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Abstract 

Heterogeneous systems, more specifically CPU – GPGPU platforms, have gained a lot of attention 

due to the excellent speedups GPUs can achieve with such little amount of energy consumption. 

Anyhow, not everything is such a good story, the complex programming models to get the 

maximum exploitation of the devices and data movement overheads are some of the constraints or 

challenges in order to get the benefits from GP-GPU computing. 

On the other hand, architects from big processor manufacturers like Intel and AMD have integrated 

the CPU’s and GPU’s on the same chip thanks to the “Moore’s Law” but the logical integration has 

not been as easy as putting them physically together side-by-side on the same die. Fusing these 

two different kind of cores, each one with its own memory hierarchy: one with higher memory 

bandwidth due to the throughput, on GPU’s for example, and the CPU’s with multi-level, higher 

capacity caches using protocols to provide strong consistency models for the programmer less 

scalable due to the coherency-related traffic.  

With this, the Heterogeneous System Architecture (HSA) has been developed by the HSA 

Foundation founded ARM, AMD, Qualcomm and many other companies to reduce latency between 

devices connectivity, and make this system more compatible from a programmer’s perspective( 

CUDA or OpenCL), without doing copies on disjoint memories, giving as result a Unified Virtual 

Memory. Because of the nature of these two separated memory systems, the heterogeneous 

Uniform Memory Access (hUMA) was created by AMD to share the system’s virtual memory space. 

The GPU can access CPU memory addresses directly, allowing both reading and writing data that 

the CPU is also accessing sharing page tables so devices can exchange data by sharing pointers. 

Great improvements can be achieved by the architecture integration on-chip, but memory wall is 

always present and a big constraint for systems with a lot of memory bandwidth demands as GPU 

does. Memory Controllers are the main character in scene to coordinate and schedule all the 

request of the processor to go to main memory, off chip, taking into account the technology 

latencies, refreshes, etc. It has too many constraints and to many scheduling possibilities that are 

impossible to have a general formula to schedule a processor requests to main memory so the 

flavors vary from processor to processor.  

In this master thesis, we propose a scheduling re-ordering based on a hysteresis detector to give 

some fairness and speedup to the memory request threads taking advantage of the bank level 

parallelism at the memory system organization. First we introduce the evolution of the CPU and 

GPU processors until their integration in systems and processor using GPU as a general purpose 
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processor. Later we take a closer look to a Memory Controller giving the general perspective and 

functional elements with a state-of-the-art memory controllers for multicore processors. Given this 

we show our proposal system for re-ordering with the hysteresis detection and re-ordering logic. 

Then, the methodology about the simulation infrastructure and benchmarks used is described. The 

analysis of a baseline processor without memory unification, a fusion processor with virtual memory 

unification and this same fusion processor with the proposal scheduling for bank parallelism 

awareness. Conclusions derive from the result at the analysis are stated and the future work.  
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1 Introduction 

Fifty years have passed for the famous technical article at the "Electronics" magazine where 

Gordon Moore did the prediction for future computers with an extrapolation he did, that every year 

the numbers of elements on chip were duplicating [1]. He estimated chips going from 60 elements 

to 60,000 in ten years. This prediction was treated as a law ten years later, in 1975, thanks to 

Professor Carver Andress Mead from Caltech who popularized the term "Moore's law".  

The integration of more and more elements on the same chip helped to make a faster and complex 

processor. Adding co-processors like a floating point unit (x87) was one of the most relevant 

examples, but the last decade we have integrated several of these complex cores doing the 

multicore era a reality. This transition from single processor to multicore gave a lot of challenges to 

processor architects in various ways: communication, programmability, memory system, 

technology, etc.  

Evolution is continuing with the integration of multiple kinds of processors [2] (MIC’s, GPU, DSP, 

etc.) on-chip. Making a new step in this evolution, Heterogeneous Chip Multiprocessors allows the 

usage of different processor architectures to better match the execution of the different application 

needs and to address wider spectrum of system loads with high efficiency. This new era has not 

been invented in one day. Big computing systems have been taking advantage of different kind of 

processors, accelerators (like the x87 for historical example), to better execute the tasks that were 

running, getting better performance than just having the general purpose processors. This kind of 

accelerators came in various flavors. Some using ASIC’s with very detailed specifications (e.g. 

frequency of operation) and more recently using FPGA taking advantage of the possibility to 

describe multiple types of hardware on the same device, reconfiguring it as our system is evolving 

with newer components. Systems like these are called heterogeneous systems nowadays and this 

term has become very popular and as the name has become popular, a specific kind of 

coprocessor too: the Graphic Processor Unit (GPU). CPU’s and GPU’s have an important role in 

heterogeneous systems since a few years ago thanks to ability of GPU’s to do heavy multithreaded 

workloads. The complex (requires a level of programming expertise to achieve the best 

performance), programming models like CUDA and OpenCL have not limited the popularity of them. 

Supercomputers around the world are widely using this heterogeneous CPU-GPU systems, one big 

example is the Titan Supercomputer in Oakridge Tennessee, number two at the Top 500 list (Jun 

2015), scientists are getting use to program their formulas and models to fit in these systems 

making the GPU a General Purpose (GP) GPU, rather than a graphic processor.  
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But having this kind of systems working together on a same chip gives a lot of challenges. In the 

memory hierarchy, for example, with coherence and consistency between caches of both CPU and 

GPU. The off-chip accesses for main memory are one of the most important bottlenecks[3], more 

precisely the scheduling of these accesses are an important challenge due to the diversity of the 

throughput that each kind of processor, CPU and GPU, and bandwidth is always limited due to the 

number of pins to communication purposes. There is not a scheduling technique that can give a 

best fit for all the kind of varieties of configurations that exists on a chip that’s why through this work 

we analyze a heterogeneous processor memory controller to identify bottlenecks and give a 

rescheduling proposal.  

1.1 CPU Evolution 

1.1.1  Single Core Era 

Historically, the first processors were very simple arithmetic units that interacted to memory 

registers, also very limited in space, which worked at Kilohertz frequencies to compute simple 

operations faster than a human could, but with a limited set of instructions and a complex way to 

program through the assembly language. 

As the prediction of Moore stated, more and more devices were integrated to add capabilities to the 

processing unit, separating the stages of processing (pipeline), adding more operations and 

interactions with registers to extend the ISA so the user could have better performance on their 

programs. This meant the development of the firsts programming languages. These processors 

start being very complex with a lot of extensions and big memory systems.    

1.1.2  Multicore Era 

Single core processors evolved very well thanks that processor architects could make a lot of 

improvements on the microarchitecture but the programmers were still demanding more 

computational power due to the complex applications that emerged so arranges of multiple 

processor where made to create clusters and “supercomputers” that made all the array of 

processors work as a big one. This opened the door to create the modern Multicore processor by 

the early 2000’s and now they are widely used: supercomputing, workstations, personal computers, 

mobile devices, etc. 
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1.2 GPU Evolution 

The primary ancestors of GPUs are graphics accelerators. Before the mid-90’s PC graphics scaling 

was almost nonexistent. The Video Graphics Array (VGA) controller was a simply memory controller 

and a display generator connected to a DRAM. But later in that decade, three-dimensional (3D) 

capable accelerators started to appear and VGA controllers began to incorporate these functions 

including hardware for triangle setup, rasterization (dicing triangles into individual pixels), texture 

mapping and shading (applying “decals” or patterns to pixels and blending colors).  

Continuing the years and evolution, at the beginning of this millennial (2000’s) this chip that started 

as a graphics controller, incorporated almost every detail of the traditional graphics pipeline and 

therefore it deserved a new term: the GPU, to denote that the graphics device had become a 

processor. 

1.2.1  GPGPU 

This early graphics hardware was configurable but not programmable. The NVIDIA GeForce 3 took 

the first step toward true general shader programmability [4]. Mapping general computations to a 

GPU in this era was quite awkward. Nevertheless, intrepid researchers demonstrated a handful of 

useful applications with painstaking efforts. This field was called “GPGPU” for general-purpose 

computing on GPUs. 

