will inevitably be larger. Second, ex-

ploiting locality in these systems can be difficult because of the competition

for cache capacity by the threads.

In this chapter, we demonstrate that the memory system needs to sepa-

rate the concerns of cache thrashing and chip resources saturation. We observe

two opportunities to utilize the memory system more effectively. First, when

113

chip resources, such as off-chip bandwidth or NoC bandwidth etc., get satu-

rated, we show that cache-sensitive workloads have the opportunity to increase

cache locality, but not merely by increasing cache size. Reducing the threads

that compete for the cache and maintaining the total TLP by allowing other

threads to bypass the cache are the key elements to enable better usage of the

cache resources without sacrificing overall parallelism. Second, when the total

TLP has to be compromised to maintain a decent cache hit-ratio to maximize

the overall throughput, we demonstrate that adding a minimum number of

bypassing threads to utilize the spare resources can effectively improve the

throughput.

To exploit these two performance opportunities, we propose and evalu-

ate a priority-based cache allocation (PCAL) mechanism that gives preferen-

tial access to the cache and other on-chip resources to a subset of the threads

and allows the remaining threads to bypass the caches. Our priority-based

approach reduces cache contention and employs effectively the chip resources

that would otherwise go unused by a pure thread throttling approach.

Our results show that PCAL enhances the capabilities of thread throt-

tling, enabling an increase in performance of 18% over the optimal warp throt-

tling scheme on cache-sensitive workloads. Our research also shows that a dy-

namic algorithm that automatically selects the number of bypassing threads

to adapt to the locality profile of each application is competitive with the

best off-line static bypassing threads count selection. This result is significant

as it shows that locality-based performance tuning need not require expert

114

programming skills. Our results also show that cache insensitive applications

are not hurt by PCAL, as the algorithms easily default to all threads having

the same priority. We also expect PCAL to show benefits on emerging GPU

workloads that are less regular in their inter-thread data access patterns and

that have working sets that can fit in the on-chip caches.

115

Chapter 5

Thrashing-Resistant GPU L1 Cache

Replacement and Bypassing algorithms

In this chapter, we propose AgeLRU and Dynamic-AgeLRU, new GPU

cache replacement and bypassing algorithms that adapt to GPU thread schedul-

ing algorithms to alleviate GPU L1 cache thrashing and thus improve the GPU

memory system throughput.

First, we motivate this research by investigating the feasibility of ap-

plying a set of thrashing-resistant CPU cache algorithms to the GPU cache

hierarchy, including the Bimodal Insertion Policy (BIP) mechanism [71] and

the Dynamic Insertion Policy (DIP) mechanism [71].

Next, we propose the AgeLRU and Dynamic-AgeLRU mechanisms,

which are thread scheduling aware replacement and bypassing algorithms to

overcome the thrashing problem. When selecting a collection of memory blocks

to reside in the cache, AgeLRU minimizes the number of warps that share the

cache-resident blocks by prioritizing older warps. At replacement, it considers

not only the last reference time but also the age of the warp fetching the block.

Dynamic-AgeLRU selects the AgeLRU or the LRU algorithm adaptively based

on parallel voting mechanism.

116

Next, we introduce mechanisms for implementing the AgeLRU and

Dynamic-AgeLRU algorithms. We describe the initial implementation of these

algorithms as both replacement and bypassing algorithms. The mechanism to

detect the blocks fetched by inactive warps is discussed. We introduce the

parallel voting mechanism to support Dynamic-AgeLRU.

Finally, we evaluate the new replacement and bypassing policies with

a set of cache-sensitive benchmarks. The results are compared to not only

the baseline but also to the adapted BIP/DIP mechanisms. Compared to

the LRU algorithm, the AgeLRU replacement, bypassing and bypassing with

traffic optimization algorithms enable increases in performance of 4%, 8% and

28% respectively across fourteen cache-sensitive benchmarks. Our results show

that Dynamic-AgeLRU algorithms can avoid degrading the performance of

non-thrashing applications by selecting the LRU algorithm, while achieving

the majority of the performance improvements that the AgeLRU algorithms

can achieve for most cache sensitive applications.

5.1 Motivation

In this section, we motivate our research by analyzing the problems

and the improvement opportunities of applying thrashing-resistant CPU cache

algorithms to a GPU L1 cache. We demonstrate that applying thrashing-

resistant CPU cache algorithms, such as Bimodal Insertion Policy (BIP) and

Dynamic Insertion Policy (DIP) etc.to the GPU cache can not effectively ad-

dress GPU L1 cache thrashing. At the end, we discuss opportunities to address

117

the GPU thrashing problem beyond BIP/DIP. We observe that the cache re-

placement and bypassing algorithms can adapt to the scheduling algorithm to

increase the overall throughput.

Cache Thrashing Problem

As we demonstrate in Section 1.1, the GPU per-thread cache capacity is ex-

tremely limited. As a result, keeping the working set of all threads resident in

the primary cache is infeasible on a fully-occupied SM.

The most common replacement algorithms, such as the Least Recently

Used (LRU) algorithm and its approximation Not Recently Used (NRU) [27] [87],

assume that the most recently referenced block is referenced immediately. This

assumption does not hold when an application experiences a cache thrashing

problem. In this case, although many cache blocks will be reused in the future,

the new fetched blocks push them from the MRU state to the LRU state. The

blocks then get evicted before the reuse can be captured. For GPU applica-

tions, the massive number of hardware threads that a GPU supports often

leads to the cache thrashing problem.

The way to solve the thrashing problem is to only allow a small fraction

of the blocks to be resident in the cache until they get referenced. The other

cache blocks are either put in the LRU state or are forced to bypass the cache

to avoid evicting the other cache blocks.

118

Thrashing-resistant CPU cache algorithms

Cache thrashing on a CPU cache has been a well-known problem and has been

widely studied. Researchers have proposed thrashing-resistant CPU cache

management algorithms. For instance, the Bimodal Insertion Policy (BIP) [71]

and its variants [31] [97] address the cache thrashing problem by randomly

selecting a small fraction of all cache blocks to reside in the MRU state or the

non-LRU state while the majority of cache blocks are kept in the LRU state.

The BIP algorithm effectively alleviates the cache thrashing problem when the

working set of an application is much bigger than the cache capacity. To avoid

degrading the performance of no-thrashing workloads, a Dynamic Insertion

Policy (DIP) [71] is proposed to select between the BIP and LRU algorithms

adaptively.

We adapt both BIP and DIP to the GPU L1 cache. The results are in-

troduced and analyzed in the results section. We observe that these techniques

can improve the GPU cache and overall performance for some applications.

However, there are two problems that limit the feasibility of adapting these

CPU cache algorithms to the GPU L1 cache. (1) BIP randomly selects mem-

ory blocks to reside in the cache. It tends to activate all warps concurrently

and thus it increases the total working set size. (2) DIP relies on the set-

dueling mechanism to evaluate two algorithms on different sets of the same

cache. In a GPU, the thread interleaving and the cache access pattern may

change when set-dueling is applied to estimate two algorithms.

BIP is likely to activate all warps concurrently. The reason is that

119

BIP randomly selects the memory blocks to reside in the cache. These cache-

resident memory blocks are distributed approximately evenly across the work-

ing sets of all warps. The Greedy-Then-Oldest (GTO) algorithm, as the most

effective GPU warp scheduling algorithm, targets to minimize the total work-

ing set size of an application by prioritizing the currently active warp then

the oldest warp. For BIP, the cache-resident memory blocks in the younger

warps lead to cache hits followed by misses. BIP thus enables the outstanding

requests from more warps and activates more warps concurrently.

Figure 5.1: Breaking down cache hits into inter-warp and intra-warp reuses

However, most cache block reuses are the intra-warp reuses. Figure 5.1

shows a break down all the cache hits into two categories: inter-warp and

intra-warp reuse. A cache hit is recognized as an intra-warp reuse only if

120

the instruction fetching it into the cache and the instruction hitting it in

the cache are from the same warp. Otherwise, it is categorized as an inter-

warp reuse. As shown in Figure 5.1, for 10 out of the 14 applications, more

than 90% of cache hits are categorized the intra-warp reuse. The other four

applications exhibit large proportions of inter-warp reuse. On average, the

intra-warp reuses represent 78% of all cache hits. This means that, for most

applications, each warp tends to have its own working set. The total working

set size of a GPU program is often proportional to the number of active threads.

This is the reason that the GTO thread scheduling algorithm aims to minimize

the number of active warps. The BIP algorithm tends to activate all warps

concurrently and thus leads to a larger aggregated working set. This problem

limits the capability of BIP to further improve the cache efficiency and the

overall throughput.

Qureshi, et al. [71] propose a set-dueling mechanism which allows mul-

tiple replacement/insertion policies to be compared to select one at runtime.

DIP relies on the set-dueling mechanism to evaluate the BIP and LRU algo-

rithms on different sets of the same cache and select them adaptively. On the

CPU, allowing a subset of cache sets to have a different insertion or replace-

ment policy than the rest of the cache does not change the overall memory

reference order. Even when the cache is shared among multiple threads, the

CPU cache is often logically partitioned among threads to guarantee the Qual-

ity of Service (QoS) of each thread. Consequently, for a logical cache partition

dedicated to a thread, the memory reference order does not change.

121

On the GPU, the L1 cache is not partitioned among threads because

the per-thread cache capacity is often less than a cache line. The L1 cache

is shared by a large number of hardware thread. A cache miss leads to a

fast context switch to another threads. When applying set-dueling mechanism

directly to the GPU L1 cache, different sets of the L1 cache on a SM have

different insertion or replacement algorithms. Due to the fast thread context

switch effect, the memory reference order to the cache can be dramatically

different depending on the algorithm applied to the cache. Consequently, it is

not feasible to apply the set-dueling mechanism directly to a GPU L1 cache.

As we observe, the root problem of BIP is that its cache block se-

lection and the corresponding insertion algorithm does not match the cache

access patterns that are shaped by the thread scheduler. However, if the cache

resident data is selected using a scheme adapted to the thread scheduler, per-

formance increases may be achievable. When adapting DIP to a GPU L1

cache, applying different replacement or insertion policies to the different sets

of a cache is not feasible. We observe that the cache access patterns of the

threads in the same GPU kernel are often very similar. When the threads

from the same kernel are loaded to different SMs on a GPU, we can evaluate

different algorithms by applying each algorithm in a different SM.

122

5.2 AgeLRU, a Thread-Scheduling Aware GPU Cache
Replacement and Bypassing Policy

5.2.1 Overview

In this section, we propose AgeLRU, a thread scheduling aware cache

replacement and bypassing scheme. At replacement, it evicts the least recently

used blocks from the youngest warp. This scheme has two goals. (1) it selects

the blocks to reside in the cache explicitly considering the effect of the thread

scheduling algorithm, so that the total working set size can be minimized. (2)

it reserves the cache blocks which tend to lead to more and near cache reuse

when selecting victim blocks on cache misses.

As shown in Figure 5.1, most cache block reuses are inter-warp reuses.

Each warp tends to have its own working set. Minimizing the number of

active warps is likely to minimize the total working set size. Therefore, when

selecting memory blocks to reside in the cache, AgeLRU limits all the cache

resident blocks to a single warp.

As we discuss in section 3.4.2, The Greedy-Then-Oldest (GTO) algo-

rithm performs best among the common scheduling algorithms such as the

Loose Round Robin (LRR) algorithm and the two level (TwoLev) scheduling

algorithm. It minimizes the total number of active threads, and the oldest

warp tends to have higher priority to execute. The scheduler shapes the mem-

ory access pattern directly. For intra-warp reuses in the oldest warps, the

reuse distance is less likely to be increased due to context switches to younger

warps. Consequently, the AgeLRU algorithm also prioritizes the cache blocks

123

fetched by the older warp to reside in the cache.

The AgeLRU algorithm can be applied to both the replacement algo-

rithm and the bypassing algorithm. The flowchart of the AgeLRU replacement

and bypassing algorithm is described in Figure 5.2. As shown in this figure,

the cache control logic selects an invalid cache block or a block fetched by an

inactive warp as the replacement victim. If all blocks are fetched by currently

active warps, the cache control logic calculates the relative warp age of all

cache blocks in the cache set. The replacement logic then selects the least

recently used block among the youngest blocks. The bypassing algorithm is

an extension of the replacement algorithm. When a block fetched by an active

warp is selected as the replacement victim, the replacement logic compares the

age of the incoming new request with the age of the victim block, if the new

incoming request is younger, the new request is selected to bypass the cache

instead of replacing the victim cache block.

Another optimization we apply to the AgeLRU bypassing algorithm is

the bypassing traffic optimization. As we demonstrate in Section 4.5, when

a memory request bypasses the cache, it does not need to fetch the whole

block. This optimization has also been applied to the AgeLRU algorithm. For

a detailed discussion of the bypassing traffic optimization see Section 4.5.

Identifying Cache Blocks fetched by Inactive Warps .

The AgeLRU replacement algorithm evicts the least recently used block

among the blocks that have youngest relative warp age. The oldest warp tends

124

Figure 5.2: Flowchart of AgeLRU Replacement and Bypassing Algorithm

to occupy more cache blocks and achieves a higher cache hit ratio than the

younger warps do. However, when the oldest warp completes or reaches a

barrier, it is important that the AgeLRU algorithm can detect the blocks that

are fetched by currently inactive warps and evict these inactive cache blocks.

