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Abstract 

This paper presents the analysis of disposal trajectories from libration point orbits to the 

Moon under uncertainty. The paper proposes the use of polynomial chaos expansions to 

quantify the uncertainty in the final conditions given an uncertainty in initial conditions and 

disposal manoeuvre. The paper will compare the use of polynomial chaos expansions against 

high order Taylor expansions computed with point-wise integration of the partials of the 

dynamics, the use of the covariance matrix propagated using a unscented transformation  and 

a standard Monte Carlo simulation. It will be shown that the use of the ellipsoid of 

uncertainty, that corresponds to the propagation of the covariance matrix with a first order 

Taylor expansions, is not adequate to correctly capture the dispersion of the trajectories that 

can intersect the Moon. Furthermore, it will be shown that polynomial chaos expansions 

better represent the distribution of the final states compared to Taylor expansions of equal 

order and are comparable to a full scale Monte Carlo simulations but at a fraction of the 

computational cost. 

1. Introduction 

In a number of cases in space flight dynamics, the chaotic nature of the interaction between 

the spacecraft and the surrounding environment during orbital transfers and the low 

confidence level in key spacecraft components (such as propulsion and attitude control) 

imposes expensive and time consuming ground support campaigns to ascertain that the 

spacecraft will follow the designed trajectory. In the specific case of disposal manoeuvres, 

this is undesirable, considering that this is the last manoeuvre available. For this reason, the 

uncertainty in the states of the spacecraft needs to be properly quantified to maximise the 

probability of a successful disposal and possibly inform the mission planning that mid-course 

correction manoeuvres are required. For strongly non-linear and possibly chaotic dynamics, 

like the one described in this paper, small variations in the initial conditions can result in 

significantly different trajectories. Therefore, the distribution of the initial states generally 

maps to a significantly different distribution of the final states. For example, a Gaussian 

distribution with zero mean and diagonal covariance matrix can map into a distribution, 

maybe multimodal, that cannot be described only with the first two statistical moments. 

Furthermore, techniques that change parameterisation to orbital elements to then use the 

propagation of the covariance matrix are not applicable in the case analysed in this paper 

(Sabol et al. 2010). Hence, uncertainty quantification methods that can represent multimodal 

distributions generated by nonlinear dynamics are required. In this work, in particular, we 

investigate the use of Polynomial Chaos Expansions, PCE, for the quantification of 

uncertainty in the disposal trajectories from Libration Point Orbits, LPO, to the Moon. 
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LPOs are often selected for astrophysics and solar terrestrial missions. As a number of 

current and future missions are planned to be placed on these orbits, it is critical to properly 

analyse possible disposal strategies of these spacecraft to mitigate the risk of damage to other 

space assets in the future. As an example we consider the ESA mission Herschel, launched on 

14 May 2009 towards a Lissajous orbit around the outer collinear Lagrange point (L2) of the 

Sun-Earth System. Herschel is a multi-user observatory mission, dedicated to perform 

astronomical observations in the far-infrared and sub-millimetre wavelength range. Given the 

limited amount of propellant and the relatively short flight time, the envisaged end-of-life 

strategy foresees a disposal manoeuvre into a lunar impacting trajectory (Colombo et al. 

2015a). At the end of life, the spacecraft can rely on a limited ground support, thus it is 

assumed that the initial conditions of the disposal trajectory will only be known with a low 

degree of confidence. Thus the objective of the uncertainty analysis is to predict the 

probability of an impact with the Moon, post execution of the disposal manoeuvre.   

A straightforward way to fully capture the nonlinearities of this problem is to use a direct 

Monte Carlo Simulation, MCS. Given a quantity of interest, derived from the outputs of a 

simulation (or system response), and its relationship with some stochastic variables, the 

inputs to the simulation, Monte Carlo Simulations quantify the uncertainty in the quantity of 

interest by generating a sufficient number of independent realisation of the outputs for a set 

of samples of the inputs drawn from a prescribed probability distribution. For each sample 

the input is fixed and the simulation is deterministic. Then, one collects an ensemble of 

realisations and extracts statistical information on the quantity of interest. Although MCS is 

straightforward to apply, as it only requires repetitive executions of deterministic simulations, 

typically a large number of them is needed to converge to the correct distribution of the 

quantity of interest.  