1.2.2  GPU Computing and CUDA 

When researchers start solving nongraphic problems on a GPU was a huge challenge and a claim 

for a new programming model to take advantage of the massive amount of parallel processing 

power (e.g. large amount of floating-point units) and the Compute Unified Device Architecture 

(CUDA) appeared. CUDA is a scalable parallel programing model and a software platform for the 

GPU and other parallel processors that allows the programmer to bypass the graphics API and 

graphics interfaces of the GPU and simply program in C or C++. A brief explanation of the 

programming flow of CUDA can be seen in Annex A. 
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1.3 Heterogeneous CPU – GPU Systems 

A system with a CPU and a GPU for heterogeneous multiprocessing takes advantage from these 

two different processors: The CPU, as a host, executes the application and it offloads massive 

parallel tasks to the GPU. This interaction from host to device and vice versa takes place thanks to 

copies of data and instructions from CPU to GPU. Then, the GPU computes data and copies the 

results back to the host. This is, in short, how most these kind of architectures are implemented 

taking the best from both worlds. In modern supercomputer systems, is possible to see the trend of 

heterogeneous configurations.  

The two most important lists for supercomputers are Top 500 and Green 500. We list the top 10 

from each of them (as of November 2014). 

Modern Intel MIC Xeon Phi and NVIDIA’s GPUs are the most popular devices used. At the Top500 

list, we can see that only 3 of the supercomputers ranked are using GPUs: Titan, Piz Daint & Cray 

CS-Storm. In contrast, at the Green500 list we can see that 8 of the top 10 systems are using 

GPUs. 

Let’s remember that the Green500 list ranks each system’s computing power in relation to its 

energy consumption, better said, those computers at this rank are the most efficient in electricity 

consumption per FLOP. Thus GPUs are seen as a very efficient device to gain FLOPs over the 

energy consumption. And going back to the Top500 list, Titan supercomputer is in a decent second 

place in the rank. To explain the configuration of each of the systems using GPUs in those lists 

would take a lot of chapters, and it is also not the target on this work. Nevertheless, Annex A 

describes how an AMD CPU and an NVIDIA GPU are interconnected in the Titan Supercomputer. 
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Green 500 

Ranking 
Nov 2014 

Name Country System Power 
(KW) 

RPEAK 
(MFLOP/W) 

1 L-CSC Germany ASUS ESC4000 FDR/G2S, Intel Xeon E5-
2690v2 10C 3GHz, Infiniband FDR, AMD 
FirePro S9150 

57.15 5,271.81 

2 Suiren Japan ExaScaler 32U256SC Cluster, Intel Xeon 
E5-2660v2 10C 2.2GHz, Infiniband FDR, 
PEZY-SC 

37.83 4,945.63 

3 TSUBAME-
KFC 

Japan LX 1U-4GPU/104Re-1G Cluster, Intel 
Xeon E5-2620v2 6C 2.100GHz, 
Infiniband FDR, NVIDIA K20x 

35.39 4,447.58 

4 Storm1 US  Cray CS-Storm, Intel Xeon E5-2660v2 
10C 2.2GHz, Infiniband FDR, NVIDIA 
K40m 

44.54 3,962.73 

5 Wilkes UK Dell T620 Cluster, Intel Xeon E5-2630v2 
6C 2.600GHz, Infiniband FDR, NVIDIA 
K20 

52.62 3,631.70 

6 iDataPlex 
DX360M4 

France Intel Xeon E5-2680v2 10C 2.800GHz, 
Infiniband, NVIDIA K20x 

54.60 3,543.32 

7 HA-PACS TCA Japan Cray CS300 Cluster, Intel Xeon E5-
2680v2 10C 2.800GHz, Infiniband QDR, 
NVIDIA K20x 

78.77 3,517.84 

8 Cartesius 
Accelerator 

Island 

Netherlands Bullx B515 cluster, Intel Xeon E5-
2450v2 8C 2.5GHz, InfiniBand 4× FDR, 
NVIDIA K40m 

44.40 3,459.46 

9 Piz Daint Switzerland  Cray XC30, Xeon E5-2670 8C 2.600GHz, 
Aries interconnect , NVIDIA K20x 

1753.66 3,185.91 

10 Romeo France Bull R421-E3 Cluster, Intel Xeon E5-
2650v2 8C 2.600GHz, Infiniband FDR, 
NVIDIA K20x 

81.41 3,131.06 

Table 1-1: Top ten supercomputers at Green500 list 
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TOP 500 

Ranking 
Nov 2014 

Name Country System Power 
(KW) 

RPEAK 
(TFLOP/S) 

1 Tianhe-2 
(MilkyWay-

2) 

China TH-IVB-FEP Cluster, Intel Xeon E5-2692 
12C 2.200GHz, TH Express-2, Intel Xeon 
Phi 31S1P 

17,808 54,902.4 

2 Titan US Opteron 6274 16C 2.200GHz, Cray 
Gemini interconnect, NVIDIA K20x 

8,209 27,112.5 

3 Sequoia US BlueGene/Q, Power BQC 16C 1.60 GHz, 
Custom 

7,890 20,132.7 

4 K Computer Japan PARC64 VIIIfx 2.0GHz, Tofu interconnect 12,660 11,280.4 
5 Mira US BlueGene/Q, Power BQC 16C 1.60GHz, 

Custom 
3,945 10,066.3 

6 Piz Daint Switzerland Cray XC30, Xeon E5-2670 8C 2.600GHz, 
Aries interconnect , NVIDIA K20x 

2,325 7,788.9 

7 Stampede US PowerEdge C8220, Xeon E5-2680 8C 
2.700GHz, Infiniband FDR, Intel Xeon Phi 
SE10P 

4,510 8,520.1 

8 JUQUEEN Germany BlueGene/Q, Power BQC 16C 1.600GHz, 
Custom Interconnect 

2,301 5,872.0 

9 Vulcan US BlueGene/Q, Power BQC 16C 1.600GHz, 
Custom Interconnect 

1,972 5,033.2 

10 Cray CS-
Storm 

US Intel Xeon E5-2660v2 10C 2.2GHz, 
Infiniband FDR, NVIDIA K40 

1,499 6,131.8 

Table 1-2: Top ten supercomputers of Top500 list 
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1.4 Heterogeneous CPU – GPU Processors 

At the beginning of this decade, it started to be common to see processors with the graphic 

processing unit integrated on the same die as the CPU [5]. This GPU has been used for graphic 

purposes mainly. Intel and AMD have been the main vendors to see this trend in the latest chips but 

we are making more emphasis at the AMD Advance Processing Units as they have been designed 

as general purpose GPUs.  

On Intel’s side, “HD Graphics” integrated the graphics inside the same chip with the multicore 

processor to get more energy efficiency for mobile devices. This integration and the advance of 

graphics with 2k and 4k video, force the creation of the latest version called “Iris Pro Graphics” 

since 2013 for more rendering support. Lately this integration of GPUs just has helped to video and 

graphics, and not for general computing. 

The term Advance Processing Unit [5] was created to name the new series of microprocessor from 

AMD designed to act as a CPU and a graphics accelerator GPU on a single chip. The first design 

release was Fusion on 2011 and since then, with the newest Kaveri design from 2014, they have 

included more functionality. One of the key features for these chips, as we mention at the 

beginning, was to develop a microprocessor to act as a CPU and a GPU on a single die, bur not 

only putting them together physically, also unifying their memory system with heterogeneous 

Uniform Memory Access (hUMA) to avoid the overhead of doing copies between the two separated 

memories. Getting this done was not an easy task. The vision started in 2012 with the creation of 

the HSA Foundation, with the collaboration of AMD, ARM, Qualcomm, Texas Instruments and many 

other companies, some specs and guidelines where developed by this foundation. An overview of 

hUMA can be found in the Annex A. 

1.4.1 HSA Foundation 

Talking about the Heterogeneous processors of AMD, it is impossible not to touch the topic about of 

the Heterogeneous System Architecture (HAS) Foundation.  

It was founded by big companies: AMD, ARM, Qualcomm, Texas instruments, Mediatek, Samsung 

and Imagination and it is a Non-Profit industry standards body focused on making it dramatically 

easier to program heterogeneous computing devices. The consortium comprises various software 

vendors, IP providers, and academic institutions and develops royalty-free standards and open-

source software. 
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The HSA Foundation seeks to create applications that seamlessly blend scalar processing on the 

CPU, parallel processing on the GPU, and optimized processing on the DSP via high bandwidth 

shared memory access enabling greater application performance at low power consumption. The 

HSA Foundation is defining key interfaces for parallel computation utilizing CPUs, GPUs, DSPs, 

and other programmable and fixed-function devices, thus supporting a diverse set of high-level 

programming languages and creating the next generation in general-purpose computing. 

