
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

October 2018

AN ARCHITECTURE EVALUATION AND IMPLEMENTATION OF A AN ARCHITECTURE EVALUATION AND IMPLEMENTATION OF A

SOFT GPGPU FOR FPGAs SOFT GPGPU FOR FPGAs

Kevin Andryc

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

 Part of the Computer and Systems Architecture Commons

Recommended Citation Recommended Citation
Andryc, Kevin, "AN ARCHITECTURE EVALUATION AND IMPLEMENTATION OF A SOFT GPGPU FOR FPGAs"
(2018). Doctoral Dissertations. 1322.
https://scholarworks.umass.edu/dissertations_2/1322

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1322&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1322&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2/1322?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1322&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

AN ARCHITECTURE EVALUATION AND IMPLEMENTATION OF A SOFT

GPGPU FOR FPGAs

A Dissertation Presented

by

KEVIN R. ANDRYC

Submitted to the Graduate School of the

University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2018

ELECTRICAL AND COMPUTER ENGINEERING

© Copyright by Kevin R. Andryc 2018

All Rights Reserved

AN ARCHITECTURE EVALUATION AND IMPLEMENTATION OF A SOFT

GPGPU FOR FPGAs

A Dissertation Presented

by

KEVIN R. ANDRYC

Approved as to style and content by:

Russell G. Tessier, Chair

Wayne P. Burleson, Member

Patrick A. Kelley, Member

J. Blair Perot, Member

C. V. Hollot, Department Head

Electrical and Computer Engineering

DEDICATION

This dissertation is dedicated to my parents, Joseph and Sandra Andryc, and to my friend

and advisor Dr. Russell Tessier.

v

ACKNOWLEDGMENTS

This dissertation is dedicated to my parents, Joseph and Sandra Andryc, who loved and

supported me through all my endeavors. Though a long and turbulent path, they were

always there to help ease the road ahead. I would also like to acknowledge my sister

Cindy Shepardson, brother-in-law Paul Shepardson, nephew Paul Shepardson Jr., niece

Kaitlyn Shepardson, and niece Kailey Shepardson.

I would also like to provide a special acknowledgement to my advisor, committee chair,

and friend, Dr. Russell Tessier, for his encouragement and helping me reach my

potential. This dissertation would not have been made possible without his guidance

through many difficult times in my life. There are no words to express my sincere

gratitude and what his friendship means to me. Dr. Tessier provided support and

inspiration, possessing both personal and professional attributes that I strive for, and I

will always consider it to be a tremendous honor to have studied under his tutelage.

I would also like to extend a special thanks to Murtaza Merchant who assisted me in my

research during his time at the University of Massachusetts as a Master’s student. I will

always be grateful for his dedication, commitment, and work ethic. I remember the late

nights and passionate discussions, but above all, I remember being thankful for his

friendship.

Dr. Neal G. Anderson, Professor of Electrical and Computer Engineering, deserves a

special mention and my sincere gratitude. Dr. Anderson would always make time to talk

vi

to me on a personal level and provided me the courage to continue on with my

educational pursuit. He is a great person and friend and someone who has done more for

me than he probably realizes. For that, I will always be grateful.

I would also like to acknowledge L-3 KEO and the many friends and co-workers who

supported me throughout my PhD career. Some of those who deserve special mention are

Gary Kelley, Mike Haley, Charlene Pellegrino, Joe Findley, Jack Ouimet, and Mark

Fydenkevez. I would also like to thank Mike Rose for his support and friendship, who

helped bring me to L-3 KEO and made it possible to work with all the brilliant and

creative people. Dave Beaudet, who I have the pleasure to develop a friendship and

whose creative mind has inspired me. A very special thanks to goes to Jim Westwell

whose friendship and support has helped guide me both personally and professionally.

There are moments, both good and bad, that we have shared that I will always remember.

I would like to thank all of the teachers, professors, and other professionals who

educated, trained, or inspired me in some way.

A final thanks goes to all of my friends who influenced and supported me along my

journey. While it would be impossible to list every name, some of those that come to

mind are Christine Church, Allen Jenkins, Dave Kubera, Jayson Lacasse, Christopher

Bates, George Condon, George Condon Jr., and Tim Eagleson. Lastly, I would like to

provide a special thanks to my sincere friend Tom Jamate who was always there when I

needed someone.

vii

ABSTRACT

AN ARCHITECTURE EVALUATION AND IMPLEMENTATION OF A SOFT

GPGPU FOR FPGAs

SEPTEMBER 2018

KEVIN R. ANDRYC, B.S., UNIVERSITY OF MASSACHUSETTS

M.S., UNIVERSITY OF MASSACHUSETTS

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Russell G. Tessier

Embedded and mobile systems must be able to execute a variety of different types

of code, often with minimal available hardware. Many embedded systems now come with

a simple processor and an FPGA, but not more energy-hungry components, such as a

GPGPU. In this dissertation we present FlexGrip, a soft architecture which allows for the

execution of GPGPU code on an FPGA without the need to recompile the design. The

architecture is optimized for FPGA implementation to effectively support the conditional

and thread-based execution characteristics of GPGPU execution without FPGA design

recompilation. This architecture supports direct CUDA compilation to a binary which is

executable on the FPGA-based GPGPU. Our architecture is customizable, thus providing

the FPGA designer with a selection of GPGPU cores which display performance versus

area tradeoffs.

This dissertation describes the FlexGrip architecture in detail and showcases the

benefits by evaluating the design for a collection of five standard CUDA benchmarks

which are compiled using standard GPGPU compilation tools. Speedups of 23x, on

average, versus a MicroBlaze microprocessor are achieved for designs which take

viii

advantage of the conditional execution capabilities offered by FlexGrip. We also show

FlexGrip can achieve an 80% average reduction of dynamic energy versus the

MicroBlaze microprocessor.

The dissertation furthers discussion by exploring application-customized versions

of the soft GPGPU, thus exploiting the overlay architecture. We expand the architecture

to multiple processors per GPGPU and optimizing away features which are not needed by

certain classes of applications. These optimizations, which include the effective use of

block RAMs and DSP blocks, are critical to the performance of FlexGrip. By

implementing a 2 GPGPU design, we show speedups of 44x on average versus a

MicroBlaze microprocessor. Application-customized versions of the soft GPGPU can be

used to further reduce dynamic energy consumption by an average of 14%.

To complete this thesis, we augmented a GPGPU cycle accurate simulator to

emulate FlexGrip and evaluate different levels of cache design spaces. We show

performance increases for select benchmarks, however, we also show that 64% and 45%

of benchmarks exhibited performance decreases when L1D cache was enabled for the 1

SMP and 2 SMP configurations, and only one benchmark showed performance

improvement when the L2 cache was enabled.

ix

TABLE OF CONTENTS

 Page

ACKNOWLEDGMENTS ...v
ABSTRACT .. vii
LIST OF TABLES ... xi
LIST OF FIGURES .. xii

CHAPTER

1. INTRODUCTION ..1
2. BACKGROUND ..7

2.1 GPGPUs ...7
2.2 Differences between GPGPUs and Vector Processors9

2.3 GPGPU Cache Memory ...10
2.4 Related Work ...12

2.5 Summary ..19
3. FLEXGRIP SOFT-GPGPU ..20

3.1 FlexGrip System Overview ...20

3.2 FlexGrip Streaming Multiprocessor ..21
3.3 CUDA Instructions ..24

3.4 FPGA-Specific Considerations ..25
3.5 Experimental Methodology ...27
 3.5.1 Software Flow ...27

 3.5.2 Design Environment and Benchmarks ...27
3.6 Experimental Results ...29

 3.6.1 Architectural Scalability ..30
 3.6.2 Application Scalability ..32

 3.6.3 Energy Efficiency ..33
3.7 Summary ..33

4. FLEXGRIP SOFT-GPGPU OPTIMIZATIONS ..35
4.1 Architectural Optimizations ...35
 4.1.1 Conditional Branch Circuitry Optimization ..35

 4.1.2 Multiple Streaming Multiprocessors ...38
 4.1.3 Source Operand Optimization ...40

4.2 Experimental Results ...41
 4.2.1 Comparison versus the MicroBlaze Soft-Core Processor42
4.3 Energy Comparison versus a CPU running Ocelot..44
4.4 Architectural Customization ..45

4.5 Summary ..47
5. A COMPARISON OF CACHE CONFIGURATIONS FOR SOFT-GPGPUs48

5.1 Overview ..48

5.2 Motivation ..49
5.3 Modifying GPGPU-Sim for FlexGrip ...52
 5.3.1 SIMT Core (SMP) ...54
5.4 Memory Hierarchy ...61
 5.4.1 SMP Memory and Level-1 Data Cache ..62

x

 5.4.2 Level-2 Data Cache ...64
5.5 Experimental Methodology ...67
 5.5.1 Baseline Configuration ..67
 5.5.2 Benchmarks ...68

5.6 Cache Configuration Trade-Offs ...68
 5.6.1 L1D Cache Performance ...69
 5.6.2 L2 Cache Performance ..81
5.7 Summary ..91

6. CONCLUSION, FUTURE CONSIDERATIONS AND PUBLISHED

WORK ..93
6.1 Conclusion ...93
6.2 Future Considerations ..94
6.3 Published Work ..95

BIBLIOGRAPHY ..96

xi

LIST OF TABLES

Table Page

Table 1: FlexGrip-Supported CUDA Instructions .. 25

Table 2: Area comparison of FlexGrip implementations ... 30

Table 3. FPGA Power Estimates (W) at 100 MHz ... 33

Table 4. MicroBlaze vs. FlexGrip Energy Consumption: 256 data size 33

Table 5: FlexGrip Physical Limits .. 38

Table 6: Area comparison of FlexGrip implementations for 1 and 2 SMs 41

Table 7: Comparison of FlexGrip implementations ... 43

Table 8. Speedup of 2 SM versus 1 SM for input data size 256 43

Table 9. Ocelot Energy Consumption: 256 data size .. 44

Table 10. Results of FlexGrip optimizations for an 1 SM, 8 SP system 45

Table 11. Default GPGPU-Sim Configuration ... 67

Table 12. GPGPU Cache Benchmarks ... 68

xii

LIST OF FIGURES

Figure Page

Figure 1: Overview of a GPGPU architecture. The architecture can support multiple

streaming multiprocessors .. 7

Figure 2. NVIDIA GPGPU representative architecture ... 11

Figure 3: Overview of the system architecture showing the FlexGrip GPGPU connected

to the MicroBlaze processor via the AXI bus ... 21

Figure 4: Block diagram depicting the details of the FlexGrip Streaming Multi-

processor ... 23

Figure 5: Software Flow for the FlexGrip Soft GPU .. 28

Figure 6: Percent of instruction operations executed for each benchmark 29

Figure 7. Speedup vs. MicroBlaze for variable scalar processors and input data size 256

for 1 SM .. 31

Figure 8. Speedup of 1 SM, 32-SP GPGPU vs. MicroBlaze for varying problem

size .. 32

Figure 9: FlexGrip conditional branch and warp stack architecture. There is one stack and

one set of predicate registers for each of the eight warps 36

Figure 10: FlexGrip read stage and execute unit .. 41

Figure 11. Speedup vs. MicroBlaze for variable scalar processors and input data size 256

for 2 SM .. 42

Figure 12. GPU architecture highlighting the multi-level cache hierarchy 49

Figure 13. Different memory access patterns resulting in either (a) a single transaction or

(b) two transactions ... 51

Figure 14. Top level architecture modeled by GPGPU-Sim. ... 53

Figure 15. Detailed architecture of the GPGPU-Sim SIMT Core. The labels listed above

are the analogous FlexGrip SMP pipeline stages. .. 54

Figure 16. GPGPU-Sim operand collector microarchitecture [48]. 59

Figure 17. FlexGrip read, execute and write pipeline stages. ... 60

xiii

Figure 18. Representative FlexGrip block diagram exhibiting the details of the GPPGU

memory hierarchy. .. 62

Figure 19. L1 data cache and supporting memory components. 63

Figure 20. FlexGrip SMP depicting the integration of L1 cache into the architecture. .. 64

Figure 21. L2 data cache memory partition. ... 65

Figure 22. Execution time speedup relative to the 1 SMP baseline system for various L1D

cache configurations. .. 70

Figure 23. Execution time speedup relative to the 2 SMP baseline system for various L1D

cache configurations. .. 71

Figure 24. Performance increase of the architecture with 1-cycle perfect memory access

versus baseline architecture with global memory modeled and no cache. 72

Figure 25. Normalized global memory traffic with and without L1D cache for 1 SMP and

2 SMP configurations, normalized to no cache. ... 74

Figure 26. Execution time speedup of Breadth First Search relative to 1 SMP and 2 SMP

baseline systems for various L1D cache configurations. 75

Figure 27. Execution time speedup of Autocorrelation relative to 1 SMP and 2 SMP

baseline systems for various L1D cache configurations. 77

Figure 28. Execution time speedup of Matrix Multiply relative to 1 SMP and 2 SMP

baseline systems for various L1D cache configurations. 78

Figure 29. CUDA kernel code for the Matrix Multiply benchmark. 79

Figure 30. Calculation of a row of a tile in matrix C using a single row in matrix A and an

entire tile of matrix B. ... 80

Figure 31. Execution time speedup relative to the 1 SMP baseline system for various L2

cache configurations. .. 82

Figure 32. Execution time speedup relative to the 2 SMP baseline system for various L2

cache configurations. .. 82

Figure 33. Normalized network latency with and without L2 cache for 1 SMP and 2 SMP

configurations, normalized to no cache (baseline). .. 84

Figure 34. CUDA kernel code for the Matrix Transpose benchmark............................. 84

Figure 35. Transpose from A to C, whereby an entire row of tiles of matrix A are used to

output the transposed column elements in C. ... 85

xiv

Figure 36. A fraction of the CUDA kernel code for the k-means benchmark. 87

Figure 37. A simple example of two threads executing a memory load into the features

array for the k-means benchmark. .. 89

1

CHAPTER 1

INTRODUCTION

FPGAs are used in a wide variety of embedded systems, such as automotive

applications, appliances, and other consumer products. Most of the processing is

performed by low-end embedded microprocessors and FPGAs. In some cases, just an

FPGA is used and one or more microprocessors are fashioned from FPGA logic to

execute specific code types. The benefits of this approach include the ability of software

designers to specify functionality in a familiar high-level language (e.g. C) and the

flexibility to modify this functionality for the FPGA device without the need to recompile

FPGA logic, a time-consuming process that can range from minutes to days.

A recent trend in FPGA design is the use of overlay architectures. An overlay

design implements a soft, synthesizable version of an architecture which is customarily

implemented in fixed ASIC logic, such as a microprocessor, vector processor, or

multiprocessor. For example, soft microprocessors have become ubiquitous in FPGA

design and they are used for a variety of embedded applications ranging from I/O and

system control that do not demand high performance to data processing with higher

computational demands.

Most FPGA designs use soft processors for sequential tasks, such as I/O

interfacing and control that do not demand high performance. The benefits of soft

processor usage include the ability of software designers to specify functionality in a

familiar high-level language (e.g. C) and the flexibility to modify this functionality for

2

the FPGA device without the need to recompile FPGA logic, a time-consuming process

that can range from minutes to days.

The success of soft microprocessors led to alternative compute models which

follow a similar simple program-compile design flow. Recently, soft vector processors

[1] [2], which provide performance benefits for applications exhibiting significant data

parallelism have appeared. Although soft vector processors address a portion of the data

parallel spectrum, they are limited in their support for significant multithreaded and

conditional program execution. Multithreaded soft processors have been reported

although they have generally been constrained to executing a small number of threads [3]

or have limited parallelism [4].

Graphics processing units for general purpose computing (GPGPUs) are now

widely-accepted computing platforms for a broad range of multi-threaded, conditional

computation. The programming languages created to program GPGPUs, CUDA and

OpenCL, are now in wide use for other computing platforms, and creating a code and

knowledge base for programmers. The critical benefit of GPGPUs, besides their inherent

parallelism, is their ability to automatically manage the execution of highly multi-

threaded applications in hardware, freeing the programmer to focus on achieving

maximum parallelization by writing efficient CUDA code. Although a number of

previous projects have explored mapping GPU languages directly to FPGA hardware [5]

[6], "GPU-like" soft FPGA architectures [7] [8], and soft multi-cores [9], a soft GPGPU

architecture which allows for direct execution of CUDA binary code following

3

compilation with the CUDA compile-time environment has not been reported. Previous

architectures also primarily consider hardware synthesis for each application, which is a

lengthy and potentially infeasible option for designers which desire to execute a number

of GPGPU applications on the same FPGA substrate.

 This dissertation focuses on an exploration of soft GPGPU architectures in

FPGAs. We describe the implementation of FlexGrip [10] [11] (FLEXible GRaphIcs

Processor for general-purpose computing), a fully CUDA binary-compatible integer

GPGPU, optimized for FPGA implementation. The amount of parallelism is

customizable at multiple levels including the number of parallel operations per

instruction (processors) per multiprocessor.