Otherwise, the cache blocks fetched by the oldest warp are never going to be

utilized by other warps. We propose to keep tracking the oldest active warp

id (Oldest-AWID) and the youngest active warp id (Youngest-AWID) at each

SM, and allow each cache block to store its fetching warp’s active warp ID

(AWID). Comparing the AWID value of a cache line with the Oldest-AWID

and the Youngest-AWID can identify the cache blocks fetched by currently

inactive warps.

125

This mechanism can not identify the inactive warp when the non-oldest

warp completes before the oldest one does. An optimal solution is to maintain

a list of active WID on each SM and thus any ID not in the list can be identified

as inactive. However, it requires extra storage and extra energy to look up the

table. We believe that the mechanism keeping the oldest and youngest warp

id is able to achieve a similar effect as the full list of warp ID does. The reason

is two-fold, (1) in a regular GPU application, most warp finishes in the order

as they are fetched, because the scheduler prioritizes the older warps. (2) we

maintain the oldest warp ID as the oldest active warp ID. The cache blocks

fetched by the oldest warp has the highest priority to reside in the cache at

replacement. When there is a non-oldest warp finishes, the blocks it fetched

still have a lower priority and can be evicted by the requests from the older

warp.

5.2.2 Implementing AgeLRU

Figure 5.3 illustrates the implementation of the AgeLRU algorithm in a

streaming multiprocessor (SM). At a high level, each SM maintains the Oldest

active warp ID (Oldest-AWID) register (Ê in Figure 5.3) and the youngest

active warp ID (Youngest-AWID) register (Ë in Figure 5.3).

The Active Warp ID (AWID) bits are added to the warp status field

of each warp (Ì in Figure 5.3), and to the memory request packet format, as

well as per-line storage of AWID meta-data for the L1 cache (Í in Figure 5.3

). Both Oldest-AWID and Youngest-AWID are implemented as 8 bit wrap-

126

Figure 5.3: AgeLRU Implementation

around counters. Oldest-AWID gets the AWID from the next active warp when

the oldest warp completes or reaches a barrier. Youngest-AWID increases by

one every time a new warp is fetched. Both the Oldest-AWID register and the

Youngest-AWID register are implemented as wrap-around counters. When

either of the two registers reaches the maximum value of the 8-bit registers i.e.

255), it starts from zero again.

Identifying an inactive WID requires to judge whether a given WID

falls in the range between [Y oungest − AWID,Oldest − AWID]. As shown

in Figure 5.4, when the youngest AWID value does not reach the maximum

value (255), a given WID is active when:

Y oungest− AWID <= WID <= Oldest− AWID.

127

When the youngest AWID value wraps around, a given WID is active

when:

Y oungest− AWID >= WIDorWID >= Oldest− AWID.

Youngest-AWID and Oldest-AWID can also determine the relative age

of a given active WID. The relative warp age of a cache line with an active

AWID, can be calculated by

relative− warp− age = (AWID −Oldest− AWID)%255

AWID may be transmitted with any memory request or message to

propagate status. The cache replacement and bypassing control logic (Î in

Figure 5.3) uses AWID bits from each cache line, Oldest-AWID and Youngest-

AWID to select the replacement victim block.

Figure 5.4: Identify Inactive WID with the wrap-around counters

128

5.3 Dynamic AgeLRU

For an application experiencing a cache thrashing problem, the AgeLRU

algorithm is able to keep a fraction of the working set in the cache and thus

improve the overall performance. However, for non-cache-thrashing applica-

tions, the AgeLRU algorithm sometime hurts cache efficiency and the overall

throughput. CPU cache trashing-resistant algorithms have a similar problem,

a common solution is to dynamically switch between the thrashing-resistant

algorithm and the default algorithm such as LRU. For instance, BIP [71]

randomly selects memory blocks to reside in the cache to alleviate the cache

thrashing problem. DIP [71] relies on the set-dueling mechanism to select

BIP or LRU dynamically. The set-dueling mechanism [71] has been applied

to other CPU cache algorithms to dynamically choose between two cache al-

gorithms [31] [97]. As we discuss in 5.1, the set-dueling mechanism is not

feasible to be applied directly to the GPU cache system to dynamically select

the cache algorithm that best fits an application.

Parallel Voting Mechanism

We propose to apply a parallel voting mechanism to select the AgeLRU

algorithm and LRU algorithm adaptively. Figure 5.5 shows the state machine

of the parallel voting mechanism. It also demonstrates the state machine with

an example showing the L1 cache algorithms of all SMs at each state of the par-

allel voting state machine. The state machine of the parallel voting mechanism

129

Figure 5.5: Parallel Voting Mechanism: the state machine and an example
showing the L1 cache algorithms of all SMs at each state of the parallel voting
state-machine

is described as follows. As shown in Figure 5.5, when a new program phase is

detected or the program just starts, the parallel voting state machine applies

the candidate algorithms each on its own SM. It allows the other SMs to use

the default LRU replacement algorithm. At next sampling, the throughput of

the SM that applies the LRU algorithm is compared to the throughput of the

SMs that apply the other candidate algorithms. The algorithm leading to the

highest per-SM throughput is voted to be the best algorithm. It is applied to

all SMs until another new program phase comes.

To implement the Dynamic-AgeLRU algorithm, the parallel voting

mechanism takes the AgeLRU algorithm as the candidate algorithm. It se-

lects the AgeLRU algorithm and the default LRU algorithm adaptively.

130

5.4 Results

In this section we present the results for the AgeLRU/Dynamic-AgeLRU

algorithms. The AgeLRU and Dynamic-AgeLRU algorithm can be applied as

both the replacement and the bypassing algorithms. Additionally, the bypass-

ing traffic optimization can be applied to the bypassing algorithm. Therefore,

for each of the AgeLRU and the Dynamic-AgeLRU algorithm, we evaluate

three configurations: (1) replacement-only, (2) bypassing, and (3) bypassing

with traffic optimization.

Baseline

In our experiment, the LRU algorithm is applied to the baseline architec-

ture which is configured as in Table 3.4. We also compare the AgeLRU and

Dynamic-AgeLRU algorithm with the classic CPU cache thrashing-resistant

algorithms, adapting the BIP mechanism to the GPU L1 cache replacement.

1/32 of memory blocks are assigned with higher priority to reside in the cache

(as in the MRU state), while the other memory blocks are assigned with lower

priority (as in the LRU state). The original DIP algorithm relies on the set-

dueling mechanism to select BIP and LRU adaptively. Since set-dueling does

not work on GPUs, we approximate the DIP algorithm with the optimal-DIP

algorithm where the replacement algorithm is selected off-line to maximize the

performance. Similar to the AgeLRU and Dynamic-AgeLRU algorithm, the

BIP and DIP algorithm can also be configured as Replacement-only, Bypass-

ing, and Bypassing with traffic optimization. We compare the AgeLRU and

131

the Dynamic-AgeLRU algorithm to the BIP and DIP algorithm on each of the

configurations.

Overall

We compare the AgeLRU algorithm with the baseline and BIP algorithm

across a collection of key cache-sensitive benchmarks. Next, in order to eval-

uate the AgeLRU algorithm with the cache insensitive benchmarks, we eval-

uate AgeLRU with a large collection of benchmarks. These benchmarks ex-

hibit variable sensitivities to the cache algorithm. We observe that AgeLRU

degrades the performance of 3 benchmarks. Next, we evaluate the Dynamic-

AgeLRU algorithm with both the cache-sensitive benchmarks and the three

AgeLRU unfriendly benchmarks. Dynamic-AgeLRU is compared to the base-

line and the DIP algorithm. At the end, we summarize our results and con-

clusions.

5.4.1 Evaluating AgeLRU

In this section, we compare the results of three sets of results between

the AgeLRU algorithm and the BIP algorithm used as: (1) replacement al-

gorithms, (2) bypassing algorithms, and (3) bypassing algorithms with traffic

optimization applied.

132

Figure 5.6: Speedup of AgeLRU replacement and BIP replacement algorithms

Figure 5.7: L1 miss rate of LRU, AgeLRU replacement and BIP replacement
algorithms

133

5.4.1.1 Replacement algorithm

Figure 5.6 compares the speedup of the AgeLRU replacement and the

BIP replacement algorithm. All the results have been normalized to the base-

line which applies the LRU algorithm as its L1 cache replacement algorithm.

As shown in Figure 5.6, among the 14 benchmarks, the AgeLRU based replace-

ment algorithm is able to achieve noticeable speedups (a speedup not smaller

than 5%) for 6 benchmarks. It improves the throughput of CoMD, II, KMN,

ATAX, GESUMMV and WC by 7%, 5%, 13%, 5%, 21% and 6% respectively.

On average, AgeLRU achieves a speedup of 4% across the 14 cache sensitive

benchmarks. It demonstrates that for these benchmarks experiencing inter-

thread cache contention problems, the AgeLRU algorithm is able to alleviate

this contention and achieve a higher throughput. For the other benchmarks,

the AgeLRU replacement algorithm can not help the throughput. One of the

major reasons is that these benchmarks not only experience the cache thrash-

ing problem, but also the chip resource saturation problem, particularly, either

the NoC bandwidth saturation problem or the cache line reservation failure

problem.

Figure 5.7 compares the L1 miss rate of the LRU, AgeLRU replacement

and BIP replacement algorithms. As shown in this figure, the L1 miss rate

reductions that the AgeLRU algorithm achieves correlate with the speedup

it achieves very well. For the 6 benchmarks where the AgeLRU algorithm

enables higher throughput, the L1 miss reduction is 2%, 3%, 11%, 3%, 17%

and 2% respectively. The maximum speedup that the AgeLRU algorithm

134

achieves is 21% for GESUMMV. GESUMMV is also the benchmark for which

the AgeLRU algorithm achieves the largest L1 miss reduction of 17%.

In contrast to the AgeLRU algorithm, the BIP based replacement al-

gorithm does not achieve noticeable speedup for most of the benchmarks. The

L1 miss reduction it enables is also not noticeable. The reason is that the BIP

algorithm selects the resident cache blocks randomly, which activates most of

the warps and enlarges the total working set.

We demonstrate this effect with a case study of KMN. For KMN, the

LRU algorithm leads to a L1 miss rate of 94%, the BIP algorithm reduces the

miss rate to 93%. By contrast, the AgeLRU algorithm enables a reduction

of 11% and leads to a miss rate of 83%. Figure 5.8 compares the L1 hit

number of KMN for three algorithms: LRU, AgeLRU and BIP. All numbers

are normalized to the total number of L1 hits that LRU enables. The total

number of cache hits that the AgeLRU enables is 2.9X that of LRU. The

BIP enables 1.24X cache hits compared to the LRU. More importantly, this

figure breaks down L1 cache hits according to the relative age of the warp

that issues the request. As shown in this figure, BIP enables all the warps to

get a little bit more L1 cache hits. It is because that BIP selects the cache

resident blocks randomly, they are distributed among all warps. In contrast to

the BIP algorithm, the AgeLRU algorithm prioritizes the working set of the

older warps to be resident in the cache. The oldest warp achieves many more

cache hits than the younger warps. The oldest four warps account for 49% of

all the cache hits. Compared to the BIP algorithm, the AgeLRU algorithm is

135

less likely to activate the younger warps.

Figure 5.8: A case study of KMN, comparing LRU, AgeLRU and BIP. Break-
ing down the L1 cache hit number according to the relative age of the warp
that issues the request. (Note 1: The relative age here is the rank when all
the active warps on a scheduler are sorted by the fetching time. The youngest
warp’s relative age is 0 and the oldest one is 23. Note 2: All numbers are
normalized to the total number of L1 hit that LRU enables.)

5.4.1.2 Bypassing algorithm

Figure 5.9 compares the speedup of the AgeLRU bypassing and the

BIP bypassing algorithm. All the results have been normalized to the baseline

which applies the LRU algorithm as its L1 cache replacement algorithm. Com-

pared to the replacement only algorithm, the bypassing algorithm enables the

bypassing traffic not to reserve any cache blocks before going to next level of

the memory hierarchy. The reservation failure of cache blocks can be avoided.

As shown in this figure, SCLUSTER achieves a speedup of 55%, while the

136

Figure 5.9: Speedup of AgeLRU bypassing and BIP bypassing algorithms

Figure 5.10: Memory pipeline stall ratio due to L1 block reservation failure:
AgeLRU replacement and AgeLRU bypassing

137

AgeLRU replacement algorithm does not improve its performance. Figure 5.10

shows the memory pipeline stall ratio due to the L1 block reservation failure

for the AgeLRU replacement and AgeLRU bypassing algorithm. When the

AgeLRU based replacement only algorithm is applied, for SCLUSTER, most

of its memory pipeline stalls are caused by L1 block reservation failures. The

AgeLRU bypassing algorithm enables bypassing traffic which does not need

to reserve the L1 blocks. The L1 reservation failure caused memory pipeline

stalls drop significantly. Consequently, the AgeLRU bypassing algorithm en-

ables SCLUSTER to achieve a speedup of 55% .