In the past two decades, extensive efforts have been devoted to the development of numerical 

methods that can improve the quantification of uncertainty without resorting to expensive 

Monte Carlo Simulations. If only the first two statistical moments are of interest and one can 

introduce the further hypothesis that the inputs are normally distributed, a reduced number of 

samples can be simulated using an Unscented Transformation, UT, (Julier et al. 1995) or a 

univariate reduced quadrature (Padulo et al. 2011). 

When the outputs are differentiable with respect to the inputs, statistical moments can be 

derived from a Taylor expansion of the outputs. Example of this method, commonly known 

as Taylor-based method of moments, can be found in (Parkinson et al. 1993) and (Lewis and 

Parkinson 1994). More recently, in 2006, Park and Scheeres proposed a method that derives a 

higher order Taylor series expansions of the final states given a variation in the initial states. 

This method propagates the partials of the dynamics, up to an arbitrary order, to obtain the so 

called State Transition Tensors (STTs) as an extension of the State Transition Matrix (STM). 

The STTs map a variation in the initial states into a variation of the states at a later epoch 

(assuming a forward in time propagation of the trajectory). Once the STTs are available one 

can derive the distribution of the final states from the distribution of the initial states without 

the need of further integrations of the dynamic equations. In this paper we will show that one 

problem with this approach is that if the STTs are computed by integration of the differential 

equations associated to the partials, the number of propagations grows dramatically with the 

order of the expansion. On the other hand, high order expansions are required to correctly 

capture nonlinearities in the system response. It is worth mentioning that high order Taylor 

expansions and the STTs can be obtained also by redefining the algebraic operators so that 

they operate directly on Taylor polynomials (Valli et al. 2013). This approach can be 

classified as intrusive as it requires direct access to the simulation model and a modification 
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of the simulation code. In the same class one can find intrusive PCE methods (Ghanem and 

Spanos 1991) and generalised intrusive polynomial chaos expansions (Xiu and Karniadakis 

2002), that do not require the redefinition of the algebra, and the recent development of 

generalised polynomial algebra (Riccardi et al. 2015). However, in this paper we limit our 

attention only to methods that do not require a redefinition of the algebra. Arguably the 

method proposed by Park and Scheeres can be classified as intrusive as it requires direct 

access to the simulation model. However, when partials are individually propagated, this 

method is computational equivalent to an approach that builds a representation of the quantity 

of interest via sampling and simulation. 

An alternative to the derivation of the distribution of the outputs from MCS or Taylor 

expansions is offered by stochastic expansions. In particular, PCEs construct an 

approximation of the outputs, or their distribution, via a reduced number of properly selected 

samples. Since 1991, PCEs have been applied to a number of problems in different fields, 

among which nuclear reactors design (Gilli et al. 2012), structural mechanics (Shi and 

Ghanem, 2004; Ghanem and Doostan, 2006), fluid dynamics (Knio and Le Maître, 2006; 

Hosder et al. 2006; Najm 2009), state estimation (Blanchard et al. 2010) etc. For some 

applications in statistics see also Evans and Swartz (1992). In space flight, the method was 

applied to uncertainty propagation in the 2-body problem by Cheng et al. (2011) and more 

recently used by Jones and Alireza (2013) to estimate the collision probability between two 

satellites. The attractive attributes of this method are that: it does not require access to the 

simulation model; it allows decoupling simulation fidelity from output representation 

accuracy, it has strong mathematical foundations and has the ability to produce functional 

representations of any stochastic quantities (Eldred et al. 2011) at a lower computational cost 

compared to Monte Carlo Simulations.   

In this work we propose the use of PCEs constructed with Hermite polynomial bases using 

spectral projection and the sparse-grids of Genz and Keister (1996). These sparse-grids fully 

exploit the orthogonality properties of Hermite polynomials and provide accurate results with 

a low number of samples when the inputs are assumed to be normally distributed. PCEs will 

be used to compute the distribution of the final states of the spacecraft at the Moon and derive 

a statistic on the probability of an impact. Given that this is a new application of PCE to 

astrodynamics, the paper presents a brief analysis of the accuracy and computation cost of 

PCEs compared to the use of MCS, STT and UT. 

