824 research outputs found

    Generalization of polynomial chaos for estimation of angular random variables

    Get PDF
    “The state of a dynamical system will rarely be known perfectly, requiring the variable elements in the state to become random variables. More accurate estimation of the uncertainty in the random variable results in a better understanding of how the random variable will behave at future points in time. Many methods exist for representing a random variable within a system including a polynomial chaos expansion (PCE), which expresses a random variable as a linear combination of basis polynomials. Polynomial chaos expansions have been studied at length for the joint estimation of states that are purely translational (i.e. described in Cartesian space); however, many dynamical systems also include non-translational states, such as angles. Many methods of quantifying the uncertainty in a random variable are not capable of representing angular random variables on the unit circle and instead rely on projections onto a tangent line. Any element of any space V can be quantified with a PCE if V is spanned by the expansion’s basis polynomials. This implies that, as long as basis polynomials span the unit circle, an angular random variable (either real or complex) can be quantified using a PCE. A generalization of the PCE is developed allowing for the representation of complex valued random variables, which includes complex representations of angles. Additionally, it is proposed that real valued polynomials that are orthogonal with respect to measures on the real valued unit circle can be used as basis polynomials in a chaos expansion, which reduces the additional numerical burden imposed by complex valued polynomials. Both complex and real unit circle PCEs are shown to accurately estimate angular random variables in independent and correlated multivariate dynamical systems”--Abstract, page iii

    A low-order automatic domain splitting approach for nonlinear uncertainty mapping

    Full text link
    This paper introduces a novel method for the automatic detection and handling of nonlinearities in a generic transformation. A nonlinearity index that exploits second order Taylor expansions and polynomial bounding techniques is first introduced to rigorously estimate the Jacobian variation of a nonlinear transformation. This index is then embedded into a low-order automatic domain splitting algorithm that accurately describes the mapping of an initial uncertainty set through a generic nonlinear transformation by splitting the domain whenever some imposed linearity constraints are non met. The algorithm is illustrated in the critical case of orbital uncertainty propagation, and it is coupled with a tailored merging algorithm that limits the growth of the domains in time by recombining them when nonlinearities decrease. The low-order automatic domain splitting algorithm is then combined with Gaussian mixtures models to accurately describe the propagation of a probability density function. A detailed analysis of the proposed method is presented, and the impact of the different available degrees of freedom on the accuracy and performance of the method is studied

    Atomic radius and charge parameter uncertainty in biomolecular solvation energy calculations

    Full text link
    Atomic radii and charges are two major parameters used in implicit solvent electrostatics and energy calculations. The optimization problem for charges and radii is under-determined, leading to uncertainty in the values of these parameters and in the results of solvation energy calculations using these parameters. This paper presents a new method for quantifying this uncertainty in implicit solvation calculations of small molecules using surrogate models based on generalized polynomial chaos (gPC) expansions. There are relatively few atom types used to specify radii parameters in implicit solvation calculations; therefore, surrogate models for these low-dimensional spaces could be constructed using least-squares fitting. However, there are many more types of atomic charges; therefore, construction of surrogate models for the charge parameter space requires compressed sensing combined with an iterative rotation method to enhance problem sparsity. We demonstrate the application of the method by presenting results for the uncertainties in small molecule solvation energies based on these approaches. The method presented in this paper is a promising approach for efficiently quantifying uncertainty in a wide range of force field parameterization problems, including those beyond continuum solvation calculations.The intent of this study is to provide a way for developers of implicit solvent model parameter sets to understand the sensitivity of their target properties (solvation energy) on underlying choices for solute radius and charge parameters

    Analysis of spacecraft disposal solutions from LPO to the Moon with high order polynomial expansions

    Get PDF
    This paper presents the analysis of disposal trajectories from libration point orbits to the Moon under uncertainty. The paper proposes the use of polynomial chaos expansions to quantify the uncertainty in the final conditions given an uncertainty in initial conditions and disposal manoeuvre. The paper will compare the use of polynomial chaos expansions against high order Taylor expansions computed with point-wise integration of the partials of the dynamics, the use of the covariance matrix propagated using a unscented transformation and a standard Monte Carlo simulation. It will be shown that the use of the ellipsoid of uncertainty, that corresponds to the propagation of the covariance matrix with a first order Taylor expansions, is not adequate to correctly capture the dispersion of the trajectories that can intersect the Moon. Furthermore, it will be shown that polynomial chaos expansions better represent the distribution of the final states compared to Taylor expansions of equal order and are comparable to a full scale Monte Carlo simulations but at a fraction of the computational cost
    • …
    corecore