FPGA implementation allows for additional optimization for classes of

computation which may not require all components in a standard GPGPU. As part of our

work we explore the possibility of creating a small set of soft GPGPUs with varying

architectural parameters (e.g. number of functional units, size of memory structures)

which can be swapped into the FPGA as needed. The interaction between FlexGrip and

an on-chip MicroBlaze soft processor is coordinated allowing for the seamless execution

of sequential and parallel portions of a CUDA program. The hardware can be used for

numerous CUDA programs without hardware resynthesis. Different versions of FlexGrip

can be created that can be optimized for specific classes of application requirements, such

as the number of conditionals or the need for a multiply-accumulate operation.

4

The architecture has been implemented in VHDL for a variety of parameters and

evaluated in hardware using an ML605 [12] Virtex-6 FPGA platform which includes

DRAM. A total of five CUDA benchmarks have been directly compiled to the

architecture using standard NVIDIA compiler products. We show dynamic energy

savings versus a soft-core processor of 66% on average. Through optimization of per-

application on-chip resources, an additional 14% dynamic energy reduction is possible.

We also provide a dynamic energy comparison for CUDA code compiled to FlexGrip

versus a high-end Intel processor. For some benchmarks, FlexGrip provides reduced

dynamic energy consumption versus the much larger, fixed microprocessor.

Within this dissertation we describe the effect of architectural optimizations including

reducing the numbers of functional units, conditional execution hardware, and memory

interfaces on energy consumption. The effects of using multiple SMs to perform

computation are also explored. Results for each of these experiments versus a baseline

FlexGrip architecture are presented to quantify the results of the optimizations.

Additionally, energy consumption comparisons versus a high-end Intel processor are

made to provide an additional energy comparison.

While FPGAs provides significant flexibility afforded to the designer, it is done

so at the expense of fixed resources that is chip dependent. A number of look-up tables

(LUTs), flip-flops, block RAM, and DSPs are dependent upon the packaging selected and

therefore, the designer may sometimes need to make architectural decisions regarding

optimizations. Many modern day processor and GPGPU designs now include multiple

5

hierarchies of cache in an effort to improve throughput and overcome limitations of main

memory. By evaluating different cache designs and parameter choices, we can determine

an optimized strategy based on a fixed number of block RAM.

Specific contributions of our work include:

 We provide a detailed analysis of the operation and resources consumed by the

FlexGrip design as we vary the number of scalar processors, characterizing the

performance, energy and power consumption.

 We analyze tradeoffs as we vary the amount of conditional execution hardware,

number of scalar processor operands and functions supported by the scalar

processors. These characterizations allow for the optimization of area and energy.

 We consider FPGA performance tradeoffs as the number of scalar processors in

the soft GPGPU and the number of streaming multiprocessors are varied. The

variation in compute density also effects the energy consumption of the design.

 We explore GPGPU cache designs by emulating the FlexGrip architecture on a

cycle accurate GPGPU simulator. The total size of the cache memory is

constrained to emulate the number of block RAMs available on the FPGA. By

evaluating different cache hierarchy and parameter designs, we can provide trade-

off analysis and characterize performance.

The remainder of this dissertation is structured as follows. Section 2 provides

background on similar overlay and synthesized architectures and an overview of relevant

features of GPUs. Section 3 describes the architecture of FlexGrip and provides an

6

overview of the entire FlexGrip system including the soft GPGPU, MicroBlaze, and the

DRAM interface. Architectural optimizations are a specific focus in Section 4. Section 5

describes our work of comparing cache configurations for a soft-GPGPU. Finally, in

Section 6 we provide our conclusion including our published papers.

7

CHAPTER 2

BACKGROUND

2.1 GPGPUs

GPGPUs have a many-core device architecture and possess substantial parallel

processing capabilities. As shown in Figure 1, a typical GPGPU consists of an array of

multiprocessors (each with two or more processors) enabling the device to execute

numerous threads in parallel. In a GPGPU, a majority of the silicon area is dedicated to

data processing units with only a small portion assigned to data caching and flow control

circuitry. Such a design architecture makes a GPGPU suitable for solving streaming

compute-intensive problems.

Figure 1: Overview of a GPGPU architecture. The architecture can support multiple

streaming multiprocessors

8

Although several different companies manufacture GPGPUs, in describing the

devices we will use terminology commonly used with NVIDIA devices. A GPGPU is

primarily made up of an array of streaming multiprocessors (SMs), with each

multiprocessor consisting of multiple scalar processor (SP) cores that generally use 32-

bit operands. The term streaming multiprocessor implies that scalar processors in an SM

perform the same operation, SIMD style. The vector register file contains a pool of

registers that is strictly partitioned across scalar processors. This way, every processor

uses its own set of registers to store operands and intermediate results, steering them clear

of any data dependent hazards. A shared memory serves as a communication medium

between different cores residing in the same SM. In addition, there is a read-only constant

memory accessible by all the threads. The constant memory space is a cache for each

SM, thus allowing fast data access as long as all threads read the same memory address.

In the CUDA programming model, the host program launches a series of kernels

organized as a grid of thread blocks. A thread block represents a collection of operations

which can be performed in parallel. The NVIDIA device architecture partitions thread

blocks and groups them into warps, where a warp is a smaller set of simultaneous

operations, some of which may be performed conditionally. Multiple warps may be

assigned to a single SM and scheduled over time. To manage fine-grained scheduling,

each SM is architected as a single instruction, multiple-thread (SIMT) processor. A single

instruction is mapped to the scalar processors in the SM and each processor maintains its

own program counter (PC). Every thread performs the same operation on a different set

of data, but is free to independently execute data-dependent branches. Branching threads

9

diverge from the normal execution flow and scalar processors which do not execute the

branch must be marked (deactivated) during this execution. The thread instructions

executed as a taken branch are executed serially, while the non-branching threads are

masked until they are executed later.

2.2 Differences between GPGPUs and Vector Processors

In general, GPGPUs and vector processors have many similarities and a few

differences [13]. Both architectures support wide data parallel, SIMD-style computation

using multiple parallel compute lanes, provide support for conditional operations, and

require optimized interfaces to on-chip and off-chip memory. However, soft vector

processors contain a number of limitations regarding implementation and compiler

support that are addressed by GPU architectures.

 Scalable thread counts: In general, GPGPUs provide support for significant

amounts of compute threads both within an SM and across SMs. Vector

processors are generally limited to a single thread per SIMD processor (similar to

an SM). Our architecture supports the implementation of numerous threads.

 Hardware support for conditional operations: The conditional branch mechanism

for GPGPUs is typically implemented in hardware to simplify both the user

programming model and the associated compiler. This approach allows for run-

time determined levels of loop nesting and data-dependent branching.

10

The burden for handling conditional operations in vector processors generally

falls on both the programmer and the compiler with minimal hardware support

provided.

 Overcoming memory latency: The memory system for GPGPUs is architected to

take advantage of the presence of numerous threads which can be switched with

low overhead by a thread scheduler. Vector processors generally rely on deep

pipelining to overcome memory latency.

Our architecture addresses each of these points using an implementation which is

optimized for FPGAs. We show that a soft GPGPU implementation allows a designer to

trade off the amount of SMs and conditional branch hardware as needed for classes of

applications.

2.3 GPGPU Cache Memory

GPGPUs have the capability to execute thousands of threads concurrently and thus

rely on high memory throughput. In an effort to provide sufficient memory bandwidth,

GPU designers have begun to implement cache memory as part of the architecture.

11

Figure 2 shows a reference GPGPU architecture representative of modern NVIDIA

GPUs such as Fermi [14] and Kepler [15].

Figure 2. NVIDIA GPGPU representative architecture

Prior to execution, data is transferred to the GPGPUs global memory, which

typically consists of many gigabytes of off-chip GDDR5 memory. The global memory is

shared by all the SMPs and is partitioned, with each partition containing an L2 cache

bank. Each SMP contains four different types of on-chip memory: shared memory, data

cache, local cache and texture cache. Shared memory is a fast, on-chip multi-banked

scratchpad memory that is not backed by any cache and facilitates communication

between threads in a single block. The L1 data cache is a private, per-SMP first level

cache and includes a Miss Status Holding Register (MSHR) to track cache misses in

flight. Constant cache stores constant and parameter data, similar to the L1 data cache

with the exception that it is read-only. Texture cache utilizes a unique pre-fetching

mechanism [16] for storage and retrieval of graphics data.

12

2.4 Related Work

Our soft GPGPU is part of a larger trend in FPGA usage to eliminate the long

FPGA compile times and difficult hardware design cycles for many designers. Instead of

application-specific custom hardware, an architectural overlay [17] is implemented in

FPGA hardware. An overlay circuit typically has the features of a common ASIC-based

architecture (microprocessor, vector processor, GPGPU, etc.). Designers can specify

applications in more familiar languages (e.g., C, CUDA) which require modest compile

times.

Although these architectures exhibit lower performance and higher energy

consumption than their full custom counterparts, they can be swapped into the FPGA on-

demand, providing the flexibility needed by embedded systems. Over the past ten years,

the implementation of soft vector processors on FPGAs has matured significantly. A

number of projects have examined the implementation of data parallel applications on

FPGAs using these architectures. The VEGAS [2] and VENICE projects [18] examined

the implementation of soft vector processors on a range of FPGAs. These architectures

support a customizable number of operations performed in parallel, an optimized memory

interface, and a compiler. VENICE supports a simple, mask-based approach to

conditionally execute specific data-parallel operations. Conditional operations are

explicitly managed with code generated via compilation. The VESPA project [19]

explored a soft vector processor approach that considers the customization of the soft

vector processor instruction set and data bit widths. A later project [20] exploited the

pipeline parallelism found in FPGAs to create custom modules that can be integrated into

13

the soft vector processor datapath. As mentioned in the Section 2.2, although similar,

vector processors have a more constrained operating model compared to GPGPUs.

Specifically, vector processors require a compiler to perform strip mining of vector

accesses and explicitly manage the implementation of multiple threads.

Several FPGA-targeted projects considered the mapping of GPGPU applications

represented in OpenCL to multi-threaded implementations. The OpenRCL project [9]

focused on a compiler for a multi-core architecture. The results for a single application

mapped to a 30-core architecture using this LLVM-based compiler showed a 5x power

improvement versus a commercial GPU for similar performance. This implementation

does not implement multiple threads on a processor at the same time. Labrecque and

Steffan [4] described the multithreading of a single processor core. Hazard logic is

removed from the processor and hazards are avoided by switching between up to seven

different threads. Another work [3] considered an extension of this idea to include

multiple cores of these simple multi-threaded processors operating in parallel. Kingyens

and Steffan [21] described a GPU-like architecture that has some similarities to our

architecture. Their GPU-like architecture includes multithreading across 32 “batches”,

small cores which contain ALUs. This architecture was described in the context of a

graphics application although it was not fully implemented in RTL or in hardware. The

architecture is notable for its multiple execution cores, support for up to 256 threads, and

limited support for conditional data parallel execution. The architecture does not support

nested conditionals, multiple clusters of multi-processors, or a direct compile path for

CUDA or OpenCL GPGPU languages. Although these projects examined a similar goal

14

to ours, FlexGrip employs the ability to target CUDA or OpenCL code to FPGAs without

hardware recompile. In addition, the earlier architectures and compilers do not take

advantage of the dynamic thread scheduling and hardware-controlled parallel branch

mechanisms, including deeply nested loops, commonly found in GPGPUs and expected

by GPGPU compilers. FlexGrip is also scalable to multiple multi-processor clusters. Our

implementation is fully compatible with CUDA integer binaries and typical GPGPU

operation.

Many recent projects, including commercial offerings, have examined

synthesizing designs specified in CUDA and OpenCL to application-specific circuits

implemented in FPGAs. The MARC architecture [22], a multi-core with custom

datapaths, was optimized on a per-application basis to achieve competitive performance

versus full-custom FPGA implementation. The FCUDA project [5] developed a tool

which converts CUDA programs to a synthesizable version of C. A high-level synthesis

tool and FPGA compiler then converts this code to hardware circuits. This work was later

extended to consider the synthesis of multiple dependent kernels [23]. Owaida et al. [6]

presented an approach which converts OpenCL code to a synthesizable RTL template.

This approach is appropriate for applications and programmer coding styles which match

well with the template. Similarly, Shagrithaya et al. [24] developed an OpenCL compiler

with a library that supports the OpenCL host API. Finally, Altera has developed an

OpenCL compiler [25] which converts OpenCL programs to a series of custom parallel

compute cores. Although all of these approaches generate circuits which are optimized

for a specific application and reap the associated area, performance, and energy benefits,

15

they all require the substantial compile time associated with FPGA synthesis, place, and

route. The migration of a new application to the FPGA requires substantially more time

than the few seconds normally found when targeting CUDA programs to GPGPUs.

In direct relation with the approach discussed, a proliferation of work has been

done recently in the area of soft GPGPUs, attempting to implement GPGPU functionality

with configurable or application specific processing soft cores. Al-Dujaili, et al. [8]

implemented a simple soft-GPU based on the LEON3 processor with eight threads which

requires hand-compilation of GPU programs and tested only for matrix multiplication.

The implementation achieved speedups of up to 3x over the LEON3 architecture, with

the memory interface being the limiting performance factor. While this was an early

attempt at a soft-GPGPU, there are many recent papers that have cited and leveraged the

work of FlexGrip. Siddiqui, et al. [26] developed an architecture called Image Processing

PROcessor (IPPro) using small, reconfigurable soft-core scalar RISC processors. Similar

to FlexGrip, it features a five stage pipeline utilizing Xilinx DSP48E1 primitives as the

base design for the Arithmetic Logic Unit (ALU) and distributed block RAM to support

the memory hierarchy. A feature of IPPro is the ability to configure the cores as a multi-

core heterogeneous architecture, enabling the user to build either SIMD or MIMD

computational models. Unlike FlexGrip, the architecture specifically targets image

processing algorithms, using the RVC-CAL [27] dataflow language which is then

converted to IPPro binary code. An open source RTL implementation of a GPGPU called

MIAOW (Many-core Integrated Accelerator of Wisconsin) [28] was developed with an

architecture similar to AMD’s Southern Island (SI) ISA [29]. The authors devised a

16

hybrid strategy, with L2 cache, on-chip networks (OCN), and memory controllers

developed as C/C++ behavioral models and the remaining architecture implemented as

RTL. It is able to run applications written in standard OpenCL, supporting a subset of the

SI ISA, eliminating any graphic-related instructions. The MIAOW compute unit (similar

to NVIDIA’s SM) was synthesized using 32nm technology and is able to run at 222MHz.

An FPGA implementation, called Neko, was developed as part of the effort. Due to the

size, a single compute unit (CU) was implemented along with a Microblaze processor on

a Xilinx VC707 evaluation board with each CU requiring 195,285 LUTs (64% of

available resources) and 137 BRAMs (16% of available BRAMs). As Neko was based on

MIAOW, there was no RTL implementation of a memory controller, therefore the

Microblaze processor was used as an intermediary for accessing memory. However, there

were no timing or performance results reported for Neko. Similar to MIAOW, Kadi et al.

[30] developed FGPU (FPGA general purpose Graphical Processing Unit), using a

custom ISA, extended from MIPs and inspired from the OpenCL execution model. While

early versions required the user to write assembly code, a later version provided

compiling directly from OpenCL language. Each FGPU compute unit features a

scheduling unit, memory controller, runtime memory and eight processing elements.

Each processing element consists of a vector register file and an ALU. FGPU was

implemented on a Xilinx ZC706 development board which can support up to 8 compute

units. Results showed speedups between 10.6x and 48.5x over Microblaze and compared

to an equivalent ARM with the NEON SIMD engine achieved 3.5x when in the 8 CU

configuration. Nyami [31] is another open source soft-GPGPU implementation developed

in Verilog with an associated simulation model. It features an in-order, single issue,

17

unified scalar and vector pipeline with a register-to-register RISC ISA execution model.

A baseline configuration of Nyami consisting of DRAM, video controller, and a was

synthesized for the Altera Cylone IV E (EP4CE115F29C7) FPGA occupying a total of

92,186 logic elements (81% of the device logic). It was deployed on the Cyclone FPGA,

therefore no results were published, however, static timing analysis reported 30MHz.

There have been many recent studies with regard to GPGPU cache design and

optimization. The authors in [32] and [33] have looked at improvement methods of the

last level cache (LLC) to optimize data transfers and reduce latency between the CPU and

GPGPU. In [34], L2 cache locking techniques are examined in an effort to improve time

predictability for real-time applications.

There have been other studies that have looked at optimization of caches on a per-

SMP basis. Huangfu et al. in [35] increase cache performance by bypassing the cache

determined by profiling accesses. Thread mapping and scheduling techniques have also

been explored in order to dynamically quantify and improve performance, such as those

in [36], [37], [38], and [39]. Sankaranarayanan et al. [40] introduce an additional, shared

per-SP incoherent cache called tinyCache. They claim the ability to filter out 62% of

memory requests serviced by the L1 data cache, and almost 81% of requests to shared

memory providing a 37% energy reduction within the on-chip memory resources.

