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ABSTRACT 

AN ARCHITECTURE EVALUATION AND IMPLEMENTATION OF A SOFT 

GPGPU FOR FPGAs 

 

SEPTEMBER 2018 

 

KEVIN R. ANDRYC, B.S., UNIVERSITY OF MASSACHUSETTS 

 

M.S., UNIVERSITY OF MASSACHUSETTS 

 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Russell G. Tessier 

 

 

Embedded and mobile systems must be able to execute a variety of different types 

of code, often with minimal available hardware. Many embedded systems now come with 

a simple processor and an FPGA, but not more energy-hungry components, such as a 

GPGPU. In this dissertation we present FlexGrip, a soft architecture which allows for the 

execution of GPGPU code on an FPGA without the need to recompile the design. The 

architecture is optimized for FPGA implementation to effectively support the conditional 

and thread-based execution characteristics of GPGPU execution without FPGA design 

recompilation. This architecture supports direct CUDA compilation to a binary which is 

executable on the FPGA-based GPGPU. Our architecture is customizable, thus providing 

the FPGA designer with a selection of GPGPU cores which display performance versus 

area tradeoffs.  

 

This dissertation describes the FlexGrip architecture in detail and showcases the 

benefits by evaluating the design for a collection of five standard CUDA benchmarks 

which are compiled using standard GPGPU compilation tools. Speedups of 23x, on 

average, versus a MicroBlaze microprocessor are achieved for designs which take 
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advantage of the conditional execution capabilities offered by FlexGrip. We also show 

FlexGrip can achieve an 80% average reduction of dynamic energy versus the 

MicroBlaze microprocessor. 

 

The dissertation furthers discussion by exploring application-customized versions 

of the soft GPGPU, thus exploiting the overlay architecture. We expand the architecture 

to multiple processors per GPGPU and optimizing away features which are not needed by 

certain classes of applications. These optimizations, which include the effective use of 

block RAMs and DSP blocks, are critical to the performance of FlexGrip. By 

implementing a 2 GPGPU design, we show speedups of 44x on average versus a 

MicroBlaze microprocessor. Application-customized versions of the soft GPGPU can be 

used to further reduce dynamic energy consumption by an average of 14%. 

 

To complete this thesis, we augmented a GPGPU cycle accurate simulator to 

emulate FlexGrip and evaluate different levels of cache design spaces. We show 

performance increases for select benchmarks, however, we also show that 64% and 45% 

of benchmarks exhibited performance decreases when L1D cache was enabled for the 1 

SMP and 2 SMP configurations, and only one benchmark showed performance 

improvement when the L2 cache was enabled. 
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CHAPTER 1 

 

INTRODUCTION 

 

FPGAs are used in a wide variety of embedded systems, such as automotive 

applications, appliances, and other consumer products. Most of the processing is 

performed by low-end embedded microprocessors and FPGAs. In some cases, just an 

FPGA is used and one or more microprocessors are fashioned from FPGA logic to 

execute specific code types. The benefits of this approach include the ability of software 

designers to specify functionality in a familiar high-level language (e.g. C) and the 

flexibility to modify this functionality for the FPGA device without the need to recompile 

FPGA logic, a time-consuming process that can range from minutes to days. 

 

A recent trend in FPGA design is the use of overlay architectures. An overlay 

design implements a soft, synthesizable version of an architecture which is customarily 

implemented in fixed ASIC logic, such as a microprocessor, vector processor, or 

multiprocessor. For example, soft microprocessors have become ubiquitous in FPGA 

design and they are used for a variety of embedded applications ranging from I/O and 

system control that do not demand high performance to data processing with higher 

computational demands. 

 

Most FPGA designs use soft processors for sequential tasks, such as I/O 

interfacing and control that do not demand high performance. The benefits of soft 

processor usage include the ability of software designers to specify functionality in a 

familiar high-level language (e.g. C) and the flexibility to modify this functionality for 
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the FPGA device without the need to recompile FPGA logic, a time-consuming process 

that can range from minutes to days. 

 

The success of soft microprocessors led to alternative compute models which 

follow a similar simple program-compile design flow. Recently, soft vector processors 

[1] [2], which provide performance benefits for applications exhibiting significant data 

parallelism have appeared. Although soft vector processors address a portion of the data 

parallel spectrum, they are limited in their support for significant multithreaded and 

conditional program execution. Multithreaded soft processors have been reported 

although they have generally been constrained to executing a small number of threads [3] 

or have limited parallelism [4]. 

 

Graphics processing units for general purpose computing (GPGPUs) are now 

widely-accepted computing platforms for a broad range of multi-threaded, conditional 

computation. The programming languages created to program GPGPUs, CUDA and 

OpenCL, are now in wide use for other computing platforms, and creating a code and 

knowledge base for programmers. The critical benefit of GPGPUs, besides their inherent 

parallelism, is their ability to automatically manage the execution of highly multi-

threaded applications in hardware, freeing the programmer to focus on achieving 

maximum parallelization by writing efficient CUDA code. Although a number of 

previous projects have explored mapping GPU languages directly to FPGA hardware [5] 

[6], "GPU-like" soft FPGA architectures [7] [8], and soft multi-cores [9], a soft GPGPU 

architecture which allows for direct execution of CUDA binary code following 
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compilation with the CUDA compile-time environment has not been reported. Previous 

architectures also primarily consider hardware synthesis for each application, which is a 

lengthy and potentially infeasible option for designers which desire to execute a number 

of GPGPU applications on the same FPGA substrate. 

 

  This dissertation focuses on an exploration of soft GPGPU architectures in 

FPGAs. We describe the implementation of FlexGrip [10] [11] (FLEXible GRaphIcs 

Processor for general-purpose computing), a fully CUDA binary-compatible integer 

GPGPU, optimized for FPGA implementation. The amount of parallelism is 

customizable at multiple levels including the number of parallel operations per 

instruction (processors) per multiprocessor. 

 

FPGA implementation allows for additional optimization for classes of 

computation which may not require all components in a standard GPGPU. As part of our 

work we explore the possibility of creating a small set of soft GPGPUs with varying 

architectural parameters (e.g. number of functional units, size of memory structures) 

which can be swapped into the FPGA as needed. The interaction between FlexGrip and 

an on-chip MicroBlaze soft processor is coordinated allowing for the seamless execution 

of sequential and parallel portions of a CUDA program. The hardware can be used for 

numerous CUDA programs without hardware resynthesis. Different versions of FlexGrip 

can be created that can be optimized for specific classes of application requirements, such 

as the number of conditionals or the need for a multiply-accumulate operation. 
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The architecture has been implemented in VHDL for a variety of parameters and 

evaluated in hardware using an ML605 [12] Virtex-6 FPGA platform which includes 

DRAM. A total of five CUDA benchmarks have been directly compiled to the 

architecture using standard NVIDIA compiler products. We show dynamic energy 

savings versus a soft-core processor of 66% on average. Through optimization of per-

application on-chip resources, an additional 14% dynamic energy reduction is possible. 

We also provide a dynamic energy comparison for CUDA code compiled to FlexGrip 

versus a high-end Intel processor. For some benchmarks, FlexGrip provides reduced 

dynamic energy consumption versus the much larger, fixed microprocessor. 

 

Within this dissertation we describe the effect of architectural optimizations including 

reducing the numbers of functional units, conditional execution hardware, and memory 

interfaces on energy consumption. The effects of using multiple SMs to perform 

computation are also explored. Results for each of these experiments versus a baseline 

FlexGrip architecture are presented to quantify the results of the optimizations. 

Additionally, energy consumption comparisons versus a high-end Intel processor are 

made to provide an additional energy comparison. 

 

While FPGAs provides significant flexibility afforded to the designer, it is done 

so at the expense of fixed resources that is chip dependent. A number of look-up tables 

(LUTs), flip-flops, block RAM, and DSPs are dependent upon the packaging selected and 

therefore, the designer may sometimes need to make architectural decisions regarding 

optimizations. Many modern day processor and GPGPU designs now include multiple 
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hierarchies of cache in an effort to improve throughput and overcome limitations of main 

memory. By evaluating different cache designs and parameter choices, we can determine 

an optimized strategy based on a fixed number of block RAM.  

 

Specific contributions of our work include: 

 We provide a detailed analysis of the operation and resources consumed by the 

FlexGrip design as we vary the number of scalar processors, characterizing the 

performance, energy and power consumption. 

 We analyze tradeoffs as we vary the amount of conditional execution hardware, 

number of scalar processor operands and functions supported by the scalar 

processors. These characterizations allow for the optimization of area and energy. 

 We consider FPGA performance tradeoffs as the number of scalar processors in 

the soft GPGPU and the number of streaming multiprocessors are varied. The 

variation in compute density also effects the energy consumption of the design. 

 We explore GPGPU cache designs by emulating the FlexGrip architecture on a 

cycle accurate GPGPU simulator. The total size of the cache memory is 

constrained to emulate the number of block RAMs available on the FPGA. By 

evaluating different cache hierarchy and parameter designs, we can provide trade-

off analysis and characterize performance. 

 

The remainder of this dissertation is structured as follows. Section 2 provides 

background on similar overlay and synthesized architectures and an overview of relevant 

features of GPUs. Section 3 describes the architecture of FlexGrip and provides an 
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overview of the entire FlexGrip system including the soft GPGPU, MicroBlaze, and the 

DRAM interface. Architectural optimizations are a specific focus in Section 4. Section 5 

describes our work of comparing cache configurations for a soft-GPGPU. Finally, in 

Section 6 we provide our conclusion including our published papers. 
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CHAPTER 2 

 

BACKGROUND 

2.1 GPGPUs 

GPGPUs have a many-core device architecture and possess substantial parallel 

processing capabilities. As shown in Figure 1, a typical GPGPU consists of an array of 

multiprocessors (each with two or more processors) enabling the device to execute 

numerous threads in parallel. In a GPGPU, a majority of the silicon area is dedicated to 

data processing units with only a small portion assigned to data caching and flow control 

circuitry. Such a design architecture makes a GPGPU suitable for solving streaming 

compute-intensive problems. 

 

 

Figure 1: Overview of a GPGPU architecture. The architecture can support multiple 

streaming multiprocessors 
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Although several different companies manufacture GPGPUs, in describing the 

devices we will use terminology commonly used with NVIDIA devices. A GPGPU is 

primarily made up of an array of streaming multiprocessors (SMs), with each 

multiprocessor consisting of multiple scalar processor (SP) cores that generally use 32-

bit operands. The term streaming multiprocessor implies that scalar processors in an SM 

perform the same operation, SIMD style. The vector register file contains a pool of 

registers that is strictly partitioned across scalar processors. This way, every processor 

uses its own set of registers to store operands and intermediate results, steering them clear 

of any data dependent hazards. A shared memory serves as a communication medium 

between different cores residing in the same SM. In addition, there is a read-only constant 

memory accessible by all the threads. The constant memory space is a cache for each 

SM, thus allowing fast data access as long as all threads read the same memory address. 

 

In the CUDA programming model, the host program launches a series of kernels 

organized as a grid of thread blocks. A thread block represents a collection of operations 

which can be performed in parallel. The NVIDIA device architecture partitions thread 

blocks and groups them into warps, where a warp is a smaller set of simultaneous 

operations, some of which may be performed conditionally. Multiple warps may be 

assigned to a single SM and scheduled over time. To manage fine-grained scheduling, 

each SM is architected as a single instruction, multiple-thread (SIMT) processor. A single 

instruction is mapped to the scalar processors in the SM and each processor maintains its 

own program counter (PC). Every thread performs the same operation on a different set 

of data, but is free to independently execute data-dependent branches. Branching threads 
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diverge from the normal execution flow and scalar processors which do not execute the 

branch must be marked (deactivated) during this execution. The thread instructions 

executed as a taken branch are executed serially, while the non-branching threads are 

masked until they are executed later. 

 

2.2 Differences between GPGPUs and Vector Processors 

In general, GPGPUs and vector processors have many similarities and a few 

differences [13]. Both architectures support wide data parallel, SIMD-style computation 

using multiple parallel compute lanes, provide support for conditional operations, and 

require optimized interfaces to on-chip and off-chip memory. However, soft vector 

processors contain a number of limitations regarding implementation and compiler 

support that are addressed by GPU architectures. 

 

 Scalable thread counts: In general, GPGPUs provide support for significant 

amounts of compute threads both within an SM and across SMs. Vector 

processors are generally limited to a single thread per SIMD processor (similar to 

an SM). Our architecture supports the implementation of numerous threads. 

 Hardware support for conditional operations: The conditional branch mechanism 

for GPGPUs is typically implemented in hardware to simplify both the user 

programming model and the associated compiler. This approach allows for run-

time determined levels of loop nesting and data-dependent branching.  
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The burden for handling conditional operations in vector processors generally 

falls on both the programmer and the compiler with minimal hardware support 

provided. 

 Overcoming memory latency: The memory system for GPGPUs is architected to 

take advantage of the presence of numerous threads which can be switched with 

low overhead by a thread scheduler. Vector processors generally rely on deep 

pipelining to overcome memory latency. 

 

Our architecture addresses each of these points using an implementation which is 

optimized for FPGAs. We show that a soft GPGPU implementation allows a designer to 

trade off the amount of SMs and conditional branch hardware as needed for classes of 

applications. 

 

2.3 GPGPU Cache Memory 

GPGPUs have the capability to execute thousands of threads concurrently and thus 

rely on high memory throughput. In an effort to provide sufficient memory bandwidth, 

GPU designers have begun to implement cache memory as part of the architecture. 
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Figure 2 shows a reference GPGPU architecture representative of modern NVIDIA 

GPUs such as Fermi [14] and Kepler [15]. 

 

Figure 2. NVIDIA GPGPU representative architecture 

 

Prior to execution, data is transferred to the GPGPUs global memory, which 

typically consists of many gigabytes of off-chip GDDR5 memory. The global memory is 

shared by all the SMPs and is partitioned, with each partition containing an L2 cache 

bank. Each SMP contains four different types of on-chip memory: shared memory, data 

cache, local cache and texture cache. Shared memory is a fast, on-chip multi-banked 

scratchpad memory that is not backed by any cache and facilitates communication 

between threads in a single block. The L1 data cache is a private, per-SMP first level 

cache and includes a Miss Status Holding Register (MSHR) to track cache misses in 

flight. Constant cache stores constant and parameter data, similar to the L1 data cache 

with the exception that it is read-only. Texture cache utilizes a unique pre-fetching 

mechanism [16] for storage and retrieval of graphics data. 