5.4.1.3 Bypassing algorithm with bypassing traffic optimization

Figure 5.11: Speedup of AgeLRU bypassing and BIP bypassing (Both with
bypassing traffic optimization)

The bypassing traffic optimization is also applied to the AgeLRU by-

passing algorithm. When a memory request bypasses the cache, it only fetches

138

the portion of the cache block it needs instead of the whole block. Figure 5.11

compares the speedup of the AgeLRU bypassing and the BIP bypassing algo-

rithm when the bypassing traffic optimization is applied. Similar to the BIP

bypassing algorithm, the BIP bypassing algorithm with the traffic optimiza-

tion degrades the performance for several benchmarks including BFS, SSSP,

ATAX, BICG and GESUMMV. However, when the traffic optimization is ap-

plied with the BIP algorithm, almost all the requests are optimized. As a

result, the BIP algorithm also achieves significant speedups for II, KMN, SS

and CFD. However, the AgeLRU bypassing algorithm with the traffic opti-

mization achieves even higher speedups than the BIP based algorithm. When

the bypassing traffic optimization is applied, the AgeLRU bypassing algorithm

enables 10 of the 14 benchmarks to achieve significant speedups. It deliveries

an average speedup of 28% across the 14 cache-sensitive benchmarks.

Compared to the bypassing algorithm without the traffic optimization

applied, the traffic optimization enables the applications to utilize the NoC

bandwidth more effectively and reduce the NoC network latency. Furthermore,

it reduces the NoC congestion rate and thus other requests are less likely

to stall due to the NoC congestion. To investigate the NoC congestion, we

investigate the memory request round trip latency and the speedup of the

AgeLRU bypassing algorithm with/without bypassing traffic optimization.

Figure 5.12 compares the speedup of the AgeLRU bypassing algorithm

and with and without bypassing traffic optimization. The optimization enables

higher speedup for 6 benchmarks including II, KMN, SM, SS, WC and CFD.

139

Figure 5.13 shows the average round trip latency of the memory requests of the

AgeLRU bypassing algorithm with and without bypassing traffic optimization.

As shown in this figure, the optimization enables II, KMN, SM, SS, WC and

CFD to achieve a significant reduction in the average round trip latency. These

two figures demonstrate that there is a strong correlation between the round

trip latency reduction and the throughput improvement.

Figure 5.12: Comparing speedup of AgeLRU bypassing with/without traffic
optimization

5.4.1.4 Evaluating AgeLRU with varieties of benchmarks

After demonstrating that the AgeLRU algorithm can enable significant speedup

for the cache-sensitive applications in Section 5.4.1.1, 5.4.1.2 and 5.4.1.3, we

evaluate the approach with a large collection of benchmarks with varieties

140

Figure 5.13: Comparing memory requests round trip latency with/without
traffic optimization

of sensitivity to the cache algorithms. Figure 5.14 shows the speedup of the

AgeLRU replacement and bypassing with/without traffic optimization for a

large collection of benchmarks. As shown in this figure, there is a subset of

benchmarks that achieves significant speedup with the AgeLRU algorithms.

Most of them are the cache-sensitive benchmarks we evaluate in previous sec-

tions. There are many applications that do not respond to the cache replace-

ment and bypassing algorithms. It is also noticeable that there are 3 bench-

marks for which the AgeLRU algorithms decreases the throughput. These 3

benchmarks, GEMM, 3MM and ATAXI favor the LRU algorithm instead of

the AgeLRU algorithm. As we discuss in Section 5.3, we develop the Dynamic-

AgeLRU to select the LRU and AgeLRU algorithm adaptively. The Dynamic-

AgeLRU algorithms are evaluated in next section.

141

Figure 5.14: Speedup of AgeLRU Replacement and Bypassing with/without
traffic optimization

142

5.4.2 Evaluating Dynamic-AgeLRU

In this section, we evaluate the Dynamic-AgeLRU replacement, by-

passing and bypassing with traffic optimization algorithms for both the cache-

sensitive benchmarks and the three benchmarks that get performance degra-

dation with the AgeLRU algorithms.

The results are not only compared to the baseline LRU algorithm but

also to the CPU cache thrashing-resistant algorithm DIP. We approximate the

DIP algorithm with optimal-DIP where the LRU or BIP algorithm is selected

off-line to maximize the best performance.

Figure 5.15, Figure 5.16 and Figure 5.17 summarize the speedup of the

4 schemes: AgeLRU, Dynamic-AgeLRU, BIP and optimal-DIP. These figures

show the 3 configurations of each of the schemes: replacement only, bypassing

and bypassing with traffic optimization. 3MM, ATAXI, GEMM are the three

benchmarks that get performance degradation with AgeLRU algorithms. As

shown in these figures, the Dynamic-AgeLRU algorithms are able to avoid

the performance degradation by choosing the LRU algorithm instead of the

Age-LRU algorithm for these three benchmarks. The largest performance

drop for Dynamic-AgeLRU replacement, bypassing and bypassing with traffic

optimizations are 3%, 6%, 3% respectively.

For most of the other benchmarks, the Dynamic-AgeLRU algorithm

that automatically selects either the AgeLRU or LRU algorithm is competi-

tive with the BIP algorithms. GESUMMV is the exception where Dynamic-

143

AgeLRU always selects LRU instead of AgeLRU, although the AgeLRU re-

placement algorithm enables this benchmark to achieve a speedup of 21%. The

reason is that the Dynamic-AgeLRU algorithm always evaluates the AgeLRU

algorithm on SM0. GESUMMV does not have sufficient CTAs to keep all SMs

busy and SM0 is always idle. As a result, the Dynamic-AgeLRU algorithm

does not have an opportunity to evaluate the AgeLRU algorithm so it always

select the LRU algorithm.

Figure 5.15: Speedup of AgeLRU, Dynamic-AgeLRU, BIP and Optimal-DIP
replacement algorithms

5.5 Summary

In this chapter, we propose the AgeLRU and Dynamic-AgeLRU based

replacement and bypassing algorithms that adapt to the GPU thread schedul-

ing algorithm. The bypassing traffic optimization has also been applied to

utilize the NoC more effectively.

144

Figure 5.16: Speedup of AgeLRU, Dynamic-AgeLRU, BIP and Optimal-DIP
bypassing algorithms

Figure 5.17: Speedup of AgeLRU, Dynamic-AgeLRU, BIP and Optimal-DIP
bypassing algorithms (all with bypassing traffic optimization)

145

The AgeLRU replacement algorithm is able to reduce the inter-thread

cache contention and thus achieve throughput improvement. The AgeLRU

based bypassing algorithm provides an extra benefit beyond the AgeLRU re-

placement only algorithm. It reduces the number of requests that reserve

cache lines. This turns out be helpful for the applications that experience

cache line reservation failure, such as SCLUSTER. The AgeLRU based by-

passing algorithm with the bypassing traffic optimization shows significant

speedup not only over the baseline LRU algorithm but also over CPU cache

thrashing-resistant algorithms such as DIP.

To avoid the AgeLRU algorithm degrading the throughput for the non-

thrashing applications, we propose Dynamic-AgeLRU to select the AgeLRU

algorithm and the LRU algorithm adaptively at the beginning of each program

phase.

Our results show that Dynamic-AgeLRU can avoid degrading the per-

formance of non-thrashing applications by selecting the LRU algorithm. We

also demonstrate that the Dynamic-AgeLRU algorithms are able to achieve

the majority of the performance improvements that the AgeLRU algorithms

can achieve for most applications.

In summary, the AgeLRU and Dynamic-AgeLRU algorithms are ef-

fective thrashing-resistant GPU L1 cache algorithms. The Dynamic-AgeLRU

algorithm not only enables the thrashing applications to achieve significant

speedups but also does not hurt the non-thrashing applications. Its advantage

not only includes its capability to improve the performance with a low hard-

146

ware cost, but also includes the fact it requires no programmer intervention.

147

Chapter 6

Reuse-Prediction-based Scheduler-Aware

GPU Cache Replacement Algorithm

In this chapter, we propose a Reuse-Prediction-based cache Replace-

ment scheme (RPR) for a GPU L1 data cache to address the intra-thread

cache pollution problem. Unlike the AgeLRU algorithm that prioritizes cache

blocks by the age of a warp, this scheme identifies and prioritizes the near-

reuse blocks and high-reuse blocks to maximize the cache efficiency so that it

can achieve further throughput improvement beyond the AgeLRU mechanism.

The RPR mechanism can approximate the reuse-distance-based algo-

rithm, the counter-based algorithm, and the AgeLRU algorithm with vari-

ous cache block score functions. Compared to the corresponding CPU cache

pollution-resistant algorithms, the difference of RPR is two-fold. (1) RPR

leverages the GPU thread scheduling priority (i.e. the relative age of a warp)

together with the fetching PC to generate the signature, which is the index

of the prediction table. (2) RPR calculates the average reuse distance of each

group to tolerate unpredictable thread interleaving.

Compared to the AgeLRU algorithm, the experimental results show

that the RPR algorithm enables a throughput improvement of 5% on average

148

for the regular applications, and a speedup of 3.2% across the benchmarks we

evaluate.

For irregular problems, the AgeLRU algorithm and the default LRU

algorithm outperform the reuse-prediction-based replacement algorithm. The

reason is that the AgeLRU algorithm prioritizes memory blocks at a coarse

granularity and can tolerate more irregularities. A dynamic RPR mechanism

can select the RPR algorithm, LRU algorithm or AgeLRU algorithm adap-

tively to avoid hurting irregular applications. Consequently, the dynamic-RPR

mechanism can select the LRU or the AgeLRU algorithm for the irregular pro-

grams while the RPR algorithm can be selected for regular applications. The

dynamic RPR mechanism can be implemented with the parallel voting mech-

anism similar to the Dynamic-AgeLRU algorithm we discuss in Section 5.3.

We leave dynamic-RPR as future work.

The rest of the chapter is organized as follows. First, we discuss the fea-

sibility of adapting CPU pollution-resistant algorithms to the GPU L1 cache.

Next we introduce the implementation details of the reuse-prediction-based

cache replacement algorithm (RPR). At the end, we analyze the experimental

results.

For many memory intensive GPU applications, the cache is thrashed

by large number of active hardware threads. In this case, cache thrashing

becomes the major problem. In this chapter we apply the optimal static CTA

throttling as the first step, which creates the performance baseline of our re-

search. All the new policies we propose are applied beyond the CTA throttling.

149

After CTA-throttling is applied appropriately, the cache pollution problem be-

comes the dominant factor that still degrades the cache efficiency. As our key

contribution, we propose GPU specific cache replacement algorithms based on

reuse prediction to alleviate the cache pollution problem.

6.1 Motivation

As with the CPU cache, the GPU cache also experiences cache thrash-

ing, cache pollution and dead block problems. Researchers have proposed

many CPU cache pollution-resistant algorithms.

One big category of these algorithms is the signature-based reuse be-

havior prediction enhanced replacement algorithm. Examples include the

counter-based replacement algorithm [44], the Re-reference Interval Predic-

tion (RRIP) [31], the Signature-based Hit Predictor (SHiP) [97], the reuse-

distance prediction based cache replacement policy [42] and cache burst based

dead block prediction [52]. The reuse prediction schemes categorize all mem-

ory quests into groups by summarizing their attributes into signatures. The

signature in general is hashed from simple attributes of the request, such as

the last touching PC, the fetching PC, or the memory region address etc. The

requests in a group that shares a signature are expected to share similar reuse

behaviors. The predictor anticipates that the reuse behavior of a new request

will be the same as the previous requests that share a signature with the new

one.

It is desirable to apply these algorithms to the GPU cache to address

150

(a) KMN

(b) SCLUSTER

Figure 6.1: Reuse distance distribution of memory blocks in same group shar-
ing a signature. Case study of KMN and SCLUSTER. The 4 signatures that
represent the largest 4 groups are shown in the figure.

151

the pollution problem. However, we observe that there are two problems that

limit the feasibility of applying these algorithms directly.

1. Without considering the effect of the thread scheduling, a high

accuracy reuse prediction is not achievable.

The GPU thread scheduler has a significant effect on the GPU cache

access pattern. A reuse prediction must consider the effect of the thread

scheduling. For instance, reuse predictors often generate a signature for

each cache block based on the program counter (PC) of the instruction

that fetches or last touches the block. Cache blocks that share the same

signature are expected to show similar reuse behavior, which has been

proven to be effective for a CPU cache. However, in the case of GPUs,

the PC of a memory instruction can not fully decide the reuse behavior

of the related cache block. The thread scheduler has major effect on the

thread interleaving order. Prior work shows that the Greediest Than

Oldest (GTO) is so far the best thread scheduler in terms of performance.

By prioritizing the older warps, the scheduler only issues instructions

from the younger warp when the older warps do not have any ready

instructions. Consequently, the memory accesses issued from older warps

are more likely to be reused in the near future. The instance of the

instruction in the older warps normally has higher scheduling priority,

and is more likely to be reused sooner.

2. The reuse distance and count of the memory requests sharing

152

a signature can diverge in a range, instead of mostly concen-

trating on one value as on CPUs.

The reason for this is that the GPU cache access stream is highly af-

fected by the thread interleaving which is not stable. A CUDA program

is very finely threaded. The GPU cache access stream is a mix of the re-

quests from many threads. GPUs allow fast context switch among these

threads on long latency operations such as a cache misses and complex

arithmetic instructions. The interleaving among threads is not always

recurring and predictable. The interleaving order of these threads is af-

fected by many GPU specific affects. The hardware thread scheduler

has a direct effect on the thread interleaving, but unexpected latency

could also change the interleaving order. The unexpected latency could

include instruction stalls due to hardware hazards and shared memory

bank conflicts.