While these techniques are relevant to our work, FPGAs feature specific cache

design challenges, especially in highly multithreaded processors, such as soft GPGPUs

18

and soft vector processors (SVPs). Previous work on FPGA caches include TputCache

[41] which focused on implementing a highly-pipeline cache design operating at near

maximum frequency of BRAMs for throughput processing. The approach features a

replay-based architecture, the ability to support multiple outstanding misses, write

coalescing and arbitrary associativity. The design used the XMP SVP on the Cyclone IV

and Stratix IV FPGAs and achieved speedups of up to 10.5x versus the non-cache

architecture.

Other works includes Yiannacouras et al. [42] which analyzed the performance of

the memory subsystem by adjusting the cache depth, line size, and hardware prefetch

mechanism of their VESPA soft vector processor. They show an average performance

increase of nearly 2x for 1.8x the system design area.

Our approach attempts to effectively support the CUDA programming and

compile environments available to GPU programmers on FPGAs without the need for

costly hardware compilation or remapping to parallel RISC-style integer cores. We

envision such a system as being particularly useful for environments such as embedded

processing where compute nodes contain reconfigurable logic that may be used for many

different purposes at different times. In these cases, the extra cost, complexity, or power

consumption of an off-the-shelf GPGPU in the nodes may be unwanted or unnecessary.

The soft GPGPU can be swapped into the FPGA as needed and used to execute recently-

compiled (perhaps on-the-fly compiled) CUDA code. Several custom versions of the soft

GPGPU can also be available and swapped in based upon requirements, resource

19

availability in the FPGA, or architectural parameters needed by the application. Our

approach provides a fast way to target CUDA programs to these environments.

In addition, the previous works on caches focused on optimizing throughput for

highly data-parallel architectures, however do not address the cache hierarchy associated

with many designs. Similarly, to this date there have been no research into the design and

analysis of caches on soft-GPGPUs.

2.5 Summary

This chapter provided an introduction of the GPGPU architecture and described

terminology essential for understanding the concepts of execution. It outlined how

parallel execution occurs as seen from the programmer and the GPGPU hardware. The

discussion included comparing GPGPUs to vector processors, an FPGA overlay

architecture that can execute SIMD-style computations. The chapter concludes exploring

research related to our work, showing the various methodologies used to implement

GPGPUs on FPGAs.

20

CHAPTER 3

FLEXGRIP SOFT-GPGPU

3.1 FlexGrip System Overview

Our FlexGrip soft GPGPU detailed in this section is part of our published work

[10]. The design is used in concert with a Xilinx MicroBlaze to execute parallel

operations. The FlexGrip soft GPGPU is attached to the Xilinx MicroBlaze soft-core

microprocessor via the AXI bus as shown in Figure 3. During execution of a program, the

MicroBlaze processor loads a driver that communicates control, status, and data to the

AXI bus interface logic. The control logic acts as an interface between the AXI bus and

the FlexGrip GPGPU. It executes functions depending on the values written to the control

register. Once the driver is loaded, it dispatches CUDA instructions and data which in

turn are loaded into system and global memory, respectively, by the control logic. In

addition, the driver loads parameters associated with the CUDA kernel program such as

thread block and grid dimensions, number of thread blocks per SM, the number of

registers used per thread, and the shared memory size. These parameters are stored in the

GPGPU configuration registers. After initialization, control flow is passed to the GPGPU

to execute the CUDA kernel. During this period, the MicroBlaze processor can continue

execution concurrently with the GPGPU.

FlexGrip follows a SIMT model in which an instruction is fetched and mapped onto

multiple scalar processors simultaneously. The block scheduler is responsible for

scheduling thread blocks in a round-robin fashion. The number of thread blocks

scheduled at the same time is determined by the number of scalar processors in an SM

21

and the number of SMs. After scheduling the thread blocks, the block scheduler signals

the warp unit to initiate scheduling the warps, which are contained within the respective

thread blocks. The maximum number of thread blocks that can be scheduled to a SM is

restricted by the available shared memory and SM registers. The GPGPU controller acts

as the interface between the block scheduler and the SM. It initializes registers in the

vector register file with respective thread IDs.

Figure 3: Overview of the system architecture showing the FlexGrip GPGPU connected

to the MicroBlaze processor via the AXI bus

3.2 FlexGrip Streaming Multiprocessor

For this custom FPGA implementation, we have developed a five-stage pipelined

SM architecture, shown in Figure 4. The SM includes Fetch, Decode, Read, Execute and

22

Write stages. The warp unit at the front of the pipeline coordinates the execution of

instructions through the pipeline. The following sections elaborate on the different blocks

used in this architecture. Once the block scheduler assigns thread blocks to a specific SM,

the warp unit assigns threads to specific scalar processors (SP). This unit schedules warps

in a round-robin fashion. Each warp includes a program counter (PC), a thread mask, and

state. Each warp maintains its own PC and can follow its own conditional path. The mask

is used to prevent thread execution within a warp for threads which do not meet specific

conditions. The warp state indicates the status of the warp: Ready, Active, Waiting or

Finished. The Ready state indicates that the warp is idle and is ready to be scheduled,

while the Active state indicates that the warp is currently active in the pipeline.

Within a warp, threads are arranged in rows depending on the number of scalar

processors (SP) instantiated within an SM. For example, for an 8-SP configuration, a

warp with 32 threads would be arranged in four rows with each row containing 8 threads.

Similarly, for a 16-SP configuration, a warp would be arranged in two rows with 16

threads each. The maximum parallelism is achieved with 32 SPs and one row.

The Fetch stage is the initial stage of the execution pipeline and is responsible for

fetching four or eight-byte CUDA binary instructions from system memory. After

fetching the instruction, the PC value is incremented (by 4/8 bytes) to point to the next

instruction. The Decode stage decodes the binary instruction to generate several output

tokens such as the operation code, predicate data, source and destination operands.

23

Figure 4: Block diagram depicting the details of the FlexGrip Streaming Multiprocessor

In the Read stage, source operands are read from the vector register file or

shared/global memory blocks depending on the decoded inputs. The vector register file

is partitioned, with each thread assigned a set of general-purpose registers. The address

register file stores memory addresses for load and store instructions. All instructions can

include an optional predicate flag that controls conditional execution of the instruction

(predicate instructions). The predicate register file is used to store these predicate flags,

each of which is then used as an index into a predicate look-up table which obtains the

predicated instruction (i.e.: less than, greater than, etc.). The active-thread mask is

updated by combining the thread mask with the predicated instruction. The constant

memory is a read-only memory which is initialized by the host.

The Execute stage consists of multiple scalar processors and a single control flow

unit. This unit operates on control flow instructions such as branch and synchronization

instructions which are described in more detail in the next section. Each thread is mapped

to one scalar processor, enabling parallel execution of threads. The scalar processors

24

support integer-type addition, subtraction, multiplication, multiply and add, data type

convert operations, shifting operations and Boolean logic operations.

The Write stage stores intermediate data in the vector register file, memory

addresses in the address register file, and predicate flags in the predicate register file.

Final results are stored in the global memory. All pipeline stages output a stall signal that

is fed to the preceding stage. The stall signal indicates that the stage is busy and not ready

to accept new data.

3.3 CUDA Instructions

The soft GPGPU supports the NVIDIA G80 instruction set with compute

capability 1.0. Instructions were tested based on the requirements of the selected

benchmarks. We tested 27 integer CUDA instructions as a part of this research. The list

of all supported instructions is shown in Table 1. All instructions needed by our

benchmark circuits are supported.

25

Table 1: FlexGrip-Supported CUDA Instructions

Opcode Description

I2I Copy integer value to integer with conversion

IMUL/IMUL32/IMUL32I Integer multiply

SHL Shift left

IADD Integer addition between two registers

GLD Load from global memory

R2A Move register to address register

R2G Store to shared memory

BAR Barrier synchronization

SHR Shift right

BRA Conditional branch

ISET Integer conditional set

MOV/ MOV32 Move register to register

RET Conditional return form kernel

MOV R, S[] Load from shared memory

IADD, S[], R Integer addition between shared memory and register

GST Store to global memory

AND C[], R Logical AND

IMAD/IMAD32 Integer multiply-add; all register operands

SSY Set synchronization point; used before potentially

divergent instructions

IADDI Integer addition with an immediate operand

NOP No operation

@P Predicated execution

MVI Move immediate to destination

XOR Logical XOR

IMADI/ MAD32I Integer multiply-add with an immediate operand

LLD Load from local memory

LST Store to local memory

A2R Move address register to data register

3.4 FPGA-Specific Considerations

All circuitry described in this section has been implemented in a Virtex-6 FPGA

and has been shown to operate correctly. While a strength of the FlexGrip architecture is

its ability to execute numerous CUDA binaries without the need for FPGA design

recompilation, a user may select to create a new FlexGrip implementation, if desired. The

FlexGrip architecture is designed such that different counts of scalar processors per SM,

26

SMs per GPGPU, warp stack size, and multiplier/third operand usage can be

implemented by modifying parameters in a configuration file and rerunning Xilinx tools.

Depending on the target FPGA platform, the user can customize FlexGrip to maximize

performance or area. For a specific FlexGrip hardware implementation, a small set of in-

design registers are used to store application specific configuration information, such as

thread block count.

Most of FlexGrip source code was written in custom VHDL code to provide for

fine-grained control, although MATLAB's Simulink was used for coarse-grained

functions. Xilinx System Generator converts MATLAB Simulink blocks to RTL code for

rapid development of FPGA designs. For example, Simulink was used to connect DSP,

adder, and multiply blocks together to form SP functional units. To minimize data

latency, we heavily utilize dual-ported block RAMs throughout the design. In the case of

the warp unit scheduler, the state information and the data are stored in block RAM

indexed by the warp ID. This allows warps to be scheduled every clock cycle after an

initial one clock cycle of latency. Similarly, the vector, predicate, and address registers

use dual-port block RAM providing simultaneous read and write access. To support the

numerous integer arithmetic instructions, the scalar processors take advantage of Xilinx's

DSP48E1 digital signal processing blocks. A single DSP slice can support add/subtract,

multiply, multiply add, shift, and bitwise logic instructions.

27

3.5 Experimental Methodology

3.5.1 Software Flow

The complete CUDA binary code generation flow is illustrated in Figure 5. At

compile time, the input program is divided by the CUDA front-end (cudafe) into C/C++

host code and the GPU device code. The GPU code is fed to the host compiler (e.g.: gcc,

cl) to generate a filehash containing device code descriptors. The device descriptors are

evaluated by runtime libraries whenever device code is invoked by the system. The

NVIDIA CUDA compiler (nvcc) converts this information to PTX assembly instruction

code which is then converted to CUDA binary instructions (.cubin). This code, along

with the device code descriptors, are merged (fatbin) and compiled together with the host

compiler to produce a final executable. Microsoft Visual Studio 2008 and NVIDIA

Toolkit v2.3 are used together to compile the CUDA code file. The NVIDIA toolkit is

comprised of the NVIDIA CUDA compiler (nvcc), and the CUDA driver and runtime

API libraries required for building the executable and the cubin file.

3.5.2 Design Environment and Benchmarks

Synthesis was performed using the Xilinx ISE 14.2 toolkit and Modelsim SE 10.1

was used for simulation and verification. A block-level simulation approach was adopted,

where each block was individually verified using logic simulation in addition to a system

level verification. Inputs were stimulated using CUDA binary instructions and data stored

in block RAM. To rapidly evaluate a variety of benchmarks and data, we generated

Memory Initialization Files (.mif) that were used to populate Xilinx Block RAM cores.

28

Figure 5: Software Flow for the FlexGrip Soft GPU

We have evaluated five CUDA applications, bitonic sort (bs), autocorrelation

(ac), matrix multiplication (mm), parallel reduction (pr) and transpose (tr) from the

University of Wisconsin [43] and the NVIDIA Programmer's Guide [44], using FlexGrip.

The mix of data-parallel (e.g. multiply, transpose) and control-flow intensive (e.g. bitonic

sort) benchmarks helped us evaluate our platform. Figure 6 provides a breakdown of the

instruction operations by type for each of the benchmarks.

29

Figure 6: Percent of instruction operations executed for each benchmark

3.6 Experimental Results

The FlexGrip soft GPGPU design was implemented on a Xilinx ML605

development board [12] which utilizes a Virtex-6 VLX240T device. The device area and

design operating frequency for designs with a varying number of scalar processors are

annotated in

Table 2.

We performed experiments and compared performance and energy results against a

Xilinx MicroBlaze soft-core processor with about 3,000 LUTs running at 100 MHz using

C versions of the same benchmarks. For the purposes of this paper, a design with a single

SM and 8 scalar processors was implemented and benchmarked on the ML605 board,

while 16- and 32-SP designs were simulated. The FlexGrip design implemented in

30

hardware could successfully run all five benchmarks using the same FPGA bitstream.

The CUDA compile times for all benchmarks were less than one second.

Table 2: Area comparison of FlexGrip implementations

Parameters Freq.

(MHz)

LUTs FFs BRAM DSP48E

1 SM – 8 SP 100 60,375 103,776 124 156

1 SM – 16 SP 100 113,504 149,297 132 300

1 SM – 32 SP 100 231,436 240,230 156 588

3.6.1 Architectural Scalability

We ran experiments by varying the number of scalar processors within a single

SM, which effectively varies the number of threads that can be executed in parallel.

Figure 7 shows application speedups versus a MicroBlaze for a varying number of SPs

per SM. Application speedups range from 7x to 29x with an average speedup close to 12x

for 8 SPs, 18x for 16 SPs, and 22x for 32 SPs. Since they are highly data parallel, matrix

multiplication and reduction show the largest speedups. Reduction has a highly

symmetric data flow graph consisting of multiple iterations. The number of array

elements in the benchmark is halved with each iteration, progressively leading to smaller

number of scheduled warps. Considering the array size to be a multiple of 32 (the warp

size), all active threads remain tightly packed within a warp in every iteration, thus fully

utilizing the warp at all times. In bitonic, the sorting network consists of a fixed number

of swapping operations that are performed at every stage. Though the warp divergence

increases with an increased number of parallel threads, the divergence cost is amortized

by performing more swapping operations in parallel. Transpose shows less speedup due

to low arithmetic intensity and memory bandwidth limitations. Matrix multiply has better

31

performance than transpose, as the former has higher arithmetic density which amortizes

the number of required memory accesses.

Figure 7. Speedup vs. MicroBlaze for variable scalar processors and input data size 256

for 1 SM

One common limitation to cycle speedup for all benchmarks targeted to our

architecture is memory access. Memory operations are most effective when the burst data

is written and read in parallel. This action requires the memory to be split up into

multiple banks and coalesced, such that consecutive memory addresses fall into

consecutive banks. Most data parallel CUDA kernels include neighboring threads that

access consecutive memory locations. However, for control flow intensive applications

where data accesses are not sequential, memory mapping is more of a challenge,

especially if multiple threads access the same memory location. For the sake of

architectural simplicity, enhanced support for memory coalescing was not included in our

32

soft GPGPU prototype. The matrix benchmarks pay a slightly larger penalty for memory

bandwidth limitations due to a larger number of scatter-gather memory operations.

3.6.2 Application Scalability

Experiments were conducted to observe the performance of the soft GPGPU in

comparison to MicroBlaze for varying problem (input data array) sizes of each

benchmark. The speedup results are shown in Figure 8. Due to its regular kernel

structure, reduction reaps the steepest performance benefits of almost 30x as the size of

the array becomes large. With increasing array size, performance increases gradually for

both autocorrelation and bitonic up to a certain point and then begins to taper off. This

result can be attributed to the accumulation of the warp divergence penalty over the

execution time of larger arrays, amortizing the parallel processing benefits. Matrix

multiply shows a speedup of about 27x, with transpose showing an average speedup of

22x. The flat curve of both benchmarks is due to limitations of the memory bandwidth.

Figure 8. Speedup of 1 SM, 32-SP GPGPU vs. MicroBlaze for varying problem size

33

3.6.3 Energy Efficiency

We used Xilinx's XPower power estimator tool to determine static and dynamic

power for the designs (Table 3). Since static power is largely a function of the device

size, we evaluate the dynamic energy consumption of the implementations. This value is

determined by multiplying dynamic power by application execution time. In Table 4, it is

shown that the baseline FlexGrip dramatically reduces dynamic energy consumption

versus the MicroBlaze, primarily due to reduced execution time. FlexGrip also uses the

same instruction for many scalar processors, limiting instruction memory accesses. For a

1 SM, 8 SP configuration, the dynamic energy reduction is about 80%, on average.

Table 3. FPGA Power Estimates (W) at 100 MHz

 Dynamic Static Total

1 SM, 8 SP 0.84 3.45 4.29

1 SM, 16 SP 1.08 3.46 4.54

1 SM, 32 SP 1.39 3.46 4.85

MicroBlaze 0.37 2.00 2.37

Table 4. MicroBlaze vs. FlexGrip Energy Consumption: 256 data size

b
en

ch
m

ar
k
 MicroBlaze 8 SP 16 SP 32 SP

Exec.
Time

(ms)

Dyn.
Ene.