 



 

12 

2.4 Related Work 

Our soft GPGPU is part of a larger trend in FPGA usage to eliminate the long 

FPGA compile times and difficult hardware design cycles for many designers. Instead of 

application-specific custom hardware, an architectural overlay [17] is implemented in 

FPGA hardware. An overlay circuit typically has the features of a common ASIC-based 

architecture (microprocessor, vector processor, GPGPU, etc.). Designers can specify 

applications in more familiar languages (e.g., C, CUDA) which require modest compile 

times. 

 

Although these architectures exhibit lower performance and higher energy 

consumption than their full custom counterparts, they can be swapped into the FPGA on-

demand, providing the flexibility needed by embedded systems. Over the past ten years, 

the implementation of soft vector processors on FPGAs has matured significantly. A 

number of projects have examined the implementation of data parallel applications on 

FPGAs using these architectures. The VEGAS [2] and VENICE projects [18] examined 

the implementation of soft vector processors on a range of FPGAs. These architectures 

support a customizable number of operations performed in parallel, an optimized memory 

interface, and a compiler. VENICE supports a simple, mask-based approach to 

conditionally execute specific data-parallel operations. Conditional operations are 

explicitly managed with code generated via compilation. The VESPA project [19] 

explored a soft vector processor approach that considers the customization of the soft 

vector processor instruction set and data bit widths. A later project [20] exploited the 

pipeline parallelism found in FPGAs to create custom modules that can be integrated into 
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the soft vector processor datapath. As mentioned in the Section 2.2, although similar, 

vector processors have a more constrained operating model compared to GPGPUs. 

Specifically, vector processors require a compiler to perform strip mining of vector 

accesses and explicitly manage the implementation of multiple threads. 

 

Several FPGA-targeted projects considered the mapping of GPGPU applications 

represented in OpenCL to multi-threaded implementations. The OpenRCL project [9] 

focused on a compiler for a multi-core architecture. The results for a single application 

mapped to a 30-core architecture using this LLVM-based compiler showed a 5x power 

improvement versus a commercial GPU for similar performance. This implementation 

does not implement multiple threads on a processor at the same time. Labrecque and 

Steffan [4] described the multithreading of a single processor core. Hazard logic is 

removed from the processor and hazards are avoided by switching between up to seven 

different threads. Another work [3] considered an extension of this idea to include 

multiple cores of these simple multi-threaded processors operating in parallel. Kingyens 

and Steffan [21] described a GPU-like architecture that has some similarities to our 

architecture. Their GPU-like architecture includes multithreading across 32 “batches”, 

small cores which contain ALUs. This architecture was described in the context of a 

graphics application although it was not fully implemented in RTL or in hardware. The 

architecture is notable for its multiple execution cores, support for up to 256 threads, and 

limited support for conditional data parallel execution. The architecture does not support 

nested conditionals, multiple clusters of multi-processors, or a direct compile path for 

CUDA or OpenCL GPGPU languages. Although these projects examined a similar goal 
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to ours, FlexGrip employs the ability to target CUDA or OpenCL code to FPGAs without 

hardware recompile. In addition, the earlier architectures and compilers do not take 

advantage of the dynamic thread scheduling and hardware-controlled parallel branch 

mechanisms, including deeply nested loops, commonly found in GPGPUs and expected 

by GPGPU compilers. FlexGrip is also scalable to multiple multi-processor clusters. Our 

implementation is fully compatible with CUDA integer binaries and typical GPGPU 

operation. 

 

Many recent projects, including commercial offerings, have examined 

synthesizing designs specified in CUDA and OpenCL to application-specific circuits 

implemented in FPGAs. The MARC architecture [22], a multi-core with custom 

datapaths, was optimized on a per-application basis to achieve competitive performance 

versus full-custom FPGA implementation. The FCUDA project [5] developed a tool 

which converts CUDA programs to a synthesizable version of C. A high-level synthesis 

tool and FPGA compiler then converts this code to hardware circuits. This work was later 

extended to consider the synthesis of multiple dependent kernels [23]. Owaida et al. [6] 

presented an approach which converts OpenCL code to a synthesizable RTL template. 

This approach is appropriate for applications and programmer coding styles which match 

well with the template. Similarly, Shagrithaya et al. [24] developed an OpenCL compiler 

with a library that supports the OpenCL host API. Finally, Altera has developed an 

OpenCL compiler [25] which converts OpenCL programs to a series of custom parallel 

compute cores. Although all of these approaches generate circuits which are optimized 

for a specific application and reap the associated area, performance, and energy benefits, 
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they all require the substantial compile time associated with FPGA synthesis, place, and 

route. The migration of a new application to the FPGA requires substantially more time 

than the few seconds normally found when targeting CUDA programs to GPGPUs. 

 

In direct relation with the approach discussed, a proliferation of work has been 

done recently in the area of soft GPGPUs, attempting to implement GPGPU functionality 

with configurable or application specific processing soft cores. Al-Dujaili, et al. [8] 

implemented a simple soft-GPU based on the LEON3 processor with eight threads which 

requires hand-compilation of GPU programs and tested only for matrix multiplication. 

The implementation achieved speedups of up to 3x over the LEON3 architecture, with 

the memory interface being the limiting performance factor. While this was an early 

attempt at a soft-GPGPU, there are many recent papers that have cited and leveraged the 

work of FlexGrip. Siddiqui, et al. [26] developed an architecture called Image Processing 

PROcessor (IPPro) using small, reconfigurable soft-core scalar RISC processors. Similar 

to FlexGrip, it features a five stage pipeline utilizing Xilinx DSP48E1 primitives as the 

base design for the Arithmetic Logic Unit (ALU) and distributed block RAM to support 

the memory hierarchy. A feature of IPPro is the ability to configure the cores as a multi-

core heterogeneous architecture, enabling the user to build either SIMD or MIMD 

computational models. Unlike FlexGrip, the architecture specifically targets image 

processing algorithms, using the RVC-CAL [27] dataflow language which is then 

converted to IPPro binary code. An open source RTL implementation of a GPGPU called 

MIAOW (Many-core Integrated Accelerator of Wisconsin) [28] was developed with an 

architecture similar to AMD’s Southern Island (SI) ISA [29]. The authors devised a 
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hybrid strategy, with L2 cache, on-chip networks (OCN), and memory controllers 

developed as C/C++ behavioral models and the remaining architecture implemented as 

RTL. It is able to run applications written in standard OpenCL, supporting a subset of the 

SI ISA, eliminating any graphic-related instructions. The MIAOW compute unit (similar 

to NVIDIA’s SM) was synthesized using 32nm technology and is able to run at 222MHz. 

An FPGA implementation, called Neko, was developed as part of the effort. Due to the 

size, a single compute unit (CU) was implemented along with a Microblaze processor on 

a Xilinx VC707 evaluation board with each CU requiring 195,285 LUTs (64% of 

available resources) and 137 BRAMs (16% of available BRAMs). As Neko was based on 

MIAOW, there was no RTL implementation of a memory controller, therefore the 

Microblaze processor was used as an intermediary for accessing memory. However, there 

were no timing or performance results reported for Neko. Similar to MIAOW, Kadi et al. 

[30] developed FGPU (FPGA general purpose Graphical Processing Unit), using a 

custom ISA, extended from MIPs and inspired from the OpenCL execution model. While 

early versions required the user to write assembly code, a later version provided 

compiling directly from OpenCL language. Each FGPU compute unit features a 

scheduling unit, memory controller, runtime memory and eight processing elements. 

Each processing element consists of a vector register file and an ALU. FGPU was 

implemented on a Xilinx ZC706 development board which can support up to 8 compute 

units. Results showed speedups between 10.6x and 48.5x over Microblaze and compared 

to an equivalent ARM with the NEON SIMD engine achieved 3.5x when in the 8 CU 

configuration. Nyami [31] is another open source soft-GPGPU implementation developed 

in Verilog with an associated simulation model. It features an in-order, single issue, 
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unified scalar and vector pipeline with a register-to-register RISC ISA execution model. 

A baseline configuration of Nyami consisting of DRAM, video controller, and a was 

synthesized for the Altera Cylone IV E (EP4CE115F29C7) FPGA occupying a total of 

92,186 logic elements (81% of the device logic). It was deployed on the Cyclone FPGA, 

therefore no results were published, however, static timing analysis reported 30MHz. 

 

There have been many recent studies with regard to GPGPU cache design and 

optimization. The authors in [32] and [33] have looked at improvement methods of the 

last level cache (LLC) to optimize data transfers and reduce latency between the CPU and 

GPGPU. In [34], L2 cache locking techniques are examined in an effort to improve time 

predictability for real-time applications. 

 

There have been other studies that have looked at optimization of caches on a per-

SMP basis. Huangfu et al. in [35] increase cache performance by bypassing the cache 

determined by profiling accesses. Thread mapping and scheduling techniques have also 

been explored in order to dynamically quantify and improve performance, such as those 

in [36], [37], [38], and [39]. Sankaranarayanan et al. [40] introduce an additional, shared 

per-SP incoherent cache called tinyCache. They claim the ability to filter out 62% of 

memory requests serviced by the L1 data cache, and almost 81% of requests to shared 

memory providing a 37% energy reduction within the on-chip memory resources. 

 

While these techniques are relevant to our work, FPGAs feature specific cache 

design challenges, especially in highly multithreaded processors, such as soft GPGPUs 
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and soft vector processors (SVPs). Previous work on FPGA caches include TputCache 

[41] which focused on implementing a highly-pipeline cache design operating at near 

maximum frequency of BRAMs for throughput processing. The approach features a 

replay-based architecture, the ability to support multiple outstanding misses, write 

coalescing and arbitrary associativity. The design used the XMP SVP on the Cyclone IV 

and Stratix IV FPGAs and achieved speedups of up to 10.5x versus the non-cache 

architecture. 

 

Other works includes Yiannacouras et al. [42] which analyzed the performance of 

the memory subsystem by adjusting the cache depth, line size, and hardware prefetch 

mechanism of their VESPA soft vector processor. They show an average performance 

increase of nearly 2x for 1.8x the system design area. 

 

Our approach attempts to effectively support the CUDA programming and 

compile environments available to GPU programmers on FPGAs without the need for 

costly hardware compilation or remapping to parallel RISC-style integer cores. We 

envision such a system as being particularly useful for environments such as embedded 

processing where compute nodes contain reconfigurable logic that may be used for many 

different purposes at different times. In these cases, the extra cost, complexity, or power 

consumption of an off-the-shelf GPGPU in the nodes may be unwanted or unnecessary. 

The soft GPGPU can be swapped into the FPGA as needed and used to execute recently-

compiled (perhaps on-the-fly compiled) CUDA code. Several custom versions of the soft 

GPGPU can also be available and swapped in based upon requirements, resource 
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availability in the FPGA, or architectural parameters needed by the application. Our 

approach provides a fast way to target CUDA programs to these environments. 

 

In addition, the previous works on caches focused on optimizing throughput for 

highly data-parallel architectures, however do not address the cache hierarchy associated 

with many designs. Similarly, to this date there have been no research into the design and 

analysis of caches on soft-GPGPUs. 

 

2.5 Summary 

This chapter provided an introduction of the GPGPU architecture and described 

terminology essential for understanding the concepts of execution. It outlined how 

parallel execution occurs as seen from the programmer and the GPGPU hardware. The 

discussion included comparing GPGPUs to vector processors, an FPGA overlay 

architecture that can execute SIMD-style computations. The chapter concludes exploring 

research related to our work, showing the various methodologies used to implement 

GPGPUs on FPGAs.   
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CHAPTER 3 

FLEXGRIP SOFT-GPGPU 

3.1 FlexGrip System Overview 

Our FlexGrip soft GPGPU detailed in this section is part of our published work 

[10]. The design is used in concert with a Xilinx MicroBlaze to execute parallel 

operations. The FlexGrip soft GPGPU is attached to the Xilinx MicroBlaze soft-core 

microprocessor via the AXI bus as shown in Figure 3. During execution of a program, the 

MicroBlaze processor loads a driver that communicates control, status, and data to the 

AXI bus interface logic. The control logic acts as an interface between the AXI bus and 

the FlexGrip GPGPU. It executes functions depending on the values written to the control 

register. Once the driver is loaded, it dispatches CUDA instructions and data which in 

turn are loaded into system and global memory, respectively, by the control logic. In 

addition, the driver loads parameters associated with the CUDA kernel program such as 

thread block and grid dimensions, number of thread blocks per SM, the number of 

registers used per thread, and the shared memory size. These parameters are stored in the 

GPGPU configuration registers. After initialization, control flow is passed to the GPGPU 

to execute the CUDA kernel. During this period, the MicroBlaze processor can continue 

execution concurrently with the GPGPU. 

 

FlexGrip follows a SIMT model in which an instruction is fetched and mapped onto 

multiple scalar processors simultaneously. The block scheduler is responsible for 

scheduling thread blocks in a round-robin fashion. The number of thread blocks 

scheduled at the same time is determined by the number of scalar processors in an SM 
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and the number of SMs. After scheduling the thread blocks, the block scheduler signals 

the warp unit to initiate scheduling the warps, which are contained within the respective 

thread blocks. The maximum number of thread blocks that can be scheduled to a SM is 

restricted by the available shared memory and SM registers. The GPGPU controller acts 

as the interface between the block scheduler and the SM. It initializes registers in the 

vector register file with respective thread IDs. 

 

 

Figure 3:  Overview of the system architecture showing the FlexGrip GPGPU connected 

to the MicroBlaze processor via the AXI bus 

 

3.2 FlexGrip Streaming Multiprocessor 

For this custom FPGA implementation, we have developed a five-stage pipelined 

SM architecture, shown in Figure 4. The SM includes Fetch, Decode, Read, Execute and 



 

22 

Write stages. The warp unit at the front of the pipeline coordinates the execution of 

instructions through the pipeline. The following sections elaborate on the different blocks 

used in this architecture. Once the block scheduler assigns thread blocks to a specific SM, 

the warp unit assigns threads to specific scalar processors (SP). This unit schedules warps 

in a round-robin fashion. Each warp includes a program counter (PC), a thread mask, and 

state. Each warp maintains its own PC and can follow its own conditional path. The mask 

is used to prevent thread execution within a warp for threads which do not meet specific 

conditions. The warp state indicates the status of the warp: Ready, Active, Waiting or 

Finished. The Ready state indicates that the warp is idle and is ready to be scheduled, 

while the Active state indicates that the warp is currently active in the pipeline. 

 

Within a warp, threads are arranged in rows depending on the number of scalar 

processors (SP) instantiated within an SM. For example, for an 8-SP configuration, a 

warp with 32 threads would be arranged in four rows with each row containing 8 threads. 

Similarly, for a 16-SP configuration, a warp would be arranged in two rows with 16 

threads each. The maximum parallelism is achieved with 32 SPs and one row. 