As a result, if two memory requests are sharing similar reuse patterns

according to the source code, their actual reuse distance or reuse count

could diverge. Figure 6.1 shows the reuse distance distribution of mem-

ory blocks in a group that shares a signature. For KMN and SCLUSTER,

the 4 signatures representing the largest 4 groups are shown in the fig-

ure. Almost all the groups show a certain amount of divergence. For

example, the signature-one in KMN, although the largest portion of the

requests in the group exhibit a reuse distance of four, the average reuse

distance of this group is three.

153

In order to optimize the GPU cache replacement algorithm, the thread

scheduling algorithm must be taken into account. In other words, the replace-

ment algorithm needs to consider the access patterns generated by specific

threading algorithms.

6.2 Reuse-prediction-based Replacement Algorithms

In this section, we introduce the reuse-prediction-based cache replace-

ment algorithm (RPR). Compared to the CPU pollution-resistant algorithms,

the RPR algorithm leverages not only the well studied GPU cache replacement

techniques, but also takes advantage of GPU-specific attributes. The RPR al-

gorithm relies on two new features to overcome the problems we discuss in

Section 6.1. First, the signature is hashed from not only the PC as in CPU

cache algorithms, but also the relative age of the fetching warp. Second, the

RPR algorithm keeps track of the average reuse distance and reuse count of

each request group so that it can tolerate a certain amount of divergence.

RPR predicts the reuse distance and the reuse count of every cache

block in the set when selecting a victim for replacement. Then it evicts the

one that has been predicted to be reused farthest in future.

The RPR approach consists of three major parts as shown in Figure 6.2:

(1) the reuse distance and count sampler, (2) the reuse predictor, and (3) the

reuse-prediction enhanced cache controller. At a high level, the sampler is a

small tag array with counters. It tracks the memory access to a portion of the

cache sets. The sampler is responsible for collecting the reuse distance and

154

Figure 6.2: Overview of implementing the reuse-prediction-based Replacement
mechanism

reuse count of the sampled cache blocks and sending the reuse information to

the reuse predictor to update the prediction history table. The reuse predictor

maintains the history of the reuse distance and count of every emerged sig-

nature and predicts the reuse behavior of any new memory block. The reuse

prediction enhanced replacement controller initializes each new fetched block

with the predicted reuse distance and count, maintains the reuse information

at every cache access, and selects the victim block based on the reuse distance,

the reuse count and the LRU combined. The implementation details of the

three major components of the new approach are described in the rest of this

section.

6.2.1 Reuse Distance and Reuse Count Predictor

Reuse distance is defined as the number of accesses to the cache set

between two consecutive accesses to the same cache block. Reuse count is the

155

number of accesses a block gets before it is evicted. Prior research shows that

the reuse distance and reuse count can be predicted dynamically to improve

CPU cache replacement algorithms. In an optimal case, a predictor can learn

the reuse behavior from the history of each memory block. However, keeping

track of every block requires impractical hardware storage overhead. It has

been observed in prior CPU cache studies that cache blocks can be grouped

together so that each group of cache blocks shares similar characteristics. For

example, the fetching PC, the last touch PC and the memory region address

have been proven to be good grouping criteria. Furthermore, the PC or mem-

ory region address can be hashed to generate a signature for the group and

thus the total storage size of the history table can be reduced significantly.

The signature-based reuse predictor requires the cache blocks with the same

signature to share a similar reuse behavior. The new predictor generates the

signature for a memory request by hashing the PC and the relative age of the

fetching warp. A signature generated by hashing both the PC and the relative

age of the warp can identify the memory accesses based on their scheduler

priority and the PC itself.

The basic function of the predictor is to maintain the reuse distance and

reuse count history for each memory block signature and to predict the reuse

distance for any newly fetched cache block. The predictor is implemented as a

signature indexed reuse-history table. It consists of two tables: the signature

table and the reuse history table. Each entry in the signature table stores an

existing signature and the signature is used to index the reuse-history table.

156

Each entry in the reuse history table summarizes the reuse information for all

existing memory blocks that share the corresponding signature. Each entry of

the reuse information table consists of five fields: a sum-of-reuse-distance field,

a total-of-reuse-count field, a total-fetching-count field, an average-reuse-count

field and an average-reuse-distance field.

The major operations of the reuse distance predictor are summarized

as follows.

1. Update

The sampler sends update requests to update the corresponding entries

in the reuse history table. There are two kinds of update request: hit

update and miss update. Each request integrates a type-ID to identify

itself as a hit update or a miss update, and a signature of the new

request address. Additionally, a hit update includes the reuse distance

of the cache hit. A miss update does not need extra information.

The signature table performs an associative search to check whether the

signature exists in the table already. If the entry does not exist, one entry

in the signature table is allocated and initialized to the new signature.

If the signature is already in the table, a hit update adds the reuse

distance value to the sum of reuse distance field. The sum of reuse count

field is also increased by one. A miss update increases the total fetching

number by one.

If either of these three fields is saturated, the average reuse distance

157

field and the average reuse count field are updated with the new values

calculated as follows.

average−reuse−distance = sum−of−reuse−distance/total−reuse−count;

(6.1)

average−reuse−count = total−reuse−count/total−fetching−count;

(6.2)

After updating the average-reuse-distance and average-reuse-count val-

ues, the other three fields are reset to zero.

2. Prediction

When a new block is fetched into the cache, the cache controller sends

the signature to the reuse predictor to get the predicted reuse distance

and count. The predictor searches the incoming signature in the sig-

nature table. If there is no match, the predictor returns zero to the

cache controller, which means no prediction can be made for this signa-

ture. Otherwise, the predictor reads the corresponding reuse history and

sends the average reuse distance and average reuse count to the cache

controller.

6.2.2 Cache Block Reuse Distance Sampler

The reuse-prediction-based replacement approach relies on a sampler

to collect the reuse distance and the signature on a cache hit and the signature

on a cache miss. As we discuss in Section 6.2.1, the sampler sends two kinds

of update to the predictor: the hit update and the miss update.

158

A full size sampler can be considered as a duplication of the tag array,

which is organized the same as the tag array in the L1 cache. The sampler

does not store the cache block data, instead, each tag is associated with an

entry, which stores the signature of the correspond cache block and a counter

field to calculate the reuse distance. Although the full size sampler is able to

provide the reuse distance of all cache hits, it requires impractical hardware

costs and extra power consumption. Fortunately, prior research shows that

the sampler does not need to duplicate the tag array for all cache sets. In

fact, a sampler that duplicates the tag array of 1/32 of all cache sets has been

proven to be sufficient.

The major operations of the sampler are summarized as follows.

1. Initialization

When a new cache block is fetched to a set that the sampler is monitoring,

the sampler stores the signature value, and initializes the counter value

to zero.

2. Counter Update

Each access to the cache sets that are under sampler’s monitoring will

trigger the sampler to increase the counter for the set by one.

3. Hit update

On a cache hit, for the tag entry that matches the new access, the differ-

ence between the value of the counter for set and the last-access-counter

159

value of the entry is considered as the reuse distance of the stored signa-

ture. The sampler sends the signature and the reuse distance value as a

hit update to the reuse distance predictor.

4. Miss update

On a cache miss, the signature of the incoming request is sent to the

reuse predictor as a miss update.

6.2.3 Cache Replacement Controller

The new cache replacement controller includes two parts: the per-cache

line reuse-distance field and the replacement decision unit. The controller

works as follows.

1. Initialization

When a new cache line is fetched into the cache, the controller first

calculates the signature based on the new block’s fetching PC and the

relative age of the warp that issues the request. This information has

been attached to the memory request packet. The signature is sent to

the reuse predictor, which then sends back the predicted reuse distance

and reuse count value. The reuse distance and count value then are

stored together with the cache line.

2. Updates at access

When a new request accesses the cache set, all the cache blocks in the

160

set update their reuse distance field by decreasing the value by one to

keep track of the distance of the future reuse.

3. Updates at hit

When a new request hits a cache block, the block updates its reuse count

field by decreasing the value by one to indicate the number of reuses left.

4. Replacement victim selection

In this research, we keep three values with each cache line: the reuse

count, the reuse distance and the ID of the warp fetching the block.

The ID of the warp can be used to calculate the age of the fetching

warp as we discuss in Section 5.2. The score of each cache line can be

calculated based on these three values with different functions, such as

reuse distance only, age-only functions and counter-based.

When the warp that fetches the block is no longer active, or the reuse

count value of a block reaches zero, the block can be considered as dead.

The replacement controller selects the blocks that are predicted to be

dead over the other blocks in the same cache set. If no dead block is

found, the controller calculates the score of all cache blocks in the set.

It first selects the blocks with the lowest score. If there is more than

one cache block sharing the lowest score, the least recently used block is

evicted.

161

6.2.4 Cache Block Scoring Strategy

The reuse-prediction-based replacement approach (RPR), keeps the

predicted reuse information together with the cache line including the reuse

distance, the reuse count, and the active warp ID (AWID) of the warp fetching

the block. The AWID can be applied to calculate the age of the fetching warp

which represents the scheduler priority of the warp.

We propose to calculate a score for each of the cache blocks based

on the three inputs: reuse distance (RD), reuse count (RC) and age of the

warp (AGE). The block with the lowest score is selected as the replacement

victim. With different strategies to calculate the score, the RPR mechanism

can approximate several replacement policies.

AgeLRU algorithm: We propose the AgeLRU algorithm in Chapter 5.

The RPR mechanism can be considered as a mechanism that augments the

AgeLRU mechanism with reuse distance and reuse count prediction. If the

cache line score is calculated without considering the reuse distance and the

reuse count of the block, the RPR algorithm works in the same way as the

AgeLRU algorithm. The score function for AgeLRU algorithm is

ScoreAgeLRU = 256− AGE. (6.3)

The relative age of the oldest warp is zero and the ScoreAgeLRU function enables

the oldest warp to have the highest score.

162

Reuse-Distance-based Replacement Algorithm: The reused-distance-

base replacement algorithm [42] is one of the CPU cache pollution-resistant

algorithms. It hashes the PC to generate the signature which is used to cate-

gorize the memory references. However, in the case of GPUs, the instructions

that share the same PC but are in warps with different ages show very different

reuse behavior because the thread scheduler assigns them different priorities.

Therefore, the RPR mechanism approximates this algorithm on the GPU cache

while hashing both the PC and the age of the warp to generate the signature.

The score function for reuse-distance-based algorithm is

Scorereuse−dist = 256−RD. (6.4)

Improved counter-based cache replacement algorithm: The counter-

based replacement algorithm [44] is a dead-block prediction algorithm. The

reuse count of a block is predicted. When the access count of the block exceeds

the threshold, the block is identified as dead and thus gets evicted. The RPR

mechanism also predicts the reuse count of each block and decreases the reuse

count value by one at each cache hit. RPR can approximate the counter-

based dead block prediction algorithm. However, this algorithm mostly aims

to improve the efficiency of high-associative caches. The associativity of GPU

L1 cache is generally low. For instance, our baseline GPU L1 cache is a four-

way associative cache.

We augment the counter-based cache replacement algorithm with the

163

ability to address the cache pollution problem. The algorithm allows a block

with more reuse left to evict a block with less reuse left. The score function

of the improved counter-based algorithm is

If (RC > 0) Scorecounter−based = 256 + RC;

Else Scorecounter−based = 0;
(6.5)

6.3 Optimizing Hardware Cost

The implementation cost of the reuse-prediction-based replacement ap-

proach mainly consists of three parts: the reuse history table, the reuse sam-

pler, and the per-cache line reuse storage. In this section, we describe the

optimizations to reduce the hardware cost.

History Table in the Predictor: The reuse distance/count predictor relies

on the history to keep track of the reuse information of each memory block

group. The total number of entries in the table depends on how many active

signatures are present during execution. The table is shared among all SMs.

In our experiment, the table can keep up to 512 entries. Each entry of the

table consists of five fields: a 11-bit sum-of-reuse-distance field, a 8-bit total-of-

reuse-count field, a 5-bit total-fetching-count field, a 4-bit average-reuse-count

field and a 4-bit average-reuse-distance field. The total size of the table is 2K

bytes.

164

Shadow Tag Array in the Sampler: The full size sampler keeps track of

the reuse distance and reuse count of all cache blocks with a duplication of

the tag array (i.e. a shadow tag array). The hardware cost of the shadow tag

array makes the approach impractical. Fortunately, prior research observes

that the sampler only needs to monitor a small subset of the cache sets to

learn the reuse behaviour of all cache blocks. We apply a similar technique

in our implementation where the sampler only keeps track of 1/4 of the cache

sets. For each set that the sampler monitors, there is an 2-byte access counter.

For each block in the set, the sampler consists of a 3-byte tag, 2-byte last

access counter value, and 1-byte signature. For a 4-way 16KB L1 cache with

32 sets, the size of the sampler is 208 bytes. The sampler only needs to be

implemented on one SM.

Per-cache-block meta data: In this research, we keep three fields of meta

data with each cache line: 4-bit reuse count, 4-bit reuse distance, and 8-bit ID

of the warp fetching the block. The meta data size for the 16KB L1 cache is

256 Bytes.

In summary, the hardware cost of implementing the RPR approach

includes the 2K-byte reuse history table, the 208-byte sampler shared among

all SMs and the 256-byte per-SM meta data storage. For our baseline GPU

configured as in Table 3.4, the total storage overhead is 6096 bytes.

RPR can approximate multiple algorithms with various cache block

score functions. If the results show that there is no performance benefit for

165

approximating some of the algorithms, the related reuse information does not

need to be stored.