The final version 1.0 for Platform System architecture has been out since January 2015, and the 

features that AMD achieved with Kaveri architecture are stated here like the unified virtual memory 

and cache coherency. 

1.5 Motivation and Objectives 

The review of the integration on-chip for mobile devices last ten years and also the advances on 

programming models for faster and more tightly connected processors for supercomputers are 

converging on dynamic processors where the communication to the external world is always limited 

in bandwidth due to the pin connections available. It is, thus, important to provide an analysis of the 

memory system for integrated CPU – GPU processors on die for heavily parallel applications. More 

specifically the memory controller for these future processors that will have a multicore CPU and 

general purpose GPUs, stressing the off-chip petitions for main memory. 

The Objectives of this work starts with the analysis of a baseline processor where we are integrating 

both CPUs and GPUs using the same physical memory but not shared, this means that we will 

have two different memory controllers addressing two different parts of the physical memory doing 

necessaries copies of data and instructions between both types of processor as the actual 

processing model of CUDA does. Later, we use the unified memory access design, so they start 

sharing the same memory controller and see the same memory space. This design also establishes 

the elimination of unnecessary copies of data and instruction like the normal processing model of 

CUDA.  

The results of both interactions, with separated memories and unified memory will give us the 

advantage of the elimination of copies between host and device and how the numbers of petitions 

to a memory controller behave.  

The behavior will give us an idea to propose a reordering in the scheduling model that the memory 

controller is using. We will implement it and compare the results of the executions with the ones 

before doing the re-scheduling proposal. At the end we want to compare the evolution of the 3 

different memory systems to show the actual pros and cons so we can relate a future work.  
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In summary, the main objectives are:  

1. An analysis of the memory system, more specifically the memory controller orchestration on 

a baseline system to show the actual programming model flow for heavily parallel 

programming (CUDA) selected from the Rodinia suit.  

2. Obtain a unified memory system where CPUs and GPUs can address the same memory 

system with the usage of the unified memory access and control all petitions on one 

memory controller. 

3. Compare this last unified memory system without copies of data between devices and the 

baseline with copies to get some discussion towards a proposal in the reordering of the 

scheduling policies available to better fit the behavior of the heterogeneous processor.  

4. Implement the reordering proposal on the memory controller and execute the selected 

benchmarks to compare the results checking the output against the memory controller 

before the implementation 

5. Analyze the pros and cons obtained in the reordering proposal and do an evolution 

comparison from the baseline memory system with copies, the unified memory system 

without copies and the modified scheduling implementation proposed by us in order to 

visualize the future work. 
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2 The Memory Controller 

At the beginning, processors had the memory controller off-chip. Neither was part of the memory 

component, it was an ASIC located in between the processor and memory. The integration on-chip 

of different modules on the processor die, made the memory controller part of these modules. But 

off-chip or on-die, the paper that the memory controller has stayed almost intact: manage the 

movement of data into and out of processors to DRAM devices while ensuring protocol compliance, 

accounting for DRAM-device-specific electrical characteristics, timing characteristics, and, 

depending on the specific system, even error detection and correction. 

2.1 Memory system components 

To better understand the role of the memory controller we have to give a brief overview of the 

memory system components and related latencies. We mentioned at the beginning, the memory 

controller was located between the memory modules, DRAM, and the CPU, GPU or other 

components on chip that need communication to the memory (Figure 1 illustrates the concept). 

 

 

Figure 1: Memory Controller principal connection [7] 

 

The memory controller connection to the memory module is a DRAM bus sends or receives: Data, 

Address/Command and Chip selection. (See Figure 2) 
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Figure 2: Memory Controller Busses [7] 

 

 

Memory components of DRAM are DIMMs, Ranks, Banks and Memory Arrays as shown in Figure 3 

 

 

 

Figure 3: Memory components at a DRAM [7] 
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2.2 Memory Controller 

The design of an optimal memory controller must consist of system-level considerations that ensure 

fairness in arbitration for access between the different agents (i.e. CPUs and GPUs in our case) that 

read and store data in the same memory system. 

 

 

Figure 4: Abstract DRAM Memory Controller [7] 

Figure 4 illustrates some basics of an abstract DRAM memory controller. Starting from the left of the 

image, the memory controller receives the requests from one or multiple microprocessors (e.g. 

multicore) and it provides the arbitration to determine which request agent will be able to place its 

request into the memory controller. From a certain perspective, the request arbitration logic may be 

considered as part of the system controller rather than the memory controller. However, as the cost 

of memory access continues to increase relative to the cost of data computation in modern 

processors; efforts in performance optimizations are combining transaction scheduling and 

command scheduling policies and while examining them in a collective context rather than separate 

optimizations. Once a transaction wins arbitration it enters into the memory controller, it is mapped 

to a memory address location and converted to a sequence of DRAM commands.  

The sequence of commands is placed in queues in the memory controller. The queues may be 

arranged as a generic queue pool, where the controller will select from pending commands to 

execute, or the queues may be arranged so that there is one queue per bank or per rank of 

memory. Then, depending on the DRAM command scheduling policy, commands are scheduled to 

the DRAM devices through the electrical signaling interface. Although the electrical signaling 

interface may be one of the most critical components in modern, high data rate memory systems, 

the challenges of signaling are not examined. 
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2.2.1 Row-Buffer-Management 

 

Figure 5: Location of Sense Amplifiers at a DRAM Bank [7] 

In DRAM devices, the arrays of sense amplifiers can also act as buffers that provide temporary data 

storage. Policies that manage the operation of sense amplifiers are referred to as row-buffer-

management policies. The two primary row-buffer-management policies are the open-page policy 

and the close-page policy, and depending on the system, different row-buffer-management policies 

can be used to optimize performance or minimize power consumption of the DRAM memory 

system. In cases where the memory access sequence possesses a high degree of temporal and 

spatial locality, memory system architects and design engineers can take advantage of the locality 

by directing temporally and spatially adjacent memory accesses to the same row of memory. The 

open-page row-buffer-management policy is designed to favor memory accesses to the same row 

of memory by keeping sense amplifiers open and holding a row of data for ready access. In a 

DRAM controller that implements the open-page policy, once a row of data is brought to the array of 

sense amplifiers in a bank of DRAM cells, different columns of the same row can be accessed 

again with the minimal latency. In contrast to the open-page row-buffer-management policy, the 

close-page row-buffer-management policy is designed to favor accesses to random locations in 

memory and optimally supports memory request patterns with low degrees of access locality. The 

close-page policy is typically deployed in memory systems designed for large processor count, 

multiprocessor systems or specialty embedded systems. The reason that an open-page policy is 

typically deployed in memory systems of low processor count platforms while a close-page policy is 

typically deployed in memory systems of larger processor count platforms is that in large systems, 

the intermixing of memory request sequences from multiple, concurrent, threaded contexts reduces 

the locality of the resulting memory-access sequence. 
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2.2.2 Parallelism in Memory System Organization: Banks 

Consecutive memory accesses can proceed in parallel to different banks of a given rank subject to 

the availability of the shared address, command, and data busses. In contemporary DRAM devices, 

scheduling consecutive DRAM read accesses to different banks within a given rank is, in general, 

more efficient than scheduling consecutive read accesses to different ranks. Read requests tend to 

have higher spatial locality than write requests due to the existence of write-back caches. Moreover, 

the number of column-read commands that immediately follow column-write commands can be 

minimized in advanced memory controllers by deferring individual write requests and instead group 

schedule them as a sequence of consecutive write commands. 

In performance-optimized, open-page memory systems, adjacent cache line addresses are striped 

across different channels so that streaming bandwidth can be sustained across multiple channels 

and then mapped into the same row, same bank, and same rank. This is assuming a uniform 

memory system where all channels have identical configurations in terms of banks, ranks, rows, 

and columns. 