 

The Fetch stage is the initial stage of the execution pipeline and is responsible for 

fetching four or eight-byte CUDA binary instructions from system memory. After 

fetching the instruction, the PC value is incremented (by 4/8 bytes) to point to the next 

instruction. The Decode stage decodes the binary instruction to generate several output 

tokens such as the operation code, predicate data, source and destination operands. 
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Figure 4:  Block diagram depicting the details of the FlexGrip Streaming Multiprocessor 

 

In the Read stage, source operands are read from the vector register file or 

shared/global memory blocks depending on the decoded inputs.  The vector register file 

is partitioned, with each thread assigned a set of general-purpose registers. The address 

register file stores memory addresses for load and store instructions. All instructions can 

include an optional predicate flag that controls conditional execution of the instruction 

(predicate instructions). The predicate register file is used to store these predicate flags, 

each of which is then used as an index into a predicate look-up table which obtains the 

predicated instruction (i.e.: less than, greater than, etc.). The active-thread mask is 

updated by combining the thread mask with the predicated instruction. The constant 

memory is a read-only memory which is initialized by the host. 

 

The Execute stage consists of multiple scalar processors and a single control flow 

unit. This unit operates on control flow instructions such as branch and synchronization 

instructions which are described in more detail in the next section. Each thread is mapped 

to one scalar processor, enabling parallel execution of threads. The scalar processors 
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support integer-type addition, subtraction, multiplication, multiply and add, data type 

convert operations, shifting operations and Boolean logic operations. 

 

The Write stage stores intermediate data in the vector register file, memory 

addresses in the address register file, and predicate flags in the predicate register file. 

Final results are stored in the global memory. All pipeline stages output a stall signal that 

is fed to the preceding stage. The stall signal indicates that the stage is busy and not ready 

to accept new data. 

 

3.3 CUDA Instructions 

The soft GPGPU supports the NVIDIA G80 instruction set with compute 

capability 1.0. Instructions were tested based on the requirements of the selected 

benchmarks. We tested 27 integer CUDA instructions as a part of this research. The list 

of all supported instructions is shown in Table 1. All instructions needed by our 

benchmark circuits are supported. 
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Table 1: FlexGrip-Supported CUDA Instructions 

Opcode Description 

I2I Copy integer value to integer with conversion 

IMUL/IMUL32/IMUL32I Integer multiply 

SHL Shift left 

IADD Integer addition between two registers 

GLD Load from global memory 

R2A Move register to address register 

R2G Store to shared memory 

BAR Barrier synchronization 

SHR Shift right 

BRA Conditional branch 

ISET Integer conditional set 

MOV/ MOV32 Move register to register 

RET Conditional return form kernel 

MOV R, S[] Load from shared memory 

IADD, S[], R Integer addition between shared memory and register 

GST Store to global memory 

AND C[], R Logical AND 

IMAD/IMAD32 Integer multiply-add; all register operands 

SSY Set synchronization point; used before potentially 

divergent instructions 

IADDI Integer addition with an immediate operand 

NOP No operation 

@P Predicated execution 

MVI Move immediate to destination 

XOR Logical XOR 

IMADI/ MAD32I Integer multiply-add with an immediate operand 

LLD Load from local memory 

LST Store to local memory 

A2R Move address register to data register 

 

3.4 FPGA-Specific Considerations 

All circuitry described in this section has been implemented in a Virtex-6 FPGA 

and has been shown to operate correctly. While a strength of the FlexGrip architecture is 

its ability to execute numerous CUDA binaries without the need for FPGA design 

recompilation, a user may select to create a new FlexGrip implementation, if desired. The 

FlexGrip architecture is designed such that different counts of scalar processors per SM, 
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SMs per GPGPU, warp stack size, and multiplier/third operand usage can be 

implemented by modifying parameters in a configuration file and rerunning Xilinx tools. 

Depending on the target FPGA platform, the user can customize FlexGrip to maximize 

performance or area. For a specific FlexGrip hardware implementation, a small set of in-

design registers are used to store application specific configuration information, such as 

thread block count. 

 

Most of FlexGrip source code was written in custom VHDL code to provide for 

fine-grained control, although MATLAB's Simulink was used for coarse-grained 

functions. Xilinx System Generator converts MATLAB Simulink blocks to RTL code for 

rapid development of FPGA designs. For example, Simulink was used to connect DSP, 

adder, and multiply blocks together to form SP functional units. To minimize data 

latency, we heavily utilize dual-ported block RAMs throughout the design. In the case of 

the warp unit scheduler, the state information and the data are stored in block RAM 

indexed by the warp ID. This allows warps to be scheduled every clock cycle after an 

initial one clock cycle of latency. Similarly, the vector, predicate, and address registers 

use dual-port block RAM providing simultaneous read and write access. To support the 

numerous integer arithmetic instructions, the scalar processors take advantage of Xilinx's 

DSP48E1 digital signal processing blocks. A single DSP slice can support add/subtract, 

multiply, multiply add, shift, and bitwise logic instructions. 
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3.5 Experimental Methodology 

3.5.1 Software Flow 

The complete CUDA binary code generation flow is illustrated in Figure 5. At 

compile time, the input program is divided by the CUDA front-end (cudafe) into C/C++ 

host code and the GPU device code. The GPU code is fed to the host compiler (e.g.: gcc, 

cl) to generate a filehash containing device code descriptors. The device descriptors are 

evaluated by runtime libraries whenever device code is invoked by the system. The 

NVIDIA CUDA compiler (nvcc) converts this information to PTX assembly instruction 

code which is then converted to CUDA binary instructions (.cubin). This code, along 

with the device code descriptors, are merged (fatbin) and compiled together with the host 

compiler to produce a final executable. Microsoft Visual Studio 2008 and NVIDIA 

Toolkit v2.3 are used together to compile the CUDA code file. The NVIDIA toolkit is 

comprised of the NVIDIA CUDA compiler (nvcc), and the CUDA driver and runtime 

API libraries required for building the executable and the cubin file. 

 

3.5.2 Design Environment and Benchmarks 

Synthesis was performed using the Xilinx ISE 14.2 toolkit and Modelsim SE 10.1 

was used for simulation and verification. A block-level simulation approach was adopted, 

where each block was individually verified using logic simulation in addition to a system 

level verification. Inputs were stimulated using CUDA binary instructions and data stored 

in block RAM. To rapidly evaluate a variety of benchmarks and data, we generated 

Memory Initialization Files (.mif) that were used to populate Xilinx Block RAM cores. 
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Figure 5: Software Flow for the FlexGrip Soft GPU 

 

We have evaluated five CUDA applications, bitonic sort (bs), autocorrelation 

(ac), matrix multiplication (mm), parallel reduction (pr) and transpose (tr) from the 

University of Wisconsin [43] and the NVIDIA Programmer's Guide [44], using FlexGrip. 

The mix of data-parallel (e.g. multiply, transpose) and control-flow intensive (e.g. bitonic 

sort) benchmarks helped us evaluate our platform. Figure 6 provides a breakdown of the 

instruction operations by type for each of the benchmarks. 
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Figure 6: Percent of instruction operations executed for each benchmark 

 

3.6 Experimental Results 

The FlexGrip soft GPGPU design was implemented on a Xilinx ML605 

development board [12] which utilizes a Virtex-6 VLX240T device. The device area and 

design operating frequency for designs with a varying number of scalar processors are 

annotated in  

Table 2. 

 

We performed experiments and compared performance and energy results against a 

Xilinx MicroBlaze soft-core processor with about 3,000 LUTs running at 100 MHz using 

C versions of the same benchmarks. For the purposes of this paper, a design with a single 

SM and 8 scalar processors was implemented and benchmarked on the ML605 board, 

while 16- and 32-SP designs were simulated. The FlexGrip design implemented in 
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hardware could successfully run all five benchmarks using the same FPGA bitstream. 

The CUDA compile times for all benchmarks were less than one second. 

Table 2: Area comparison of FlexGrip implementations 

Parameters Freq. 

(MHz) 

LUTs FFs BRAM DSP48E 

1 SM – 8 SP 100 60,375 103,776 124 156 

1 SM – 16 SP 100 113,504 149,297 132 300 

1 SM – 32 SP 100 231,436 240,230 156 588 

 

3.6.1 Architectural Scalability 

We ran experiments by varying the number of scalar processors within a single 

SM, which effectively varies the number of threads that can be executed in parallel.  

Figure 7 shows application speedups versus a MicroBlaze for a varying number of SPs 

per SM. Application speedups range from 7x to 29x with an average speedup close to 12x 

for 8 SPs, 18x for 16 SPs, and 22x for 32 SPs. Since they are highly data parallel, matrix 

multiplication and reduction show the largest speedups. Reduction has a highly 

symmetric data flow graph consisting of multiple iterations. The number of array 

elements in the benchmark is halved with each iteration, progressively leading to smaller 

number of scheduled warps. Considering the array size to be a multiple of 32 (the warp 

size), all active threads remain tightly packed within a warp in every iteration, thus fully 

utilizing the warp at all times. In bitonic, the sorting network consists of a fixed number 

of swapping operations that are performed at every stage. Though the warp divergence 

increases with an increased number of parallel threads, the divergence cost is amortized 

by performing more swapping operations in parallel. Transpose shows less speedup due 

to low arithmetic intensity and memory bandwidth limitations. Matrix multiply has better 
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performance than transpose, as the former has higher arithmetic density which amortizes 

the number of required memory accesses.  

 

 
Figure 7. Speedup vs. MicroBlaze for variable scalar processors and input data size 256 

for 1 SM 

 

 

One common limitation to cycle speedup for all benchmarks targeted to our 

architecture is memory access. Memory operations are most effective when the burst data 

is written and read in parallel. This action requires the memory to be split up into 

multiple banks and coalesced, such that consecutive memory addresses fall into 

consecutive banks. Most data parallel CUDA kernels include neighboring threads that 

access consecutive memory locations.  However, for control flow intensive applications 

where data accesses are not sequential, memory mapping is more of a challenge, 

especially if multiple threads access the same memory location. For the sake of 

architectural simplicity, enhanced support for memory coalescing was not included in our 
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soft GPGPU prototype. The matrix benchmarks pay a slightly larger penalty for memory 

bandwidth limitations due to a larger number of scatter-gather memory operations. 

 

3.6.2 Application Scalability 

Experiments were conducted to observe the performance of the soft GPGPU in 

comparison to MicroBlaze for varying problem (input data array) sizes of each 

benchmark. The speedup results are shown in Figure 8.  Due to its regular kernel 

structure, reduction reaps the steepest performance benefits of almost 30x as the size of 

the array becomes large. With increasing array size, performance increases gradually for 

both autocorrelation and bitonic up to a certain point and then begins to taper off. This 

result can be attributed to the accumulation of the warp divergence penalty over the 

execution time of larger arrays, amortizing the parallel processing benefits. Matrix 

multiply shows a speedup of about 27x, with transpose showing an average speedup of 

22x. The flat curve of both benchmarks is due to limitations of the memory bandwidth. 

 
Figure 8. Speedup of 1 SM, 32-SP GPGPU vs. MicroBlaze for varying problem size 
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3.6.3 Energy Efficiency 

We used Xilinx's XPower power estimator tool to determine static and dynamic 

power for the designs (Table 3). Since static power is largely a function of the device 

size, we evaluate the dynamic energy consumption of the implementations. This value is 

determined by multiplying dynamic power by application execution time. In Table 4, it is 

shown that the baseline FlexGrip dramatically reduces dynamic energy consumption 

versus the MicroBlaze, primarily due to reduced execution time. FlexGrip also uses the 

same instruction for many scalar processors, limiting instruction memory accesses. For a 

1 SM, 8 SP configuration, the dynamic energy reduction is about 80%, on average. 

Table 3. FPGA Power Estimates (W) at 100 MHz 

 Dynamic Static Total 

1 SM, 8 SP 0.84 3.45 4.29 

1 SM, 16 SP 1.08 3.46 4.54 

1 SM, 32 SP 1.39 3.46 4.85 

MicroBlaze 0.37 2.00 2.37 

 

Table 4. MicroBlaze vs. FlexGrip Energy Consumption: 256 data size 

b
en

ch
m

ar
k
 MicroBlaze 8 SP 16 SP 32 SP 

Exec. 
Time  

(ms) 

Dyn. 
Ene. 

(mJ) 

Exec. 
Time 

(ms) 

Dyn. 
Energy 

(mJ) 

Ene. 
Red. 

Exec. 
Time 

(ms) 

Dyn. 
Energy 

(mJ) 

Ene. 
Red. 

Exec. 
Time 

(ms) 

 

Dyn. 
Energy 

(mJ) 

Ene. 
Red. 

ac 277 102.49 40.28 33.84 67% 32.20 24.89 66% 24.89 19.64 66% 

bs 118 43.66 9.39 7.88 82% 5.95 4.64 85% 4.64 3.66 85% 

mm 186041 68835.17 14098.02 11842.34 82% 8735.90 6904.07 86% 6904.07 5461.12 86% 

rd 11 4.07 0.66 0.55 86% 0.47 0.38 87% 0.38 0.30 87% 

tr 705 260.85 57.79 48.54 81% 38.74 31.48 84% 31.48 24.84 83% 

 

3.7 Summary 

In this chapter, the FlexGrip soft GPGPU architecture was described. The scalable 

design was shown to be fully implemented and tested on a Xilinx ML605 development 

board. A novel design aspect of GPGPUs versus microprocessors and vector processors 
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is the ability to handle thread divergence and barrier synchronization in hardware. The 

FlexGrip soft GPGPU provides control circuitry, which can automatically handle 

complex conditional control operations in hardware, similar to the GPGPU programming 

model. We showed our design has been validated using five benchmarks which were 

compiled from CUDA to a binary representation. All five benchmarks were executed 

using the same FlexGrip design (no need to create a new bitstream). The binary was 

executed on the soft GPGPU without any per-application hardware modifications. 

Experimental results demonstrate application speedups of up to 30x versus a MicroBlaze 

soft processor for highly parallel benchmarks. 
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CHAPTER 4 

FLEXGRIP SOFT-GPGPU OPTIMIZATIONS 

This section expands upon our previous work in [10] to show how the support of 

fine-grained control access allows for features to be optimized from the FlexGrip design, 

which is described in our Architectural Evaluation publication [11]. We provide the 

details of the optimizations and their results within this section. 