The paper is organised as follows. Section 2 describes the disposal trajectory dynamics for 

Herschel. Then, Section 2.2 presents the methods that were considered for the uncertainty 

quantification of the disposal trajectory. In particular, we will review the fundamental 

concepts underneath MCS and UT, briefly analyse the computational complexity of the 

generation of the STT and then present our implementation of the PCE. Section 4 compares 

the different techniques and applies the most suitable one to the study of the impact 

probability. In particular, in Section 4.1 the paper compares PCE, MCS, UT and STT on the 

LPO to Moon disposal problem, while in Section 4.2 PCEs are applied to the calculation of 

the impact rate and dispersion of the final states at the Moon. 

2. Dynamic Model and Reference Solution  

The interest is in predicting the rate of impact on the Moon for a disposal trajectory from a 

Lagrangian Point Orbit (LPO). Therefore, we first introduce the perturbed equations of 

motion for a spacecraft moving in the Sun-Earth-Moon system, then introduce the nominal 
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disposal trajectory of Herschel, which is currently operating around the Sun – Earth 

Lagrangian Point L2 and finally define the quantity of interest.   

2.1 Dynamic Model 

The dynamics of the spacecraft is defined in the Earth Centred Ecliptic reference Frame 

(ECEF) and is subject to the gravity effects of three bodies (Sun, Earth and Moon) the Solar 

Radiation Pressure (SRP), n-body perturbations and the higher order gravity harmonics of the 

Moon:    

3 3 3 3 3

Ssc SE MscE ME
S M Solar pb nm

Ssc SE Msc MEr r r r r
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
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                (1) 

where 
Ssc
r  and 

Msc
r  are distance of Sun and Moon from the spacecraft, respectively, while 

their positions with respect to the Earth are given 
SE
r  and 

ME
r  respectively; 

E
 , 

S
 , 

M
  are 

constants of Earth, Sun and Moon; 
Solar
a is the solar pressure modelled as follows (Kubo-aka 

and Sengoku, 1999): 

2 2
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where A, msc are the satellite cross section area and mass respectively, CR the radiation 

pressure coefficient (including the diffusion and reflection) and srp
S  is the solar radiation 

pressure at 1 AU equal to the ratio between the solar constant 
1AU
P  and the speed of light. The 

acceleration given by all the planets, either than the Earth, is included in the terms 
pb

a while 

nma  is the acceleration given by the higher order terms (with n,m>0 since the zero order is 

already included in the nominal dynamics) of the gravity potential of the Moon. The gravity 

potential is expanded in standard Legendre polynomials, as defined in Cunningham (1970):  

 
0 0

n
M

nm nm nm nm

n mM

U C V S W
R

 

 

                                             (3)                         

where 
M
R  the Moon mean radius, 

nm
C ,

nm
S  are the potential coefficients that describe the 

distribution of the mass within the body. For the Moon the potential coefficients are the ones 

from 100th-degree gravity model ‘LP100K’. This allows an efficient computation of the 

potentials and resulting perturbation as a function of the Cartesian coordinates in the Moon 

fixed reference frame. 

2.2 Reference Solution and Quantity of Interest 

The uncertainty analysis starts from a nominal reference disposal trajectory that was designed 

without accounting for uncertainty. In the ESA study (Colombo et al. 2015b) a number of 

disposal options were considered. The one used as reference solution in this paper leaves the 

LPO in November 2011 and has initial conditions 

 887698.5k 1402038.8 387608.7 -0.0963 / -0.0485 / 0.0744 /m km km km s km s km sx . 
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In the original ESA study the trajectory was propagated for 60 days till impact including solar 

radiation pressure with 
2

0.0075R

sc

A m
C

m kg
 and the gravity of the Moon with harmonics 

terms up to degree 10th.  Figure 1 shows the nominal disposal trajectory from LPO to the 

Moon.  

This trajectory has a relatively short flight time with no loops around the Moon or the Earth. 

Therefore, prior to the uncertainty analysis, it is worth assessing the impact of some of the 

terms in the dynamic model, on the successful completion of the disposal manoeuvre.  

Neglecting the SRP contribution will cause the spacecraft to impact the surface with about 

800 km error from the nominal impact point. Figure 2a) shows what happens by neglecting 

the higher order terms of the gravity of the Moon: the difference in position at impact point, 

in this case, is below 0.1 km. Conversely, by neglecting the planetary n-body perturbations 

(
pb

a  terms of Eq.(1)) the difference can be as high as 17 km with respect to the nominal 

trajectory, see Figure 2b).  