Similar to the baseline address mapping scheme for open-page memory systems, consecutive 

cache line addresses are mapped to different channels in a close-page memory system. However, 

unlike open-page memory systems, mapping cache lines with sequentially consecutive addresses 

to the same bank, same rank, and same channel of memory will result in sequences of bank 

conflicts and greatly reduce available memory bandwidth. To minimize the chances of bank conflict, 

adjacent lines are mapped to different channels, then to different banks, and then to different ranks 

in close-page memory systems. 
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3 State-of-the-Art 

The adoption of multicore processors last few years, gives a lot of multiple flavors of memory 

access scheduling. Memory and system throughput maximization are the main goals constrained by 

fairness on the execution threads. From the variety of works out there we are presenting two 

memory access scheduling for chip multiprocessors with parallelism-aware and fairness for stall 

time both important for understanding our proposal explained in the next section.  

3.1 First-Ready First Come-First Served 

The First-Ready First Come-First Served (FR-FCFS) [8] has been shown to be the best performing 

one overall in single-threaded systems. The DRAM command prioritization policies employed by the 

FRFCFS algorithm are unfair to different threads due to two reasons.  

First, the column-first policy gives higher priority to threads that have high row-buffer locality: If a 

thread generates a stream of requests that access different columns in the same row, another 

thread that needs to access a different row in the same bank will not be serviced until the first 

thread’s column accesses are complete. Second, the oldest-first policy implicitly gives higher priority 

to threads that can generate memory requests at a faster rate than others. Requests from less 

memory-intensive threads are not serviced until all earlier-arriving requests from more memory-

intensive threads are serviced. Therefore, less memory-intensive threads suffer relatively larger 

increases in memory-related stalls. 

3.2 Stall-Time Fair Memory Access Scheduling 

Stall-Time Fair Memory (STFM) [9] scheduler estimates two values for each thread: Tshared and 

Talone. The processor increases a counter when it cannot commit instructions due to an L2-cache 

miss. This counter is communicated to the memory scheduler. Assuming for now that the STFM 

scheduler knows each thread’s slowdown S = Tshared/Talone, it uses the following policy to determine 

the next command to be scheduled: 

1.  Determine Unfairness: From among all threads that have at least one ready request in the 

request buffer, the scheduler determines the thread with highest slowdown (Smax) and the 

thread with lowest slowdown (Smin). 
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2. Could be two: 

a. Apply FR-FCFS-Rule: If the ratio Smax/Smin ≤ α, then the acceptable level of 

unfairness is not exceeded and, in order to optimize throughput, the next DRAM 

command is selected according to the FR-FCFS priority rules described before. 

b.  Apply Fairness-Rule: If the ratio Smax/Smin > α, then STFM decreases unfairness by 

prioritizing requests of thread Tmax with largest slowdown Smax. In particular, DRAM 

commands are prioritized in the following order: 

i) Tmax-first: Ready commands from requests issued by Tmax over any 

command from requests issued by other threads. 

ii) Column-first: Ready column accesses over ready row accesses. 

iii) Oldest-first: Ready commands from older requests over those from 

younger requests. 

In other words, STFM uses either the baseline FR-FCFS policy (if the level of unfairness across 

threads with ready requests is acceptable), or a fair FR-FCFS policy in which requests from the 

most slowed-down thread receive highest priority. 

The threshold α that denotes the maximum tolerable unfairness can be set by the system software 

via a privileged instruction in the instruction set architecture. If the system software does not need 

hardware-enforced fairness at the DRAM controller it can simply supply a very large α value. 

Second, to support different treatment of threads based on their importance, we add the notion of 

thread weights to our mechanism. The system software conveys the weight of each thread to 

STFM. Threads with equal weights should still be slowed down equally. To support this notion of 

thread weights and to prioritize threads with larger weights, STFM scales the slowdown value 

computed for the thread by the thread’s non-negative weight such that the weighted slowdown is 

S=1+(S−1)∗Weight. That is, threads with higher weights are interpreted to be slowed down more 

and thus they are prioritized by STFM. For example, for a thread with weight 10, a measured 

slowdown of 1.1 is interpreted as a slowdown of 2 whereas the same measured slowdown is 

interpreted as 1.1 for a thread with weight 1. Note that even after this modification, it is the ratio 

Smax/Smin that determines whether or not the fairness-rule is applied. Measured slowdowns of equal-

weight threads will be scaled equally and thus those threads will be treated equally by the 

scheduler. 
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3.3 Parallelism-Aware Batch Scheduling 

Parallelism-Aware Batch Scheduling (PAR-BS) [10] consists of two components. The first 

component is a request batching (BS), or simply batching, component that groups a number of 

outstanding DRAM requests into a batch and ensures that all requests belonging to the current 

batch are serviced before the next batch is formed. Batching not only ensures fairness but also 

provides a convenient granularity (i.e., a batch) within which possibly thread-unfair but high-

performance DRAM command scheduling optimizations can be performed. The second component, 

parallelism-aware within-batch scheduling (PAR) aims to reduce the average stall time of threads 

within a batch (and hence increase CMP throughput) by trying to service each thread’s requests in 

parallel in DRAM banks. 

The idea of batching is to consecutively group outstanding requests in the memory request buffer 

into larger units called batches. The DRAM scheduler avoids request re-ordering across batches by 

prioritizing requests belonging to the current batch over other requests. Once all requests of a batch 

are serviced (i.e., when the batch is finished), a new batch is formed consisting of outstanding 

requests in the memory request buffer that were not included in the last batch. The batching 

component (BS) of PAR-BS works as follows. Each request in the memory request buffer has an 

associated bit indicating whether the request belongs to the current batch. If the request belongs to 

the current batch, this bit is set, and we call the request marked 

PAR-BS always prioritizes marked requests (i.e., requests belonging to the current batch) over non-

marked requests in a given bank. On the other hand, PAR-BS neither wastes bandwidth nor 

unnecessarily delays requests: if there are no marked requests to a given bank, outstanding non-

marked requests are scheduled to that bank. To select among two marked or two non-marked 

requests, any existing or new DRAM scheduling algorithm (e.g., FR-FCFS) can be employed. 

Batching naturally provides a convenient granularity within which a scheduler can optimize 

scheduling decisions to obtain high performance. There are two main objectives that this 

optimization should strive for. It should simultaneously maximize: 

1. Row-Buffer Locality. 

2. Intra-thread Bank-Parallelism within a batch. 

The first objective is important because if a high row-hit rate is maintained within a batch, bank 

accesses incur smaller latencies on average, which increases the throughput of the DRAM system. 

The second objective is similarly important because scheduling multiple requests from a thread to 
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different banks in parallel effectively reduces that thread’s experienced stall-time. Unfortunately, it is 

generally difficult to simultaneously achieve these objectives. 

Batch-Scheduling algorithm uses the request prioritization rules shown: 

1. BS-Marked requests first: Marked ready requests are prioritized over requests that are not 

marked. 

2. RH-Row-hit first: Row-hit requests are prioritized over row-conflict/closed requests. 

3. RANK-Higher rank first: Requests from threads with higher rank are prioritized over 

requests from lower ranked threads. 

4. FCFS-Oldest first: Older requests are prioritized over younger requests. 

Batching guarantees the absence of short-term or long-term starvation: every thread can make 

progress in every batch, regardless of the memory access patterns of other threads. Also enables 

the use of highly efficient within-batch scheduling policies (such as PAR). Without batches (or any 

similar notion of groups of requests in time), devising a parallelism-aware scheduler is difficult as it 

is unclear within what context bank-parallelism should be optimized. 
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4 Hysteresis-Batch Memory Access 

Scheduling 

To propose a new scheduling algorithm for a future Heterogeneous CPU-GPGPU Architecture on-

chip we have to take a lot of constrains to maximize the throughput of memory with a good level of 

fairness in the system inside the chip. These constraints start at the physical level. Processors 

communicate to the external world through a limited number of pins. These pins cannot be added 

just because the willing of having them, totally the contrary. Electrical constrains for signal integrity 

due the high frequencies of operation rates is an example that restrict the distance between pin to 

pin and, by consequence, the number of pins barely increases from technology to technology. 