 

4.1 Architectural Optimizations 

4.1.1 Conditional Branch Circuitry Optimization 

A key contribution of the FlexGrip soft GPGPU is its ability to support thread-

level branching in hardware. These resources provide an opportunity for architectural 

optimization for specific classes of applications which may exhibit less control-intensive 

behavior. The execution of threads in a warp diverges if the results of a conditional 

operation are different for different threads. In case of divergence, execution for some 

threads proceeds along one path (e.g., not-taken) while other threads are idle. When 

instructions for the not-taken path complete, the execution switches to the alternative 

execution path (taken path) for the remaining threads while the first set of threads are 

idle. When both execution paths are finished, a reconvergence point in the code is 

reached. At this point, execution is resynchronized across all threads and the same set of 

instruction operations is unconditionally performed by all threads once again. The 

reconvergence point is generally identified by a set synchronization (SSY) instruction 

that is executed just prior to the execution of the instruction which sets the branch 

condition. 
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To synchronize multiple warps within a thread block at a reconvergence point, 

CUDA supports explicit barrier synchronization. Warps that reach the barrier instruction 

first have to wait for other warps to reach the same checkpoint. At that point, they are 

marked as Waiting in warp state memory stored in the warp unit (not shown in Figure 4). 

When all the threads in a warp finish executing the kernel, the warp is declared Finished. 

The warp state memory holds the state of each warp and warp data memory (also in the 

warp unit) holds the active-thread mask and the warp PC. 

 

 

 

Figure 9: FlexGrip conditional branch and warp stack architecture. There is one stack and 

one set of predicate registers for each of the eight warps 

 

To handle conditional execution, each of the eight warps per SM has its own warp 

stack that includes an instruction address (32 bits), type identifier (2 bits), and an active-

thread mask (32 bits) in each stack entry [13] (Figure 9). The instruction address of the 
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taken branch and the active-thread mask prior to evaluation of the conditional operation 

is stored on a warp stack for safekeeping. The stored mask contains one bit for each 

thread in the warp and the type identifier indicates if the instruction address is a 

reconvergence point or the start address of taken branch instructions. When the taken 

path of the branch is reached, the stack is popped and the active-thread mask for the warp 

is inverted to allow for execution of this second path. When the reconvergence point is 

reached, the original active-thread mask is retrieved by popping the stack. 

 

A complete view of the hardware architecture used to control conditional 

execution in FlexGrip is shown in Figure 9. The execution of a conditional (predicate) 

instruction results in the generation of a four-bit predicate for each instruction (sign, zero, 

carry, and overflow). This four-bit instruction result for each thread is assigned to a 

predicate register. Each thread has 4 four-bit predicate registers (p0 through p3) assigned 

to it. For each thread, the value in the selected predicate register and the condition for the 

instruction executed for the branch (e.g. <, >, =) are used as in index into a lookup table 

to generate an instruction mask. One mask bit is generated for each thread. This mask is 

combined with a thread mask (e.g. thread not Finished or Waiting) to generate the active-

thread mask for the warp. Warp stack pushing and popping of this information is 

controlled by the control flow unit state machine. 

 

In the GPGPU control architecture, nested conditionals are possible, requiring a 

deep stack to hold nested address and mask information. In the worst case, only one of 32 

threads may execute at a specific time, requiring support for conditional nesting up to 32 
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entries deep. However, for many applications, a much smaller stack depth is required. 

This depth can be determined by examining the amount of control nesting in the program 

or by profiling the application with representative data sets. In our optimizations, we 

consider the application warp stack depth as an optimization parameter. In Section 4.2, 

several architectures with varied warp stack depths are made available for execution. The 

size of the warp and associated control circuitry is reduced from a stack depth of 32 based 

on application needs. This reduction saves associated memory and logic resources, 

leading to energy savings. 

 

4.1.2 Multiple Streaming Multiprocessors 

A notable feature of our architecture is its support for multiple SMs. A thread 

block of up to 256 threads can be assigned to any available SM by the block scheduler 

(Figure 1). The number of thread blocks is specified by the programmer and passed to the 

FlexGrip architecture by the MicroBlaze driver at run-time. The allocation of SM shared 

memory and the number of registers required per block are also determined during 

scheduling. The values are determined during compilation and stored in GPGPU 

configuration registers. After assignment by the block scheduler, the warp unit in the SM 

uses the parameters to generate and schedule warps. 

Table 5: FlexGrip Physical Limits 

Parameters Constraint 

Threads per Warp 32 

Warps per SM 24 

Threads per SM 768 

Thread Blocks per SM 8 

Total Number of 32-bit Registers per SM 8,192 

Shared Memory per SM (bytes) 16,384 
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At the start of kernel execution, the maximum number of thread blocks that can 

be scheduled is calculated. This value is limited by the number of allocated warps per 

SM, the number of registers per SM, and the size of the shared memory per SM. As an 

example, consider a kernel with 256 threads per thread block. The block requires 4 KB 

memory and each thread requires 8 registers. Table 5 lists the physical limits of the 

FlexGrip GPGPU. With 256 threads per block, the number of blocks per SM, 3, is 

calculated with the following formula: 

𝐵𝑙𝑜𝑐𝑘𝑠𝑃𝑒𝑟𝑆𝑀𝑊𝑎𝑟𝑝𝑠 =
𝑊𝑎𝑟𝑝𝑠𝑃𝑒𝑟𝑆𝑀

𝑇ℎ𝑟𝑒𝑎𝑑𝑠𝑃𝑒𝑟𝐵𝑙𝑜𝑐𝑘
𝑇ℎ𝑟𝑒𝑎𝑑𝑠𝑃𝑒𝑟𝑊𝑎𝑟𝑝⁄

=
24

256
32⁄

= 3    (1) 

Next, we determine the number of blocks that can be scheduled based on the number of 

allocated registers: 

𝐵𝑙𝑜𝑐𝑘𝑠𝑃𝑒𝑟𝑆𝑀𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑠 =
𝑇𝑜𝑡𝑎𝑙𝑅𝑒𝑔𝑠

𝑇ℎ𝑟𝑒𝑎𝑑𝑠𝑃𝑒𝑟𝐵𝑙𝑜𝑐𝑘 ×𝑅𝑒𝑔𝑠𝑃𝑒𝑟𝑇ℎ𝑟𝑒𝑎𝑑
=

8192

256×8
= 4   (2) 

Finally, the number of blocks per SM based on the requested shared memory size is 

calculated by the following: 

𝐵𝑙𝑜𝑐𝑘𝑠𝑃𝑒𝑟𝑆𝑀𝑆ℎ𝑎𝑟𝑒𝑑𝑀𝑒𝑚 =
𝑆ℎ𝑎𝑟𝑒𝑑𝑀𝑒𝑚𝑃𝑒𝑟𝑆𝑀

𝑆ℎ𝑎𝑟𝑒𝑑𝑀𝑒𝑚𝑆𝑖𝑧𝑒
=

16384

4096
= 4      (3) 

The maximum number of blocks that can be scheduled to each SM is the minimum 

number of the three values calculated, which in our example is 3. 

 

Control signals from the SM notify the block scheduler when all thread blocks 

have completed and scheduling of subsequent blocks can begin. Once all thread blocks 

have successfully executed, the block scheduler signals the GPGPU, which will notify the 

driver that execution has completed. 
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4.1.3 Source Operand Optimization 

Figure 10 depicts the detailed view of the read stage, which consists of a read 

controller, parallel read source operand units, and interface controllers to memory 

subsystems and registers. The arithmetic portion of the execute stage is shown on the 

right side of the figure. The read controller takes in data from the decode stage, performs 

pre-processing depending on the operation, and then directs the data to each of the read 

operand units. These units are functionally identical, allowing for read operations to be 

performed in parallel. However, they can perform different functions depending on the 

instruction passed to them at run time. For example, one of the modules may perform a 

read operation from global memory, while the others perform a read operation from the 

register file. 

 

The modular independence of the read hardware allows for the removal of one of 

the read operand modules and the multiplier if they are not needed by an application. For 

example, if an application does not perform multiply or multiply-accumulate operations, 

a version of the GPGPU which does not include these features could be used. This 

hardware is represented by the shaded blocks in Figure 10. The area and energy benefits 

of removing this hardware for selected applications are explored in Section 4.2. 
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Figure 10: FlexGrip read stage and execute unit 

 

4.2 Experimental Results 

We extended the design described in Section 3 to compare a single SM versus two 

SMs, each with 8, 16, and 32-SP via simulation. The same baseline FlexGrip design with 

no architectural optimizations implemented in hardware could successfully run all five 

benchmarks using the same FPGA bitstream. The device area and design operating 

frequency for designs with a varying number of scalar processors and streaming 

multiprocessors are annotated in Table 6. 

Table 6: Area comparison of FlexGrip implementations for 1 and 2 SMs 

Parameters Freq. 

(MHz) 

LUTs FFs BRAM DSP48E 

1 SM – 8 SP 100 60,375 103,776 124 156 

1 SM – 16 SP 100 113,504 149,297 132 300 

1 SM – 32 SP 100 231,436 240,230 156 588 

2 SM – 8 SP 100 135,392 196,063 238 306 

2 SM – 16 SP 100 232,064 287,042 262 594 

2 SM – 32 SP 100 413,094 468,959 310 1170 
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4.2.1 Comparison versus the MicroBlaze Soft-Core Processor 

4.2.1.1 Architecture Scalability 

We ran experiments by varying the number of scalar processors within a single 

SM and across 2 SMs which effectively varies the number of threads that can be executed 

in parallel. Benchmarks autocorr, bitonic, and reduction used input data sets of 32, 64, 

128, and 256 values. Benchmarks matrix multiplication and transpose used input data 

sets of 32x32, 64x64, 128x128, and 256x256 for experimentation. 

 
Figure 11. Speedup vs. MicroBlaze for variable scalar processors and input data size 256 

for 2 SM 

 

For experiments performed with 2 SMs, the block scheduler logic equally 

and automatically distributed thread blocks to the multiple SMs, thus reducing the 

workload of each SM to roughly half of the 1 SM cases. All benchmarks 

exhibited additional speedups versus the 1 SM case for the same number of SPs 

per SM. As shown Figure 11 and Table 7, the peak speedups for the 2 SM, 32-SP 

implementations of the benchmarks offer over a 40x speedup for four out of the 

five benchmarks. 
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Table 7: Comparison of FlexGrip implementations 

 AutoCorr Bitonic MatrixMul Reduction Transpose 

 Time 

(ms) 

Speed 

Up 

Time 

(ms) 

Speed 

Up 

Time 

(ms) 

Speed 

Up 

Time 

(ms) 

Speed 

Up 

Time 

(ms) 

Speed 

Up 

 32 or 32x32 

uBlaze 5.0 - 6.0 - 374.0 - 1.0 - 11.0 - 

8 SP 1.8 2.9 0.8 7.9 29.0 12.9 0.1 7.2 0.9 12.2 

16 SP 1.0 4.8 0.6 10.7 21.4 17.5 0.1 8.7 0.6 18.2 

32 SP 0.8 6.3 0.5 13.1 14.3 26.2 0.1 10.6 0.5 22.3 

 64 or 64x64 

uBlaze 18.0 - 17.0 - 2947.0 - 2.0 - 45.0 - 

8 SP 3.4 5.3 1.4 11.9 225.4 13.1 0.2 11.7 3.6 12.5 

16 SP 2.7 6.7 1.0 16.3 166.3 17.7 0.1 15.1 2.4 18.6 

32 SP 2.1 8.4 0.9 20.0 110.6 26.6 0.1 17.7 2.0 22.9 

 128 or128x128 

uBlaze 70.0 - 46.0 - 23368.0 - 5.0 - 177.0 - 

8 SP 11.1 6.3 3.9 11.7 1776.0 13.2 0.3 16.0 14.4 12.3 

16 SP 8.8 8.0 2.5 18.4 1311.5 17.8 0.2 22.0 9.7 18.3 

32 SP 6.9 10.2 2.0 23.6 870.3 26.9 0.2 26.6 7.9 22.5 

 256 or 256x256 

uBlaze 277.0 - 118.0 - 186041.0 - 11.0 - 705.0 - 

8 SP 20.9 13.3 5.2 22.7 7120.3 26.1 0.4 27.5 29.2 24.1 

16 SP 16.6 16.7 3.2 36.9 4412.1 42.2 0.3 36.7 19.5 36.2 

32 SP 12.8 21.6 2.5 47.2 3486.9 53.4 0.2 55.0 15.9 44.3 

 

Table 8 shows the scalability of our architecture. Speedups for 2 SM versus 1 SM 

versions of the same benchmark ranged from 1.77 (Reduction) to 1.98 (Transpose and 

Matrix Multiply). The block scheduler was able to distribute thread blocks more evenly 

between the two SMs for the latter two applications due to a smaller number of 

conditional statements in the applications versus the other three applications. 

Table 8. Speedup of 2 SM versus 1 SM for input data size 256 

 8 SP 16 SP 32 SP 

Autocorr 1.94 1.94 1.94 

Bitonic 1.82 1.83 1.85 

MatrixMul 1.98 1.98 1.98 

Reduction 1.78 1.77 1.77 

Transpose 1.98 1.98 1.98 
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4.3 Energy Comparison versus a CPU running Ocelot 

In general, the use of a power-hungry multicore processor is not an option for many 

embedded systems. However, since Ocelot [45] offers a non-GPGPU platform for direct 

CUDA execution, we compared energy and performance results for Ocelot running under 

Ubuntu 12.04 versus FlexGrip implementations on the Virtex-6 FPGA. The tested 

microprocessor is a 2.6 GHz Intel Core i7 2960-XM microprocessor with 16 GB of 

DRAM. For the purpose of our experiments, we ran Ocelot using the LLVM option and 

all optimizations enabled. To gather energy statistics, we used the Intel Power Gadget 

[46] which is capable of monitoring real-time power usage. The dynamic energy results 

for each of the benchmarks is listed in Table 9. 

Table 9. Ocelot Energy Consumption: 256 data size 

 Core i7 8 SP 16 SP 32 SP 

Exec. 

Time 

(ms) 

Dyn. 

Pwr. 

(W) 

Dyn. 

Energy 

(mJ) 

Exec. 

Time 

(ms) 

Dyn. 

Energy 

(mJ) 

Exec. 

Time 

(ms) 

Dyn. 

Energy 

(mJ) 

Exec. 

Time 

(ms) 

Dyn. 

Energy 

(mJ) 

Autocorr 0.26 9.6 2.50 40.28 31.78 32.20 25.40 24.89 19.64 

Bitonic 0.85 9.9 8.39 9.39 7.40 5.95 4.69 4.64 3.66 

MatrixMul 260.97 10.4 2800.79 14098.02 11151.54 8735.90 6910.09 6904.07 5461.12 

Reduction 2.41 10.3 24.95 0.66 0.52 0.47 0.37 0.38 0.30 

Transpose 0.84 10.4 8.81 57.79 45.60 38.74 30.56 31.48 24.84 

 

 As shown in Table 9, two of the five benchmarks, bitonic sort and reduction, 

were found to require 34% and 88% less energy for the 32-SP implementation, 

respectively, although, not surprisingly, all benchmarks executed considerably faster on 

the microprocessor. The energy reduction for these benchmarks can be attributed to 

regular memory accesses that limit FlexGrip stalling. 
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4.4 Architectural Customization 

To limit the need for dynamic FlexGrip recompile during runtime, we would 

expect that user would have several precompiled FlexGrip bitstreams available for 

download to an embedded FPGA to execute target CUDA applications. The needed 

FlexGrip design characteristics represented by the bistreams were explored via 

experimentation. 