6.4 Results

In this section we present results for the reuse-prediction-based cache

replacement algorithms.

We configure the RPR mechanism with three cache line score strate-

gies as we discuss in Section 6.2.4 to approximate the AgeLRU algorithm,

reuse-distance algorithm and improved counter-based algorithm. The results

are compared to static CTA-throttling (CTA-opt) in our experiments. The ex-

perimental results show that the reuse-prediction-based replacement enables

a throughput improvement of 5% on average for the regular applications and

a speedup of 3.2% across all the key benchmarks over the AgeLRU algorithm.

At the end, we summarize the results and make the conclusions of this chapter.

Figure 6.3 summarizes the L1 miss rate of the best performing static

CTA throttling, the counter-based replacement, the reuse-distance-based re-

placement and the AgeLRU replacement algorithms.

As shown in Figure 6.3, static CTA throttling can reduce the L1 miss

rate significantly (12% on average) and it achieves a speedup of 47% on average.

The benefit is mostly from solving the cache thrashing problem. Our approach

is implemented on top of the CTA-throttling approach to address the cache

pollution problem.

166

Figure 6.3: L1 miss rate of CTA Throttling, reuse-distance-based replace-
ment, reuse-counter based replacement and AgeLRU replacement (normalized
to baseline where maximum number of CTA is allowed.)

Compared to the CTA-throttling approach, the three algorithms that

RPR approximates, namely the counter-based replacement, the reuse-distance-

based replacement and the AgeLRU algorithm, are able to reduce the cache

miss rate for II, SS and KMN. On the other hand, all three algorithms increase

the L1 miss rate for CoMD, BFS and SSSP. The L1 miss rate of the other

two benchmarks, SCLUSTER and SM, are not sensitive to these algorithms.

Among these three algorithms, the reuse-distance-based replacement algorithm

achieves the largest L1 miss rate reduction for most of the benchmarks. It

reduces the L1 miss rate for II, KMN and SS by 8% 17% and 3% respectively.

Figure 6.4 summarizes the performance of the best performing static

CTA throttling, the counter-based replacement, the reuse-distance-based re-

167

Figure 6.4: Speedup of CTAThrottling, reuse-distance-based replacement,
reuse-counter based replacement and AgeLRU replacement (normalized to
baseline where maximum number of CTA is allowed.)

placement and the AgeLRU replacement algorithms. As shown in this figure,

on average, the reuse-distance-based replacement algorithm performs better

than the other algorithms. It outperforms CTA throttling, counter-based re-

placement and AgeLRU replacement by 6%, 6% and 5% respectively on aver-

age across all the key benchmarks. For most of the benchmarks, the speedup

it achieves exhibits a strong correlation with the L1 miss rate reduction it

achieves.

SSSP and BFS are the outliers in our experiment, on which the reuse-

distance-prediction-based replacement shows negative effect. This algorithm

degrades the performance by 7% and 5% respectively. The reason for this

negative effect is that BFS and SSSP are are known irregular GPU programs

168

which travel irregular graphs. They are both from the LonestarGPU bench-

mark set [7], which is a collections of GPU applications showing irregular

behavior. The cache behavior of each thread depends on the number of con-

nections that each node has in this graph. Our approach trains the prediction

table based on reuse patterns in the history. Unfortunately, these history reuse

patterns are not necessarily repeating due to the irregularity of the graph.

In summary, the reuse-prediction-based replacement is able to achieve

6% speedup over the optimal CTA throttling mechanisms across the eight key

benchmarks we test. For the six regular applications, we observe a L1 miss

rate reduction of 4% and a speedup of 10% over the optimal CTA-throttling

mechanism. Compared to the AgeLRU algorithm we propose in Chapter 5,

the RPR algorithm enables a throughput improvement of 5% on average for

the regular applications and a speedup of 3.2% across all the key benchmarks.

6.5 Summary

In this chapter, we propose and evaluate a new reuse-prediction-based

GPU L1 cache replacement mechanism (RPR) to address the intra-thread

cache pollution problem. This mechanism predicts the reuse distance and reuse

count of each memory block and applies the reuse information to improve the

replacement decision.

CPU cache-pollution-resistant algorithms can not be applied directly

to a GPU L1 cache. RPR leverages the GPU thread scheduling priority to

generate the signature that indexes the prediction table. It also calculates the

169

average reuse distance of each memory request group to tolerate unpredictable

thread interleaving.

RPR can approximate the reuse-distance-based algorithm, the counter-

based algorithm, and the AgeLRU algorithm with various cache block score

functions. Among these three configurations, the reuse-distance-based algo-

rithm outperforms the others. Compared to the AgeLRU algorithm we pro-

pose in Section 5, the reuse-distance-based algorithm enables a throughput

improvement of 5% on average for the regular applications and a speedup of

3.2% across all the key benchmarks.

Our experimental results show that the reuse-distance-based algorithm

degrades the performance of the irregular GPU applications. In these applica-

tions, the reuse histories are not necessarily repeating due to the irregularity

of the program. For instance, SSSP computes the shortest path from a source

node to all nodes in a graph. The cache behavior of each thread depends on the

number of connections that each node has in this graph. Our approach trains

the prediction table based on reuse patterns of the nodes that have been eval-

uated in the history. Unfortunately, these reuse patterns are not necessarily

repeating on other nodes in the graph.

We believe a dynamic RPR mechanism that selects the RPR algorithm

and the LRU algorithm adaptively, could avoid hurting the irregular applica-

tions. The dynamic RPR mechanism can be implemented with the parallel

voting mechanism similar to the Dynamic-AgeLRU algorithm we discuss in

Section 5.3. We leave the dynamic-RPR as a part of future work.

170

Chapter 7

Conclusion

While massively threaded processors such as GPUs are able to provide

high throughput, implementing a high throughput memory system is challeng-

ing. The gap between the peak arithmetic capability and the off-chip band-

width will inevitably grow in the future. At the same time, exploiting locality

in these systems can be difficult because of the competition for cache capac-

ity by the threads. This dissertation advocates orchestrating thread schedul-

ing with cache management polices to improve cache efficiency and memory

system throughput. Based on this principle, we propose three mechanisms

including Priority-based Cache Allocation mechanism (PCAL), AgeLRU and

Reuse-Prediction based Replacement (RPR) algorithms to improve the mem-

ory system throughput. PCAL demonstrates that the thread scheduler needs

to consider the effect of Thread Level Parallelism (TLP) on the cache perfor-

mance and memory resource usage to maximize the memory throughput. By

monitoring memory system statistics, PCAL explicitly determines the num-

ber of threads that share the cache and the minimum number of bypassing

threads that saturate memory system resources. This approach reduces the

cache thrashing problem and effectively employs memory system resources

that would otherwise go unused by a pure thread throttling approach. The

171

AgeLRU and RPR algorithms also follow the principle of our thesis statement

by considering the effect of the thread scheduling algorithm. These algorithms

are able to outperform the thrashing-resistant and pollution-resistant algo-

rithms adapted from CPU variants. We expect the three techniques might

combine synergistically to further improve the throughput.

7.1 Dissertation Contributions

There are four major contributions of this work:

1. Investigating the memory system effect of high TLP and iden-

tifying the performance bottleneck of each application

Mapping the maximum amount of parallel work that the hardware can

support often leads to cache thrashing and saturation of memory system

resources, which does not necessarily ensure the best overall performance.

To investigate how the number of active hardware threads affects GPU

performance, the cache hit ratio and other chip resource utilization met-

rics, we characterized a set of cache-sensitive applications by varying

the maximum number of warps that each thread scheduler allows. We

analyzed the Instruction Per Cycle (IPC), L1/L2 cache miss ratio and

the chip resource utilization metrics including the memory request round

trip latency, the Network-on-Chip (NoC) transmission latency and the

DRAM bandwidth utilization. We identified the major performance bot-

tlenecks for each application when TLP is increased. Applications are

grouped into categories based on these bottlenecks.

172

Based on the bottleneck identification results, we observed that throt-

tling techniques rely on tuning only one parameter — the total number

of threads — to make a trade-off among the total TLP, the cache miss

ratio and different resources in the memory system. The trade-off is

often sub-optimal.

We observed two opportunities to utilize the memory system more ef-

fectively. First, when chip resources, such as off-chip bandwidth or NoC

bandwidth etc., become saturated, we showed that cache-sensitive work-

loads have the opportunity to increase cache locality, but not merely by

increasing cache size. The key elements to enable better usage of the

cache resources without sacrificing overall parallelism are: (1) reducing

the threads that compete for the cache, and (2) maintaining the total

TLP by allowing other threads to bypass the cache. Second, when the

total TLP has to be compromised to maintain an acceptable cache hit

ratio to maximize the overall throughput, we demonstrated that adding

bypassing threads to utilize the spare resources can effectively improve

the throughput.

2. Addressing cache thrashing and memory system resource satu-

ration with a thread-scheduling directed cache allocation mech-

anism

We enhanced the thread throttling technique with the Priority-based

Cache Allocation mechanism (PCAL) to address inter-thread L1 cache

thrashing and memory system resource saturation. Unlike thread throt-

173

tling approaches which force all threads to feed the L1 cache, PCAL

divides threads into three subsets: (1) threads that issue and share the

cache, (2) threads that issue but bypass one or more levels of cache, and

(3) threads that are throttled and do not issue. PCAL can improve per-

formance with two optimization strategies: either increasing TLP while

maintaining cache hit ratio, or optimizing cache hit ratio while main-

taining TLP.

We developed dynamic PCAL, which not only determines the best strat-

egy to improve performance, but also decides the size of the cache thread

group and the bypassing thread group. Dynamic PCAL monitors the

chip resource usage to decide whether there are sufficient resources to

support a bypassing thread. This approach reduces cache thrashing and

effectively employs the chip resources that would otherwise go unused

by a pure thread throttling approach. We observed on average 67% im-

provement over the original as-is benchmarks and a 18% improvement

over a better-tuned warp-throttling baseline.

3. Developing the AgeLRU and Dynamic-AgeLRU GPU-specific

thrashing-resistant cache replacement and bypassing algorithms

We investigated the feasibility of applying a set of thrashing-resistant

CPU cache algorithms to the GPU cache hierarchy, including the Bi-

modal Insertion Policy (BIP) mechanism [71] and the Dynamic Insertion

Policy (DIP) mechanism [71]. We observed that there are two problems

that limit the feasibility of adapting these CPU cache algorithms directly

174

to the GPU L1 cache. (1) BIP randomly selects memory blocks to re-

side in the cache. It tends to activate all warps concurrently and thus

it increases the total working set size. (2) DIP relies on the set-dueling

mechanism to evaluate two algorithms on different sets of the same cache.

In a GPU, the thread interleaving order and cache access pattern may

change when set-dueling is applied to estimate two algorithms.

We proposed the AgeLRU and Dynamic-AgeLRU mechanisms, which are

thread scheduling-aware replacement and bypassing algorithms to over-

come the inter-thread thrashing problem. When selecting a collection of

memory blocks to reside in the cache, AgeLRU reduces the number of

warps that share the cache-resident blocks by prioritizing older warps.

Dynamic-AgeLRU selects the AgeLRU or the LRU algorithm adaptively

based on a parallel voting mechanism.

Compared to the LRU algorithm, the three AgeLRU algorithms — re-

placement, bypassing and bypassing with traffic optimization-enabled —

increase performance by 4%, 8% and 28% respectively across fourteen

cache-sensitive benchmarks. Our results show that Dynamic-AgeLRU

algorithms can avoid degrading the performance of non-thrashing ap-

plications by selecting the LRU algorithm. We also demonstrated that

the Dynamic-AgeLRU algorithms are able to achieve the majority of the

performance improvements that the AgeLRU algorithms can achieve for

most applications.

4. Proposing Reuse-Prediction based Cache Replacement Algo-

175

rithm (RPR)

It is desirable to apply CPU cache pollution-resistant algorithms to the

GPU cache to address pollution. However, we observed that without

considering the effects of the thread scheduling, highly accurate reuse

prediction is not achievable.

We developed a Reuse-Prediction-based cache Replacement scheme (RPR)

for a GPU L1 data cache to address the intra-thread cache pollution

problem. This scheme identifies and prioritizes the near-reuse blocks

and high-reuse blocks to maximize the cache efficiency so that it can

achieve further throughput improvement beyond the AgeLRU mecha-

nism. RPR uses the GPU thread scheduling priority to generate a sig-

nature that indexes the prediction table. RPR can approximate the

reuse-distance-based algorithm, the counter-based algorithm, and the

AgeLRU algorithm with various cache block score functions. Among

these three configurations, our results show that the reuse-distance-based

algorithm outperforms the others. Compared to the AgeLRU algorithm

we proposed in Section 5, the reuse-distance-based algorithm enables a

throughput improvement of 5% on average for regular applications, and

a speedup of 3.2% across a set of cache-sensitive benchmarks.

7.2 Future Work

Increasing TLP and optimizing cache hit ratio synergistically

Section 4.3.1 introduces the two performance optimization strategies that the

176

PCAL approach exploits: (A) increasing TLP while maintaining cache

hit ratio, and (B) increasing cache hit ratio while maintaining TLP.

In our current implementation, PCAL applies one of the two strategies to

every new program phase. However these two optimization strategies can

work synergistically to further improve the overall throughput.