 

Figure 1. Disposal trajectory towards the Moon for Herschel. 

 

Figure 2. Effects of the non-uniform gravity fields (a) and  n-body (b) on the disposal 

trajectory.  

a) b) 
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We can conclude that for the uncertainty analysis the effect of the higher order terms of the 

gravity of the Moon can be neglected without significant changes in the impact prediction. 

2.2.1 Quantity of Interest 

The quantity of interest is the impact rate, or impact success probability. The impact rate impact
r  

is calculated as the ratio between the number of virtual trajectories intersecting the Moon 

surface and the total number of propagated trajectories Nsamples:  







1

( ( ) )

100 %

samplesN

perigee Moon

i
impact

samples

r R

r
N

i
ʖ

                                                   (4) 

where perigee
r  is the radius of the periapsis calculated as a function of the initial uncertain 

parameters and 
Moon

R  is the Moon mean radius. 

3. Uncertainty Quantification Techniques 

In this section we briefly review three techniques for uncertainties quantification and then  

introduce our implementation of Polynomial Chaos Expansions. We start first with Monte 

Carlo Simulations, followed by the Unscented Transformation and the High Order Taylor 

Expansions, and finally the PCEs. 

3.1 Monte Carlo Simulation 

Monte Carlo Simulations date back as far as Enrico Fermi’s study on neutron diffusion, and 

can be used to derive statistical information via simulation of random samples or to compute 

multi-dimensional integrals. In uncertainty quantification MCS are used in both ways. The 

method starts from a probability distribution over the uncertainty space from which samples 

are drawn. Deterministic simulations are then run for all the samples to derive a 

quantification of the uncertainty in the output of the simulations.  

Under the hypotheses of the Central Limit Theorem, the expected value of a random variable 

X belongs with probability   to the interval  

( ) ,n n
n n

c c
E X X X

n n

      
                                                  (5) 
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1

 
n

n i

i

X X
n
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2

1

1

1




 
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n

n i n

i

X X
n

 and  

2

2
1

2

c x

c

e dx






                                                            (6) 

From these simple expressions one can deduce that for the mean to converge with confidence 

0.95, the number of samples needs to be: 
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( ) 1.96nE X X
n


                                                    (7) 

The convergence rate of MCS to the correct mean value is therefore proportional to 1 / n . 

To be noted that the convergence of the mean does not provide any information on the 

convergence of the distribution or an exact bound on the error.  

3.2 Unscented Transformation 

The Unscented Transformation works on the hypothesis that one can well approximate the 

posteriori covariance by propagating a limited set of optimally chosen samples (Julier et al. 

1995), called sigma points. The set of sigma points kȤ , at a certain time step k,  are defined 

as: 

  
  

0

1, 2, ,

1, , 2

k

k k ukf k
i

k ukf k
i

i

n i n

n i n n






 
   

    

x

Ȥ x P

x P

                                (8) 

where kȤ  is a matrix consisting of (2n+1) vectors i

kȤ , with  2

ukf ukf ukf
n n     , ukf

  is a 

scaling parameter, ukf
  determines the extension of these vectors around 

k
x . We set 

ukf
 equal to 10-3 and  ukf

  equal to 3-n. The sigma points are transformed or propagated 

through the nonlinear function, the so-called Unscented Transformation, to give: 

1 ( , )i i

k kf t Ȥ Ȥ , i=0, 1,…, 2n                                                  (9) 

The predicted mean of the state vector k
x , the covariance matrix kP  can be approximated 

using the weighted mean and covariance of the transformed vectors: 

 1,i i

k kf t Ȥ Ȥ                                                               (10) 

 
2

0

n
m i

k i k

i

W


x Ȥ                                                      (11) 

 
2

0

n
Tc i i

k i k k k k

i

W


        P Ȥ x Ȥ x                                  (12)                                           

where  m

i
W  and  c

i
W  are the weighted sample mean and covariance given by: 

    ( )

0

mW n                                                                  (13) 

 
     2

0 1
c

ukf ukf ukf ukfW n                                                (14) 

     2 , 1,2, ,2
m c

i i ukf ukfW W n i n                                          (15) 

and ukf
  is used to incorporate prior knowledge of the distribution with 2

ukf
 

 
(Crassidis and 

Junkins, 2004). 
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3.3 High-Order Taylor Expansions 

This section briefly reviews the approach proposed by Park and Scheeres (2006) to propagate 

uncertainty in dynamical systems and highlights some key properties through a simple 

example.  The method expands the variation ( )tx  of the states at time t with respect to a 

reference point 
0 0

( , ; )t t x
 
in Taylor series of some initial deviation 

0
 x . The s-th order 

expansion can be expressed using the Einstein summation convention: 

1 1

0

, ...