Table 10. Results of FlexGrip optimizations for an 1 SM, 8 SP system 

 Num. of 

Operands 

Warp 

Depth 

Slice 

LUTs 

Flip 

Flops 

Black 

RAM 

DSP % Area 

Reduction 

% Dyn. 

Energy 

Reduction 

Baseline 3 32 60,375 103,776 124 156 - - 

Autocorr 3 16 52,121 82,017 124 156 14% 3% 

MatrixMul 3 0 42,536 60,161 124 156 30% 9% 

Reduction 3 0 42,536 60,161 124 156 30% 9% 

Transpose 3 0 42,536 60,161 124 156 30% 9% 

Bitonic 3 2 39,189 57,301 124 156 35% 15% 

Bitonic 2 2 22,937 27,136 120 12 62% 38% 

 

 

To evaluate the possible benefits of removing unneeded features from FlexGrip, 

we ran several experiments to determine the minimum required architectural 

configuration for area and energy optimization for each application. As described in 

Section 4.1, the specific optimizations include reducing the size of the warp stack (and 

associated control logic), removing the multiplier, and removing the third-operand read 

circuitry from the read stage of the SM pipeline. Table 10 lists the optimizations 

performed for each of the benchmarks. By performing an instruction analysis, we can 

determine the minimal set of functions needed to support each benchmark. The baseline 

scalar processor supports all instructions listed in Table 1 with no optimizations. Of the 

five benchmarks, we were able to remove the multiplier/third operand for bitonic, since 
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the benchmark does not require multiply operations. Effectively, any benchmark which 

performs multiplies could use this FlexGrip version and obtain the 23% dynamic energy 

reduction versus FlexGrip with a reduced warp stack and 38% dynamic energy reduction 

versus baseline FlexGrip. We note that only the multiply-add (MAD) instruction requires 

three operands, therefore by eliminating the multiply unit the need for support of a third 

operand is removed. A total of 12 DSP blocks are still used for address calculation in the 

FlexGrip control circuitry. 

 

Table 10 indicates that the necessary depth of the warp stack for applications 

varies. As noted in Section 4.1.1, each warp has its own warp stack, which is configured 

as 32 registers of 66-bits each. For short instruction sequences, such as if statements 

without a corresponding else, the compiler uses condition codes to avoid managing 

divergence, reducing the need for significant warp stack depth. In cases with longer 

sequences of conditional code, conditional branches are used. For matrix multiplication, 

reduction, and transpose, conditional branches are minimized, limiting warp stack usage. 

By customizing the warp stack, a LUT area reduction of up to 35% and a dynamic energy 

reduction of up to 15% can be realized.  

 

In an embedded system, one could consider compiling and storing the bitstreams 

for four separate FlexGrip GPGPUs. The baseline system would include a multiplier and 

a full 32-depth warp stack. A second system would include a 16-depth warp stack and a 

third system would have a 2-depth stack. Finally, the fourth system would include a 2-

deep warp stack and no multiplier/third operand fetch unit. 
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4.5 Summary 

In this chapter we explored the possibility of providing a small set of FlexGrip soft 

GPGPU implementations that could be targeted to classes of applications with different 

execution characteristics (e.g., reduced conditional operation, no multiplication). We 

showed that architectural optimization can reduce dynamic energy consumption by 14% 

and LUT area by 33%, on average. Experimental results demonstrated application 

speedups of up to 55x for a FlexGrip design with two streaming multiprocessors (SMs) 

versus a MicroBlaze soft processor operating at the same clock frequency for highly 

parallel benchmarks. 
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CHAPTER 5 

A COMPARISON OF CACHE CONFIGURATIONS FOR SOFT-GPGPUs 

5.1 Overview 

The effectiveness of GPGPUs relies on their ability to execute thousands of 

threads in parallel, however the peak performance is typically bandwidth limited. One 

technique employed to overcome this limitation is to utilize thread switching to hide 

memory latency. In an effort to provide sufficient memory bandwidth, GPU designers 

have begun to implement cache memory as part of the architecture, a technique 

commonly used in CPUs. In CPUs, cache memory is used to bridge the performance gap 

by mitigating long accesses to memory [13]. Adding cache accesses to prevent long 

latency off-chip memory accesses allows for efficient and fast access to data, especially 

for data that exhibit good temporal and spatial locality. However, in the case of GPUs, 

caches are used to reduce the amount of in-flight data requests caused by massive 

multithreading. The amount of data reused can provide significant speedup, especially for 

those applications that provide regular memory access patterns. 

 

The GPU processors found today, such as NVIDIA’s GPUs, adopt a multilevel 

cache design structure as shown in Figure 12. Level-1 cache is private per streaming 

multiprocessor and installed on the same physical module as the shared memory. 

Introduced with the Fermi architecture, the amount of cache and shared memory can be 

configured by the programmer allowing either 48kB of shared memory and 16kB of L1 

cache or as 48kB of L1 cache and 16kB of shared memory. In the case of L2 cache, it is 

shared among all the streaming multiprocessors on a GPU device. 
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Figure 12. GPU architecture highlighting the multi-level cache hierarchy 

 

5.2 Motivation 

The FlexGrip soft-GPGPU contains one or more highly threaded streaming 

multiprocessors, each with a number of scalar processors which have the ability to 

execute assigned threads in a parallel fashion. Upon launch of a GPGPU kernel and prior 

to execution, the runtime uses the block and grid parameters to create a massive number 

of threads that are organized hierarchically. The threads are then assigned consecutive 

IDs (thread identifiers or tid) which are then grouped into warps, with 32 threads per 

warp. Multiple warps are then assigned to a thread block with all thread blocks 

comprising a grid. During execution, warps are assigned to an SM and are then 

scheduled, with each thread within a warp executing in lockstep fashion.  

 

In NVIDIA’s CUDA GPGPU architecture, when the 32 threads in a warp access 

global memory, the addresses are coalesced into one or more memory transactions.  If 



 

50 

memory addresses are scattered or not concurrent such that they align on a cache 

boundary, multiple memory transactions are required to fulfill the request.  The result 

may be reduced global efficiency through increased network traffic and latency waiting 

for all transactions to be serviced and completed. To understand this more effectively, 

assume that each thread needs to fetch 4 bytes of data. If the data needed by each thread 

are well coalesced, for example, each thread accesses adjacent 4-byte word aligned on a 

cache line boundary, then a single 128-byte memory transaction can be serviced. Even if 

the accesses by the threads are permuted within the warp, a single 128-byte transaction 

will still take place, as shown in Figure 13 (a). However, when threads in a warp access 

sequential memory locations not aligned with the cache lines or if the memory access 

pattern is altered, two 128-byte memory transactions will be requested, as shown in 

Figure 13 (b).  Assuming that the data is not reused, the result is an over-fetch where only 

half of the data is useful. While this represents a simple case, scenarios such as these can 

significantly degrade both performance and energy efficiency. This scenario directly 

extends into the CUDA programming model where, by default, when backed by L2, data 

cached in both L1 and L2 will use 128-byte memory transactions [47]. However, to 

reduce over-fetching data, the CUDA programming model provides the ability to bypass 

L1, in which case 32-byte segments are used to transfer data. In cases such as those 

depicted in Figure 13 (b), assuming no re-use of data, bypassing L1 and using 32-byte 

transactions would reduce the amount of memory traffic. 
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(a) 

 

(b) 

Figure 13. Different memory access patterns resulting in either (a) a single transaction or 

(b) two transactions 

 

Unlike an NVIDIA GPGPU, a soft GPGPU provides extreme flexibility, enabling 

the ability to optimize performance by trading off different aspects of the design. While 

caches have been used in previous designs, to date there has been no research into cache 

optimization for soft GPGPUs, taking into consideration area and performance. This 

section extends our soft GPGPU work, FlexGrip [10] [11], to perform a comparative 

analysis of different cache hierarchies evaluating the trade-offs between performance and 

area. More explicitly, the following will be assessed: 

 

 L1 Performance Analysis: Each SMP contains individual L1 cache for data, local 

memory and texture memory. As a warp executes, it will request data for each of 

the individual threads. As multiple warps are issued, intra-warp contention can 

occur as data is swapped in and out of cache by warps who share memory. This is 
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exacerbated when multiple SMPs are requesting data from the lower memory 

hierarchy. To evaluate the impacts, we vary the number of SMPs versus the cache 

size, number of sets, and associativity of the cache.  

 L2 Performance Analysis: As the L2 cache is shared among the SMPs, we vary 

the number of SMPs and evaluate the performance effects. In addition, we vary 

the L2 cache size, number of sets, and associativity.  

 

  Experiments are performed using GPGPU-Sim [48], a cycle-accurate simulator 

based on NVIDIA’s microarchitecture. Our approach modified GPGPU-Sim to emulate 

the architecture and performance of FlexGrip. This facilitated the ability to rapidly 

analyze different cache designs and hierarchies. 

 

5.3 Modifying GPGPU-Sim for FlexGrip 

The baseline architecture used to implement and test our cache configurations is a 

modified version of GPGPU-Sim that is representative of the FlexGrip microarchitecture. 

Figure 14 illustrates the top level GPU architecture modeled by GPGPU-Sim. The 

GPGPU-Sim architecture is comprised of multiple Single Instruction Multiple Thread 

(SIMT) core clusters, each consisting of multiple SIMT cores connected via an on-chip 

interconnection network that interfaces to the off-chip memory subsystem. A SIMT core 

is roughly equivalent to FlexGrip’s Streaming Multiprocessor as shown in Figure 4. For 

the purposes of our experiments, we limit testing to a single SIMT core cluster and vary 

the number of SIMT cores. 
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Figure 14. Top level architecture modeled by GPGPU-Sim. 

 

GPGPU-Sim provides support for four independent clock domains: one for the 

SIMT Core Cluster, one for the interconnection network, one for the L2 cache and one 

for the DRAM. Currently, FlexGrip supports a global system clock domain for each of 

the SMPs and a separate clock domain for the SPs. While the SPs have the ability to be 

clocked at a higher rate, it currently runs at the system clock rate of 100 MHz. We 

configure GPGPU-Sim to run the SIMT core, interconnect, and L2 clocks at 100 MHz to 

reflect the same clock speed configured in FlexGrip. In addition to providing a separate 

clock domain for DRAM, GPGPU-Sim also provides timing parameters to accurately 

model the DRAM memory. The ML605 development board, which was used to 

implement FlexGrip, is configured with 512 MB of DDR3 SODIMM memory which was 

run at a clock frequency of 400MHz from the Virtex-6 XC6VLX240T-1FFG1156 

FPGA’s memory interface [49] as shown in Figure 3. We use this clock rate and the 

timing parameters per the specifications for the ML605’s Micron Technology 

MT4JSF6464HY-1G1 DDR3 DRAM as input into GPGPU-Sim to accurately model the 

memory interactions. For the purposes of our experiments, we did not modify the 
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interconnection network and utilize the default simulation configuration within GPGPU-

Sim. 

 

5.3.1 SIMT Core (SMP) 

 Figure 15 illustrates details of the GPGPU-Sim SIMT core architecture, which is 

roughly analogous to the five stage pipeline of FlexGrip as shown in Figure 4. The labels 

provided above each of the stages depict the analogous FlexGrip pipeline stages.  

 

 

Figure 15. Detailed architecture of the GPGPU-Sim SIMT Core. The labels listed above 

are the analogous FlexGrip SMP pipeline stages. 

 

5.3.1.1 Fetch and Decode Stage 

Recall that FlexGrip stores instructions in system memory (Figure 4), which is 

implemented as dual port block RAM in the FPGA, and can be thought of as a large 

cache. Instructions are fetched and decoded when a ready warp is issued to the pipeline 

by the Warp Unit. As all the instructions are loaded into block RAM, there are no cache 
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misses and instructions can be read from the block RAM every clock cycle. Once an 

instruction is fetched, it can be decoded and stored in the pipeline registers, which occurs 

in a single clock cycle. Assuming no pipeline stalls, fetching and decoding can occur in 

three clock cycles for short (32-bit) instructions or six clock cycles for long (64-bit) 

instructions.  

 

As shown in Figure 15, GPGPU-Sim uses an instruction buffer (I-Buffer) to 

buffer instruction data once it has been fetched from cache, with each warp containing 

two entries. Each entry in the buffer contains a single decoded instruction along with a 

valid and ready bit. The valid bit indicates a non-issued decoded instruction while the 

ready bit indicates a decoded instruction is ready to be issued into the pipeline. At a 

conceptual level, the scoreboard logic sets the ready bit depending on the availability of 

hardware logic, although, GPGPU-Sim performs a readiness check rather than physically 

setting the ready bit. An instruction fetch will occur if a warp does not have any valid 

instructions in the I-Buffer, in which case a read request will be sent to the I-Cache with 

the PC of the currently scheduled warp. Two consecutive instructions are fetched from 

the cache by default. 

 

The instruction cache in GPGPU-Sim is represented as a read-only set associative 

cache with the ability to simulate both FIFO and LRU replacement with on-miss or on-

fill allocation policies. Requests to the instruction cache result in either a hit, miss or 

reservation fail which occurs when either the miss status holding register (MSHR) is full 

or there are no replaceable blocks in the cache set that exist. A cache miss will result in a 
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read request from memory, causing the warp to send an additional read request to the 

cache. A cache hit sends the instruction to the decode stage, whereby the instruction is 

decoded and stored in the buffer awaiting to be scheduled into the pipeline. 

 

Matching the performance of FlexGrip for the fetch and decode stage in GPGPU-

Sim is largely a function of the instruction cache effectiveness. Instruction data exhibit 

high spatial and temporal locality due to warps being issued in a round robin fashion. 

Therefore, we did not modify the I-Cache as the miss rate was insignificant compared to 

the FlexGrip model. In addition, the decode stage was unmodified as the I-Buffer mimics 

FlexGrip’s pipeline register, albeit holding several ready decoded instructions instead of 

one. 