(mJ)

Exec.
Time

(ms)

Dyn.
Energy

(mJ)

Ene.
Red.

Exec.
Time

(ms)

Dyn.
Energy

(mJ)

Ene.
Red.

Exec.
Time

(ms)

Dyn.
Energy

(mJ)

Ene.
Red.

ac 277 102.49 40.28 33.84 67% 32.20 24.89 66% 24.89 19.64 66%

bs 118 43.66 9.39 7.88 82% 5.95 4.64 85% 4.64 3.66 85%

mm 186041 68835.17 14098.02 11842.34 82% 8735.90 6904.07 86% 6904.07 5461.12 86%

rd 11 4.07 0.66 0.55 86% 0.47 0.38 87% 0.38 0.30 87%

tr 705 260.85 57.79 48.54 81% 38.74 31.48 84% 31.48 24.84 83%

3.7 Summary

In this chapter, the FlexGrip soft GPGPU architecture was described. The scalable

design was shown to be fully implemented and tested on a Xilinx ML605 development

board. A novel design aspect of GPGPUs versus microprocessors and vector processors

34

is the ability to handle thread divergence and barrier synchronization in hardware. The

FlexGrip soft GPGPU provides control circuitry, which can automatically handle

complex conditional control operations in hardware, similar to the GPGPU programming

model. We showed our design has been validated using five benchmarks which were

compiled from CUDA to a binary representation. All five benchmarks were executed

using the same FlexGrip design (no need to create a new bitstream). The binary was

executed on the soft GPGPU without any per-application hardware modifications.

Experimental results demonstrate application speedups of up to 30x versus a MicroBlaze

soft processor for highly parallel benchmarks.

35

CHAPTER 4

FLEXGRIP SOFT-GPGPU OPTIMIZATIONS

This section expands upon our previous work in [10] to show how the support of

fine-grained control access allows for features to be optimized from the FlexGrip design,

which is described in our Architectural Evaluation publication [11]. We provide the

details of the optimizations and their results within this section.

4.1 Architectural Optimizations

4.1.1 Conditional Branch Circuitry Optimization

A key contribution of the FlexGrip soft GPGPU is its ability to support thread-

level branching in hardware. These resources provide an opportunity for architectural

optimization for specific classes of applications which may exhibit less control-intensive

behavior. The execution of threads in a warp diverges if the results of a conditional

operation are different for different threads. In case of divergence, execution for some

threads proceeds along one path (e.g., not-taken) while other threads are idle. When

instructions for the not-taken path complete, the execution switches to the alternative

execution path (taken path) for the remaining threads while the first set of threads are

idle. When both execution paths are finished, a reconvergence point in the code is

reached. At this point, execution is resynchronized across all threads and the same set of

instruction operations is unconditionally performed by all threads once again. The

reconvergence point is generally identified by a set synchronization (SSY) instruction

that is executed just prior to the execution of the instruction which sets the branch

condition.

36

To synchronize multiple warps within a thread block at a reconvergence point,

CUDA supports explicit barrier synchronization. Warps that reach the barrier instruction

first have to wait for other warps to reach the same checkpoint. At that point, they are

marked as Waiting in warp state memory stored in the warp unit (not shown in Figure 4).

When all the threads in a warp finish executing the kernel, the warp is declared Finished.

The warp state memory holds the state of each warp and warp data memory (also in the

warp unit) holds the active-thread mask and the warp PC.

Figure 9: FlexGrip conditional branch and warp stack architecture. There is one stack and

one set of predicate registers for each of the eight warps

To handle conditional execution, each of the eight warps per SM has its own warp

stack that includes an instruction address (32 bits), type identifier (2 bits), and an active-

thread mask (32 bits) in each stack entry [13] (Figure 9). The instruction address of the

37

taken branch and the active-thread mask prior to evaluation of the conditional operation

is stored on a warp stack for safekeeping. The stored mask contains one bit for each

thread in the warp and the type identifier indicates if the instruction address is a

reconvergence point or the start address of taken branch instructions. When the taken

path of the branch is reached, the stack is popped and the active-thread mask for the warp

is inverted to allow for execution of this second path. When the reconvergence point is

reached, the original active-thread mask is retrieved by popping the stack.

A complete view of the hardware architecture used to control conditional

execution in FlexGrip is shown in Figure 9. The execution of a conditional (predicate)

instruction results in the generation of a four-bit predicate for each instruction (sign, zero,

carry, and overflow). This four-bit instruction result for each thread is assigned to a

predicate register. Each thread has 4 four-bit predicate registers (p0 through p3) assigned

to it. For each thread, the value in the selected predicate register and the condition for the

instruction executed for the branch (e.g. <, >, =) are used as in index into a lookup table

to generate an instruction mask. One mask bit is generated for each thread. This mask is

combined with a thread mask (e.g. thread not Finished or Waiting) to generate the active-

thread mask for the warp. Warp stack pushing and popping of this information is

controlled by the control flow unit state machine.

In the GPGPU control architecture, nested conditionals are possible, requiring a

deep stack to hold nested address and mask information. In the worst case, only one of 32

threads may execute at a specific time, requiring support for conditional nesting up to 32

38

entries deep. However, for many applications, a much smaller stack depth is required.

This depth can be determined by examining the amount of control nesting in the program

or by profiling the application with representative data sets. In our optimizations, we

consider the application warp stack depth as an optimization parameter. In Section 4.2,

several architectures with varied warp stack depths are made available for execution. The

size of the warp and associated control circuitry is reduced from a stack depth of 32 based

on application needs. This reduction saves associated memory and logic resources,

leading to energy savings.

4.1.2 Multiple Streaming Multiprocessors

A notable feature of our architecture is its support for multiple SMs. A thread

block of up to 256 threads can be assigned to any available SM by the block scheduler

(Figure 1). The number of thread blocks is specified by the programmer and passed to the

FlexGrip architecture by the MicroBlaze driver at run-time. The allocation of SM shared

memory and the number of registers required per block are also determined during

scheduling. The values are determined during compilation and stored in GPGPU

configuration registers. After assignment by the block scheduler, the warp unit in the SM

uses the parameters to generate and schedule warps.

Table 5: FlexGrip Physical Limits

Parameters Constraint

Threads per Warp 32

Warps per SM 24

Threads per SM 768

Thread Blocks per SM 8

Total Number of 32-bit Registers per SM 8,192

Shared Memory per SM (bytes) 16,384

39

At the start of kernel execution, the maximum number of thread blocks that can

be scheduled is calculated. This value is limited by the number of allocated warps per

SM, the number of registers per SM, and the size of the shared memory per SM. As an

example, consider a kernel with 256 threads per thread block. The block requires 4 KB

memory and each thread requires 8 registers. Table 5 lists the physical limits of the

FlexGrip GPGPU. With 256 threads per block, the number of blocks per SM, 3, is

calculated with the following formula:

𝐵𝑙𝑜𝑐𝑘𝑠𝑃𝑒𝑟𝑆𝑀𝑊𝑎𝑟𝑝𝑠 =
𝑊𝑎𝑟𝑝𝑠𝑃𝑒𝑟𝑆𝑀

𝑇ℎ𝑟𝑒𝑎𝑑𝑠𝑃𝑒𝑟𝐵𝑙𝑜𝑐𝑘
𝑇ℎ𝑟𝑒𝑎𝑑𝑠𝑃𝑒𝑟𝑊𝑎𝑟𝑝⁄

=
24

256
32⁄

= 3 (1)

Next, we determine the number of blocks that can be scheduled based on the number of

allocated registers:

𝐵𝑙𝑜𝑐𝑘𝑠𝑃𝑒𝑟𝑆𝑀𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑠 =
𝑇𝑜𝑡𝑎𝑙𝑅𝑒𝑔𝑠

𝑇ℎ𝑟𝑒𝑎𝑑𝑠𝑃𝑒𝑟𝐵𝑙𝑜𝑐𝑘 ×𝑅𝑒𝑔𝑠𝑃𝑒𝑟𝑇ℎ𝑟𝑒𝑎𝑑
=

8192

256×8
= 4 (2)

Finally, the number of blocks per SM based on the requested shared memory size is

calculated by the following:

𝐵𝑙𝑜𝑐𝑘𝑠𝑃𝑒𝑟𝑆𝑀𝑆ℎ𝑎𝑟𝑒𝑑𝑀𝑒𝑚 =
𝑆ℎ𝑎𝑟𝑒𝑑𝑀𝑒𝑚𝑃𝑒𝑟𝑆𝑀

𝑆ℎ𝑎𝑟𝑒𝑑𝑀𝑒𝑚𝑆𝑖𝑧𝑒
=

16384

4096
= 4 (3)

The maximum number of blocks that can be scheduled to each SM is the minimum

number of the three values calculated, which in our example is 3.

Control signals from the SM notify the block scheduler when all thread blocks

have completed and scheduling of subsequent blocks can begin. Once all thread blocks

have successfully executed, the block scheduler signals the GPGPU, which will notify the

driver that execution has completed.

40

4.1.3 Source Operand Optimization

Figure 10 depicts the detailed view of the read stage, which consists of a read

controller, parallel read source operand units, and interface controllers to memory

subsystems and registers. The arithmetic portion of the execute stage is shown on the

right side of the figure. The read controller takes in data from the decode stage, performs

pre-processing depending on the operation, and then directs the data to each of the read

operand units. These units are functionally identical, allowing for read operations to be

performed in parallel. However, they can perform different functions depending on the

instruction passed to them at run time. For example, one of the modules may perform a

read operation from global memory, while the others perform a read operation from the

register file.

The modular independence of the read hardware allows for the removal of one of

the read operand modules and the multiplier if they are not needed by an application. For

example, if an application does not perform multiply or multiply-accumulate operations,

a version of the GPGPU which does not include these features could be used. This

hardware is represented by the shaded blocks in Figure 10. The area and energy benefits

of removing this hardware for selected applications are explored in Section 4.2.

41

Figure 10: FlexGrip read stage and execute unit

4.2 Experimental Results

We extended the design described in Section 3 to compare a single SM versus two

SMs, each with 8, 16, and 32-SP via simulation. The same baseline FlexGrip design with

no architectural optimizations implemented in hardware could successfully run all five

benchmarks using the same FPGA bitstream. The device area and design operating

frequency for designs with a varying number of scalar processors and streaming

multiprocessors are annotated in Table 6.

Table 6: Area comparison of FlexGrip implementations for 1 and 2 SMs

Parameters Freq.

(MHz)

LUTs FFs BRAM DSP48E

1 SM – 8 SP 100 60,375 103,776 124 156

1 SM – 16 SP 100 113,504 149,297 132 300

1 SM – 32 SP 100 231,436 240,230 156 588

2 SM – 8 SP 100 135,392 196,063 238 306

2 SM – 16 SP 100 232,064 287,042 262 594

2 SM – 32 SP 100 413,094 468,959 310 1170

42

4.2.1 Comparison versus the MicroBlaze Soft-Core Processor

4.2.1.1 Architecture Scalability

We ran experiments by varying the number of scalar processors within a single

SM and across 2 SMs which effectively varies the number of threads that can be executed

in parallel. Benchmarks autocorr, bitonic, and reduction used input data sets of 32, 64,

128, and 256 values. Benchmarks matrix multiplication and transpose used input data

sets of 32x32, 64x64, 128x128, and 256x256 for experimentation.

Figure 11. Speedup vs. MicroBlaze for variable scalar processors and input data size 256

for 2 SM

For experiments performed with 2 SMs, the block scheduler logic equally

and automatically distributed thread blocks to the multiple SMs, thus reducing the

workload of each SM to roughly half of the 1 SM cases. All benchmarks

exhibited additional speedups versus the 1 SM case for the same number of SPs

per SM. As shown Figure 11 and Table 7, the peak speedups for the 2 SM, 32-SP

implementations of the benchmarks offer over a 40x speedup for four out of the

five benchmarks.

43

Table 7: Comparison of FlexGrip implementations

 AutoCorr Bitonic MatrixMul Reduction Transpose

 Time

(ms)

Speed

Up

Time

(ms)

Speed

Up

Time

(ms)

Speed

Up

Time

(ms)

Speed

Up

Time

(ms)

Speed

Up

 32 or 32x32

uBlaze 5.0 - 6.0 - 374.0 - 1.0 - 11.0 -

8 SP 1.8 2.9 0.8 7.9 29.0 12.9 0.1 7.2 0.9 12.2

16 SP 1.0 4.8 0.6 10.7 21.4 17.5 0.1 8.7 0.6 18.2

32 SP 0.8 6.3 0.5 13.1 14.3 26.2 0.1 10.6 0.5 22.3

 64 or 64x64

uBlaze 18.0 - 17.0 - 2947.0 - 2.0 - 45.0 -

8 SP 3.4 5.3 1.4 11.9 225.4 13.1 0.2 11.7 3.6 12.5

16 SP 2.7 6.7 1.0 16.3 166.3 17.7 0.1 15.1 2.4 18.6

32 SP 2.1 8.4 0.9 20.0 110.6 26.6 0.1 17.7 2.0 22.9

 128 or128x128

uBlaze 70.0 - 46.0 - 23368.0 - 5.0 - 177.0 -

8 SP 11.1 6.3 3.9 11.7 1776.0 13.2 0.3 16.0 14.4 12.3

16 SP 8.8 8.0 2.5 18.4 1311.5 17.8 0.2 22.0 9.7 18.3

32 SP 6.9 10.2 2.0 23.6 870.3 26.9 0.2 26.6 7.9 22.5

 256 or 256x256

uBlaze 277.0 - 118.0 - 186041.0 - 11.0 - 705.0 -

8 SP 20.9 13.3 5.2 22.7 7120.3 26.1 0.4 27.5 29.2 24.1

16 SP 16.6 16.7 3.2 36.9 4412.1 42.2 0.3 36.7 19.5 36.2

32 SP 12.8 21.6 2.5 47.2 3486.9 53.4 0.2 55.0 15.9 44.3

Table 8 shows the scalability of our architecture. Speedups for 2 SM versus 1 SM

versions of the same benchmark ranged from 1.77 (Reduction) to 1.98 (Transpose and

Matrix Multiply). The block scheduler was able to distribute thread blocks more evenly

between the two SMs for the latter two applications due to a smaller number of

conditional statements in the applications versus the other three applications.

Table 8. Speedup of 2 SM versus 1 SM for input data size 256

 8 SP 16 SP 32 SP

Autocorr 1.94 1.94 1.94

Bitonic 1.82 1.83 1.85

MatrixMul 1.98 1.98 1.98

Reduction 1.78 1.77 1.77

Transpose 1.98 1.98 1.98

44

4.3 Energy Comparison versus a CPU running Ocelot

In general, the use of a power-hungry multicore processor is not an option for many

embedded systems. However, since Ocelot [45] offers a non-GPGPU platform for direct

CUDA execution, we compared energy and performance results for Ocelot running under

Ubuntu 12.04 versus FlexGrip implementations on the Virtex-6 FPGA. The tested

microprocessor is a 2.6 GHz Intel Core i7 2960-XM microprocessor with 16 GB of

DRAM. For the purpose of our experiments, we ran Ocelot using the LLVM option and

all optimizations enabled. To gather energy statistics, we used the Intel Power Gadget

[46] which is capable of monitoring real-time power usage. The dynamic energy results

for each of the benchmarks is listed in Table 9.

Table 9. Ocelot Energy Consumption: 256 data size

 Core i7 8 SP 16 SP 32 SP

Exec.

Time

(ms)

Dyn.

Pwr.

(W)

Dyn.

Energy

(mJ)

Exec.

Time

(ms)

Dyn.

Energy

(mJ)

Exec.

Time

(ms)

Dyn.

Energy

(mJ)

Exec.

Time

(ms)

Dyn.

Energy

(mJ)

Autocorr 0.26 9.6 2.50 40.28 31.78 32.20 25.40 24.89 19.64

Bitonic 0.85 9.9 8.39 9.39 7.40 5.95 4.69 4.64 3.66

MatrixMul 260.97 10.4 2800.79 14098.02 11151.54 8735.90 6910.09 6904.07 5461.12

Reduction 2.41 10.3 24.95 0.66 0.52 0.47 0.37 0.38 0.30

Transpose 0.84 10.4 8.81 57.79 45.60 38.74 30.56 31.48 24.84

 As shown in Table 9, two of the five benchmarks, bitonic sort and reduction,

were found to require 34% and 88% less energy for the 32-SP implementation,

respectively, although, not surprisingly, all benchmarks executed considerably faster on

the microprocessor. The energy reduction for these benchmarks can be attributed to

regular memory accesses that limit FlexGrip stalling.