For a resource constrained application, we can apply strategy B first to

improve the hit ratio while maintaining the TLP. The number of cache threads

is reduced to optimize the overall cache hit ratio. As we show in Figure 4.18,

this strategy enables applications to achieve higher cache hit ratios. As a

result, the number of outstanding memory requests is reduced, and the GPU

memory system is less stressed. For instance, as shown in Figure 4.20, the NoC

latency and the round-trip latency of CoMD both decrease. Since the memory

system is less saturated or possibly even under-utilized, the application can

become a non-resource constrained application. There is a further opportunity

to apply strategy A to increase TLP to utilize the spare resources.

For a non-resource constrained application, we can apply strategy A

first to increase TLP by enabling extra bypassing threads until memory sys-

tem resources saturate. After this step, the application turns into a resource

constrained application. There is a further opportunity to apply strategy B to

rebalance the number of cache threads and the number of bypassing threads

to maximize the cache hit ratio and overall performance. Future work should

study the interaction between the two optimization strategies to increase the

TLP and optimize overall cache hit ratio at same time.

177

Allocating L1 and L2 cache to different threads group explicitly

As discussed in Section 4.8.4, PCAL only focuses on the L1 cache allocation

and is not able to achieve further speedup when it is applied to the L2 cache.

Figure 4.26 shows that applying PCAL to the L2 in addition to the L1 leads

to performance degradations compared to PCAL on L1 only.

There are two problems that limit the performance of the current im-

plementation of PCAL on the L1 and L2 mechanism: (1) The current imple-

mentation of PCAL assigns L1 tokens and L2 tokens to the same subset of

threads. However, the token number that maximizes the L1 cache efficiency is

not necessarily the token number that can maximize the L2 cache efficiency.

(2) The L1 token-holder threads can fit their working sets in the L1 cache. The

L1 cache misses of the loads from these threads are mostly compulsory misses.

Assigning these requests high priority for L2 allocation does not help them hit

in the L2 cache. Moreover, it reduces the opportunity of the non-token-holder

threads to reside in the L2 cache and thus degrades the L2 hit ratio of these

threads.

We believe the GPU throughput can be further improved by allocating

L1 and L2 cache capacity separately to allow each cache level to be utilized

more effectively. Such a scheme could allocate the L1 and L2 cache capacity

separately to two subsets of threads. The two subsets could be either inclusive

or exclusive to balance the L1 and L2 hit ratio. Both the L1 token number

and L2 token number can be selected adaptively according to program resource

characteristics and hardware resource availability. Consequently, the working

178

sets of the two thread groups can reside in different levels of caches without

trashing either of them. This scheme could reduce the L2 miss ratio and

further improve the performance over the current PCAL scheme.

Combining PCAL, AgeLRU and RPR

The three mechanisms we propose in this work all aim to improve the over-

all GPU memory system throughput. They could potentially work together

synergistically to further improve throughput. When the PCAL mechanism

is enabled, threads are divided into three subsets: (1) threads that issue and

share the cache, (2) threads that issue but bypass one or more levels of cache,

and (3) threads that are throttled and do not issue. PCAL does not require a

specific cache replacement algorithm. AgeLRU and RPR algorithm could be

applied together with PCAL to further improve the performance. (1) AgeLRU

can be applied to manage the memory request stream from the cache threads.

When PCAL determines the number of cache threads, it aims to maximize

the overall cache hit ratio. Consequently, the cache threads may not maintain

their full working sets in the cache. These threads could still compete for cache

capacity. PCAL does not assign priorities among these threads. AgeLRU can

be applied to manage their working set by prioritizing the older ones at cache

replacement. Consequently, the thrashing among cache threads can be par-

tially avoided. (2) PCAL assigns the cache allocation priority (i.e. token)

by warp. This only helps alleviate the inter-thread cache thrashing problem.

Both the low-reuse blocks and the high-reuse blocks are treated equally. The

179

low-reuse blocks of the cache threads can reside in the cache until the warp

finishes. This wastes the limited cache capacity and degrades cache efficiency.

RPR is able to identify the high-reuse blocks by predicting their reuse behav-

ior. It can be applied to filter out the low-reuse blocks from the cache threads

and thus each cache thread occupies less cache. Consequently, more threads

can be allowed to share the cache.

Combining PCAL, AgeLRU and RPR could address the inter-thread

thrashing, intra-thread pollution and memory system resource saturation all

together. The combined technique may better utilize the cache capacity and

other memory system resources more effectively improving the GPU through-

put beyond what was shown in this dissertation.

7.3 Practicality Discussion

To improve the memory system throughput, this dissertation proposes

three mechanisms: Priority-based Cache Allocation mechanism (PCAL), AgeLRU,

and Reuse-Prediction based Replacement (RPR) algorithms. These mecha-

nisms involve both programmer interventions and architecture innovations to

further exploit data locality and utilize the on-chip and off-chip resources more

effectively. It is important to reduce hardware cost and programmer effort to

enable our new mechanisms to be practical for future throughput processors.

This section discusses implementation options and the practicality of these

three mechanisms.

180

Priority-based Cache Allocation

This dissertation proposes the PCAL mechanism as an enhancement of throt-

tling techniques and provides two implementation options: static PCAL and

dynamic PCAL. Static PCAL achieves a higher throughput than dynamic

PCAL with a lower hardware cost. But it needs more programmer interven-

tion than dynamic PCAL. The implementation of static PCAL is relatively

simple. The hardware cost includes token assignment logic within the thread

scheduler and a one-bit priority field for each cache line. Static PCAL requires

programmers to provide the number of extra bypassing threads in addition to

the optimal number of threads that is required by pure throttling techniques.

Static PCAL matches the needs of experienced programmers. By allowing the

programmers to determine the value of the two parameters for each kernel,

static PCAL provides an effective tool to tune the cache efficiency and the

memory system throughput of throughput processors.

Dynamic PCAL determines the number of bypassing threads and the

number of cache threads dynamically to ease the burden of normal program-

mers. It does not require programmers to have a deep understanding of GPU

microarchitectures. This dissertation implements dynamic PCAL as a pure

hardware mechanism. The algorithms to search the best configurations, in-

cluding hill-climbing and parallel voting, are implemented as a hardware state-

machine. The hardware cost of the state machine is not high, but the pure

hardware based dynamic PCAL does have two disadvantages: (1) it increases

the design complexity of the thread scheduler, and (2) the hardware imple-

181

mentation of the algorithms limit its flexibility. More complex algorithms may

be impractical to implement in hardware.

We observe that implementing parts of the dynamic PCAL mechanism

in the runtime software can reduce the design complexity and improve the

flexibility of the mechanism effectively. In the runtime/hardware combined

implementation of PCAL, the hardware part is the same as in static PCAL.

It reads the PCAL parameters from registers. Unlike static PCAL, which

requires the programmer to set the value of the PCAL parameters, the new

implementation relies on the runtime to monitor the memory resource usage

and run the hill-climbing and parallel voting algorithm to determine the PCAL

parameters.

The runtime/hardware combined PCAL requires a hardware cost as

low as static PCAL. The configuration searching algorithms are implemented

as runtime functions, which is flexible, creating new opportunities to design

new algorithms without increasing hardware cost. With this implementation,

static PCAL and dynamic PCAL can be combined under the same frame-

work. The programmers are still able to call a runtime function to set the

PCAL configurations directly. When the runtime loads a new kernel, it first

checks whether the PCAL parameters have been set by the software. If the pa-

rameters have been set, it allows the hardware to read the value directly from

the registers. If the parameters have not been set by programmer, the run-

time runs the algorithm to determine the configuration parameters of PCAL.

Consequently, the runtime/hardware combined PCAL becomes an effective

182

and practical mechanism with low hardware overhead and high flexibility. We

believe it fits the needs of both the experienced programmers and the normal

programmers.

Scheduling-aware GPU cache algorithms

The GPU thread scheduler shapes memory access patterns directly and thus

has a significant effect on cache efficiency. Based on this observation, this

dissertation proposes several scheduling-aware GPU cache replacement and by-

passing algorithms including AgeLRU, Dynamic-AgeLRU and Reuse-Prediction-

based Replacement (RPR). Among these algorithms, AgeLRU and Dynamic-

AgeLRU are proposed to address the inter-thread cache thrashing problem,

achieving speedups of 28% and 20% respectively. The hardware cost of imple-

menting AgeLRU includes an 8-bit active warp ID field in each cache line and

the changes in the replacement logic. For a 16KB GPU L1 cache, the storage

cost is about 128 bytes, which is less than 1% of the cache. Dynamic-AgeLRU

augments the AgeLRU algorithm with a parallel voting mechanism, which se-

lects between the AgeLRU algorithm and the LRU algorithm adaptively to

avoid degrading the performance of non-thrashing applications. The parallel

voting mechanism is implemented as a 3-state state machine, which only re-

quires simple logics. The significant speedup and the low hardware cost make

the Dynamic-AgeLRU mechanism practical. We believe it is a good candidate

to replace the LRU algorithm for a GPU cache.

The Reuse-Prediction-based cache replacement algorithm aims to pre-

183

dict the reuse behavior of each cache block, identify the near-reuse blocks and

improve the cache replacement decision. However, it only achieves an average

speedup of 3.5% beyond the AgeLRU algorithm. Reasons are two-fold:

• For irregular applications, the reuse predictor can not predict the reuse

behavior accurately. RPR trains the prediction table based on reuse

patterns in the history. Unfortunately, these history reuse patterns are

not necessarily repeating due to the irregularity of the program.

• The fine-grained thread interleaving degrades the prediction accuracy.

The thread interleaving order is directly affected by the thread sched-

uler. Although RPR considers the scheduling priority of the fetching

thread for the cache block when it predicts the reuse behavior, the reuse

distance of the cache blocks sharing a signature sometime diverge sig-

nificantly. Furthermore, some unexpected long latency operations like

shared memory bank conflicts could also change the thread interleaving

order, which is often unpredictable.

The RPR scheme is not able to predict the cache block reuse behavior ac-

curately to achieve a good speedup because of the effect of the fine-grained

thread interleaving. Therefore we do not feel it is a practical design option to

implement RPR to replace the Dynamic-AgeLRU algorithm.

184

7.4 Concluding Thoughts

Throughput processors must continue to improve memory system through-

put to maintain high occupancy for the computation units. By orchestrating

thread scheduling with cache management polices, this dissertation proposes

several mechanisms that improve cache efficiency and memory system through-

put significantly. The two most practical mechanisms, PCAL and AgeLRU,

both make cache management decisions at the warp level. To further im-

prove cache efficiency, it is desirable to identify and prioritize the near-reuse

blocks and high-reuse blocks to maximize cache efficiency and achieve fur-

ther throughput improvements beyond warp level cache management algo-

rithms. However, the reuse prediction based replacement algorithm study

demonstrates the difficulty in predicting the reuse behavior of cache blocks. It

opens up two broad challenges for future work: (1) overcoming the effect of

thread interleaving to predict the reuse behavior of GPU cache blocks accu-

rately, and (2) understanding the reuse patterns of the irregular applications.

We envision that an accurate predictor for cache block reuse will be the key

element that further improves GPU memory system throughput in the future.

185

Bibliography

[1] GPGPU-Sim. http://www.gpgpu-sim.org.

[2] GPGPU-Sim Manual. http://www.gpgpu-sim.org/manual.

[3] AMD Corporation. ATI Stream Computing OpenCL Programming

Guide, August 2010.

[4] A. Bakhoda, G.L. Yuan, W.W.L. Fung, H. Wong, and T.M. Aamodt.

Analyzing CUDA Workloads Using a Detailed GPU Simulator. In Inter-

national Symposium on Performance Analysis of Systems and Software

(ISPASS), April 2009.

[5] Kristof Beyls and Erik D’Hollander. Reuse distance as a metric for cache

behavior. In Proceedings of the IASTED International Conference on

Parallel and Distributed Computing and Systems, IASTED, Anaheim,

California, USA, 2001, pages 617–622, 2001.

[6] Doug Burger, James R. Goodman, and Alain Kägi. Memory bandwidth

limitations of future microprocessors. In Proceedings of the 23rd annual

international symposium on Computer architecture, ISCA ’96, pages 78–

89, New York, NY, USA, 1996. ACM.

186

[7] Martin Burtscher, Rupesh Nasre, and Keshav Pingali. A Quantitative

Study of Irregular Programs on GPUs. In International Symposium on

Workload Characterization (IISWC), November 2012.

[8] Henk Corporaal Cedric Nugteren, Gert-Jan van den Braak and Henri

Bal. A detailed gpu cache model based on reuse distance theory.

[9] Jichuan Chang and Gurindar S Sohi. Cooperative cache partitioning

for chip multiprocessors. In Proceedings of the 21st annual international

conference on Supercomputing, pages 242–252. ACM, 2007.

[10] Shuai Che, M. Boyer, Jiayuan Meng, D. Tarjan, J.W. Sheaffer, Sang-Ha

Lee, and K. Skadron. Rodinia: A Benchmark Suite for Heterogeneous

Computing. In IEEE International Symposium on Workload Charac-

terization, October 2009.

[11] Shuai Che, Jeremy W. Sheaffer, and Kevin Skadron. Dymaxion: Opti-

mizing memory access patterns for heterogeneous systems. In Proceed-

ings of 2011 International Conference for High Performance Computing,

Networking, Storage and Analysis, SC ’11, pages 13:1–13:11, New York,

NY, USA, 2011. ACM.