 

5.3.1.2 Warp Unit 

The instruction issue in GPGPU-Sim utilizes a round-robin scheduler to issue 

warps into the pipeline assuming that the warp is not waiting at a barrier, it has valid 

instructions in the I-Buffer (i.e.: the valid bit is set), the scoreboard passes its check, and 

the pipeline is not stalled. The scheduler will then issue a warp to either the memory or 

ALU pipeline, which consists of scalar and floating point unit pipelines. With the 

exception of scoreboard and individual operation pipelines, issuing warps into a pipeline 

works in a similar fashion as described in Section 3.2. The scoreboard checks for read 

after write (RAW) and write after write (WAW) dependency hazards by tracking which 

registers have pending writes, or more succinctly, instructions that have been issued but 

have not yet written their results back. FlexGrip is architected to avoid RAW and WAW 
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dependency hazards due to how warps and instructions are issued through the pipeline 

and the induction of pipeline stalls. With respect to the individual pipelines for memory 

and ALU operations, we modified GPGPU-Sim to issue memory and ALU instructions 

serially. This is done by checking each memory and ALU pipeline to determine if a warp 

exists. If an active warp with either a memory or ALU operation exists in the pipeline, 

our modified version of GPGPU-Sim will stall the current warp waiting to be issues. 

Once the warp in the pipeline has moved to the next stage, the scheduler will issue the 

stalled warp. 

 

Both GPGPU-Sim and FlexGrip handle the execution of branch divergence using 

a per-warp stack, or SIMT stack as shown in Figure 15. A detailed description of 

FlexGrip’s branch divergence and stack model is explained in Section 4.1.1. 

Conceptually, both GPGPU-Sim and FlexGrip implement branch divergence in a similar 

fashion with the exception of its location within the execution pipeline, therefore, we did 

not perform any modifications to this area of the architecture. 

 

5.3.1.3 Execute Stage 

The ALU pipeline in GPGPU-Sim models scalar processor (SP) functional units, 

which handle all ALU instructions except transcendental functions, and special function 

units (SFU) which execute transcendental instructions (i.e.: Sine, Cosine, Log, etc.). The 

ALU functional units are pipelined and operate in a SIMD fashion allowing for execution 

of one warp instruction per clock cycle for SP units and two or more for SFU units, 

depending on the type of instruction. 
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The execute stage in FlexGrip consists of multiple scalar processors which 

support the domain of integer instructions only, the details of which are outlined in 

Section 3.2. While the SPs are highly pipelined, they do not operate in a SIMD fashion 

and each instruction has a variable number of execution latency cycles. GPGPU-Sim 

provides a configuration file that allows for the adjustment of execution latencies based 

on the instruction type (e.g.: add, multiply, max, etc.), thus the performance of each of the 

SPs can be accurately duplicated. We configured the integer, floating point and double 

instruction latencies and initiation intervals to match FlexGrip. 

 

5.3.1.4 Read and Write Stage 

 

Control of read and writes within GPGPU-Sim are performed through a structure 

called the operand collector, as described through various NVIDIA patents. The operand 

collector, as depicted in Figure 16, is architected as an arbitrator along with multiple 

banks of on-chip single port RAM and register files, denoted as collector units. Once an 

instruction is received from the decode stage, it is allocated to an available collector unit 

in addition to setting the warp ID, operands, register identifier, ready and valid bits. 

Performed in parallel, read requests are queued by the arbitrator for each of the register 

file banks until access is granted. Once the data has been read, the arbitrator selects up to 

four non-conflicting collector unit accesses from the queue to send to the register file 

banks. For each clock cycle, an operand is read out from each of the banks, storing it in 

the corresponding collector unit and setting the ready bit. When all the ready bits are set 

in the collector unit for a particular instruction, it is issued to the execution stage. Data 
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from the execution stage is sent to the arbitrator and is queued until it is selected for write 

back. 

 

Figure 16. GPGPU-Sim operand collector microarchitecture [48]. 

 

In contrast to GPGPU-Sim, the FlexGrip architecture partitions the read and write 

into separate stages, as shown in Figure 17.  Within the read stage there are three operand 

units which calculate the source address, depending upon the type [50] of instruction. 

Collectively, the three operand units can be seen as a single collector unit. The read 

requests are queued in the operand unit until there is an available memory controller to 

service the corresponding type of memory or register access. The arbitrator will grant 

requests to one or more non-conflicting memory controllers and store the resulting data in 

a register to be sent to the execution stage. Data from the execute stage are stored in 

registers and queued until the arbitrator grants access for write back. 
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Figure 17. FlexGrip read, execute and write pipeline stages. 

 

We leveraged the existing GPGPU-Sim implementation and made architectural 

adjustments to match the functional capability of FlexGrip. Each of the register file banks 

and collector units can be represented as a stage in the FlexGrip pipeline, as shown in 

Figure 17. Therefore, we configured GPGPU-Sim to use only a single collector unit, 

emulating FlexGrip. The arbitration unit in GPGPU-Sim will select non-conflicting read 

accesses from the register bank from each of the decoded warp instructions in the 
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collector units. This is in contrast to FlexGrip which will only service the current warp, 

causing a stall to the pipeline until the read request has been serviced. The collector unit 

was modified to only service a single warp, stalling other warps that could be issued. 

 

5.4 Memory Hierarchy 

The following sections form the basis of our experiments with the prior sections 

describing the foundation for us to build upon. Before delving into the cache specifics, 

we will first describe the various memory spaces within the GPGPU as exposed by 

NVIDIA’s CUDA. The architecture described is within the context of how it would be 

physically implemented in FlexGrip and its relation to GPGPU-Sim. The following 

sections will describe the operational concept behind the level-1 and level-2 data caches 

along with the details of how it would be implemented within the FlexGrip architecture. 

For each of the level-1 and level-2 caches, we provide a description of the GPGPU-Sim 

model that is used to perform the experiments. 

 

In Section 3.1, an overview of the FlexGrip architecture was provided outlining 

the interaction between the GPGPU and the MicroBlaze processor. Data was stored in 

DRAM and accessed by the processor which would stream it to the on-chip block 

memory for storage and processing by the GPGPU.  The memory hierarchy consisted of 

global, system and constant memory that was shared by each of the SMs, and a private, 

per-SM shared memory space.  
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Injecting cache into the FlexGrip architecture requires us to augment the 

architecture as shown in Figure 18. While we previously had global, system and constant 

memory located on-chip, we now migrate those memory spaces to direct access off-chip 

DRAM. Each streaming multiprocessor still consists of private shared memory, however, 

we also add data, texture and constant cache to encompass our level-1 cache structure, 

each of which is backed by L2 cache. The following sections describe the L1 and L2 data 

caches in detail. 

 

 

Figure 18. Representative FlexGrip block diagram exhibiting the details of the GPPGU 

memory hierarchy. 

 

5.4.1 SMP Memory and Level-1 Data Cache 

The Level-1 cache is a private, per SMP, non-blocking cache for both local and 

global memory accesses. A high-level block diagram depicting the memory hierarchy is 

shown in Figure 19. The size of the cache, along with the associativity, number of sets 

and cache line size are configuration parameters within GPGPU-Sim. We note that 

memory accesses that are generated by the address generation unit does not span two or 

more cache lines, therefore, individual requests are made for each cache line. A memory 
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access hit in the cache can be serviced in one clock cycle while a miss will be inserted 

into a FIFO miss queue. If the interconnection injection buffers for the DRAM are able to 

accept data, on each clock cycle, a fill request is generated by the L1 data cache. Upon a 

memory access miss, an entry is inserted into the Miss Status Holding Registers (MSHR) 

to track the status of cache misses in flight and a fill request is generated, pending there is 

currently no request for that cache line. The MSHR is configured as a fully-associative 

array with a fixed number of entries in the table, with each entry being able to service a 

fixed number of miss requests per cache line. If a request to access a memory location is 

currently in-flight, the request will be combined within the MSHR table. Once the fill 

response is received, the data is inserted into the cache line and the MSHR is marked as 

filled. The fill responses for MSHR entries are generated at one request per cycle. Upon 

servicing and responding to all waiting requests, the MSHR entry is freed. 

 

 

Figure 19. L1 data cache and supporting memory components. 

 



 

64 

For our FlexGrip soft GPGPU, both the Local and Global memory are accessed 

and serviced by the L1 data cache, which is a private, non-blocking, per streaming 

multiprocessor cache. Figure 20 depicts a representation of integrating L1 cache into the 

FlexGrip architecture. On the FPGA, this would be implemented as true dual-port 36kB 

block RAM memories. The L1 data cache is not banked and is capable of servicing two 

coalesced memory request per clock cycle. As cache coherency poses significant 

challenges with GPUs [51], L1 data caches are not coherent. For global memory access, 

the L1 data cache follows a write-evict [50], write no-allocate policy while local memory 

cache acts as a write-back cache with write no-allocate policy. Both can be configured 

prior to run-time. 

 

 

Figure 20. FlexGrip SMP depicting the integration of L1 cache into the architecture. 

 

5.4.2 Level-2 Data Cache 

The Level-2 data cache, similar to the L1 data cache, is a unified last level cache 

(LLC) that is shared by all the SMs. For local memory access, the L2 cache write policy 
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exhibits a write-back, no-allocate policy while global memory access elects a write-evict, 

write no-allocate policy. As with the L1 data cache, a memory request cannot span across 

two cache lines, this ensures that requests from a lower level cache can be serviced by a 

higher cache. 

 

Figure 21 below shows the components that service memory requests from the 

SMs and represents the model that will be used to simulate memory access within 

GPGPU-Sim. Memory requests from the interconnection network (ICNT) are entered 

into the ICNT->L2 queue. As configured, the L2 cache bank can service one request per 

clock cycle from the ICNT->L2 queue. If a miss occurs in the L2 cache bank, a request is 

made to the off-chip DRAM and entered into the L2->DRAM queue. Data that returned 

from the off-chip DRAM is then entered into the DRAM->L2 queue and placed in the L2 

cache. For read requests, data is sent through the L2-ICNT queue and returned to the SM. 

 

 

Figure 21. L2 data cache memory partition. 
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In order to model DRAM latency, a DRAM latency queue is used whereby the 

request access is held for a fixed number of clock cycles. The number of clock cycles is 

configurable and depends on the hardware being benchmarked. Each DRAM clock cycle, 

a memory access from the latency queue can be serviced and can push the results to the 

DRAM->L2 queue. It should be noted that ICNT->L2 queue operate at the L2 clock 

domain frequency while the L2->ICNT queue operates on the interconnect network 

domain frequency. 

 

Integrating the memory partition within FlexGrip and on the FPGA, the L2 cache 

bank would be represented as a dual-port block RAM with read and write port 0 (r0 and 

w0) operating at the interconnect frequency and read and write port 1 (r1 and w1) 

operating at the L2 clock frequency. The L2->ICNT queue and the ICNT->L2 queue 

would represent single-port block RAMs with the L2->ICNT block RAM operating at the 

interconnect frequency and the ICNT->L2 operating at the L2 clock frequency. The 

DRAM->L2 queue and L2-> DRAM queue would be modeled as dual-port block RAMs 

to allow for each port to operate on the two different clock domains. The DRAM-> L2 

queue read port would operate at the interconnect frequency, matching that of the L2-

>ICNT queue, while the write port would operate at the L2 frequency. The DRAM access 

scheduler would represent a combination of control logic and a memory controller 

configured by Xilinx’s Memory Interface Generator (MIG) tool. Both the DRAM latency 

queue and timing model are used for simulation purposes only and therefore would not be 

part of the implementation. 
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5.5 Experimental Methodology 

In this section we describe the components of our infrastructure for use in 

evaluating our architectural decisions. Specifically, we describe our baseline 

configuration, which encompasses the representative hardware platform used as a model 

for the system, in addition to the benchmarks that are used for the experiments. 

 

5.5.1 Baseline Configuration 

As described, we augmented GPGPU-sim to create a representative architecture 

of FlexGrip implemented on a Xilinx ML605 development board. The ML605 hardware 

platform has a single Virtex-6 XC6VLX240T FPGA which contains 14,976 Kb of Block 

RAM. The FPGA is connected to a single Micron MT4JSf6464HY-1G1 512MB 8-

channel DDR3 SODIMM memory module. The features of the ML605 are used as input 

into the configuration of GPGPU-Sim as described in Table 11. In our baseline 

configuration, there is no L1D or L2D cache, and therefore it is disabled in GPGPU-Sim. 

In addition, we turned off memory coalescing and shared memory bank conflict 

resolution, as both of these features are not implemented in FlexGrip. 

Table 11. Default GPGPU-Sim Configuration 

Core clock frequency 100MHz 

Interconnection network Mesh 

Number of SMPs 1 – 2 

Number of SPs per SMP 32 

Total on-chip memory size 14,976KB 

Number of 32-bit registers per SMP 32,768 

Shared memory size per SMP 16KB 

DRAM size 512MB 
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5.5.2 Benchmarks 

To analyze how enabling different cache levels affects the performance 

quantitatively, we conduct simulations using several GPGPU applications with varying 

architectural parameters. The representative GPGPU application encompass synthetic 

benchmarks from the NVIDIA CUDA SDK [52] in addition to the Rodinia [53] 

benchmark suite. The benchmarks selected are shown in Table 12 and represent a variety 

of memory behaviors. The simulations are performed using cycle-accurate GPGPU-Sim 

augmented to mimic the performance of FlexGrip. The following sections describe the 

details of our experiments. 

 

Table 12. GPGPU Cache Benchmarks 

Benchmark Description 

NVIDIA CUDA SDK 

AC Autocorrelation 

BS Bitonic Sort 

FWT Fast Walsh Transform 

MM Matrix Multiply 

RD Reduction 

TP Transpose 

Rodinia 

BFS Breadth First Search 

KMN K-Means Clustering 

GE Gaussian Elimination 

LUD LU Decomposition 

SRAD Speckle Reducing Anisotropic Diffusion 

 

5.6 Cache Configuration Trade-Offs 

This section describes the exploration of trade-offs for different data cache 

configurations. We would like to answer the question, given a fixed amount of memory, 

what is the optimal cache configuration. As part of our experiments, we will vary the L1 
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data cache size from 1KB to 64KB and the L2D cache size from 24KB to 164KB. With 

respect to memory, recall that our environment is modeled after hardware from the Xilinx 

ML605 development board. The Virtex 6 FPGA used on the ML605 board contains a 

total of 416 36kB block RAMS (14,976 Kb of on-chip memory), of which, 156 block 

RAMs are used for the register file, shared memory per each SMP, and various other 

components for each of the SMPs. Therefore, as we increase the number of SMPs, the 

amount of on-chip memory that can be used for cache decreases, providing us with a 

constrained memory size. In the current FlexGrip configuration, we only have enough 

resources to support 2 SMPs, resulting in approximately 9,360 Kb for 1 SMP and 3,744 

Kb of on-chip memory for 2 SMs. Even taking in consideration block RAM used by the 

memory controller and additional logic, there is more than enough memory to implement 

even the largest cache configurations. Of final note, we only explore a cache line size of 

128 bytes, which is the amount of data required to service requests from a warp. 