45

4.4 Architectural Customization

To limit the need for dynamic FlexGrip recompile during runtime, we would

expect that user would have several precompiled FlexGrip bitstreams available for

download to an embedded FPGA to execute target CUDA applications. The needed

FlexGrip design characteristics represented by the bistreams were explored via

experimentation.

Table 10. Results of FlexGrip optimizations for an 1 SM, 8 SP system

 Num. of

Operands

Warp

Depth

Slice

LUTs

Flip

Flops

Black

RAM

DSP % Area

Reduction

% Dyn.

Energy

Reduction

Baseline 3 32 60,375 103,776 124 156 - -

Autocorr 3 16 52,121 82,017 124 156 14% 3%

MatrixMul 3 0 42,536 60,161 124 156 30% 9%

Reduction 3 0 42,536 60,161 124 156 30% 9%

Transpose 3 0 42,536 60,161 124 156 30% 9%

Bitonic 3 2 39,189 57,301 124 156 35% 15%

Bitonic 2 2 22,937 27,136 120 12 62% 38%

To evaluate the possible benefits of removing unneeded features from FlexGrip,

we ran several experiments to determine the minimum required architectural

configuration for area and energy optimization for each application. As described in

Section 4.1, the specific optimizations include reducing the size of the warp stack (and

associated control logic), removing the multiplier, and removing the third-operand read

circuitry from the read stage of the SM pipeline. Table 10 lists the optimizations

performed for each of the benchmarks. By performing an instruction analysis, we can

determine the minimal set of functions needed to support each benchmark. The baseline

scalar processor supports all instructions listed in Table 1 with no optimizations. Of the

five benchmarks, we were able to remove the multiplier/third operand for bitonic, since

46

the benchmark does not require multiply operations. Effectively, any benchmark which

performs multiplies could use this FlexGrip version and obtain the 23% dynamic energy

reduction versus FlexGrip with a reduced warp stack and 38% dynamic energy reduction

versus baseline FlexGrip. We note that only the multiply-add (MAD) instruction requires

three operands, therefore by eliminating the multiply unit the need for support of a third

operand is removed. A total of 12 DSP blocks are still used for address calculation in the

FlexGrip control circuitry.

Table 10 indicates that the necessary depth of the warp stack for applications

varies. As noted in Section 4.1.1, each warp has its own warp stack, which is configured

as 32 registers of 66-bits each. For short instruction sequences, such as if statements

without a corresponding else, the compiler uses condition codes to avoid managing

divergence, reducing the need for significant warp stack depth. In cases with longer

sequences of conditional code, conditional branches are used. For matrix multiplication,

reduction, and transpose, conditional branches are minimized, limiting warp stack usage.

By customizing the warp stack, a LUT area reduction of up to 35% and a dynamic energy

reduction of up to 15% can be realized.

In an embedded system, one could consider compiling and storing the bitstreams

for four separate FlexGrip GPGPUs. The baseline system would include a multiplier and

a full 32-depth warp stack. A second system would include a 16-depth warp stack and a

third system would have a 2-depth stack. Finally, the fourth system would include a 2-

deep warp stack and no multiplier/third operand fetch unit.

47

4.5 Summary

In this chapter we explored the possibility of providing a small set of FlexGrip soft

GPGPU implementations that could be targeted to classes of applications with different

execution characteristics (e.g., reduced conditional operation, no multiplication). We

showed that architectural optimization can reduce dynamic energy consumption by 14%

and LUT area by 33%, on average. Experimental results demonstrated application

speedups of up to 55x for a FlexGrip design with two streaming multiprocessors (SMs)

versus a MicroBlaze soft processor operating at the same clock frequency for highly

parallel benchmarks.

48

CHAPTER 5

A COMPARISON OF CACHE CONFIGURATIONS FOR SOFT-GPGPUs

5.1 Overview

The effectiveness of GPGPUs relies on their ability to execute thousands of

threads in parallel, however the peak performance is typically bandwidth limited. One

technique employed to overcome this limitation is to utilize thread switching to hide

memory latency. In an effort to provide sufficient memory bandwidth, GPU designers

have begun to implement cache memory as part of the architecture, a technique

commonly used in CPUs. In CPUs, cache memory is used to bridge the performance gap

by mitigating long accesses to memory [13]. Adding cache accesses to prevent long

latency off-chip memory accesses allows for efficient and fast access to data, especially

for data that exhibit good temporal and spatial locality. However, in the case of GPUs,

caches are used to reduce the amount of in-flight data requests caused by massive

multithreading. The amount of data reused can provide significant speedup, especially for

those applications that provide regular memory access patterns.

The GPU processors found today, such as NVIDIA’s GPUs, adopt a multilevel

cache design structure as shown in Figure 12. Level-1 cache is private per streaming

multiprocessor and installed on the same physical module as the shared memory.

Introduced with the Fermi architecture, the amount of cache and shared memory can be

configured by the programmer allowing either 48kB of shared memory and 16kB of L1

cache or as 48kB of L1 cache and 16kB of shared memory. In the case of L2 cache, it is

shared among all the streaming multiprocessors on a GPU device.

49

Figure 12. GPU architecture highlighting the multi-level cache hierarchy

5.2 Motivation

The FlexGrip soft-GPGPU contains one or more highly threaded streaming

multiprocessors, each with a number of scalar processors which have the ability to

execute assigned threads in a parallel fashion. Upon launch of a GPGPU kernel and prior

to execution, the runtime uses the block and grid parameters to create a massive number

of threads that are organized hierarchically. The threads are then assigned consecutive

IDs (thread identifiers or tid) which are then grouped into warps, with 32 threads per

warp. Multiple warps are then assigned to a thread block with all thread blocks

comprising a grid. During execution, warps are assigned to an SM and are then

scheduled, with each thread within a warp executing in lockstep fashion.

In NVIDIA’s CUDA GPGPU architecture, when the 32 threads in a warp access

global memory, the addresses are coalesced into one or more memory transactions. If

50

memory addresses are scattered or not concurrent such that they align on a cache

boundary, multiple memory transactions are required to fulfill the request. The result

may be reduced global efficiency through increased network traffic and latency waiting

for all transactions to be serviced and completed. To understand this more effectively,

assume that each thread needs to fetch 4 bytes of data. If the data needed by each thread

are well coalesced, for example, each thread accesses adjacent 4-byte word aligned on a

cache line boundary, then a single 128-byte memory transaction can be serviced. Even if

the accesses by the threads are permuted within the warp, a single 128-byte transaction

will still take place, as shown in Figure 13 (a). However, when threads in a warp access

sequential memory locations not aligned with the cache lines or if the memory access

pattern is altered, two 128-byte memory transactions will be requested, as shown in

Figure 13 (b). Assuming that the data is not reused, the result is an over-fetch where only

half of the data is useful. While this represents a simple case, scenarios such as these can

significantly degrade both performance and energy efficiency. This scenario directly

extends into the CUDA programming model where, by default, when backed by L2, data

cached in both L1 and L2 will use 128-byte memory transactions [47]. However, to

reduce over-fetching data, the CUDA programming model provides the ability to bypass

L1, in which case 32-byte segments are used to transfer data. In cases such as those

depicted in Figure 13 (b), assuming no re-use of data, bypassing L1 and using 32-byte

transactions would reduce the amount of memory traffic.

51

(a)

(b)

Figure 13. Different memory access patterns resulting in either (a) a single transaction or

(b) two transactions

Unlike an NVIDIA GPGPU, a soft GPGPU provides extreme flexibility, enabling

the ability to optimize performance by trading off different aspects of the design. While

caches have been used in previous designs, to date there has been no research into cache

optimization for soft GPGPUs, taking into consideration area and performance. This

section extends our soft GPGPU work, FlexGrip [10] [11], to perform a comparative

analysis of different cache hierarchies evaluating the trade-offs between performance and

area. More explicitly, the following will be assessed:

 L1 Performance Analysis: Each SMP contains individual L1 cache for data, local

memory and texture memory. As a warp executes, it will request data for each of

the individual threads. As multiple warps are issued, intra-warp contention can

occur as data is swapped in and out of cache by warps who share memory. This is

52

exacerbated when multiple SMPs are requesting data from the lower memory

hierarchy. To evaluate the impacts, we vary the number of SMPs versus the cache

size, number of sets, and associativity of the cache.

 L2 Performance Analysis: As the L2 cache is shared among the SMPs, we vary

the number of SMPs and evaluate the performance effects. In addition, we vary

the L2 cache size, number of sets, and associativity.

 Experiments are performed using GPGPU-Sim [48], a cycle-accurate simulator

based on NVIDIA’s microarchitecture. Our approach modified GPGPU-Sim to emulate

the architecture and performance of FlexGrip. This facilitated the ability to rapidly

analyze different cache designs and hierarchies.

5.3 Modifying GPGPU-Sim for FlexGrip

The baseline architecture used to implement and test our cache configurations is a

modified version of GPGPU-Sim that is representative of the FlexGrip microarchitecture.

Figure 14 illustrates the top level GPU architecture modeled by GPGPU-Sim. The

GPGPU-Sim architecture is comprised of multiple Single Instruction Multiple Thread

(SIMT) core clusters, each consisting of multiple SIMT cores connected via an on-chip

interconnection network that interfaces to the off-chip memory subsystem. A SIMT core

is roughly equivalent to FlexGrip’s Streaming Multiprocessor as shown in Figure 4. For

the purposes of our experiments, we limit testing to a single SIMT core cluster and vary

the number of SIMT cores.

53

Figure 14. Top level architecture modeled by GPGPU-Sim.

GPGPU-Sim provides support for four independent clock domains: one for the

SIMT Core Cluster, one for the interconnection network, one for the L2 cache and one

for the DRAM. Currently, FlexGrip supports a global system clock domain for each of

the SMPs and a separate clock domain for the SPs. While the SPs have the ability to be

clocked at a higher rate, it currently runs at the system clock rate of 100 MHz. We

configure GPGPU-Sim to run the SIMT core, interconnect, and L2 clocks at 100 MHz to

reflect the same clock speed configured in FlexGrip. In addition to providing a separate

clock domain for DRAM, GPGPU-Sim also provides timing parameters to accurately

model the DRAM memory. The ML605 development board, which was used to

implement FlexGrip, is configured with 512 MB of DDR3 SODIMM memory which was

run at a clock frequency of 400MHz from the Virtex-6 XC6VLX240T-1FFG1156

FPGA’s memory interface [49] as shown in Figure 3. We use this clock rate and the

timing parameters per the specifications for the ML605’s Micron Technology

MT4JSF6464HY-1G1 DDR3 DRAM as input into GPGPU-Sim to accurately model the

memory interactions. For the purposes of our experiments, we did not modify the

54

interconnection network and utilize the default simulation configuration within GPGPU-

Sim.

5.3.1 SIMT Core (SMP)

 Figure 15 illustrates details of the GPGPU-Sim SIMT core architecture, which is

roughly analogous to the five stage pipeline of FlexGrip as shown in Figure 4. The labels

provided above each of the stages depict the analogous FlexGrip pipeline stages.

Figure 15. Detailed architecture of the GPGPU-Sim SIMT Core. The labels listed above

are the analogous FlexGrip SMP pipeline stages.

5.3.1.1 Fetch and Decode Stage

Recall that FlexGrip stores instructions in system memory (Figure 4), which is

implemented as dual port block RAM in the FPGA, and can be thought of as a large

cache. Instructions are fetched and decoded when a ready warp is issued to the pipeline

by the Warp Unit. As all the instructions are loaded into block RAM, there are no cache

55

misses and instructions can be read from the block RAM every clock cycle. Once an

instruction is fetched, it can be decoded and stored in the pipeline registers, which occurs

in a single clock cycle. Assuming no pipeline stalls, fetching and decoding can occur in

three clock cycles for short (32-bit) instructions or six clock cycles for long (64-bit)

instructions.

As shown in Figure 15, GPGPU-Sim uses an instruction buffer (I-Buffer) to

buffer instruction data once it has been fetched from cache, with each warp containing

two entries. Each entry in the buffer contains a single decoded instruction along with a

valid and ready bit. The valid bit indicates a non-issued decoded instruction while the

ready bit indicates a decoded instruction is ready to be issued into the pipeline. At a

conceptual level, the scoreboard logic sets the ready bit depending on the availability of

hardware logic, although, GPGPU-Sim performs a readiness check rather than physically

setting the ready bit. An instruction fetch will occur if a warp does not have any valid

instructions in the I-Buffer, in which case a read request will be sent to the I-Cache with

the PC of the currently scheduled warp. Two consecutive instructions are fetched from

the cache by default.

The instruction cache in GPGPU-Sim is represented as a read-only set associative

cache with the ability to simulate both FIFO and LRU replacement with on-miss or on-

fill allocation policies. Requests to the instruction cache result in either a hit, miss or

reservation fail which occurs when either the miss status holding register (MSHR) is full

or there are no replaceable blocks in the cache set that exist. A cache miss will result in a

56

read request from memory, causing the warp to send an additional read request to the

cache. A cache hit sends the instruction to the decode stage, whereby the instruction is

decoded and stored in the buffer awaiting to be scheduled into the pipeline.

Matching the performance of FlexGrip for the fetch and decode stage in GPGPU-

Sim is largely a function of the instruction cache effectiveness. Instruction data exhibit

high spatial and temporal locality due to warps being issued in a round robin fashion.

Therefore, we did not modify the I-Cache as the miss rate was insignificant compared to

the FlexGrip model. In addition, the decode stage was unmodified as the I-Buffer mimics

FlexGrip’s pipeline register, albeit holding several ready decoded instructions instead of

one.

5.3.1.2 Warp Unit

The instruction issue in GPGPU-Sim utilizes a round-robin scheduler to issue

warps into the pipeline assuming that the warp is not waiting at a barrier, it has valid

instructions in the I-Buffer (i.e.: the valid bit is set), the scoreboard passes its check, and

the pipeline is not stalled. The scheduler will then issue a warp to either the memory or

ALU pipeline, which consists of scalar and floating point unit pipelines. With the

exception of scoreboard and individual operation pipelines, issuing warps into a pipeline

works in a similar fashion as described in Section 3.2. The scoreboard checks for read

after write (RAW) and write after write (WAW) dependency hazards by tracking which

registers have pending writes, or more succinctly, instructions that have been issued but

have not yet written their results back. FlexGrip is architected to avoid RAW and WAW

57

dependency hazards due to how warps and instructions are issued through the pipeline

and the induction of pipeline stalls. With respect to the individual pipelines for memory

and ALU operations, we modified GPGPU-Sim to issue memory and ALU instructions

serially. This is done by checking each memory and ALU pipeline to determine if a warp

exists. If an active warp with either a memory or ALU operation exists in the pipeline,

our modified version of GPGPU-Sim will stall the current warp waiting to be issues.

Once the warp in the pipeline has moved to the next stage, the scheduler will issue the

stalled warp.

Both GPGPU-Sim and FlexGrip handle the execution of branch divergence using

a per-warp stack, or SIMT stack as shown in Figure 15. A detailed description of

FlexGrip’s branch divergence and stack model is explained in Section 4.1.1.

Conceptually, both GPGPU-Sim and FlexGrip implement branch divergence in a similar

fashion with the exception of its location within the execution pipeline, therefore, we did

not perform any modifications to this area of the architecture.

5.3.1.3 Execute Stage

The ALU pipeline in GPGPU-Sim models scalar processor (SP) functional units,

which handle all ALU instructions except transcendental functions, and special function

units (SFU) which execute transcendental instructions (i.e.: Sine, Cosine, Log, etc.). The

ALU functional units are pipelined and operate in a SIMD fashion allowing for execution

of one warp instruction per clock cycle for SP units and two or more for SFU units,

depending on the type of instruction.

58

The execute stage in FlexGrip consists of multiple scalar processors which

support the domain of integer instructions only, the details of which are outlined in

Section 3.2. While the SPs are highly pipelined, they do not operate in a SIMD fashion

and each instruction has a variable number of execution latency cycles. GPGPU-Sim

provides a configuration file that allows for the adjustment of execution latencies based

on the instruction type (e.g.: add, multiply, max, etc.), thus the performance of each of the

SPs can be accurately duplicated. We configured the integer, floating point and double

instruction latencies and initiation intervals to match FlexGrip.

5.3.1.4 Read and Write Stage

Control of read and writes within GPGPU-Sim are performed through a structure

called the operand collector, as described through various NVIDIA patents. The operand

collector, as depicted in Figure 16, is architected as an arbitrator along with multiple

banks of on-chip single port RAM and register files, denoted as collector units. Once an

instruction is received from the decode stage, it is allocated to an available collector unit

in addition to setting the warp ID, operands, register identifier, ready and valid bits.

Performed in parallel, read requests are queued by the arbitrator for each of the register

file banks until access is granted. Once the data has been read, the arbitrator selects up to

four non-conflicting collector unit accesses from the queue to send to the register file

banks. For each clock cycle, an operand is read out from each of the banks, storing it in

the corresponding collector unit and setting the ready bit. When all the ready bits are set

in the collector unit for a particular instruction, it is issued to the execution stage. Data

59

from the execution stage is sent to the arbitrator and is queued until it is selected for write

back.