Given this situation, the easy path of adding multiple channels with more bandwidth was not part of 

our proposal and we just focus to give a proposal of a scheduling technique 

A heterogeneous CPU-GPGPU memory controller scheduling can be understood as a request re-

ordering mechanism for a multicore chip: a system where the number of requestors is more than 

two, with different frequencies and various threads. Multicore chips are well known so that’s why we 

took the decision to explore the scheduling algorithms in this area (presented in the state-of-the-art) 

Due to the high level of parallelism that GPGPUs can achieve, future heterogeneous CPU-GPGPU 

processors are going to need specific throughput and fairness policies tailored for their 

heterogeneous systems.  

4.1 Proposal 

CPU and GPGPU interaction is known as separated devices, the CPU acts like a host orchestrating 

the data movements to the GPGPU so it can compute the data delivered. The GPGPU then has a 

lot of computation over the data received. When finished, the GPGPU returns the results to the 

CPU. This activity pattern is interesting information to the memory controller at the time of 

scheduling the request. If we know the requestor is possible to understand which agent is the 

responsible of the numerous petitions we are receiving.  

To detect the most active component of the requests we propose a saturation counter of two-bits 

where we can define 4 different states as Figure 6 shows: 
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Figure 6: Two-bit saturation counter with the 4 different states. 

This saturation counter is going to snoop the input at the memory controller, looking at all requests 

in order of arrival. Depending on the requester the saturation counter is going to give a behavior 

status delimiting if we are in a CPU or GPU intensive region. Inside of each region we can have a 

strong or weak behavior. This means that if the majority of the requests are from the CPU, for 

example, it would be at the strong region. But if we start a transition where the GPU requests start 

to be more often we will be in a weak CPU region. If the GPU requests are then more common, we 

will be transition first to the Weak GPU and then to the Strong GPU when the vast majority of the 

request seen at the input are from the GPU device.  

The outstanding number of request that the CPU or GPU can have is fixed to avoid starvation. We 

decided to take advantage of the Batch Scheduling in the regions where the Hysteresis detector is 

in strong CPU or GPU so it can give priority to threads of this agent to enable the bank level 

parallelism. When in the weak regions, better start ranking threads indistinctly the agent so we can 

get the best parallelism of the CPU-GPU interactions. Given this, the Hysteresis-Batch scheduling 

algorithm is as follows: 

1. HBS-Marked-requests-first: Hysteresis marked ready requests are prioritized over requests 

that are not marked. 

2. RH-Row-hit-first: Row-hit requests are prioritized over row conflict/closed requests. 

3. RANK-Higher-rank-first: Requests from threads with higher rank are prioritized over 

requests from lower-ranked threads. 

4. FCDS-Oldest First: Older requests are prioritized over younger requests. 
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5 Methodology 

To do the proper analysis and evaluate the different configurations of the heterogeneous CPU – 

GPU processor, the help of a simulation tool was needed. Basically our needs, related to the 

objectives of this study, were the following: 

- A tool where the description of the CPU – GPU memory hierarchy could be easily 

implemented and changed. 

- A tool able to run important benchmarks used for the evaluation of state-of-the-art 

heterogeneous systems. 

These characteristics are generally different from the classic and conventional simulation tools. 

CPU and GP-GPGU simulators are generally two different tools used to work independently, and 

the options of stable and open tools to use are limited.  

We performed and analysis and comparison of the available simulators for Heterogeneous 

Architectures: Barra-Sim [11], FusionSim [12], Multi2Sim [13] and gem5-gpu [14]. 

Feature Barra-Sim FusionSim Multi2Sim gem5-gpu 

CPU Simulation x x x x 

GPU Simulation x x x x 

Cache Coherence x x x x 

Memory Hierarchy x x x x 

CUDA Support x x x x 

OpenCL Support   x x 

OpenACC Support   x x 

Table 5-1: Comparison of characteristics across different simulators 

Due to the limited support for languages that execute across heterogeneous platforms, we discard 

Barra-Sim and FusionSim. The option of using Multi2Sim was first evaluated. 

The HSA consortium founded by many important companies mentioned in last chapter, some 

academic institutions are part of this Foundation too. One of them, Northeastern University is the 

developer of Multi2Sim so this encourages us to first evaluate its usage for our study.  

Multi2Sim is a framework for the CPU – GPU simulation for heterogeneous computing written on C, 

so the ease of use and development was available. When we first started looking for the 

representative benchmarks for the evaluation of the heterogeneous processor we found the Rodinia 
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Suit. We decided to take it into the project, the bad news were that Muti2Sim was not yet capable of 

implement this suite of benchmarks.  

Rodinia Benchmarks Suite [15] for heterogeneous computing was cited in numerous works (+600 at 

Google scholar) and multiple versions of the suite are available, enforcing its stability, development 

and usage in the community. Gem5-gpu confirmed the usage of the Rodinia Benchmarks with a 

couple of papers evaluating heterogeneous configurations recently [16][17][18]. The decision of 

changing the simulator was made and the usage of the tool started. A description of gem5-gpu 

simulator and its memory system descriptions are described in the next subchapter. Also the 

Rodinia Benchmarks selected from the suite are described 

5.1 Gem5-gpu 

Gem5-gpu is a new simulator that models tightly integrated CPU-GPU systems. It builds on gem5, a 

modular full-system CPU simulator, and GPGPU-Sim, a detailed GPGPU simulator. Gem5-gpu 

routes most memory accesses through Ruby, which is a highly configurable memory system in 

gem5. By doing this, it is able to simulate many system configurations, ranging from a system with 

coherent caches and a single virtual address space across the CPU and GPU to a system that 

maintains separate GPU and CPU physical address spaces. Gem5-gpu can run most unmodified 

CUDA 3.2 source code. Applications can launch non-blocking kernels, allowing the CPU and GPU 

to execute simultaneously. It is open source and available at gem5-gpu.cs.wisc.edu. 

GPGPU-Sim models the compute architecture of modern NVIDIA graphics cards. GPGPU-Sim 

executes applications compiled to PTX (NVIDIA’s intermediate instruction set) or disassembled 

native GPU machine code. GPGPU-Sim models the functional and timing portions of the compute 

pipeline including the thread scheduling logic, highly-banked register file, special function units, and 

memory system.  

In the other hand, gem5 simulator is a very well-known infrastructure by the community and is a 

modular, system modeling tool developed by numerous universities and industry research labs. 

Include multiple CPU, memory systems and ISA models.  

It provides two execution modes: 

1. System call emulation, which can run the user level binaries using emulated system calls. 

2. Full system, which models all necessary devices to boot and run, unmodified operating 

systems. 
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5.1.1 Architecture 

 

Figure 7: Overview of gem5-gpu architecture [14] 

Figure 7 shows a four core CPU and an eight Compute Unit (CU) GPU integrated on the same chip. 

The number of CPUs, CUs, and topology connecting them is fully configurable, for the project we 

create a similar description: 4 CPU cores and 16 CU GPU. Two on-chip topologies that gem5-gpu 

provides out of the box are a shared and a split memory hierarchy (i.e., integrated and discrete 

GPUs, respectively). Many CUs make up the GPU, each of which has fetch/decode logic, a large 

register file, and many (usually 32 or 64) execution lanes. When accessing global memory, each 

lane sends its address to the coalescer, which merges memory accesses to the same cache block. 

The GPU may also contain a cache hierarchy that stores data from recent global memory accesses. 
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5.1.1.1 Software Architecture 

 

Figure 8: Current gem5-gpu software architecture (Source: gem5-gpu) 

Figure 8 is a diagram of the gem5-gpu software architecture used for this, some descriptions to the 

important elements shown is: 

 CudaGPU: Acts as the gem5 structure for organizing the GPU hardware as: 

- Contains the CudaCore(s). 

- Contains the logical Copy Engine (CE) to move data from CPU to GPU address 

spaces (when you described a “split” virtual memory). 

- Handles PTX code, variables and check pointing. 

- Handles the begin/end of the CUDA kernel. 

- Manages GPU memory space page table. 

 CudaCore(s): Is a wrapper for GPGPU-Sim “shader_cores_ctx”. Sends instruction, global 

and constant memory request (data and instruction memory accesses) to Ruby cache 

hierarchy. 
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 CUDA Syscalls: Originally, gem5 supports decoding of non-ISA-specified instructions 

(pseudo-instructions) within a simulated benchmark. A pseudo-instruction called “m5_gpu” 

is introduce, which currently allows the CPU to trap and hand control over the CUDA 

syscalls. These instructions are built into libcuda in the simulated benchmark binary. 

o Once trapped into CUDA Syscalls, the appropriate CUDA call Is executed, which 

may interface with the GPU for managing memory or kernel handling. PTX code 

handling or the copy engine.   