 

5.6.1 L1D Cache Performance 

Thrashing in L1 cache can be caused by intra- or inter-warp contention [54], [55]. 

As the number of active concurrent threads increase, the effective cache size per thread 

decreases. Warps within an SM share L1 cache space which can lead to inter-warp 

contention as data is continually replaced. A secondary effect is an increase in memory 

traffic due to over-fetching of data not used by other threads caused by low temporal and 

special locality in L1D cache, as described earlier. We evaluate these effects by varying 

the number of SMs versus the cache size, number of sets, and associativity for each of the 

benchmarks listed in Table 12. We note that while separate cache is also used for texture, 
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constant and instruction cache, our focus here is only on data cache. Texture cache is 

only used for certain graphical applications. Constant cache is used to store read only 

configuration information and typically stores small amounts of data, thereby would not 

exhibit the same level of performance implications as with data cache. The following 

provides a performance comparison to the baseline 1 SM and 2 SM configurations along 

with an analysis of the results. 

 

 

Figure 22. Execution time speedup relative to the 1 SM baseline system for various L1D 

cache configurations. 
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Figure 23. Execution time speedup relative to the 2 SM baseline system for 

various L1D cache configurations. 

 

Figure 22 and Figure 23 compares the performance of various L1D cache 

configurations against the 1 SM and 2 SM baseline configuration, respectively. Recall 

that the baseline configuration has no L1D or L2D cache, therefore, data requests to 

global memory are stored in queues prior to entering the memory interconnect and being 

serviced by SDRAM. We notice there are several benchmarks where there are no 

significant performance benefits and varying cache configurations exhibit no changes. 

Specifically, bs, fwt, lud, and rd show constant speedups of 1.0, 1.04, 1.0, and 0.96 across 

all cache configurations, with lud exhibiting minor deviations. Compared to the 

performance without the cache in the baseline system, only four benchmarks (ac, mm, 

bfs, and ge) show performance improvements for the 1 SM configuration and six 

benchmarks showed improvement in the 2 SM configuration (ac, fwt, mm, tp, bfs and ge). 
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Figure 24. Performance increase of the architecture with 1-cycle perfect memory 

access versus baseline architecture with global memory modeled and no cache. 

 

Before we delve into the specifics, it is important to understand how the baseline 

architecture with no cache compares to the same architecture with perfect memory, in 

other words, global memory access returns data immediately the next cycle. This will 

help us gain insight into how much speedup we can expect when adding cache into our 

baseline configuration. Figure 24 shows the performance increase of the architecture with 

perfect memory versus the baseline architecture with global memory and no cache 

enabled. We can see large performance increases when perfect memory is enabled for 

benchmarks ac, mm, tp, bfs and kmn. In fact, this directly correlates with the large 

variations of speedups shown in Figure 22 and in Figure 23. For example, Matrix 

Multiply (mm) shows a performance increase of 49% and 93% when enabling perfect 

memory for 1 SM and 2 SM configurations, respectively. When showing the speedup of 

L1D cache versus the baseline architecture, as shown in Figure 22 and in Figure 23, we 

see a correlation, where the maximum speedup of 1.7 and 2.96 is represented for both 1 

SM and 2 SM configurations, respectively. On the other hand, for small performance 
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increases, such as in the case for bs, fwt, rd, ge, lud, and srad (with the exception of ge), 

speedups of L1D versus the baseline architecture are around 1.0 and vary slightly across 

all cache configurations. The primary reason for the lack of speedup and variation is due 

to shared memory usage in the latter benchmarks. Recall that shared memory is fast 

cache that can be used to store shared data and is managed by the programmer, unlike L1 

and L2 cache which is managed by the hardware. However, like the L1D cache, when 

used effectively, it can significantly reduce the amount of global traffic. Thus, there is 

minimal performance impact between perfect memory, the baseline architecture of 

modeled global memory with no cache, and when L1D cache is enabled. As we will 

discuss, the small impact in performance is due to the additional traffic caused by L1D 

global loads and shared memory stalls. However, when not using shared memory, L1D 

cache can a significant impact on performance, as seen in the case for both 

Autocorrelation (ac) and Matrix Multiply (mm). 

 

There are several benchmarks that exhibit decreased performance when L1D 

cache is enabled, specifically benchmarks bs, fwt, rd, kmn, lud and srad. The decreases in 

performance are attributed to two factors, the first is from enabling L1D cache, which can 

significantly increase memory traffic. Figure 25 shows the normalized global memory 

traffic for bs, fwt, kmn, lud and srad which is normalized to that with no cache for both 1 

SM and 2 SM configuration. We note that we left out reduction (rd), as the performance 

is tied to the effectiveness of shared memory. The results in Figure 25 show that global 

memory load traffic can be reduced by 43% when not enabling cache. When L1D is 

enabled, 128-byte memory transactions are performed versus 32-byte transactions when 
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not enabled, thus contributing to the additional memory access traffic when spatial and 

temporal data reuse is low. In fact, the majority of benchmarks in Figure 25 exhibit low 

temporal and spatial locality, lending to over-fetching of data and an increase in memory 

traffic. 

 

 

Figure 25. Normalized global memory traffic with and without L1D cache for 1 

SM and 2 SM configurations, normalized to no cache. 

 

As discussed, benchmarks that use shared memory exhibit only small variations in 

performance and typically show no performance benefits (speedups of around 1.0). In 

most cases, when not using shared memory and enabling L1D cache, there are potentials 

for large performance gains, as in the case of Autocorrelation and Matrix Multiply. 

However, in the case of k-Means Clustering (kmn), this is not the case, as enabling L1D 

cache significantly decreases performance. This leads to the second factor in decreased 

performance, which is due to pipeline stalls at the memory stage due to shared memory 
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bank conflicts and non-coalesced memory accesses.  In the case of kmn, almost all (i.e.: 

close to 100%) of memory accesses were misses in the L1D cache. This not only causes a 

significant increase in traffic, but also causes additional stalls due to compulsory misses. 

In fact, the number of non-coalesced memory stalls was more than double that over the 

baseline architecture without L1D cache enabled, directly correlating to the decrease in 

performance. In the case of the reduction (rd) benchmark that was referenced earlier, 

disabling the cache generated 3x more memory traffic than with L1D, yet the 

performance with L1D was only slightly worse at 0.96 speedup for 1 SM and 2 SM 

configurations. The reduction of memory traffic when L1D cache is enabled is due to the 

low cache miss rate of 3.3%, exhibiting high data reuse amongst warps. However, this is 

offset by the fact that there was a 33% increase in non-coalesced memory stalls versus 

the disabled cache configuration.  

 

Figure 26. Execution time speedup of Breadth First Search relative to 1 SMP and 2 SMP 

baseline systems for various L1D cache configurations. 
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As illustrated in Figure 22 and Figure 23, Autocorrelation (ac), Matrix Multiply 

(mm), and to a lesser extent, Breadth First Search (bfs) benefit most from L1D cache. The 

bfs algorithm performs a search on a graph where each vertex is associated to a thread. 

The benchmark exhibits high levels of data reuse as arrays are used to determine if a node 

has been visited and to update cost information. As illustrated in Figure 26, we see that 

increases in speedup over the baseline occur for L1D cache sizes above 32KB, as smaller 

cache sizes lead to higher cache miss rates, and thus, data is continuously swapped in and 

out causing significant increase in memory traffic and global non-coalesced stalls. On 

average, memory traffic is 1.6x greater for cache sizes less than 32KB and similarly, 

global memory access stalls are 1.5x greater. It is of note that the L1D miss rate has a 

significant adverse effect on the 2 SM case where the amount of traffic generated causes 

excessive latency in the network, thus it is unable to efficiently service both SMs. In the 

perfect memory configuration, where global data is services in one clock cycle, speedup 

of the 2 SM system is almost 1.9x over the 1 SM system. In effect, this architecture 

works similar to having one SM being serviced while the other waits for data, operating 

in a serial fashion. Finally, from the graph, we see the largest performance gains occur 

when set sizes are equal to 64, specifically when our cache size if 64KB. This is due to 

our chosen input graph size of 65,535 nodes, which can take full advantage of the cache 

size, correlating to higher cache hit rates.  
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Figure 27. Execution time speedup of Autocorrelation relative to 1 SM and 2 SM baseline 

systems for various L1D cache configurations. 

 

The results of the Autocorrelation benchmark are shown in Figure 27. We can see 

that for small cache sizes and associativity less than 2, speedup varies slightly, and in 

fact, the maximum speedup occurs with only 16KB of cache. The performance increase 

is attributed to two reasons; one is the high spatial and temporal data reuse, which is 

reflected in the data cache hit rate of almost 1.0. The second is due to the array size 

chosen of 4,096 integers, resulting in a maximum data storage size of 16KB. Thus, we 

expect performance increase would track with the size of the input up until where the size 

of the dataset is more than the size of the cache, where data miss rates would begin to 

cause performance impacts. 

 

 Figure 28 illustrates the results of the Matrix Multiply benchmark, using a matrix 

dimension size of N = 128, for both 1 SMP and 2 SMP configurations across a series of 
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data cache configurations. To better understand the performance, it is essential we 

describe the details of memory accesses for the Matrix Multiply benchmark. 

 

 

Figure 28. Execution time speedup of Matrix Multiply relative to 1 SM and 2 SM baseline 

systems for various L1D cache configurations. 

  

The standard matrix multiplication calculation is performed by multiplying each 

row of matrix A with each column of matrix B, with each element of matrix C defined as: 

𝐶𝑖,𝑗 = ∑ 𝐴𝑖,𝑘 × 𝐵𝑘,𝑗
𝑛
𝑘=0           𝑗 ∈ [0, 𝑚], 𝑖 ∈ [0, 𝑛]   (4) 

In CUDA, a natural decomposition is to define matrix A of dimension M x w and matrix B 

of dimension w x N, with w defined as the tile size which is set to 16. This value was 

chosen based on the block size of the architecture. A w x w tile results in 256 threads, or 8 

warps, which is the maximum number of warps in a thread block for our architecture 

(compute capability 2.0), ensuring maximum occupancy. The result is matrix C of 

dimension M x N, where M, N are both set to 128 for our benchmark. 
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Figure 29. CUDA kernel code for the Matrix Multiply benchmark. 

 

In the CUDA kernel code listed in Figure 29, variables a, b, and c are pointers to 

global memory which reference matrices A, B, and C respectively. The values of 

blockDim.x, blockDim.y, and TILE_DIM are all equal to w, which in our case, is set 

to 16. The row and col variables are calculated using the block and grid dimensions and 

reference the row and column elements used by a thread (threadIdx) to calculate the 

result, referenced in element C. As such, each thread within the w x w (16 x 16) thread 

block calculates a single result in a tile of matrix C. The for loop iterates over the tile 

dimension, performing the matrix multiply calculation by multiplying the row of A by the 

column of B, finally storing the result in matrix C. 

 

 The analysis of performance follows with an illustration of how threads in warps 

access memory within the for loop of Figure 29. Consider the illustration in Figure 30, 

where threads in each warp calculate one row of a tile of C. Of particular note, the result 

__global__ void MatrixMultiply(int *a, int *b, int *c,  

int N) 

{ 

int row = blockIdx.y * blockDim.y + threadIdx.y; 

int col = blockIdx.x * blockDim.x + threadIdx.x; 

int sum = 0; 

for (int i = 0; i < N; i++) { 

sum += a[row*TILE_DIM+i] * b[i*N+col]; 

} 

c[row*N+col] = sum; 

} 
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only depends on using a single row of A, but an entire tile of B, which effects how data is 

brought into the cache and utilized. 

 

 

 Figure 30. Calculation of a row of a tile in matrix C using a single row in matrix A 

and an entire row of tiles of matrix B. 

 

As previously noted, only a single tile of A is required to calculate a row of C. 

Threads from tile A will read values from global memory, which will also be brought into 

L1D cache. As calculations proceed along a row, this data is constantly being re-used, 

making it unlikely that it will be evicted from cache. In the case of matrix B, threads in a 

warp require reading an entire row of tiles. To maximize performance, the entire row of 

tiles will need to remain in cache. Using a matrix width of 128 and a tile size of 16 (2,048 

threads), a total of 8,192 bytes of data need to be brought in from memory and stored in 

cache. The memory accesses from tile A and tile C are insignificant and contribute very 

little to the overall performance impact. As we can see from Figure 28, this correlates 
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with a significant increase in performance when using 8KB or more of L1D cache. Using 

less cache requires data to be continuously swapped in and out of memory, degrading 

performance. This also explains why there are performance degradations when not using 

multiples of 8 KB as the entire row of tiles cannot fit into cache. For example, in the case 

with 12 KB of cache, one entire row of tiles can be brought in, however, only half of the 

second row, causing the other half of data to be continuously swapped in and out of 

memory. 

 

5.6.2 L2 Cache Performance 

GPGPUs exhibit massive multithreading causing resource congestion which can 

severely limit system performance and cache efficiency. As each SM is connected to the 

L2 cache via the Network on Chip (NoC), requests can quickly saturate the bandwidth. 

Furthermore, all requests from the SMs are now serviced by the L2 cache. For working 

sets larger than the cache size, thrashing, or contention can cause inefficiency and 

degrade system performance. As we are concerned with cache performance, we will not 

perform an analysis on the NoC design. The following provides a performance 

comparison and analysis of L2 cache designs versus the baseline 1 SM and 2 SM 

configurations. 
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Figure 31. Execution time speedup relative to the 1 SM baseline system for various L2 

cache configurations. 

  

 

 

Figure 32. Execution time speedup relative to the 2 SM baseline system for various L2 

cache configurations. 
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As we can see in Figure 31 and Figure 32, with the exception of the Reduction (rd) 

benchmark, enabling L2 cache either causes no performance benefits or seriously degrades 

performance, as in the case of Transpose (tp) and k-means (kmn). In the case of the 

Reduction benchmark, performance increase is negligible. Recall that that our architecture 

does not coalesce data transactions, thus memory transactions generated by threads in 

warps can quickly saturate the network. This is especially true in our case as the system 

employs only a single memory interface, whereby typical GPGPU architectures feature 

multiple memory interfaces and highly banked DDR RAM. By not using L2 cache, the 

additional latency to fetch data from RAM helps reduce contention on the network, 

decreasing the overall latency to service memory requests. Therefore, the reduced access 

time afforded by L2 cache is negated by the extra latency caused by additional traffic and 

contention on the network. In addition, as increased latency is directly correlated to 

increase miss rates, as additional time is needed to fetch data from main memory. Figure 33 

shows the normalized network latency with L2 cache and without (baseline), normalized to 

the baseline architecture. With the exception of the Gaussian (ge) benchmark for the 2 SM 

case, every benchmark exhibits additional traffic latency over the baseline system. There 

are two interesting cases to explore further, Transpose and k-means benchmarks, each 

exhibiting significant degradation and variation in performance over the baseline system. 
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Figure 33. Normalized network latency with and without L2 cache for 1 SMP and 

2 SMP configurations, normalized to no cache (baseline). 

 

In Figure 34, we provide the CUDA kernel implementation of the Matrix Transpose 

algorithm, C = AT.  