Figure 16. GPGPU-Sim operand collector microarchitecture [48].

In contrast to GPGPU-Sim, the FlexGrip architecture partitions the read and write

into separate stages, as shown in Figure 17. Within the read stage there are three operand

units which calculate the source address, depending upon the type [50] of instruction.

Collectively, the three operand units can be seen as a single collector unit. The read

requests are queued in the operand unit until there is an available memory controller to

service the corresponding type of memory or register access. The arbitrator will grant

requests to one or more non-conflicting memory controllers and store the resulting data in

a register to be sent to the execution stage. Data from the execute stage are stored in

registers and queued until the arbitrator grants access for write back.

60

Figure 17. FlexGrip read, execute and write pipeline stages.

We leveraged the existing GPGPU-Sim implementation and made architectural

adjustments to match the functional capability of FlexGrip. Each of the register file banks

and collector units can be represented as a stage in the FlexGrip pipeline, as shown in

Figure 17. Therefore, we configured GPGPU-Sim to use only a single collector unit,

emulating FlexGrip. The arbitration unit in GPGPU-Sim will select non-conflicting read

accesses from the register bank from each of the decoded warp instructions in the

61

collector units. This is in contrast to FlexGrip which will only service the current warp,

causing a stall to the pipeline until the read request has been serviced. The collector unit

was modified to only service a single warp, stalling other warps that could be issued.

5.4 Memory Hierarchy

The following sections form the basis of our experiments with the prior sections

describing the foundation for us to build upon. Before delving into the cache specifics,

we will first describe the various memory spaces within the GPGPU as exposed by

NVIDIA’s CUDA. The architecture described is within the context of how it would be

physically implemented in FlexGrip and its relation to GPGPU-Sim. The following

sections will describe the operational concept behind the level-1 and level-2 data caches

along with the details of how it would be implemented within the FlexGrip architecture.

For each of the level-1 and level-2 caches, we provide a description of the GPGPU-Sim

model that is used to perform the experiments.

In Section 3.1, an overview of the FlexGrip architecture was provided outlining

the interaction between the GPGPU and the MicroBlaze processor. Data was stored in

DRAM and accessed by the processor which would stream it to the on-chip block

memory for storage and processing by the GPGPU. The memory hierarchy consisted of

global, system and constant memory that was shared by each of the SMs, and a private,

per-SM shared memory space.

62

Injecting cache into the FlexGrip architecture requires us to augment the

architecture as shown in Figure 18. While we previously had global, system and constant

memory located on-chip, we now migrate those memory spaces to direct access off-chip

DRAM. Each streaming multiprocessor still consists of private shared memory, however,

we also add data, texture and constant cache to encompass our level-1 cache structure,

each of which is backed by L2 cache. The following sections describe the L1 and L2 data

caches in detail.

Figure 18. Representative FlexGrip block diagram exhibiting the details of the GPPGU

memory hierarchy.

5.4.1 SMP Memory and Level-1 Data Cache

The Level-1 cache is a private, per SMP, non-blocking cache for both local and

global memory accesses. A high-level block diagram depicting the memory hierarchy is

shown in Figure 19. The size of the cache, along with the associativity, number of sets

and cache line size are configuration parameters within GPGPU-Sim. We note that

memory accesses that are generated by the address generation unit does not span two or

more cache lines, therefore, individual requests are made for each cache line. A memory

63

access hit in the cache can be serviced in one clock cycle while a miss will be inserted

into a FIFO miss queue. If the interconnection injection buffers for the DRAM are able to

accept data, on each clock cycle, a fill request is generated by the L1 data cache. Upon a

memory access miss, an entry is inserted into the Miss Status Holding Registers (MSHR)

to track the status of cache misses in flight and a fill request is generated, pending there is

currently no request for that cache line. The MSHR is configured as a fully-associative

array with a fixed number of entries in the table, with each entry being able to service a

fixed number of miss requests per cache line. If a request to access a memory location is

currently in-flight, the request will be combined within the MSHR table. Once the fill

response is received, the data is inserted into the cache line and the MSHR is marked as

filled. The fill responses for MSHR entries are generated at one request per cycle. Upon

servicing and responding to all waiting requests, the MSHR entry is freed.

Figure 19. L1 data cache and supporting memory components.

64

For our FlexGrip soft GPGPU, both the Local and Global memory are accessed

and serviced by the L1 data cache, which is a private, non-blocking, per streaming

multiprocessor cache. Figure 20 depicts a representation of integrating L1 cache into the

FlexGrip architecture. On the FPGA, this would be implemented as true dual-port 36kB

block RAM memories. The L1 data cache is not banked and is capable of servicing two

coalesced memory request per clock cycle. As cache coherency poses significant

challenges with GPUs [51], L1 data caches are not coherent. For global memory access,

the L1 data cache follows a write-evict [50], write no-allocate policy while local memory

cache acts as a write-back cache with write no-allocate policy. Both can be configured

prior to run-time.

Figure 20. FlexGrip SMP depicting the integration of L1 cache into the architecture.

5.4.2 Level-2 Data Cache

The Level-2 data cache, similar to the L1 data cache, is a unified last level cache

(LLC) that is shared by all the SMs. For local memory access, the L2 cache write policy

65

exhibits a write-back, no-allocate policy while global memory access elects a write-evict,

write no-allocate policy. As with the L1 data cache, a memory request cannot span across

two cache lines, this ensures that requests from a lower level cache can be serviced by a

higher cache.

Figure 21 below shows the components that service memory requests from the

SMs and represents the model that will be used to simulate memory access within

GPGPU-Sim. Memory requests from the interconnection network (ICNT) are entered

into the ICNT->L2 queue. As configured, the L2 cache bank can service one request per

clock cycle from the ICNT->L2 queue. If a miss occurs in the L2 cache bank, a request is

made to the off-chip DRAM and entered into the L2->DRAM queue. Data that returned

from the off-chip DRAM is then entered into the DRAM->L2 queue and placed in the L2

cache. For read requests, data is sent through the L2-ICNT queue and returned to the SM.

Figure 21. L2 data cache memory partition.

66

In order to model DRAM latency, a DRAM latency queue is used whereby the

request access is held for a fixed number of clock cycles. The number of clock cycles is

configurable and depends on the hardware being benchmarked. Each DRAM clock cycle,

a memory access from the latency queue can be serviced and can push the results to the

DRAM->L2 queue. It should be noted that ICNT->L2 queue operate at the L2 clock

domain frequency while the L2->ICNT queue operates on the interconnect network

domain frequency.

Integrating the memory partition within FlexGrip and on the FPGA, the L2 cache

bank would be represented as a dual-port block RAM with read and write port 0 (r0 and

w0) operating at the interconnect frequency and read and write port 1 (r1 and w1)

operating at the L2 clock frequency. The L2->ICNT queue and the ICNT->L2 queue

would represent single-port block RAMs with the L2->ICNT block RAM operating at the

interconnect frequency and the ICNT->L2 operating at the L2 clock frequency. The

DRAM->L2 queue and L2-> DRAM queue would be modeled as dual-port block RAMs

to allow for each port to operate on the two different clock domains. The DRAM-> L2

queue read port would operate at the interconnect frequency, matching that of the L2-

>ICNT queue, while the write port would operate at the L2 frequency. The DRAM access

scheduler would represent a combination of control logic and a memory controller

configured by Xilinx’s Memory Interface Generator (MIG) tool. Both the DRAM latency

queue and timing model are used for simulation purposes only and therefore would not be

part of the implementation.

67

5.5 Experimental Methodology

In this section we describe the components of our infrastructure for use in

evaluating our architectural decisions. Specifically, we describe our baseline

configuration, which encompasses the representative hardware platform used as a model

for the system, in addition to the benchmarks that are used for the experiments.

5.5.1 Baseline Configuration

As described, we augmented GPGPU-sim to create a representative architecture

of FlexGrip implemented on a Xilinx ML605 development board. The ML605 hardware

platform has a single Virtex-6 XC6VLX240T FPGA which contains 14,976 Kb of Block

RAM. The FPGA is connected to a single Micron MT4JSf6464HY-1G1 512MB 8-

channel DDR3 SODIMM memory module. The features of the ML605 are used as input

into the configuration of GPGPU-Sim as described in Table 11. In our baseline

configuration, there is no L1D or L2D cache, and therefore it is disabled in GPGPU-Sim.

In addition, we turned off memory coalescing and shared memory bank conflict

resolution, as both of these features are not implemented in FlexGrip.

Table 11. Default GPGPU-Sim Configuration

Core clock frequency 100MHz

Interconnection network Mesh

Number of SMPs 1 – 2

Number of SPs per SMP 32

Total on-chip memory size 14,976KB

Number of 32-bit registers per SMP 32,768

Shared memory size per SMP 16KB

DRAM size 512MB

68

5.5.2 Benchmarks

To analyze how enabling different cache levels affects the performance

quantitatively, we conduct simulations using several GPGPU applications with varying

architectural parameters. The representative GPGPU application encompass synthetic

benchmarks from the NVIDIA CUDA SDK [52] in addition to the Rodinia [53]

benchmark suite. The benchmarks selected are shown in Table 12 and represent a variety

of memory behaviors. The simulations are performed using cycle-accurate GPGPU-Sim

augmented to mimic the performance of FlexGrip. The following sections describe the

details of our experiments.

Table 12. GPGPU Cache Benchmarks

Benchmark Description

NVIDIA CUDA SDK

AC Autocorrelation

BS Bitonic Sort

FWT Fast Walsh Transform

MM Matrix Multiply

RD Reduction

TP Transpose

Rodinia

BFS Breadth First Search

KMN K-Means Clustering

GE Gaussian Elimination

LUD LU Decomposition

SRAD Speckle Reducing Anisotropic Diffusion

5.6 Cache Configuration Trade-Offs

This section describes the exploration of trade-offs for different data cache

configurations. We would like to answer the question, given a fixed amount of memory,

what is the optimal cache configuration. As part of our experiments, we will vary the L1

69

data cache size from 1KB to 64KB and the L2D cache size from 24KB to 164KB. With

respect to memory, recall that our environment is modeled after hardware from the Xilinx

ML605 development board. The Virtex 6 FPGA used on the ML605 board contains a

total of 416 36kB block RAMS (14,976 Kb of on-chip memory), of which, 156 block

RAMs are used for the register file, shared memory per each SMP, and various other

components for each of the SMPs. Therefore, as we increase the number of SMPs, the

amount of on-chip memory that can be used for cache decreases, providing us with a

constrained memory size. In the current FlexGrip configuration, we only have enough

resources to support 2 SMPs, resulting in approximately 9,360 Kb for 1 SMP and 3,744

Kb of on-chip memory for 2 SMs. Even taking in consideration block RAM used by the

memory controller and additional logic, there is more than enough memory to implement

even the largest cache configurations. Of final note, we only explore a cache line size of

128 bytes, which is the amount of data required to service requests from a warp.

5.6.1 L1D Cache Performance

Thrashing in L1 cache can be caused by intra- or inter-warp contention [54], [55].

As the number of active concurrent threads increase, the effective cache size per thread

decreases. Warps within an SM share L1 cache space which can lead to inter-warp

contention as data is continually replaced. A secondary effect is an increase in memory

traffic due to over-fetching of data not used by other threads caused by low temporal and

special locality in L1D cache, as described earlier. We evaluate these effects by varying

the number of SMs versus the cache size, number of sets, and associativity for each of the

benchmarks listed in Table 12. We note that while separate cache is also used for texture,

70

constant and instruction cache, our focus here is only on data cache. Texture cache is

only used for certain graphical applications. Constant cache is used to store read only

configuration information and typically stores small amounts of data, thereby would not

exhibit the same level of performance implications as with data cache. The following

provides a performance comparison to the baseline 1 SM and 2 SM configurations along

with an analysis of the results.

Figure 22. Execution time speedup relative to the 1 SM baseline system for various L1D

cache configurations.

71

Figure 23. Execution time speedup relative to the 2 SM baseline system for

various L1D cache configurations.

Figure 22 and Figure 23 compares the performance of various L1D cache

configurations against the 1 SM and 2 SM baseline configuration, respectively. Recall

that the baseline configuration has no L1D or L2D cache, therefore, data requests to

global memory are stored in queues prior to entering the memory interconnect and being

serviced by SDRAM. We notice there are several benchmarks where there are no

significant performance benefits and varying cache configurations exhibit no changes.

Specifically, bs, fwt, lud, and rd show constant speedups of 1.0, 1.04, 1.0, and 0.96 across

all cache configurations, with lud exhibiting minor deviations. Compared to the

performance without the cache in the baseline system, only four benchmarks (ac, mm,

bfs, and ge) show performance improvements for the 1 SM configuration and six

benchmarks showed improvement in the 2 SM configuration (ac, fwt, mm, tp, bfs and ge).

72

Figure 24. Performance increase of the architecture with 1-cycle perfect memory

access versus baseline architecture with global memory modeled and no cache.

Before we delve into the specifics, it is important to understand how the baseline

architecture with no cache compares to the same architecture with perfect memory, in

other words, global memory access returns data immediately the next cycle. This will

help us gain insight into how much speedup we can expect when adding cache into our

baseline configuration. Figure 24 shows the performance increase of the architecture with

perfect memory versus the baseline architecture with global memory and no cache

enabled. We can see large performance increases when perfect memory is enabled for

benchmarks ac, mm, tp, bfs and kmn. In fact, this directly correlates with the large

variations of speedups shown in Figure 22 and in Figure 23. For example, Matrix

Multiply (mm) shows a performance increase of 49% and 93% when enabling perfect

memory for 1 SM and 2 SM configurations, respectively. When showing the speedup of

L1D cache versus the baseline architecture, as shown in Figure 22 and in Figure 23, we

see a correlation, where the maximum speedup of 1.7 and 2.96 is represented for both 1

SM and 2 SM configurations, respectively. On the other hand, for small performance

73

increases, such as in the case for bs, fwt, rd, ge, lud, and srad (with the exception of ge),

speedups of L1D versus the baseline architecture are around 1.0 and vary slightly across

all cache configurations. The primary reason for the lack of speedup and variation is due

to shared memory usage in the latter benchmarks. Recall that shared memory is fast

cache that can be used to store shared data and is managed by the programmer, unlike L1

and L2 cache which is managed by the hardware. However, like the L1D cache, when

used effectively, it can significantly reduce the amount of global traffic. Thus, there is

minimal performance impact between perfect memory, the baseline architecture of

modeled global memory with no cache, and when L1D cache is enabled. As we will

discuss, the small impact in performance is due to the additional traffic caused by L1D

global loads and shared memory stalls. However, when not using shared memory, L1D

cache can a significant impact on performance, as seen in the case for both

Autocorrelation (ac) and Matrix Multiply (mm).

There are several benchmarks that exhibit decreased performance when L1D

cache is enabled, specifically benchmarks bs, fwt, rd, kmn, lud and srad. The decreases in

performance are attributed to two factors, the first is from enabling L1D cache, which can

significantly increase memory traffic. Figure 25 shows the normalized global memory

traffic for bs, fwt, kmn, lud and srad which is normalized to that with no cache for both 1

SM and 2 SM configuration. We note that we left out reduction (rd), as the performance

is tied to the effectiveness of shared memory. The results in Figure 25 show that global

memory load traffic can be reduced by 43% when not enabling cache. When L1D is

enabled, 128-byte memory transactions are performed versus 32-byte transactions when

74

not enabled, thus contributing to the additional memory access traffic when spatial and

temporal data reuse is low. In fact, the majority of benchmarks in Figure 25 exhibit low

temporal and spatial locality, lending to over-fetching of data and an increase in memory

traffic.

Figure 25. Normalized global memory traffic with and without L1D cache for 1

SM and 2 SM configurations, normalized to no cache.

As discussed, benchmarks that use shared memory exhibit only small variations in

performance and typically show no performance benefits (speedups of around 1.0). In

most cases, when not using shared memory and enabling L1D cache, there are potentials

for large performance gains, as in the case of Autocorrelation and Matrix Multiply.

However, in the case of k-Means Clustering (kmn), this is not the case, as enabling L1D

cache significantly decreases performance. This leads to the second factor in decreased

performance, which is due to pipeline stalls at the memory stage due to shared memory

75

bank conflicts and non-coalesced memory accesses. In the case of kmn, almost all (i.e.:

close to 100%) of memory accesses were misses in the L1D cache. This not only causes a

significant increase in traffic, but also causes additional stalls due to compulsory misses.

In fact, the number of non-coalesced memory stalls was more than double that over the

baseline architecture without L1D cache enabled, directly correlating to the decrease in

performance. In the case of the reduction (rd) benchmark that was referenced earlier,

disabling the cache generated 3x more memory traffic than with L1D, yet the

performance with L1D was only slightly worse at 0.96 speedup for 1 SM and 2 SM

configurations. The reduction of memory traffic when L1D cache is enabled is due to the

low cache miss rate of 3.3%, exhibiting high data reuse amongst warps. However, this is

offset by the fact that there was a 33% increase in non-coalesced memory stalls versus

the disabled cache configuration.