5.1.2 Memory System 

Gem5-gpu uses Ruby to model both the functional and timing of most memory accesses. The load-

store pipeline is modeled in gem5, including the coalescing, virtual address translation, and cache 

arbitration logic. By using the port interface in gem5, gem5-gpu has the flexibility to vary the number 

of execution lanes, number of CUs, cache hierarchy, etc. and incorporate other GPU models in the 

future. Currently, GPGPU-Sim issues only general-purpose memory instructions to gem5, including 

accesses to global. The GPGPU-Sim models memory operations to scratchpad and parameter 

memory.  

 

Figure 9: Interconnections for a fusion memory system example [16] 

Gem5-gpu supports a shared virtual address space between the CPU and GPU (i.e. the GPU using 

the CPU page table for virtual to physical translations). Alternatively, through a configuration option, 

gem5-gpu models separate GPU and CPU physical address spaces. 
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Here is a trace of a memory operation through gem5: 

1. GPGPU-Sim executes a Load/Store. 

2. The warp-wide instruction is converted into lane operations and sent to a Load/Store Queue 

(LSQ) unit. 

3. The LSQ gets the lane requests, coalesces them and then sends the request to the 

memory subsystem, Ruby in this case. 

4. Ruby receives the request and simulates the cache hierarchy and memory (both timing and 

functional). The actual code that simulates the caches is automatically generated from the 

SLICC files. 

5. Ruby returns the result after some amount of time to the LSQ, which in turn (on a load) 

returns the data to the CudaCore. 

6. Finally, the CudaCore in gem5-gpu forwards the data back the actual core model in gpgpu-

sim which (on a load) writes the data into a register. 

5.2 Rodinia Benchmarks  

Created to evaluate heterogeneous system with GPUs, it is also base of the latest works related to 

heterogeneous CPU-GPU processors on-chip. Gem5-gpu has them and also a version with a 

slightly modification at the memory copies in the CUDA Kernels. This modification is the removal of 

these memory copies from host to device and vice-versa, because at a fusion architecture where 

they are taking advantage of the unified virtual memory is unnecessary to do them. The nine 

selected benchmarks are: Back Propagation, Breath First Search, Hot Spot, K-means, Lava MD, 

Needleman-Wunsh, Particle Filter, Pathfinder and SRAD.  
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6 Analysis 

In the previous chapter, we gave an overview of the tool gem5-gpu, where a unified memory system 

for CPUs and GPUs was implemented to have a shared virtual address space, similar to modern 

AMD APUs fusion. Also, as we mentioned, the tool has the possibility to do a “split” address space 

for CPU and GPU in order to have the necessity to do the memory copies between the two systems 

and have a similar behavior as the CUDA programming model doing copies of memory from host to 

device and vice versa. In order to compare both memory systems, the regular state-of the-art with 

copies and fused without copies of the Rodinia Benchmarks, we described similar CPU and GPU 

configurations and main memory, with the difference that when the system has a split address 

space we also split the addresses for both equally and the number of memory controllers: two for 

the baseline system and one for the unified memory system. The following table can help to have a 

better picture: 

 

Table 6-1: Baseline System and Unified Memory System 

These two different memory systems configurations are meant to work both similarly in the 

processing cores to stress the two types of descriptions. We want to mainly observe the memory 

controller behavior running on each configuration the selected benchmarks from the Rodinia Suite. 

Is important to remember that the Rodinia benchmarks are implemented with CUDA and we have 

the two different types of configurations: first one with memory copies and two memory controllers 

for the baseline system and the second one without the memory copies and one memory controller 

for the unified memory system.  

In order to validate our proposal in a first exploration approach for the hysteresis batch scheduling 

we focused our attention at the requests from a baseline system and the unified memory system 

memory controllers modeled at gem5-gpu Ruby. The baseline system has two different memory 

controllers because we have the two different memories “split” and the necessity of the CUDA 

memory copies is necessary. This separation at the physical level will help us to see separately the 

4 Cores(x86 ISA) @ 2.5GHz 16 ShaderCores(PTX ISA) @700MHz

L1 D: 64KB 2-way set associative Warp Size: 32 B

L1 I: 32KB 4-way set-associative L1 I/D: 64KB per SC 
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request from CPU and GPU at determined phases of the execution with a “kernel status” level and 

relate who is doing the outstanding requests at each phase. At the unified memory system we just 

have one memory controller and it is not possible to check requests separated by each agent, but 

checking overlapping with the “kernel level” execution by this system vs. the baseline system we 

can infer the behavior and have an idea of the requestor and validate the idea of having hysteresis 

detection for batch scheduling detecting regions of outstanding requests by one or other agent. 

In the hysteresis-batch scheduling, the bank level parallelism takes advantage of consecutive banks 

in the reordering of requests due to the consecutive row buffer hits that it will have when it is 

perfectly balanced and tuned. To replicate this behavior in order to obtain the upper bound numbers 

of the reduction at the stalls per requests, we look for the last bank issued, if it was consecutive to 

the new requests we are issuing, we eliminate the bank delay as it will be a row-hit access. With 

this approach we replicate the bank level parallelism of consecutive requests as in an ideal 

hysteresis batch scheduler (as we do not consider refresh or row-buffer timeouts). 

This modification at the memory controller will be done at the unified memory system. The important 

numbers we need to check are the order of cycles reduced in total execution compared to the 

unified memory system. 

6.1 Baseline Processor: Use of Memory Copies 

The baseline system has two different memory controllers. One memory controller is going to be 

responsible for the memory requests from the CPU. The second memory controller is going to 

receive the requests from the GPU.  

The memory address spaces are different from CPU to GPU and they need the use of memory 

copies to exchange data and instructions. The baseline system with split memories for CPU and 

GPU is going to help us to check the individual request from each processor (CPU or GPU) easier 

and to understand the level of stress of requests that each processor is giving to its own memory 

system.  

Each memory controller reports a number of total memory requests received at the end of each 

execution by benchmark. We want to recall that we are using the Rodinia Benchmarks with the 

memory copies implemented.  

We present the percentage of requests that each memory controller received in percentages to 

show which processor was giving the higher number of requests to its memory controller. (See 

Figure 10) 
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Figure 10: Percentage of the Number of Requests per Memory Controller at the Baseline System 

There are benchmarks where the requests at the memory controllers are concentrated on GPU and 

others at the CPU. The mean gives us more concentration on the CPU memory controllers, but 

individually we can differentiate benchmarks where GPU memory controller has more requests like: 

BFS, Kmeans and SRAD. On the other hand, the CPU memory controller is getting more requests 

at: Backprop, Particle Filter and Pathfinder. Finally there are three benchmarks where the requests 

are similar between both memory controllers: Hot Spot, Lava MD and NW. These requests shown 

in Figure 10 can be also classified by type of request received at each memory controller: reads or 

writes. Figures 11 and 12 show the percentage of reads or writes of the total memory requests at a 

given memory controller: CPU or GPU. 

 

Figure 21: Read and Writes Requests at the CPU Memory Controller for the Baseline System 
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Figure 32: Read and Writes Requests at the GPU Memory Controller for the Baseline System 

Memory requests have a number of stall cycles when the memory is busy. For the baseline system, 

the average number of stall cycles per request in each memory controller is shown at Figures 13 

and 14. 

 

Figure 43: Stalls per request at the CPU Memory Controller of the Baseline System 
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Figure 54: Stalls per request at the GPU Memory Controller of the Baseline System 

6.2 Unified Memory Processor: No Memory Copies 

The unified memory system has just one memory controller for the CPU and GPU, so it has to 

serve both processors requests. Figure 15 is classifies the number of requests at the memory 

controller by reads or writes. It is important to recall that we use the Rodinia Benchmarks without 

memory copies between CPU and GPU because at the Unified Memory System they share the 

same virtual address space. 