Figure 34. CUDA kernel code for the Matrix Transpose benchmark. 

__global__ void MatrixTranspose(int* idata, int* odata,  

  int width)  

{ 

 int x = blockIdx.x * TILE_DIM + threadIdx.x; 

 int y = blockIdx.y * TILE_DIM + threadIdx.y; 

 

 

 for (int j = 0; j < TILE_DIM; j += BLOCK_ROWS) { 

         odata[x*width + (y+j)] = idata[(y+j)*width + x]; 

 

 } 

} 
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We note that for our particular benchmark, we use a matrix of size 1024 x 1024. In the 

CUDA code provided in Figure 34, the variables idata and odata are pointers to global 

memory, which reference the input matrix A and output matrix C, respectively. The value 

of TILE_DIM and BLOCK_ROWS are set to 32 and 8, respectively. These values were 

chosen to optimally fit into a thread block. As previously noted, our architecture is based 

on a maximum thread block size of 8 warps, or 256 threads. The x and y variables are the 

row and column elements used by a particular thread to copy values from the row of 

idata to the column of odata, with the for loop iterating over the tile dimension. In 

our example we note that our 1024 x 1024 matrix has a stride of 1024 elements or 4,096 

bytes between contiguous threads 

 

 

Figure 35. Transpose from A to C, whereby an entire row of tiles of matrix A are used to 

output the transposed column elements in C. 

 

The analysis of performance follows with an illustration of how threads in warps 

access memory within the for loop of Figure 34. Consider the illustration in Figure 35, 

where threads in each warp access an entire tile of A. To transpose a row from matrix A to 
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a column in C, threads in a warp read an entire row of A tiles which is brought into L2 

cache. A matrix width of 1024 and a tile size of 32 equates to 32,768 threads, or 131,072 

bytes of data that need to be brought in from memory. As we can see from Figure 31 and 

Figure 32, this correlates with a significant increase in performance when using cache sizes 

of 128KB or more versus when using smaller cache sizes. Using less cache requires data to 

be continuously swapped in and out of memory, degrading performance. 

 

 The second benchmark we explore is the k-means algorithm, a popular clustering 

algorithm used in a variety of fields such as statistical analysis, pattern recognition, image 

analysis and bioinformatics. The primary goal of clustering is to group data points into 

sets such that each set share similar characteristics. The algorithm can be described as the 

following clustering problem: given a set of points {P1,…, Pn} with each point a vector 

of size d, the goal is to partition n points into k clusters {S1,…, Sk} (k  < n) with centroids 

{C1,…, Ck} such as to minimize the sum of squares of distances within the clusters. This 

can be described as follows: 

 

arg
𝑚𝑖𝑛

𝑆
∑ ∑ ‖𝑃𝑗 − 𝐶𝑖‖

2
𝑃𝑗∈𝑆𝑖

𝑘
𝑖=1      (5) 

  

Our analysis begins with the following CUDA kernel code of the k-means algorithm 

shown in Figure 36. We note that we did not provide the full kernel code, only the 

relevant pieces for our analysis. 
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Figure 36. A fraction of the CUDA kernel code for the k-means benchmark. 

 

Abstracting the details of the kernel code, our primary focus is global memory 

transactions. To put the kernel code into perspective, we note that for our benchmark we 

provided the following input values: nclusers = 5, nfeatures = 34, and npoints 

= 65,536. Within the two for loops, highlighted between lines 16 through 33, there are 

two global memory loads, one for features[addr] and one for 

1  __global__ void kmeansPoint(float  *features, int nfeatures,  

2       int npoints, int  nclusters, 

3     int *membership, float *clusters,  

4     float *block_clusters, 

5     int *block_deltas)  

6  { 

7     int block_id = gridDim.x*blockIdx.y+blockIdx.x;  

8     int point_id = block_id*blockDim.x*blockDim.y + threadIdx.x; 

9     int index = -1; 

10    if (point_id < npoints) 

11    { 

12       int i, j; 

13      float min_dist = FLT_MAX; 

14      float dist;         

15      /* find the cluster center id with min distance to pt */ 

16      for (i=0; i<nclusters; i++) { 

17          int cluster_base_index = i*nfeatures;   

18          float ans=0.0; 

19          /* Euclidean distance square */ 

20          for (j=0; j < nfeatures; j++) 

21          {      

22             int addr = point_id + j*npoints;   

23             float diff = c_clusters[cluster_base_index + j] –  

24                          features[addr];  

25            ans += diff*diff; 

26            /* sum of squares */ 

27          } 

28          dist = ans;   

29          if (dist < min_dist) { 

30             min_dist = dist; 

31             index    = i; 

32          } 

33       } 

34    } 

35    … 

36    … 

37    … 

38 } 
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c_clusters[cluster_base_index + j]. Our goal is to understand memory 

usage and the level of data reuse for each thread that executes the kernel code. We first 

analyze the memory load in line 23, c_clusters[cluster_base_index + j]. 

The address for c_clusters is calculated using the cluster_base_address and 

the index, j, inside the for loop in line 20. Line 17 calculates the 

cluster_base_index, which, when iterated over the outer for loop and multiplied 

by the index value, results in the following set of values: 0, 34, 68, 102, and 136. Each of 

these values are added to the inner loop iteration index value, j, inside the second for 

loop (line 20), which is used to calculate the set of addresses {0, 1, 2, 3, ….168, 169}. 

Thus with 4 bytes of data per request and 170 data requests, a total of 680 bytes is loaded 

from memory into the c_clusters array. Due to the linear addressing, the data can be 

loaded into 6 L2 cache lines. The data exhibits high temporal locality since every thread 

is requesting the exact same data in parallel, making it highly unlikely the data being 

evicted from cache.  

 

Our analysis continues with the loading of features data into an array as shown on 

line 24. In this instance, the address (addr) is calculated (line 22) using the 

point_id, calculated on line 8, which is essentially the thread index. Each thread will 

iterate over the inner for loop (line 20) and calculate nfeatures (34) of distinct 

features addresses (line 22) from memory, as shown on line 24, for a total of 136 

bytes requested. In our architecture, a maximum of three thread blocks (8 warps per 

thread block) with a total of 768 threads can be scheduled on a single SM. Therefore, a 

total of 102KB of data is requested for each iteration of the outer for loop in line 16. If 
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we assume a large enough L2 cache to store the data, each thread will exhibit a 100% 

cache hit rate on each subsequent iteration starting on line 16. As a note, we ignore the 

small amount data needed to store the c_clusters array. However, if the L2 cache 

size is smaller, such that not all data can be brought into cache, serious performance 

degradation will occur as data is constantly being swapped in and out. We illustrate this 

though a simple example. 

 

 

Figure 37. A simple example of two threads executing a memory load into the features 

array for the k-means benchmark. 

 

 Figure 37 shows an example of two threads executing line 24 of the k-means 

kernel code. For brevity, the features array variable is denoted as f in the example. In 

step 1, the first iteration of the outer for loop (line 16) and inner for loop (line 20) is 

executed by thread 0, which requests data from memory with address [T0 + 

(j*npoints)], where T0 is the thread index value and j is equal to 0. As no data 

exists in cache, a compulsory cache miss occurs, resulting in a request from main 
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memory to populate the L2 cache location with the serviced data. In the same step, thread 

1 performs a request with address [T1 + (j*npoints)]. Similarly, a compulsory 

miss occurs causing a request from main memory, which is serviced and written to L2 

cache. Step 2 increments index j, with each thread making a data request from memory, 

populating the remaining locations in L2 cache. In step 3, thread 0 requests address [T0 

+ (1*npoints)] from cache, which results in a cache miss. The least recently used 

(LRU) replacement policy evicts the first cache location and replaces it with the 

appropriate requested data from memory. Thread 1 then requests address [T1 + 

(1*npoints)], which also results in a cache miss, requiring data to be evicted from 

cache, and filled with data requested from memory. As with previous steps, step 4 starts 

with thread 0 requesting data from address [T0 + (0*npoints)], however, this data 

was previously brought into cache in step 1, but was evicted in the prior step. This also 

occurs when thread 1 requests [T1 + (0*npoints)]. In fact, this will continue to 

occur over i number of iterations, resulting in 100% cache miss rate, despite high 

temporal data reuse. 

  

 Based on the analysis, we see a direct correlation in Figure 31 when cache sizes 

are greater than or equal to 96KB, translating to cache miss rates of 21.7%, 3.4% and 

3.1% for cache sizes of 96KB, 128KB and 160KB, respectively for the 1 SM case. In the 

2 SM case, slight improvement occurs as cache size increases, however, the cache size 

would need to be at least 192KB to exhibit the jump in performance shown in the 1 SM 

case. However, as with other benchmarks, even with very small cache miss rates, 

network traffic limits potential speedup factors. 
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5.7 Summary 

In this chapter, we investigated L1 and L2 cache configurations for soft GPGPUs 

by modifying GPGPU-Sim, a cycle accurate GPGPU simulator, to emulate the 

functionality of FlexGrip. It was shown that the baseline system with no cache performs 

better than the system with L1 cache for 7 out of the 11 benchmarks in the 1 SM case and 

five out of the eleven benchmarks in the 2 SM case, with only autocorrelation and matrix 

multiply showing significant improvement. The decrease in performance using L1D 

cache led to two contributing factors: global network traffic and pipeline stalls at the 

memory stage. When L1D cache is enabled, 128-byte transactions are used versus 32-

byte transactions used in our baseline configuration without cache. If applications exhibit 

poor temporal or spatial data reuse, over fetching could occur, leading to increased 

network traffic. We showed that global memory load traffic increases 74% when 

enabling L1D cache. While misses in L1D cache can cause a significant increase in 

traffic, it also causes additional stalls due to compulsory misses, resulting in non-

coalesced memory stalls, directly correlating to a decrease in performance. 

 

We concluded the section with an analysis of L2 cache performance versus the 

baseline system of no cache over varying cache configurations. Over the 11 benchmarks, 

only Reduction showed improved performance when enabling L2 cache. We showed that 

with L2 cache enabled, network latency increased on average 23% and 28% over the 

baseline system for 1 SM and 2 SM configurations, respectively. When benchmarks 



 

92 

exhibit good data reuse, fast service times from L2 cache can quickly saturate the 

network causing significant latency.  

 

While we showed certain benchmarks benefited from cache, many benchmarks 

showed no performance gains and in some cases, significant decreases in performance. 

Overall, the results and analysis showed the network as a key factor in determining the 

performance. Therefore, we conclude that future research and resources should focus on 

improving the underlying network and memory infrastructure, with cache considered on 

an individual basis. 
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CHAPTER 6 

CONCLUSION, FUTURE CONSIDERATIONS AND PUBLISHED WORK 

 

6.1 Conclusion 

This dissertation has outlined the implementation and architectural evaluation of a 

soft-GPGPU on an FPGA. We described in detail the scalable architecture which was 

implemented and tested on the Xilinx ML605 development board. The FlexGrip 

architecture utilized features of the FPGA to allow for different implementations to target 

certain classes of application depending on their execution characteristics. Experimental 

results against five benchmarks showed speedups of up to 30x versus a MicroBlaze soft 

processor for a single streaming multiprocessor and 55x for two streaming 

multiprocessors for highly parallel benchmarks. When implementing architectural 

optimization, we found we can reduce the dynamic energy consumption by 14% and 

LUT area by 33% on average.  

 

 We concluded with an evaluation of the performance of cache designs within a 

GPGPU by varying key parameters. The uniqueness of this approach lies within the 

context of the FPGA design, understanding the application and design space parameters 

that would optimize the performance of the GPGPU. To that extent, we modified 

GPGPU-Sim, a cycle accurate GPGPU simulator, to match FlexGrip’s functionality. 

When evaluating 11 benchmarks against designs with varying configurations of L1 cache 

or L2 cache enabled versus a baseline system with no cache, we found that 64% and 45% 

of benchmarks exhibited performance decreases when L1D cache was enabled for the 1 

SM and 2 SM configurations, and only one benchmark showed performance 
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improvement when the L2 cache was enabled. Our analysis concluded that improving 

network throughput would provide significant benefits over using resources to implement 

cache memory in the design. 

 

6.2 Future Considerations 

To maximize effectiveness of cache, future considerations should include 

researching and implementing memory coalescing by grouping memory requests into a 

minimal set of transactions to reduce network traffic. An extension of that effort should 

also include shared memory banks and memory bank resolution. The existing baseline 

FlexGrip design does not incorporate banked memory; therefore, reads and writes are 

performed serially. In order to take advantage of banked memory, a method to resolve 

bank addresses must be included such that a single memory transaction can service 

multiple banks. 

 

In the previous section, we discussed limitations of the network and memory 

structure leading to contention and latency. Future work should include optimizing the 

network and memory structure to maximize bandwidth and minimize latency. The design 

space should take into consideration taking advantage of FPGA resources such as those 

included on System on Chip (SoC) devices.  

 

Another design space area to consider is the ability to replace or add custom 

processors. For example, executing an image processing algorithm, such as Local Area 

Contrast Enhancement (LACE), requires threads to iterate through the pipeline multiple 



 

95 

times for each instruction. By implementing special purpose processors, a single 

processor would execute the LACE algorithm, minimizing the number of memory 

transactions and time required to schedule and service warps. 

 

As a final area to consider, recall that FlexGrip schedules warps in a round robin 

fashion and will stall during memory transactions. Techniques should be researched on 

issuing warps into the pipleline that can proceed to execute, hiding latencies of other 

warps as they wait for long memory transactions. 

   

6.3 Published Work 

The following section lists our published work. 

 

K. Andryc, M. Merchant and R. Tessier, "FlexGrip: A soft GPGPU for FPGAs," in Int'l 

Conf. on Field-Programmable Technology (FPT), 2013. 

 

K. Andryc, T. Thomas and R. Tessier, "Soft GPGPUs for Embedded FPGAs: An 

Architectural Evaluation," in 2nd International Workshop on Overlay Architectures for 

FPGAs (OLAF), 2016.  
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