( , ) 0 0

1
( )

!

p p

s
ii

t t

p

x t x x
p

                                                           (16) 

where  1
.. 1,....,

p
n   denotes the 

i
component of the state vector corresponding to the s-th 

derivative, n is the number of components of the state vector and: 

1 0

0 1

0 0
0 0

, ... ( , ) 0 0

( , ) 0 0

ȟ x

( ; ; )
( ; ; )p

p

j j

p i

i t t

t t

t t
t t

 

 





 





   

ȟ
x                                        (17) 

In this way, a generic trajectory x , whose initial conditions are defined with respect to the 

reference trajectory as 0 0x x , will evolve as follows: 

     1 1

0

, ...

0 ( , ) 0 0

1
(t) (t)

!

p p

s
ii i

t t

p

x x x x
p

                                        (18) 

The partials of the flow in Eq. (16) form the so called global State Transition Tensors, which 

map the initial deviations 
0

x  at time t0 to the deviation ( )tx  at time t. For s=1, the STTs 

reduces to the simple state transition matrix. The partials in Eq. (17) can be computed by 

numerical integration of a set of ordinary differential equations (see Park and Scheeres, 

2006a). An example of these differential equations up to the third order follows:  

, , ,i a i af                                                                   (19) 

, , , , , ,i ab i ab i a bf f                                                           (20) 

 , , , , , , , , , , , , , ,i abc i abc i a bc ab c ac b i a b cf f f                              (21) 

where    , , 1,....,n and , , {1,..., }a b c n are the indexes for the first, second and third order 

derivative. 
 1, ... pi

f are the partials of the dynamics and are computed as follows: 

1

1

0 0
0 0

, ... 0 0

ȟ x

( ; ; )
p

p

j j

p i
i f t t

f
 

 
 





   

ȟ
                                             (22) 

Note that the partial derivatives in Eqs. (17) and (22) are calculated with respect to the 

nominal trajectory 0 0( , ; )t t x
 
(also equivalent to 0 (t)x of Eq. (18)). 

If the partials in Eq. (17) are obtained by numerical integration, the calculation of the STTs 

requires the forward propagation of 
1

1
6

s q

q



  differential equations starting with initial values 

0 0

,

( , ) 1i a

t t  , if i a , and zero otherwise. When the order is 3s  , the 1554 equations need to 

be integrated simultaneously. Moreover, the computational time and complexity are increased 

by the numerical evaluations of the analytical partials of the dynamics. In this work, the 
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partials in Eq. (22) were computed analytically using the symbolic manipulator in the 

MATLABRM Symbolic Toolbox. As an example, the third order STTs integration, along a 5 

day period, considering only Earth, Moon, Sun and light pressure, required approximately 8 

hours using a Windows 7 OS 3.16Ghz Intel(R)Core(TM)2 Duo CPU. To be noted that the 

coupled integration of thousands of equations could introduce numerical errors when 

integrated over a long period of time. For this reason, it is good practice to consider the 

nominal trajectory and to integrate the STTs over short periods of time, say 1 day to reduce 

possible numerical errors (Vetrisano et al. 2012). The intermediate STTs are called local 

STTs. While the global STTs map the deviation at the initial time 
0
t  to the deviation at time 

1k
t , the local STTs map the deviation at time 

k
t to the deviation at time 1k

t .  

As an illustrative example, Figure 3 shows the difference between a trajectory with initial 

conditions 0 0x x  propagated numerically for 5 days (still considering only Earth, Moon, 

Sun and light pressure) and the corresponding approximation defined in Eq. (18). 

  

Figure 3. Position (a) and velocity (b) error with local STTs. 