 

Figure 65: Read and Writes Requests at the Memory Controller of the Unified Memory System 

The mean indicates more reads than writes. Figure 16 shows the number of stall cycles per 

requests: 
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Figure 76: Stalls per request at the Memory Controller of the Unified Memory System 

6.3 Analysis of the Hysteresis Detector 

In the for a Hysteresis-Batch scheduler, one of the main characteristics is the ability to detect the 

different regions of activity with the memory controller requests. The requests will be received at 

arrival time and a two-bit saturation counter will be adding or subtracting depending on the ID of the 

requestor: CPU or GPU.  

In order to validate the behavior of separated regions of execution for CPU and GPU we will 

compare the number of memory requests done by the Baseline System and the Unified Memory 

System. Figure 17 shows the general numbers of the requests received at the memory controllers: 
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From Figure 17 we can see a clearly relation between the memory controller that received more 

requests at the baseline system to the number of total request received at the unified memory 

system.  

We are going to take the Hot Spot benchmark for a deeper analysis. The decision of taking this 

benchmark and no Lava MD is because at the Hot Spot numbers we have a closer similarity among 

the three memory controllers. 

A closer look to the execution of the benchmark doing a kernel debugging execution by phases of 

the total execution we can see a mix behavior at the three different phases that the debugging 

shows at Figure 18. 

 

Figure 98: Hot Spot Memory Controller Requests by kernel debugging by phases. CPU (Baseline 

System), GPU (Baseline System) and CPU+GPU (Unified Memory System) 
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unified memory system numbers give the idea that the hysteresis detector will be detecting more 

memory intensity by the CPU and probably the GPU by some amount of times at the weak region. 

For the last phase we have the worst case due to the similarity of the number of request from CPU 

and GPU at the baseline system and the numbers shows also similar numbers. Here the hysteresis 

system would be in the weak range oscillating from CPU to GPU continually and neither CPU nor 

GPU threads will get the advantage of prioritizing their requests.  

On the other hand Figure 19 shows the requests by kernel phases but from a very well balanced 

benchmark (i.e. Back Propagation). Phase number three from Back Propagation benchmark is the 

only phase where at the baseline system, memory request are very similar but the reduction of the 

number of request at the unified memory system is appreciated. 

 

Figure 19: Backprop Memory Controller Requests by kernel phases of execution CPU (Baseline 

System), GPU (Baseline System) and CPU+GPU (Unified Memory System) 

Figures for LavaMD, Pathfinder and SRAD benchmarks with kernel debugging by phases can be 

seen in Annex C. 
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6.4 Hysteresis-Batch Scheduling at the Unified 

Memory System 

Implementing the Hysteresis-Batch scheduling would give the opportunity to have a better 

reordering to the requests to main memory off-chip and with this a reduction in execution time 

cycles. The number of the cycles that a best case of Hysteresis-Batch scheduling can achieve is 

modeled with a reduction in latencies between the accesses to consecutive banks. This will give us 

the reduction execution time in number of cycles and check for the final impact on performance. 

The execution time obtained with the unified memory system before and after the modification is 

shown at Figures 20 and 21: 

 

Figure 20: Execution time of the Unified Memory System with HB-Scheduling 

 

Figure 101: Execution time of the Unified Memory System with HB-Scheduling 

9.7919 
37.3111 23.9566 

111.729894 

2.0642 0.8708 0.9924 
24.6644 29.6522 

With HB-Scheduling 

9.7945 
37.3150 23.9579 

111.9810 

2.0651 0.8744 0.9926 
24.6729 29.6558 

Without HB-Scheduling 



36 

 

The numbers of cycles that can be reduced on execution time are important in the order of 10
6
. An 

important number taking into account that we just modify the scheduling reordering and millions of 

cycles can be saved. 
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7 Conclusions 

A general algorithm for memory controller schedulers is far to exist. There are always 

more constraints than solutions when the complexity of On-chip systems is increasing. The 

analysis done at the beginning of this work compared two different memory systems: a 

baseline system with two memory controllers doing copies between them and a unified 

system with only one memory controller. An important reduction at the number of stall 

cycles was observed at the unified system. It is important to remember the existence of 

only one memory controller with similar characteristics to one of the memory controllers 

located at the baseline system. Using just this memory controller for the unified system 

resulted in less or slightly similar number of requests than the baseline system. With the 

motivation to increase the performance of the system we proposed a better treatment of 

these requests at the memory controller. The observed behaviors of requests at the 

memory controllers on the baseline system at different phases of the executed 

benchmarks encouraged us to propose a better treatment to these requests at the memory 

controller at the unified memory system. The Hysteresis-Batch scheduler proposed in this 

work for a Heterogeneous CPU-GPU processor took importance with the results of the 

analysis getting an important saving in execution cycles.  
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8 Future Work 

New memory technologies with different and wide variety of characteristics are under research. 

Heterogeneous processors are called heterogeneous due to the diversity of processors. But 

heterogeneity can go to the memory system too in the near future. 3D-staking, for example, 

assembles layers of silicon connected with Through Silicon-Via (TSV) technology. This kind of 

connectivity directly on the chip, increase the bandwidth and decrease latency due bus 

connections. Those points are the Achilles heel of actual memory systems for high throughput 

processors. If the fabrication processes adapt fast, these memory technologies would be a reality 

sooner or later. The analysis of the integration of these memories to Heterogeneous processors 

must be explored to have a heterogeneous memory system where each memory technology will 

give its best characteristics for performance to the future computers. 
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Annex-A 

 

A.1 CUDA and Heterogeneous CPU – GPU Computing 

Compute Unified Device Architecture (CUDA) is an extension for languages like C and C++ to 

program GPU devices and do general purpose computations. Programmers write a normal serial 

program that is executed at the host, the CPU.  

This program calls parallel “kernels”, this is a function designed to be executed by many threads. 

Until now this seems pretty normal programming without any expertise needed, but the way the 

programmer organizes these threads in the kernel(s) is where the real deal comes into the play.  

When invoking a kernel, we organize threads into a hierarchy of thread blocks and a grid of thread 

blocks. A thread block is a set of concurrent threads that can cooperate among themselves though 

barrier synchronization and through shared access to a memory space private to the block. A grid is 

a set of thread blocks that may each be executed independently and thus may execute in parallel.  

The programmer specifies the number of threads per block and the number of blocks comprising 

the grid. Each thread is given a unique “thread ID” number <<threadIdx>> within its thread block, 

numbered 0, 1, 2, ... , <<blockDim–1>>, and each thread block is given a unique “block ID” number 

<<blockIdx>> within its grid. CUDA supports thread blocks containing up to 512 threads. For 

convenience, thread blocks and grids may have 1, 2, or 3 dimensions, accessed via .x, .y, and .z 

index fields: 

kernel<<<dimGrid, dimBlock>>>(... parameter list ...); 

The programmer can use a convenient degree of parallelism for each kernel, rather than having to 

design all phases of the computation to use the same number of threads. Figure XXXX shows an 

example of a CUDA-like code sequence. It first instantiates “kernel F” on a 2D grid of 3 × 2 blocks 

where each 2D thread block consists of 5 × 3 threads. It then instantiates “kernel” on a 1D grid of 

four 1D thread blocks with six threads each. Because kernel G depends on the results of kernel F, 

they are separated by an inter-kernel synchronization barrier. 
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Figure 22: Sequence of kernel F instantiated, an inter kernel synchronization barrier,  

followed by kernel G [19] 
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Let’s not forget that to support a heterogeneous system architecture combining a CPU and a GPU, 

each with its own memory system; CUDA programs must copy data and results between host 

memory and device memory. The overhead of CPU – GPU interaction and data transfers is 

minimized by using DMA block transfer engines and fast interconnects. Compute-intensive 

problems large enough to need a GPU performance boost amortize the overhead better than small 

problems. 

 

Figure 113: Processing Flow on CUDA (Source: RTC Magazine) 
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A.2 Titan Supercomputer Heterogeneous Node 

The example of Titan as a Heterogeneous CPU – GPU System will bring us the idea of how the 

General Purpose (GP) GPU is use in a system, mainly the memory configuration on each side of 

the CPU and GPU.  

Titan has 18, 688 nodes. Each node has one CPU and one GPGPU with following characteristics:  

 

Figure 12 Titan Heterogeneous Computing Node (Source: OLCF) 

Figure 24 shows the interconnections between the different chips. The CPU, called the node, is 

connected to an interconnection ASIC proprietary of Cray Inc. and in the other side is a connection 

to the accelerator, the GPGPU. In this work, the interconnection of nodes in a system is not our 

main interest so we will discard the explanation for the “Gemini” ASIC and the connection to the 

other nodes. What we want to show and what is relevant for this case of study is the interaction of 

the node and the accelerator.  