[12] Hsiang-Yun Cheng, Chung-Hsiang Lin, Jian Li, and Chia-Lin Yang.

Memory latency reduction via thread throttling. In Microarchitecture

(MICRO), 2010 43rd Annual IEEE/ACM International Symposium on,

pages 53 –64, dec. 2010.

187

[13] Jamison D. Collins and Dean M. Tullsen. Hardware identification of

cache conflict misses. In Proceedings of the 32Nd Annual ACM/IEEE

International Symposium on Microarchitecture, MICRO 32, pages 126–

135, Washington, DC, USA, 1999. IEEE Computer Society.

[14] Nam Duong, Dali Zhao, Taesu Kim, R. Cammarota, M. Valero, and

A.V. Veidenbaum. Improving cache management policies using dy-

namic reuse distances. In Microarchitecture (MICRO), 2012 45th An-

nual IEEE/ACM International Symposium on, pages 389–400, Dec 2012.

[15] A. Duran and M. Klemm. The intel many integrated core architec-

ture. In High Performance Computing and Simulation (HPCS), 2012

International Conference on, pages 365 –366, july 2012.

[16] Wilson W. Fung and Tor M. Aamodt. Thread Block Compaction for

Efficient SIMT Control Flow. In 17th International Symposium on High

Performance Computer Architecture (HPCA-17), February 2011.

[17] Wilson W.L. Fung, Ivan Sham, George Yuan, and Tor M. Aamodt. Dy-

namic Warp Formation and Scheduling for Efficient GPU Control Flow.

In 40th International Symposium on Microarchitecture (MICRO-40), De-

cember 2007.

[18] Mark Gebhart, Daniel Johnson, David Tarjan, Steve Keckler, William

Dally, Erik Lindholm, and Kevin Skadron. Energy-efficient mechanisms

for managing thread context in throughput processors. In 38th Interna-

tional Symposium on Computer Architecture (ISCA-38), 2011.

188

[19] Antonio González, Carlos Aliagas, and Mateo Valero. A data cache

with multiple caching strategies tuned to different types of locality. In

Proceedings of the 9th International Conference on Supercomputing, ICS

’95, pages 338–347, New York, NY, USA, 1995. ACM.

[20] S. Grauer-Gray, Lifan Xu, R. Searles, S. Ayalasomayajula, and J. Cava-

zos. Auto-tuning a high-level language targeted to gpu codes. In

Innovative Parallel Computing (InPar), 2012, pages 1–10, May 2012.

[21] Z. Guz, O. Itzhak, I. Keidar, A. Kolodny, A. Mendelson, and U.C.

Weiser. Threads vs. caches: Modeling the behavior of parallel work-

loads. In Computer Design (ICCD), 2010 IEEE International Confer-

ence on, pages 274–281, Oct 2010.

[22] Zvika Guz, Evgeny Bolotin, Idit Keidar, Avinoam Kolodny, Avi Mendel-

son, and Uri C. Weiser. Many-Core vs. Many-Thread Machines: Stay

Away From the Valley. IEEE Computer Architecture Letters, Jan 2009.

[23] Bingsheng He, Wenbin Fang, Qiong Luo, Naga Govindaraju, and Tuy-

ong Wang. A MapReduce Framework on Graphics Processors. In

17th International Conference on Parallel Architecture and Compilation

Techniques (PACT-17), 2008.

[24] Enric Herrero, José González, and Ramon Canal. Elastic cooperative

caching: an autonomous dynamically adaptive memory hierarchy for

chip multiprocessors. ACM SIGARCH Computer Architecture News,

38(3):419–428, 2010.

189

[25] C.J. Hughes, Changkyu Kim, and Yen-Kuang Chen. Performance and

energy implications of many-core caches for throughput computing. Mi-

cro, IEEE, 30(6):25–35, Nov 2010.

[26] Jaehyuk Huh, Doug Burger, and Stephen W. Keckler. Exploring the de-

sign space of future cmps. In Proceedings of the 2001 International Con-

ference on Parallel Architectures and Compilation Techniques, PACT

’01, pages 199–210, Washington, DC, USA, 2001. IEEE Computer So-

ciety.

[27] INTEL. Inside the Intel Itanium 2 Processor, July 2002.

[28] Ravi Iyer, Li Zhao, Fei Guo, Ramesh Illikkal, Srihari Makineni, Don

Newell, Yan Solihin, Lisa Hsu, and Steve Reinhardt. Qos policies and

architecture for cache/memory in cmp platforms. In ACM SIGMET-

RICS Performance Evaluation Review, volume 35, pages 25–36. ACM,

2007.

[29] J. Mohd-Yusof, S. Swaminarayan, and T. C. Germann. Co-Design for

Molecular Dynamics: An Exascale Proxy Application, 2013.

[30] Aamer Jaleel, William Hasenplaugh, Moinuddin Qureshi, Julien Sebot,

Simon Steely Jr, and Joel Emer. Adaptive insertion policies for manag-

ing shared caches. In Proceedings of the 17th international conference on

Parallel architectures and compilation techniques, pages 208–219. ACM,

2008.

190

[31] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely, Jr., and Joel Emer.

High performance cache replacement using re-reference interval predic-

tion (rrip). In Proceedings of the 37th Annual International Symposium

on Computer Architecture, ISCA ’10, pages 60–71, New York, NY, USA,

2010. ACM.

[32] J. Jalminger and P. Stenstrom. A novel approach to cache block reuse

predictions. In Parallel Processing, 2003. Proceedings. 2003 Interna-

tional Conference on, pages 294–302, Oct 2003.

[33] Wenhao Jia, Kelly Shaw, and Margaret Martonosi. Characterizing and

Improving the Use of Demand-Fetched Caches in GPUs. In 26th Inter-

national Supercomputing Conference (ICS’26), 2012.

[34] Wenhao Jia, Kelly A Shaw, and Margaret Martonosi. Mrpb: Memory

request prioritization for massively parallel processors. In 20th Interna-

tional Symposium on High Performance Computer Architecture (HPCA-

20), 2014.

[35] Yunlian Jiang, Eddy Z Zhang, Kai Tian, and Xipeng Shen. Is reuse

distance applicable to data locality analysis on chip multiprocessors? In

Compiler Construction, pages 264–282. Springer, 2010.

[36] Adwait Jog and et al. Orchestrated Scheduling and Prefetching for

GPGPUs. In 40th International Symposium on Computer Architecture

(ISCA-40), 2013.

191

[37] Adwait Jog and et al. OWL: Cooperative Thread Array Aware Schedul-

ing Techniques for Improving GPGPU Performance. In 13th Interna-

tional Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS-13), 2013.

[38] Teresa L. Johnson, Daniel A. Connors, Matthew C. Merten, and Wen-

mei W. Hwu. Run-time cache bypassing. IEEE Trans. Comput.,

48(12):1338–1354, December 1999.

[39] Onur Kayiran, Adwait Jog, Mahmut Kandemir, and Chita Das. Nei-

ther More Nor Less: Optimizing Thread-Level Parallelism for GPGPUs.

In International Conference on Parallel Architecture and Compilation

Techniques (PACT), September 2013.

[40] S.W. Keckler, W.J. Dally, B. Khailany, M. Garland, and D. Glasco.

Gpus and the future of parallel computing. Micro, IEEE, 31(5):7 –17,

sept.-oct. 2011.

[41] Kamil Kedzierski, Miquel Moreto, Francisco J Cazorla, and Mateo Valero.

Adapting cache partitioning algorithms to pseudo-lru replacement poli-

cies. In Parallel & Distributed Processing (IPDPS), 2010 IEEE Inter-

national Symposium on, pages 1–12. IEEE, 2010.

[42] G. Keramidas, P. Petoumenos, and S. Kaxiras. Cache replacement

based on reuse-distance prediction. In Computer Design, 2007. ICCD

2007. 25th International Conference on, pages 245–250, Oct 2007.

192

[43] M. Kharbutli and D. Solihin. Counter-based cache replacement and

bypassing algorithms. Computers, IEEE Transactions on, 57(4):433–

447, April 2008.

[44] M. Kharbutli and Yan Solihin. Counter-based cache replacement al-

gorithms. In Computer Design: VLSI in Computers and Processors,

2005. ICCD 2005. Proceedings. 2005 IEEE International Conference

on, pages 61–68, Oct 2005.

[45] An-Chow Lai, C. Fide, and B. Falsafi. Dead-block prediction amp;

dead-block correlating prefetchers. In Computer Architecture, 2001.

Proceedings. 28th Annual International Symposium on, pages 144–154,

2001.

[46] An-Chow Lai, Cem Fide, and Babak Falsafi. Dead-block prediction

& dead-block correlating prefetchers. In Proceedings of the 28th

Annual International Symposium on Computer Architecture, ISCA ’01,

pages 144–154, New York, NY, USA, 2001. ACM.

[47] D. Lee, J. Choi, J. H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S. Kim.

Lrfu: A spectrum of policies that subsumes the least recently used and

least frequently used policies. IEEE Trans. Comput., 50(12):1352–1361,

December 2001.

[48] Jaekyu Lee, Nagesh B. Lakshminarayana, Hyesoon Kim, and Richard

Vuduc. Many-thread aware prefetching mechanisms for gpgpu applica-

tions. In Proceedings of the 2010 43rd Annual IEEE/ACM International

193

Symposium on Microarchitecture, MICRO ’43, pages 213–224, Washing-

ton, DC, USA, 2010. IEEE Computer Society.

[49] Janghaeng Lee, Haicheng Wu, Madhumitha Ravichandran, and Nathan

Clark. Thread tailor: Dynamically weaving threads together for effi-

cient, adaptive parallel applications. In Proceedings of the 37th Annual

International Symposium on Computer Architecture, ISCA ’10, pages

270–279, New York, NY, USA, 2010. ACM.

[50] Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Dae-

hyun Kim, Anthony D. Nguyen, Nadathur Satish, Mikhail Smelyanskiy,

Srinivas Chennupaty, Per Hammarlund, Ronak Singhal, and Pradeep

Dubey. Debunking the 100x gpu vs. cpu myth: An evaluation of

throughput computing on cpu and gpu. In Proceedings of the 37th

Annual International Symposium on Computer Architecture, ISCA ’10,

pages 451–460, New York, NY, USA, 2010. ACM.

[51] W. Lin, S. Reinhardt, and D. Burger. Reducing DRAM Latencies with

an Integrated Memory Hierarchy Design. In 7th International Sympo-

sium on High Performance Computer Architecture (HPCA-7), February

2001.

[52] Haiming Liu, Michael Ferdman, Jaehyuk Huh, and Doug Burger. Cache

bursts: A new approach for eliminating dead blocks and increasing cache

efficiency. In Proceedings of the 41st Annual IEEE/ACM International

194

Symposium on Microarchitecture, MICRO 41, pages 222–233, Washing-

ton, DC, USA, 2008. IEEE Computer Society.

[53] Yangchun Luo, Venkatesan Packirisamy, Wei-Chung Hsu, Antonia Zhai,

Nikhil Mungre, and Ankit Tarkas. Dynamic performance tuning for

speculative threads. In Proceedings of the 36th Annual International

Symposium on Computer Architecture, ISCA ’09, pages 462–473, New

York, NY, USA, 2009. ACM.

[54] Nihar R Mahapatra and Balakrishna Venkatrao. The processor-memory

bottleneck: problems and solutions. Crossroads, 5(3es):2, 1999.

[55] R. Manikantan, K. Rajan, and R. Govindarajan. Nucache: An effi-

cient multicore cache organization based on next-use distance. In High

Performance Computer Architecture (HPCA), 2011 IEEE 17th Interna-

tional Symposium on, pages 243–253, Feb 2011.

[56] Richard L. Mattson, Jan Gecsei, Donald R. Slutz, and Irving L. Traiger.

Evaluation techniques for storage hierarchies. IBM Systems journal,

9(2):78–117, 1970.

[57] Jiayuan Meng, David Tarjan, and Kevin Skadron. Dynamic warp subdi-

vision for integrated branch and memory divergence tolerance. In 37th

International Symposium on Computer Architecture (ISCA-37), 2010.

[58] Miquel Moreto, Francisco J Cazorla, Alex Ramirez, and Mateo Valero.

Mlp-aware dynamic cache partitioning. In High Performance Embedded

195

Architectures and Compilers, pages 337–352. Springer, 2008.

[59] V. Narasiman, C.J. Lee, M. Shebanow, R. Miftakhutdinov, O. Mutlu,

and Y.N. Patt. Improving GPU Performance via Large Warps and

Two-Level Warp Scheduling. In 44th International Symposium on Mi-

croarchitecture (MICRO-44), December 2011.

[60] Kyle J. Nesbit, James Laudon, and James E. Smith. Virtual private

caches. In Proceedings of the 34th Annual International Symposium on

Computer Architecture, ISCA ’07, pages 57–68, New York, NY, USA,

2007. ACM.

[61] Alexandru Nicolau and Arun Kejariwal. How many threads to spawn

during program multithreading? In Proceedings of the 23rd Interna-

tional Conference on Languages and Compilers for Parallel Computing,

LCPC’10, pages 166–183, Berlin, Heidelberg, 2011. Springer-Verlag.

[62] Jarek Nieplocha, Andrès Márquez, John Feo, Daniel Chavarŕıa-Miranda,

George Chin, Chad Scherrer, and Nathaniel Beagley. Evaluating the po-

tential of multithreaded platforms for irregular scientific computations.