Figure 26. Execution time speedup of Breadth First Search relative to 1 SMP and 2 SMP

baseline systems for various L1D cache configurations.

76

As illustrated in Figure 22 and Figure 23, Autocorrelation (ac), Matrix Multiply

(mm), and to a lesser extent, Breadth First Search (bfs) benefit most from L1D cache. The

bfs algorithm performs a search on a graph where each vertex is associated to a thread.

The benchmark exhibits high levels of data reuse as arrays are used to determine if a node

has been visited and to update cost information. As illustrated in Figure 26, we see that

increases in speedup over the baseline occur for L1D cache sizes above 32KB, as smaller

cache sizes lead to higher cache miss rates, and thus, data is continuously swapped in and

out causing significant increase in memory traffic and global non-coalesced stalls. On

average, memory traffic is 1.6x greater for cache sizes less than 32KB and similarly,

global memory access stalls are 1.5x greater. It is of note that the L1D miss rate has a

significant adverse effect on the 2 SM case where the amount of traffic generated causes

excessive latency in the network, thus it is unable to efficiently service both SMs. In the

perfect memory configuration, where global data is services in one clock cycle, speedup

of the 2 SM system is almost 1.9x over the 1 SM system. In effect, this architecture

works similar to having one SM being serviced while the other waits for data, operating

in a serial fashion. Finally, from the graph, we see the largest performance gains occur

when set sizes are equal to 64, specifically when our cache size if 64KB. This is due to

our chosen input graph size of 65,535 nodes, which can take full advantage of the cache

size, correlating to higher cache hit rates.

77

Figure 27. Execution time speedup of Autocorrelation relative to 1 SM and 2 SM baseline

systems for various L1D cache configurations.

The results of the Autocorrelation benchmark are shown in Figure 27. We can see

that for small cache sizes and associativity less than 2, speedup varies slightly, and in

fact, the maximum speedup occurs with only 16KB of cache. The performance increase

is attributed to two reasons; one is the high spatial and temporal data reuse, which is

reflected in the data cache hit rate of almost 1.0. The second is due to the array size

chosen of 4,096 integers, resulting in a maximum data storage size of 16KB. Thus, we

expect performance increase would track with the size of the input up until where the size

of the dataset is more than the size of the cache, where data miss rates would begin to

cause performance impacts.

 Figure 28 illustrates the results of the Matrix Multiply benchmark, using a matrix

dimension size of N = 128, for both 1 SMP and 2 SMP configurations across a series of

78

data cache configurations. To better understand the performance, it is essential we

describe the details of memory accesses for the Matrix Multiply benchmark.

Figure 28. Execution time speedup of Matrix Multiply relative to 1 SM and 2 SM baseline

systems for various L1D cache configurations.

The standard matrix multiplication calculation is performed by multiplying each

row of matrix A with each column of matrix B, with each element of matrix C defined as:

𝐶𝑖,𝑗 = ∑ 𝐴𝑖,𝑘 × 𝐵𝑘,𝑗
𝑛
𝑘=0 𝑗 ∈ [0, 𝑚], 𝑖 ∈ [0, 𝑛] (4)

In CUDA, a natural decomposition is to define matrix A of dimension M x w and matrix B

of dimension w x N, with w defined as the tile size which is set to 16. This value was

chosen based on the block size of the architecture. A w x w tile results in 256 threads, or 8

warps, which is the maximum number of warps in a thread block for our architecture

(compute capability 2.0), ensuring maximum occupancy. The result is matrix C of

dimension M x N, where M, N are both set to 128 for our benchmark.

79

Figure 29. CUDA kernel code for the Matrix Multiply benchmark.

In the CUDA kernel code listed in Figure 29, variables a, b, and c are pointers to

global memory which reference matrices A, B, and C respectively. The values of

blockDim.x, blockDim.y, and TILE_DIM are all equal to w, which in our case, is set

to 16. The row and col variables are calculated using the block and grid dimensions and

reference the row and column elements used by a thread (threadIdx) to calculate the

result, referenced in element C. As such, each thread within the w x w (16 x 16) thread

block calculates a single result in a tile of matrix C. The for loop iterates over the tile

dimension, performing the matrix multiply calculation by multiplying the row of A by the

column of B, finally storing the result in matrix C.

 The analysis of performance follows with an illustration of how threads in warps

access memory within the for loop of Figure 29. Consider the illustration in Figure 30,

where threads in each warp calculate one row of a tile of C. Of particular note, the result

__global__ void MatrixMultiply(int *a, int *b, int *c,

int N)

{

int row = blockIdx.y * blockDim.y + threadIdx.y;

int col = blockIdx.x * blockDim.x + threadIdx.x;

int sum = 0;

for (int i = 0; i < N; i++) {

sum += a[row*TILE_DIM+i] * b[i*N+col];

}

c[row*N+col] = sum;

}

80

only depends on using a single row of A, but an entire tile of B, which effects how data is

brought into the cache and utilized.

 Figure 30. Calculation of a row of a tile in matrix C using a single row in matrix A

and an entire row of tiles of matrix B.

As previously noted, only a single tile of A is required to calculate a row of C.

Threads from tile A will read values from global memory, which will also be brought into

L1D cache. As calculations proceed along a row, this data is constantly being re-used,

making it unlikely that it will be evicted from cache. In the case of matrix B, threads in a

warp require reading an entire row of tiles. To maximize performance, the entire row of

tiles will need to remain in cache. Using a matrix width of 128 and a tile size of 16 (2,048

threads), a total of 8,192 bytes of data need to be brought in from memory and stored in

cache. The memory accesses from tile A and tile C are insignificant and contribute very

little to the overall performance impact. As we can see from Figure 28, this correlates

81

with a significant increase in performance when using 8KB or more of L1D cache. Using

less cache requires data to be continuously swapped in and out of memory, degrading

performance. This also explains why there are performance degradations when not using

multiples of 8 KB as the entire row of tiles cannot fit into cache. For example, in the case

with 12 KB of cache, one entire row of tiles can be brought in, however, only half of the

second row, causing the other half of data to be continuously swapped in and out of

memory.

5.6.2 L2 Cache Performance

GPGPUs exhibit massive multithreading causing resource congestion which can

severely limit system performance and cache efficiency. As each SM is connected to the

L2 cache via the Network on Chip (NoC), requests can quickly saturate the bandwidth.

Furthermore, all requests from the SMs are now serviced by the L2 cache. For working

sets larger than the cache size, thrashing, or contention can cause inefficiency and

degrade system performance. As we are concerned with cache performance, we will not

perform an analysis on the NoC design. The following provides a performance

comparison and analysis of L2 cache designs versus the baseline 1 SM and 2 SM

configurations.

82

Figure 31. Execution time speedup relative to the 1 SM baseline system for various L2

cache configurations.

Figure 32. Execution time speedup relative to the 2 SM baseline system for various L2

cache configurations.

83

As we can see in Figure 31 and Figure 32, with the exception of the Reduction (rd)

benchmark, enabling L2 cache either causes no performance benefits or seriously degrades

performance, as in the case of Transpose (tp) and k-means (kmn). In the case of the

Reduction benchmark, performance increase is negligible. Recall that that our architecture

does not coalesce data transactions, thus memory transactions generated by threads in

warps can quickly saturate the network. This is especially true in our case as the system

employs only a single memory interface, whereby typical GPGPU architectures feature

multiple memory interfaces and highly banked DDR RAM. By not using L2 cache, the

additional latency to fetch data from RAM helps reduce contention on the network,

decreasing the overall latency to service memory requests. Therefore, the reduced access

time afforded by L2 cache is negated by the extra latency caused by additional traffic and

contention on the network. In addition, as increased latency is directly correlated to

increase miss rates, as additional time is needed to fetch data from main memory. Figure 33

shows the normalized network latency with L2 cache and without (baseline), normalized to

the baseline architecture. With the exception of the Gaussian (ge) benchmark for the 2 SM

case, every benchmark exhibits additional traffic latency over the baseline system. There

are two interesting cases to explore further, Transpose and k-means benchmarks, each

exhibiting significant degradation and variation in performance over the baseline system.

84

Figure 33. Normalized network latency with and without L2 cache for 1 SMP and

2 SMP configurations, normalized to no cache (baseline).

In Figure 34, we provide the CUDA kernel implementation of the Matrix Transpose

algorithm, C = AT.

Figure 34. CUDA kernel code for the Matrix Transpose benchmark.

__global__ void MatrixTranspose(int* idata, int* odata,

 int width)

{

 int x = blockIdx.x * TILE_DIM + threadIdx.x;

 int y = blockIdx.y * TILE_DIM + threadIdx.y;

 for (int j = 0; j < TILE_DIM; j += BLOCK_ROWS) {

 odata[x*width + (y+j)] = idata[(y+j)*width + x];

 }

}

85

We note that for our particular benchmark, we use a matrix of size 1024 x 1024. In the

CUDA code provided in Figure 34, the variables idata and odata are pointers to global

memory, which reference the input matrix A and output matrix C, respectively. The value

of TILE_DIM and BLOCK_ROWS are set to 32 and 8, respectively. These values were

chosen to optimally fit into a thread block. As previously noted, our architecture is based

on a maximum thread block size of 8 warps, or 256 threads. The x and y variables are the

row and column elements used by a particular thread to copy values from the row of

idata to the column of odata, with the for loop iterating over the tile dimension. In

our example we note that our 1024 x 1024 matrix has a stride of 1024 elements or 4,096

bytes between contiguous threads

Figure 35. Transpose from A to C, whereby an entire row of tiles of matrix A are used to

output the transposed column elements in C.

The analysis of performance follows with an illustration of how threads in warps

access memory within the for loop of Figure 34. Consider the illustration in Figure 35,

where threads in each warp access an entire tile of A. To transpose a row from matrix A to

86

a column in C, threads in a warp read an entire row of A tiles which is brought into L2

cache. A matrix width of 1024 and a tile size of 32 equates to 32,768 threads, or 131,072

bytes of data that need to be brought in from memory. As we can see from Figure 31 and

Figure 32, this correlates with a significant increase in performance when using cache sizes

of 128KB or more versus when using smaller cache sizes. Using less cache requires data to

be continuously swapped in and out of memory, degrading performance.

 The second benchmark we explore is the k-means algorithm, a popular clustering

algorithm used in a variety of fields such as statistical analysis, pattern recognition, image

analysis and bioinformatics. The primary goal of clustering is to group data points into

sets such that each set share similar characteristics. The algorithm can be described as the

following clustering problem: given a set of points {P1,…, Pn} with each point a vector

of size d, the goal is to partition n points into k clusters {S1,…, Sk} (k < n) with centroids

{C1,…, Ck} such as to minimize the sum of squares of distances within the clusters. This

can be described as follows:

arg
𝑚𝑖𝑛

𝑆
∑ ∑ ‖𝑃𝑗 − 𝐶𝑖‖

2
𝑃𝑗∈𝑆𝑖

𝑘
𝑖=1 (5)

Our analysis begins with the following CUDA kernel code of the k-means algorithm

shown in Figure 36. We note that we did not provide the full kernel code, only the

relevant pieces for our analysis.

87

Figure 36. A fraction of the CUDA kernel code for the k-means benchmark.

Abstracting the details of the kernel code, our primary focus is global memory

transactions. To put the kernel code into perspective, we note that for our benchmark we

provided the following input values: nclusers = 5, nfeatures = 34, and npoints

= 65,536. Within the two for loops, highlighted between lines 16 through 33, there are

two global memory loads, one for features[addr] and one for

1 __global__ void kmeansPoint(float *features, int nfeatures,

2 int npoints, int nclusters,

3 int *membership, float *clusters,

4 float *block_clusters,

5 int *block_deltas)

6 {

7 int block_id = gridDim.x*blockIdx.y+blockIdx.x;

8 int point_id = block_id*blockDim.x*blockDim.y + threadIdx.x;

9 int index = -1;

10 if (point_id < npoints)

11 {

12 int i, j;

13 float min_dist = FLT_MAX;

14 float dist;

15 /* find the cluster center id with min distance to pt */

16 for (i=0; i<nclusters; i++) {

17 int cluster_base_index = i*nfeatures;

18 float ans=0.0;

19 /* Euclidean distance square */

20 for (j=0; j < nfeatures; j++)

21 {

22 int addr = point_id + j*npoints;

23 float diff = c_clusters[cluster_base_index + j] –

24 features[addr];

25 ans += diff*diff;

26 /* sum of squares */

27 }

28 dist = ans;

29 if (dist < min_dist) {

30 min_dist = dist;

31 index = i;

32 }

33 }

34 }

35 …

36 …

37 …

38 }

88

c_clusters[cluster_base_index + j]. Our goal is to understand memory

usage and the level of data reuse for each thread that executes the kernel code. We first

analyze the memory load in line 23, c_clusters[cluster_base_index + j].

The address for c_clusters is calculated using the cluster_base_address and

the index, j, inside the for loop in line 20. Line 17 calculates the

cluster_base_index, which, when iterated over the outer for loop and multiplied

by the index value, results in the following set of values: 0, 34, 68, 102, and 136. Each of

these values are added to the inner loop iteration index value, j, inside the second for

loop (line 20), which is used to calculate the set of addresses {0, 1, 2, 3, ….168, 169}.

Thus with 4 bytes of data per request and 170 data requests, a total of 680 bytes is loaded

from memory into the c_clusters array. Due to the linear addressing, the data can be

loaded into 6 L2 cache lines. The data exhibits high temporal locality since every thread

is requesting the exact same data in parallel, making it highly unlikely the data being

evicted from cache.

Our analysis continues with the loading of features data into an array as shown on

line 24. In this instance, the address (addr) is calculated (line 22) using the

point_id, calculated on line 8, which is essentially the thread index. Each thread will

iterate over the inner for loop (line 20) and calculate nfeatures (34) of distinct

features addresses (line 22) from memory, as shown on line 24, for a total of 136

bytes requested. In our architecture, a maximum of three thread blocks (8 warps per

thread block) with a total of 768 threads can be scheduled on a single SM. Therefore, a

total of 102KB of data is requested for each iteration of the outer for loop in line 16. If

89

we assume a large enough L2 cache to store the data, each thread will exhibit a 100%

cache hit rate on each subsequent iteration starting on line 16. As a note, we ignore the

small amount data needed to store the c_clusters array. However, if the L2 cache

size is smaller, such that not all data can be brought into cache, serious performance

degradation will occur as data is constantly being swapped in and out. We illustrate this

though a simple example.

Figure 37. A simple example of two threads executing a memory load into the features

array for the k-means benchmark.

 Figure 37 shows an example of two threads executing line 24 of the k-means

kernel code. For brevity, the features array variable is denoted as f in the example. In

step 1, the first iteration of the outer for loop (line 16) and inner for loop (line 20) is

executed by thread 0, which requests data from memory with address [T0 +

(j*npoints)], where T0 is the thread index value and j is equal to 0. As no data

exists in cache, a compulsory cache miss occurs, resulting in a request from main

90

memory to populate the L2 cache location with the serviced data. In the same step, thread

1 performs a request with address [T1 + (j*npoints)]. Similarly, a compulsory

miss occurs causing a request from main memory, which is serviced and written to L2

cache. Step 2 increments index j, with each thread making a data request from memory,

populating the remaining locations in L2 cache. In step 3, thread 0 requests address [T0

+ (1*npoints)] from cache, which results in a cache miss. The least recently used

(LRU) replacement policy evicts the first cache location and replaces it with the

appropriate requested data from memory. Thread 1 then requests address [T1 +

(1*npoints)], which also results in a cache miss, requiring data to be evicted from

cache, and filled with data requested from memory. As with previous steps, step 4 starts

with thread 0 requesting data from address [T0 + (0*npoints)], however, this data

was previously brought into cache in step 1, but was evicted in the prior step. This also

occurs when thread 1 requests [T1 + (0*npoints)]. In fact, this will continue to

occur over i number of iterations, resulting in 100% cache miss rate, despite high

temporal data reuse.

 Based on the analysis, we see a direct correlation in Figure 31 when cache sizes

are greater than or equal to 96KB, translating to cache miss rates of 21.7%, 3.4% and

3.1% for cache sizes of 96KB, 128KB and 160KB, respectively for the 1 SM case. In the

2 SM case, slight improvement occurs as cache size increases, however, the cache size

would need to be at least 192KB to exhibit the jump in performance shown in the 1 SM

case. However, as with other benchmarks, even with very small cache miss rates,

network traffic limits potential speedup factors.