If we take a closer look to Figure 25, there is a direct connection between the CPU and the GPU 

with a PCIe 2.0 in purple. But each of them, CPU and GPU, has its own memory device; different in 

capacity and technology.  

This configuration demands explicit copies of data and instructions from the host, node or CPU to 

the device, accelerator or GPU. Copies of these, data and instructions, are done through the PCIe 

that is connection them. The compute acceleration that the GPU is giving works well only for large 

offload workloads due to the slow data transfer between the CPU and GPU.  
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On top of that, another disadvantage is the expert level of programming necessary to take real 

advantage of the GPU compute. Many programming languages are available such as CUDA and 

OpenCL. CUDA is from NVIDIA, the enterprise that develops the GPUs Titan has and we will have 

a brief overview of the processing flow. OpenCL is framework for heterogeneous platforms in 

general, not just with GPUs, also DSPs and FPGAs where a system has a number of compute 

devices (other CPUs or accelerators) attached to a host processor (CPU). 
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A.3 AMD and Heterogeneous Uniform Memory Access (hUMA) 

 

Figure 25: hUMA from AMD (Source: AMD) 

Recalling the evolution from CPUs on multicore, just before the introduction of GPU on chip, there 

was a Unified Memory Access (UMA) so all the cores in this system share a single memory address 

space. Later with the integration of the GPU at these APUs, a Non-Uniform Memory Access 

(NUMA) was created. It required data to be managed across different address spaces: GPU 

Memory and CPU Memory, adding complexity due frequent copies, synchronization and address 

translations. 

With hUMA features from HAS Foundation, CPU and GPU processes can dynamically allocate 

memory from the entire memory space. Updates made by one of the processing element, CPU or 

GPU, will be seen by all other processing elements due to a bi-directional coherent. Also GPU can 

take page faults and is no longer restricted to page locked memory. 

For data sharing, the CPU can simply pass a pointer to entire data structure since the GPU can now 

follow embedded links, then GPU completes the computation and CPU can read the result directly 

with no copying needed. This highly speeds the GPU access to the system memory and frees the 

computation on GPUs from the copying overheads. 
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Figure 26: Comparison between CPU and APU's (Source: AMD) 

 

 

Figure 137: hUMA Key features (Source: AMD) 
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Annex-B 

B.1 RUBY & SLICC 

It is a flexible infrastructure capable of accurately simulating a wide variety of memory systems. 

Supports a domain specific language called SLICC (Specification Language for Implementing 

Cache Coherence) where one can define many different types of cache coherence protocols.  

Essentially the SLICC defines the cache, memory, and DMA controllers as individual per memory 

block state machines that together form the overall protocol. By defining the controller logic in a 

higher level language, SLICC allows different protocols to incorporate the same underlining state 

transition mechanisms with minimal programmer effort. 

It models inclusive/exclusive cache hierarchies with various replacement policies, coherence 

protocol implementations, interconnection networks, DMA and Memory controllers, various 

sequencers that initiate memory requests and handle responses. The models are modular, flexible 

and highly configurable. Three key aspects of these models are: 

1. Separation of concerns = e.g. the coherence protocol specifications are separate from 

the replacement polices and cache index mapping; the network topology is specified 

separately from the implementation. 

2. Rich Configurability = Almost any aspect affecting the memory hierarchy functionality and 

timing can be controlled. 

3. Rapid prototyping = A high-level specification language, SLICC, is used to specify 

functionality of various controllers. 

Cache Topology 

The topology of the cache hierarchy in gem5-gpu is implemented with Ruby. Gem5-gpu should be 

able to use any topology that Ruby supports (mesh, pt2pt, crossbar, etc.). However, these 

topologies were created with homogeneous CPU cores in mind. Using these topologies may result 

in strange behavior. For instance, you may have GPU and CPU cores scattered throughout the 

mesh randomly. Pt2Pt and crossbar should work fine since they are completely flat topologies. 

For the VI_Hammer coherence protocol, cluster topology is hardcoded. The cluster topology is a 

hierarchy of crossbars meant to model clusters of different kinds of cores. All GPU cores (and their 



 

49 

 

L1s) are connected to 1 crossbar, which is also connected to the GPU L2. All CPU cores (and their 

private L1s and L2s) are connected to another crossbar. These two crossbars are connected to 

another crossbar, which is also connected to the Directory and Memory Controller. 

Ruby Memory Controller: 

This module models a single channel, connected to any number of DIMMs with any number of 

ranks of DRAMs each. Each memory request is placed in a queue associated with a specific 

memory bank.  This queue is of finite size; if the queue is full the request will back up in an (infinite) 

common queue and will effectively throttle the whole system. This sort of behavior is intended to be 

closer to real system behavior than if we had an infinite queue on each bank. The head item on a 

bank queue is issued when all of the following are true: 

1. The bank is available 

2. The address path to the DIMM is available 

3.  The data path to or from the DIMM is available 

Note that we are not concerned about fixed offsets in time. The bank will not be used at the same 

moment as the address path, but since there is no queue in the DIMM or the DRAM it will be used 

at a constant number of cycles later, so it is treated as if it is used at the same time. They are 

assuming closed bank policy; that is, we automatically close each bank after a single read or write.  

The only non-trivial scheduling problem is the data wires. A write will use the wires earlier in the 

operation than a read will; typically one cycle earlier as seen at the DRAM, but earlier by a worst-

case round-trip wire delay when seen at the memory controller. So, while reads from one rank can 

be scheduled back-to-back every two cycles, and writes (to any rank) scheduled every two cycles, 

when a read is followed by a write we need to insert a bubble. Furthermore, consecutive reads from 

two different ranks may need to insert a bubble due to skew between when one DRAM stops 

driving the wires and when the other one starts (These bubbles are parameters). This means that 

when some number of reads and writes are at the heads of their queues, reads could starve writes, 

and/or reads to the same rank could starve out other requests, since the others would never see 

the data bus ready. For this reason, we have implemented an anti-starvation feature. A group of 

requests is marked "old", and a counter is incremented each cycle as long as any request from that 

batch has not issued. If the counter reaches twice the bank busy time, we hold off any newer 

requests until all of the "old" requests have issued. 
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Annex C: 

C.1 Benchmarks Results at Kernel Phase Execution 

Backprop 

 

Figure 148: Backprop-Memory Controller Requests by kernel execution phase 

 

Figure 29: Backprop-Stall Cycles Per Request by kernel execution phase 
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Hot Spot 

 

Figure 150: Hot Spot-Memory Controller Requests by kernel execution phase 

 

Figure 161: Hot Spot-Stall Cycles Per Request by kernel execution phase 
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Lava MD 

 

Figure 172: LavaMD-Memory Controller Requests by kernel execution phase 

 

Figure 183: LavaMD-Stall Cycles Per Request by kernel execution phase 
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Pathfinder: 

 

Figure 194: Pathfinder-Memory Controller Requests by kernel execution phase 

 

Figure 205: Pathfinder-Stall Cycles Per Request by kernel execution phase 

1 2 3 4 5 6 7 8 9 10 11

CPU 1,251,8 100 0 0 0 0 0 0 0 0 9,322

GPU 312,500 71,511 0 72,032 0 72,032 0 72,041 0 68,881 2,573

CPU-GPU 938,156 71,548 7 72,064 8 72,052 0 72,045 0 60,412 5,763

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

Memory Controller Requests 

1 2 3 4 5 6 7 8 9 10 11

CPU 27.975 0.290 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 11.960

GPU 40.284 502.186 0.000 503.697 0.000 506.317 0.000 504.387 0.000 502.833 109.539

CPU-GPU 1.840 505.339 0.000 510.995 0.000 512.591 0.000 510.247 0.000 479.904 0.417

0.000

100.000

200.000

300.000

400.000

500.000

600.000

Stall Cycles Per Request 



 

54 

 

SRAD 

 

Figure 216: SRAD-Memory Controller Requests by kernel execution phase 

 

Figure 227: SRAD-Stall Cycles Per Request by kernel execution phase 
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