In Proceedings of the 4th International Conference on Computing Fron-

tiers, CF ’07, pages 47–58, New York, NY, USA, 2007. ACM.

[63] NVIDIA Corporation. NVIDIA’s Next Generation CUDA Compute

Architecture: Fermi, 2009.

[64] NVIDIA Corporation. CUDA C/C++ SDK CODE Samples, 2011.

196

[65] NVIDIA Corporation. NVIDIA CUDA Programming Guide, 2011.

[66] NVIDIA Corporation. PTX: Parallel Thread Execution ISA Version

2.3, 2011.

[67] NVIDIA Corporation. Whitepaper: NVIDIA GeForce GTX 680, 2012.

[68] NVIDIA Corporation. Tuning CUDA Applications for Kepler, July

2013.

[69] A.K. Parakh, M. Balakrishnan, and K. Paul. Performance estimation

of gpus with cache. In Parallel and Distributed Processing Sympo-

sium Workshops PhD Forum (IPDPSW), 2012 IEEE 26th International,

pages 2384–2393, May 2012.

[70] M. Qureshi and Y. Patt. Utility-Based Cache Partitioning: A Low-

Overhead, High-Performance, Runtime Mechanism to Partition Shared

Caches. In 39th International Symposium on Microarchitecture (MICRO-

39), Dec 2006.

[71] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon C. Steely, and

Joel Emer. Adaptive insertion policies for high performance caching.

SIGARCH Comput. Archit. News, 35(2):381–391, June 2007.

[72] Minsoo Rhu and Mattan Erez. CAPRI: Prediction of Compaction-

Adequacy for Handling Control-Divergence in GPGPU Architectures.

In 39th International Symposium on Computer Architecture (ISCA-39),

June 2012.

197

[73] Minsoo Rhu and Mattan Erez. Maximizing SIMD Resource Utiliza-

tion in GPGPUs with SIMD Lane Permutation. In 40th International

Symposium on Computer Architecture (ISCA-40), June 2013.

[74] Minsoo Rhu and Mattan Erez. The Dual-Path Execution Model for

Efficient GPU Control Flow. In 19th International Symposium on High-

Performance Computer Architecture (HPCA-19), February 2013.

[75] Minsoo Rhu, Michael Sullivan, Jingwen Leng, and Mattan Erez. A

locality-aware memory hierarchy for energy-efficient gpu architectures.

In Proceedings of the 46th Annual IEEE/ACM International Symposium

on Microarchitecture, MICRO-46, pages 86–98, New York, NY, USA,

2013. ACM.

[76] Brian M. Rogers, Anil Krishna, Gordon B. Bell, Ken Vu, Xiaowei Jiang,

and Yan Solihin. Scaling the bandwidth wall: challenges in and avenues

for cmp scaling. In Proceedings of the 36th annual international sym-

posium on Computer architecture, ISCA ’09, pages 371–382, New York,

NY, USA, 2009. ACM.

[77] Timothy Rogers, Mike O’Connor, and Tor Aamodt. Cache-Conscious

Wavefront Scheduling. In International Symposium on Microarchitec-

ture (MICRO), December 2012.

[78] Timothy G. Rogers, Mike O’Connor, and Tor M. Aamodt. Divergence-

aware warp scheduling. In Proceedings of the 46th Annual IEEE/ACM

198

International Symposium on Microarchitecture, MICRO-46, pages 99–

110, New York, NY, USA, 2013. ACM.

[79] Jennifer B. Sartor, Subramaniam Venkiteswaran, Kathryn S. McKin-

ley, and Zhenlin Wang. Cooperative caching with keep-me and evict-

me. In Proceedings of the 9th Annual Workshop on Interaction Between

Compilers and Computer Architectures, INTERACT ’05, pages 46–57,

Washington, DC, USA, 2005. IEEE Computer Society.

[80] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash,

Pradeep Dubey, Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert

Cavin, Roger Espasa, Ed Grochowski, Toni Juan, and Pat Hanrahan.

Larrabee: A Many-core x86 Architecture for Visual Computing. ACM

Trans. Graph., 27:18:1–18:15, August 2008.

[81] Vivek Seshadri, Onur Mutlu, Michael A. Kozuch, and Todd C. Mowry.

The evicted-address filter: A unified mechanism to address both cache

pollution and thrashing. In Proceedings of the 21st International Con-

ference on Parallel Architectures and Compilation Techniques, PACT

’12, pages 355–366, New York, NY, USA, 2012. ACM.

[82] Ankit Sethia, Ganesh Dasika, Mehrzad Samadi, and Scott Mahlke. Apogee:

adaptive prefetching on gpus for energy efficiency. In Proceedings of the

22nd international conference on Parallel architectures and compilation

techniques, pages 73–82. IEEE Press, 2013.

199

[83] J.L. Shin, Dawei Huang, B. Petrick, Changku Hwang, K.W. Tam, A. Smith,

Ha Pham, Hongping Li, T. Johnson, F. Schumacher, A.S. Leon, and

A. Strong. A 40 nm 16-Core 128-Thread SPARC SoC Processor. IEEE

Journal of Solid-State Circuits, 46(1):131–144, 2011.

[84] Srinath Sridharan, Gagan Gupta, and Gurindar S. Sohi. Holistic run-

time parallelism management for time and energy efficiency. In Proceed-

ings of the 27th International ACM Conference on International Confer-

ence on Supercomputing, ICS ’13, pages 337–348, New York, NY, USA,

2013. ACM.

[85] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-

Wen Chang, Nasser Anssari, Geng Daniel Liu, and W-m Hwu. Parboil:

A revised benchmark suite for scientific and commercial throughput com-

puting. Center for Reliable and High-Performance Computing, 2012.

[86] M. Aater Suleman, Moinuddin K. Qureshi, and Yale N. Patt. Feedback-

driven threading: Power-efficient and high-performance execution of multi-

threaded workloads on cmps. In Proceedings of the 13th International

Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS XIII, pages 277–286, New York, NY, USA,

2008. ACM.

[87] SUN. UltraSPARC T2 supplement to the UltraSPARC architecture,

2007.

200

[88] I-Jui Sung, G.D. Liu, and W.-M.W. Hwu. Dl: A data layout trans-

formation system for heterogeneous computing. In Innovative Parallel

Computing (InPar), 2012, pages 1–11, May 2012.

[89] Tao Tang, Xuejun Yang, and Yisong Lin. Cache miss analysis for gpu

programs based on stack distance profile. In Distributed Computing

Systems (ICDCS), 2011 31st International Conference on, pages 623–

634, June 2011.

[90] David Tarjan, Jiayuan Meng, and Kevin Skadron. Increasing memory

miss tolerance for SIMD cores. In Proceedings of the Conference on

High Performance Computing Networking, Storage and Analysis (SC-

09), 2009.

[91] Y. Torres, A. Gonzalez-Escribano, and D.R. Llanos. Understanding

the impact of cuda tuning techniques for fermi. In High Performance

Computing and Simulation (HPCS), 2011 International Conference on,

pages 631–639, July 2011.

[92] Gary Tyson, Matthew Farrens, John Matthews, and Andrew R. Pleszkun.

A modified approach to data cache management. In Proceedings of the

28th Annual International Symposium on Microarchitecture, MICRO 28,

pages 93–103, Los Alamitos, CA, USA, 1995. IEEE Computer Society

Press.

[93] Sain-Zee Ueng, Melvin Lathara, Sara S. Baghsorkhi, and Wen-Mei W.

201

Hwu. Languages and compilers for parallel computing. chapter CUDA-

Lite: Reducing GPU Programming Complexity, pages 1–15. Springer-

Verlag, Berlin, Heidelberg, 2008.

[94] Swapneela Unkule, Christopher Shaltz, and Apan Qasem. Automatic

restructuring of gpu kernels for exploiting inter-thread data locality. In

Proceedings of the 21st International Conference on Compiler Construc-

tion, CC’12, pages 21–40, Berlin, Heidelberg, 2012. Springer-Verlag.

[95] Aniruddha Vaidya, Anahita Shayesteh, Dong Hyuk Woo, Roy Saharoy,

and Mani Azimi. SIMD Divergence Optimization through Intra-Warp

Compaction. In 40th International Symposium on Computer Architec-

ture (ISCA-40), June 2013.

[96] Zhenlin Wang, Kathryn S. McKinley, Arnold L. Rosenberg, and Charles C.

Weems. Using the compiler to improve cache replacement decisions. In

Proceedings of the 2002 International Conference on Parallel Architec-

tures and Compilation Techniques, PACT ’02, pages 199–, Washington,

DC, USA, 2002. IEEE Computer Society.

[97] Carole-Jean Wu, Aamer Jaleel, Will Hasenplaugh, Margaret Martonosi,

Simon C. Steely, Jr., and Joel Emer. Ship: Signature-based hit pre-

dictor for high performance caching. In Proceedings of the 44th Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO-44,

pages 430–441, New York, NY, USA, 2011. ACM.

202

[98] Yuejian Xie and Gabriel H Loh. Pipp: promotion/insertion pseudo-

partitioning of multi-core shared caches. In ACM SIGARCH Computer

Architecture News, volume 37, pages 174–183. ACM, 2009.

[99] Yi Yang. Architectural support and compiler optimization for many-

core architectures. 2013.

[100] Yi Yang, Ping Xiang, Jingfei Kong, and Huiyang Zhou. A gpgpu com-

piler for memory optimization and parallelism management. In Proceed-

ings of the 2010 ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’10, pages 86–97, New York, NY,

USA, 2010. ACM.

[101] Chenjie Yu and Peter Petrov. Adaptive multi-threading for dynamic

workloads in embedded multiprocessors. In Proceedings of the 23rd

Symposium on Integrated Circuits and System Design, SBCCI ’10, pages

67–72, New York, NY, USA, 2010. ACM.

[102] Eddy Zhang, Yunlian Jiang, Ziyu Guo, and Xipeng Shen. Streamlining

GPU Applications On the Fly. In 24th International Conference on

Supercomputing (ICS’24), June 2010.

[103] Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. Towards practical page

coloring-based multicore cache management. In Proceedings of the 4th

ACM European conference on Computer systems, pages 89–102. ACM,

2009.

203

Vita

Dong Li received the Bachelor of Science degree in Computer Sciences

from the University of Science and Technology of China in July 2001. He then

entered the Institute of Computing Technology of the Chinese Academy of

Sciences and received a Mater degree in Computer Sciences in July 2004. He

was accepted and started graduate studies at the Department of Computer

Science at the University of Texas at Austin in August, 2006.

Permanent address: Apt 131, Building No. 72, the 11th District,
Shihezi, Xinjiang, Peoples Republic of China,
832000

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

204

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1. Introduction
	Memory Systems in Throughput Processors
	Key Factors that Affect GPU Memory Throughput
	Cache Management Policies
	GPU Thread Scheduling
	Chip Resource Saturation

	Dissertation Contribution
	Dissertation Organization

	Chapter 2. Related Work
	Tuning Parallelism to Improve Performance
	Parallelism Tuning for GPUs
	Parallelism Tuning for CPUs

	GPU Cache Allocation and Replacement Policies
	CPU Cache Allocation and Replacement Policies

	Chapter 3. Background
	Contemporary GPU Architecture
	CUDA Programming Model
	Thread Scheduling
	Application Characterization
	Cache-Sensitive Benchmarks
	Thread Scheduling Effects on Cache Efficiency and Throughput

	Methodology

	Chapter 4. Thread Scheduler Directed Priority-based Cache Allocation
	Understanding How Parallelism Affects Caches Hit Ratio, Chip Resource Saturation and Throughput
	Throughput
	Cache Miss Ratio
	Memory Request Latency
	Chip Resource Utilization
	Identifying Performance Bottleneck

	Motivation: Two Performance Opportunities Beyond Throttling
	Understanding Throttling Techniques
	Two Performance Opportunities Beyond Throttling

	Token-based Prioritized Cache Allocation (PCAL)
	Strategies and Challenges
	Static PCAL

	Dynamic Optimization Strategy Selection and Bypassing Threads Count Prediction
	Motivation for dynamic PCAL
	Overview
	Extra Bypassing Thread Number Predictor

	Bypassing Traffic Optimization
	Opportunistic Caching
	PCAL on Top of CTA Level Throttling
	Results
	Static Priority-based Cache Allocation
	Dynamic Priority-based Cache Allocation
	Bypassing Traffic Optimization
	Applying PCAL on both L1 and L2
	Results Summary

	Conclusion

	Chapter 5. Thrashing-Resistant GPU L1 Cache Replacement and Bypassing algorithms
	Motivation
	AgeLRU, a Thread-Scheduling Aware GPU Cache Replacement and Bypassing Policy
	Overview
	Implementing AgeLRU

	Dynamic AgeLRU
	Results
	Evaluating AgeLRU
	Evaluating Dynamic-AgeLRU

	Summary

	Chapter 6. Reuse-Prediction-based Scheduler-Aware GPU Cache Replacement Algorithm
	Motivation
	Reuse-prediction-based Replacement Algorithms
	Reuse Distance and Reuse Count Predictor
	Cache Block Reuse Distance Sampler
	Cache Replacement Controller
	Cache Block Scoring Strategy

	Optimizing Hardware Cost
	Results
	Summary

	Chapter 7. Conclusion
	Dissertation Contributions
	Future Work
	Practicality Discussion
	Concluding Thoughts

	Bibliography
	Vita