91

5.7 Summary

In this chapter, we investigated L1 and L2 cache configurations for soft GPGPUs

by modifying GPGPU-Sim, a cycle accurate GPGPU simulator, to emulate the

functionality of FlexGrip. It was shown that the baseline system with no cache performs

better than the system with L1 cache for 7 out of the 11 benchmarks in the 1 SM case and

five out of the eleven benchmarks in the 2 SM case, with only autocorrelation and matrix

multiply showing significant improvement. The decrease in performance using L1D

cache led to two contributing factors: global network traffic and pipeline stalls at the

memory stage. When L1D cache is enabled, 128-byte transactions are used versus 32-

byte transactions used in our baseline configuration without cache. If applications exhibit

poor temporal or spatial data reuse, over fetching could occur, leading to increased

network traffic. We showed that global memory load traffic increases 74% when

enabling L1D cache. While misses in L1D cache can cause a significant increase in

traffic, it also causes additional stalls due to compulsory misses, resulting in non-

coalesced memory stalls, directly correlating to a decrease in performance.

We concluded the section with an analysis of L2 cache performance versus the

baseline system of no cache over varying cache configurations. Over the 11 benchmarks,

only Reduction showed improved performance when enabling L2 cache. We showed that

with L2 cache enabled, network latency increased on average 23% and 28% over the

baseline system for 1 SM and 2 SM configurations, respectively. When benchmarks

92

exhibit good data reuse, fast service times from L2 cache can quickly saturate the

network causing significant latency.

While we showed certain benchmarks benefited from cache, many benchmarks

showed no performance gains and in some cases, significant decreases in performance.

Overall, the results and analysis showed the network as a key factor in determining the

performance. Therefore, we conclude that future research and resources should focus on

improving the underlying network and memory infrastructure, with cache considered on

an individual basis.

93

CHAPTER 6

CONCLUSION, FUTURE CONSIDERATIONS AND PUBLISHED WORK

6.1 Conclusion

This dissertation has outlined the implementation and architectural evaluation of a

soft-GPGPU on an FPGA. We described in detail the scalable architecture which was

implemented and tested on the Xilinx ML605 development board. The FlexGrip

architecture utilized features of the FPGA to allow for different implementations to target

certain classes of application depending on their execution characteristics. Experimental

results against five benchmarks showed speedups of up to 30x versus a MicroBlaze soft

processor for a single streaming multiprocessor and 55x for two streaming

multiprocessors for highly parallel benchmarks. When implementing architectural

optimization, we found we can reduce the dynamic energy consumption by 14% and

LUT area by 33% on average.

 We concluded with an evaluation of the performance of cache designs within a

GPGPU by varying key parameters. The uniqueness of this approach lies within the

context of the FPGA design, understanding the application and design space parameters

that would optimize the performance of the GPGPU. To that extent, we modified

GPGPU-Sim, a cycle accurate GPGPU simulator, to match FlexGrip’s functionality.

When evaluating 11 benchmarks against designs with varying configurations of L1 cache

or L2 cache enabled versus a baseline system with no cache, we found that 64% and 45%

of benchmarks exhibited performance decreases when L1D cache was enabled for the 1

SM and 2 SM configurations, and only one benchmark showed performance

94

improvement when the L2 cache was enabled. Our analysis concluded that improving

network throughput would provide significant benefits over using resources to implement

cache memory in the design.

6.2 Future Considerations

To maximize effectiveness of cache, future considerations should include

researching and implementing memory coalescing by grouping memory requests into a

minimal set of transactions to reduce network traffic. An extension of that effort should

also include shared memory banks and memory bank resolution. The existing baseline

FlexGrip design does not incorporate banked memory; therefore, reads and writes are

performed serially. In order to take advantage of banked memory, a method to resolve

bank addresses must be included such that a single memory transaction can service

multiple banks.

In the previous section, we discussed limitations of the network and memory

structure leading to contention and latency. Future work should include optimizing the

network and memory structure to maximize bandwidth and minimize latency. The design

space should take into consideration taking advantage of FPGA resources such as those

included on System on Chip (SoC) devices.

Another design space area to consider is the ability to replace or add custom

processors. For example, executing an image processing algorithm, such as Local Area

Contrast Enhancement (LACE), requires threads to iterate through the pipeline multiple

95

times for each instruction. By implementing special purpose processors, a single

processor would execute the LACE algorithm, minimizing the number of memory

transactions and time required to schedule and service warps.

As a final area to consider, recall that FlexGrip schedules warps in a round robin

fashion and will stall during memory transactions. Techniques should be researched on

issuing warps into the pipleline that can proceed to execute, hiding latencies of other

warps as they wait for long memory transactions.

6.3 Published Work

The following section lists our published work.

K. Andryc, M. Merchant and R. Tessier, "FlexGrip: A soft GPGPU for FPGAs," in Int'l

Conf. on Field-Programmable Technology (FPT), 2013.

K. Andryc, T. Thomas and R. Tessier, "Soft GPGPUs for Embedded FPGAs: An

Architectural Evaluation," in 2nd International Workshop on Overlay Architectures for

FPGAs (OLAF), 2016.

96

BIBLIOGRAPHY

[1] P. Yiannacouras, J. G. Steffan and J. Rose, "VESPA: Portable, scalable, and

extensible {FPGA}-based vector processors," in International Conference

on Compilers, Architecture, and Synthesis for Embedded Systems, 2008.

[2] C. Chou, A. Severance, A. Brandt, Z. Liu, S. Sant and G. Lemieux, "VEGAS: Soft

Vector Processor with Scratchpad Memory," in ACM/SIGDA International

Symposium on Field Programmable Gate Arrays, 2011.

[3] B. Fort, D. Capalija, Z. Vranesic and S. Brown, "A Multithreaded Soft Processor

for SoPC Area Reduction," in IEEE International Symposium on Field-

Programmable Custom Computing Machines, 2006.

[4] M. Labrecque and J. G. Steffan, "Improving Pipelined Soft Processors with

Multithreading," in International Conference on Field Programmable

Logic and Applications, 2007.

[5] A. Papakonstantinou, K. Gururaj, J. A. Stratton, D. Chen, C. Jason and W.-M.

Hwu, "FCUDA: Enabling Efficient Compilation of CUDA Kernels onto

FPGAs," in Symposium on Application Specific Processors, 2011.

[6] M. Owaida, N. Bellas, K. Daloukas and C. D. Antonopoulos, "Synthesis of

Platform Architectures from OpenCL Programs," in IEEE International

Symposium on Field-Programmable Custom Computing Machines, 2011.

[7] J. Kingyens and J. G. Steffan, "A GPU-inspired soft processor for high-throughput

acceleration," in IEEE International Symposium on Parallel and

Distributed Processing, 2010.

[8] A. Al-Dujaili, F. Deragisch, A. Hagiescu and W.-F. Wong, "Guppy: A {GPU}-

like soft-core processor," in International Conference on Field

Programmable Technology, 2012.

[9] M. Lin, I. Lebedev and J. Wawrzynek, "OpenRCL: Low-Power High-

Performance Computing with Reconfigurable Devices," in International

Conference on Field Programmable Logic and Applications, 2010.

[10] K. Andryc, M. Merchant and R. Tessier, "FlexGrip: A soft GPGPU for FPGAs,"

in Int'l Conf. on Field-Programmable Technology (FPT), 2013.

97

[11] K. Andryc, T. Thomas and R. Tessier, "Soft GPGPUs for Embedded FPGAs: An

Architectural Evaluation," in 2nd International Workshop on Overlay

Architectures for FPGAs (OLAF), 2016.

[12] Xilinx, "ML605 Hardware User Guide," [Online]. Available:

http://www.xilinx.com/support/documentation/boards_and_kits/ug534.pdf.

[13] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative

Approach, 5 ed., Boston, Massachusetts: Morgan Kaufmann, 2011.

[14] NVIDIA, NVIDIA's Next Generation CUDA Compute Architecture: Fermi, vol.

v1.1, 2009.

[15] NVIDIA, NVIDIA's Next Generation CUDA Compute Architecture: Kepler

GK110, vol. v1.0, 2012.

[16] H. Igehy, M. Eldridge and K. Proudfoot, "Prefetching in a texture cache

architecture," in Proceedings of the ACM SIGGRAPH/EUROGRAPHICS

workshop on Graphics hardware, 1998.

[17] D. Capalija and T. S. Abdelrahman, "A High-Performance overlay architecture

for pipelined execution of dataflow graphs," in International Conference

on Field-Programmable Logic and Applications, 2013.

[18] A. Severance and G. Lemieux, "VENICE: A compact vector processor for

FPGA applications," in International Conference on Field-

Programmable Technology, 2012.

[19] P. Yiannacouras, J. G. Steffan and J. Rose, "Portable, Flexible, and Scalable

Soft Vector Processors," in IEEE Tranactional on Very Large Scale

Integration (VLSI) Systems, 2012.

[20] A. Severance, J. Edwards, H. Omidian and G. Lemieux, "Soft Vector Processors

with Streaming Pipelines," in ACM/SIGDA International Symposium on

Field Programmable Gate Arrays, 2014.

[21] J. Kingyens and J. G. Steffan, "The Potential for a GPU-Like Overlay

Architecture for FPGAs," in International Journal of Reconfigurable

Computing, 2011.

98

[22] I. Lebedev, S. Chen, A. Doupnik, J. Martin, C. Fletcher, D. Burke, M. Lin and J.

Wawrzynek, "MARC: A Many-Core Approach to Reconfigurable

Computing," in International Conference on Reconfigurable Computing,

2010.

[23] S. T. Gurumani, H. Cholakkal, Y. Liang, K. Rupnow and D. Chen, "High-Level

Synthesis of Multiple Dependent CUDA Kernels on FPGA," in Asia and

South Pacific Design Automation Conference, 2013.

[24] K. Shagrithaya, K. Kêpa and P. Athanas, "Enabling Development of OpenCL

Applications on FPGA platforms," in IEEE Conference on Application-

Specific Systems, Architectures and Processors, 2013.

[25] T. S. Czajkowski, U. Aydonat, D. Denisenko, J. Freeman, M. Kinsner, D. Neto,

J. Wong, P. Yiannacouras and D. P. Singh, "From OpenCL to high-

performance hardware on {FPGAs}," in International Conference on

Field Programmable Logic and Applications, 2012.

[26] F. M. Siddiqui, M. Russell, B. Bardak, R. Woods and K. Rafferty, "IPPro :

FPGA based image processing processor," 2014 IEEE Workshop on

Signal Processing Systems (SiPS), pp. 1-6, October 2014.

[27] M. Mattavelli, I. Amer and M. Raulet, "The reconfigurable video coding

standard [standards in a nutshell].," IEEE Signal Processing Magazine,

vol. 27, no. 3, pp. 159-167, May 2010.

[28] R. Balasubramanian, V. Gangadhar, Z. Guo, C.-H. Ho, C. Joseph, J. Menon, M.

P. Drumond, R. Paul, S. Prasad, P. Valathol and K. Sankaralingam,

"Enabling GPGPU Low-Level Hardware Explorations with MIAOW: An

Open-Source RTL Implementation of a GPGPU.," ACM Transactions on

Architecture and Code Optimization, vol. 12, no. 2, pp. 21:1-21:25, June

2015.

[29] "Reference Guide: Southern Islands Series Instruction Set Architecture.,"

[Online]. Available:

http://developer.amd.com/wordpress/media/2012/10/AMD_Southern_Isl

ands_Instruction_Set_Architecture.pdf.

[30] M. Al Kadi, B. Janssen and M. Huebner, "FGPU: An SIMT-Architecture for

FPGAs," ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays (FPGA)., pp. 254-263, 21-23 February 2016.

99

[31] J. Bush, P. Dexter and T. N. Miller, "Nyami: a synthesizable GPU architectural

model for general-purpose and graphics-specific workloads," 2015 IEEE

International Symposium on Performance Analysis of Systems and

Software (ISPASS), pp. 173-182, March 2015.

[32] J. Ma, L. Yu, T. Chen and M. Wu, "Analyzing Memory Access on CPU-

GPGPU Shared LLC Architecture," in Parallel and Distributed

Computing (ISPDC), 2015 14th International Symposium on, 2015.

[33] L. Yu, T. Chen, M. Wu and L. Liu, "Buffer on Last Level Cache for CPU and

GPGPU data sharing," in High Performance Computing and

Communications, 2014 IEEE 6th Intl Symp on Cyberspace Safety and

Security, 2014 IEEE 11th Intl Conf on Embedded Software and Syst

(HPCC,CSS,ICESS), 2014 IEEE Intl Conf on, 2014.

[34] J. Picchi and W. Zhang, "Impact of L2 cache locking on GPU performance," in

SoutheastCon 2015, 2015.

[35] Y. Huangfu and W. Zhang, "Boosting GPU Performance by Profiling-Based L1

Data Cache Bypassing," in Cluster, Cloud and Grid Computing

(CCGrid), 2015 15th IEEE/ACM International Symposium on, 2015.

[36] K. Choo, W. Panlener and B. Jang, "Understanding and Optimizing GPU Cache

Memory Performance for Compute Workloads," in Parallel and

Distributed Computing (ISPDC), 2014 IEEE 13th International

Symposium on, 2014.

[37] B.-C. C. Lai, H.-K. Kuo and J.-Y. Jou, "A Cache Hierarchy Aware Thread

Mapping Methodology for GPGPUs," in Computers, IEEE Transactions

on, 2015.

[38] S. Mu, Y. Deng, Y. Chen, H. Li, J. Pan, W. Zhang and Z. Wang, "Orchestrating

Cache Management and Memory Scheduling for GPGPU Applications,"

in Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,

2014.

[39] T. K. Yen, B.-Y. Yu and B. Lai, "A Cache Aware Multithreading Decision

Scheme on GPGPUs," in Embedded Multicore/Manycore SoCs

(MCSoc), 2014 IEEE 8th International Symposium on, 2014.

[40] A. Sankaranarayanan, E. Ardestani, J. Briz and J. Renau, "An energy efficient

GPGPU memory hierarchy with tiny incoherent caches," in Low Power

Electronics and Design (ISLPED), 2013 IEEE International Symposium

on, 2013.

100

[41] A. Severance and G. Lemieux, "TputCache: High-frequency, multi-way cache

for high-throughput FPGA applications," in 2013 23rd International

Conference on Field Programmable Logic and Applications (FPL),

2013.

[42] P. Yiannacouras, J. G. Steffan and J. Rose, "Improving memory systems for

soft vector processors," in WoSPS’08: Workshop on Soft Processor

Systems, 2008.

[43] D. Chang, C. Jenkins, P. Garcia, S. Gilani, P. Aguilera, A. Nagarajan, M.

Anderson, M. Kenny, S. Bauer, M. Schulte and K. Compton,

"ERCBench: An open-source benchmark suite for embedded and

reconfigurable computing," in International Conference on Field

Programmable Logic and Applications, 2010.

[44] NVIDIA, CUDA Programming Guide, Version 2.3.1 ed., 2009.

[45] G. Diamos, A. Kerr and S. Yalamanchili, Gpuocelot: A binary translation

framework for ptx, 2009.

[46] Intel Power Gadget Version 3.0, 2014.

[47] NVIDIA, "CUDA Best Practices Guide," [Online]. Available:

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html.

[48] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong and T. M. Aamodt,

"Analyzing CUDA workloads using a detailed GPU simulator," in

Proceedings of the IEEE International Symposium on Performance

Analysis of Systems and Software, 2009.

[49] Xilinx, "ML605 MIG Design Creation," [Online]. Available:

http://www.xilinx.com/support/documentation/boards_and_kits/ml605_

MIG_pdf_xtp047_13.2_c.pdf.

[50] NVIDIA, CUDA C Programming Guide, vol. 4.2, 2012.

[51] I. Singh, A. Shriraman, W. W. L. Fung, M. O'Connor and T. M. Aamodt,

"Cache Coherence for GPU Architectures," Proceedings of the 2013

IEEE International Symposium on High Performace Computer

Architecture (HPCA), pp. 578-590, 23-27 February 2013.

101

[52] NVIDIA, Getting Started With CUDA SDK SAMPLES, San Mateo, CA.

[53] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. H. Lee and K. Skadron,

"Rodinia: A benchmark suit for heterogeneous computing," in IISWC,

2009.

[54] W. Jia, K. A. Shaw and M. Martonosi, "MRPB: Memory request prioritization

for massively parallel processors," in Proceedings of the 20th

International Symposium on High Performance Computer Architecture,

2014.

[55] T. G. Rogers, M. O’Connor and T. M. Aamodt, "Cache-conscious wavefront

scheduling," in Proceedings of the 45th Annual IEEE/ACM International

Symposium on Microarchitecture, 2012.

[56] J. A. Stratton and e. al., "Parboil: A revised benchmark suite for scientific and

commercial throughput computing," in UIUCUIUC, Tech. Rep.

IMPACT-12-01, 2012.

[57] W. W. L. Fung, I. Sham, G. Yuan and T. M. Aamodt, "Dynamic Warp

Formation: Efficient MIMD," ACM Transactions on Architecture and

Code Optimization (TACO), vol. 6, no. 2, pp. 1-37, July 2009.

	AN ARCHITECTURE EVALUATION AND IMPLEMENTATION OF A SOFT GPGPU FOR FPGAs
	Recommended Citation

	tmp.1536249724.pdf.k_3WA