For this example the variation of the initial states was set to 

0 [2500 2500 2500 0.01 / 0.01 / 0.01 / ]Tkm km km km s km s km s x . The third and 

fourth order expansions prove to be the most accurate. The difference between approximation 

(18) and the corresponding trajectory propagated by integrating the equation of motion are 

reported in Table 1. It is clear that the linear approximation is not enough to correctly capture 

the evolution of the variated trajectory. The second order expansion offers a better 

approximation with the third and fourth order expansions showing the lowest error, especially 

the velocity components. The fact that third and fourth order seem to partially overlap is due 

to the fact that the trajectory deviated considerably from the reference one, thus the 

approximation (16) is not able to represent the evolution of the variated state for low orders.    

Table 1. Propagation error using STTs. 

Order 1 2 3 4 

Position 

error [m] 

585.111 3.133 0.189 0.190 

Velocity 

error [m/s] 

3.5∙10-3 2.4∙10-5 9.6∙10-7 8.8∙10-7 

a) b) 
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Once the state transition tensors are available for some time interval 
1

[ , ]
k k
t t  , the mean and 

covariance matrix of the relative dynamics at 
k
t  can be mapped analytically to 

1k
t   as a 

function of the probability distribution at 
k
t . In the remainder of this paper we will make use 

of the mean and covariance to compare different methods, therefore, here we briefly 

summarise the procedure proposed in Park and Scheeres 2006b, and Park, 2007. From 
k
t  to 

1k
t   the propagated mean and covariance can be computed as: 

 
1 1

1
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1 1 1 1 ( , )
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p p
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     m m m m  (23) 

1 1 1 1

1 1

1 1 1 1 1

. .

( , ) ( , ) 1 1

1 1

[( )( )]

1
[ ]

! !

p q p q

k k k k

ij i i j j

k k k k k

s s
i i i j

t t t t k k k k k k

p q

P E x m x m

E x x x x m m
p q

      

   
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 
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 

 

   

    
    (24)

  

   

 

where { , } {1,..., }
i j

n    are the indexes for the different order derivative. If one sticks to the 

hypothesis of an initial Gaussian distribution, the joint characteristic function for a Gaussian 

random vector can be defined as (Park and Scheeres, 2006) 

 
1

( ) [ ] exp( )
2

Tj T TE e j   u xu u m u Pu                                      (25) 

where 1j    and the expected higher moments can be computed using: 

 1 2

1 2

0

( )
[ ]p

p

p
pE j

 
 






  

     
u

u
x x x

u u u
                              (26)    

 

3.4 Polynomial Chaos Expansions 

The PCE method employs a set of orthogonal polynomial functions to approximate the 

functional form between the system response and each of the inputs (Ghanem and Spanos, 

1991; Ghanem and Dham, 1998; Xiu and Karniadakis, 2002; Le Matre et al., 2004; Ghanem 

and Doostan 2006). The chaos expansion for a component l of a generic response G takes the 

form: 

1 1 2

1 1 1 2 1 2 1 2 3 1 2 3

1 1 2 1 2 3

0 0 1 2 3

1 1 1 1 1 1

( ) ( , ) ( , , ) ...
i i i

l i i i i i i i i i i i i

i i i i i i

G a B a B a B a B     
  

     

         (27) 

 

where   are random inputs and iB  is a generic multivariate polynomial. This expression can 

be simplified by replacing the order-based indexing with a term-based indexing: 

 
0

( )l lj j

j

G 




  Ȥ                                                       (28) 

 

where there is a one-to-one correspondence between 
1 2 3i i i

a  and 
lj , and between  

  
1 2

( , ,..., )
vn i i i

B  and ( )
j

 ʖ . Each of the ( )
j

 ʇ  is a multivariate polynomials which involve 

products of the one-dimensional polynomials. In practice, one truncates the infinite expansion 

at a finite number of random variables and a finite expansion order, p: 
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0

( )
p

l lj j

j

G 


  Ȥ                                                         (29) 

Using Hermite polynomials, a multivariate polynomial ( )B ȟ of order n is defined from: 

1 2

1

1 1

2 2( , ,..., ) ( 1)
,...,

T T

v

v

n
n

n i i i

i i

B e e  
 


 

Ȥ Ȥ Ȥ Ȥ
                                        (30) 

which can be shown to be a product of one-dimensional Hermite polynomials involving a 

multi-index 
j

im : 

1 2

1

( , ,..., ) ( ) ( )j
v i

n

n i i i j im
i

B    


  Ȥ Ȥ                                        (31) 

For a multivariate polynomial the number of coefficients of the expansions for each uncertain 

variable is given by 
( )!

! !

v

v

i n

i n



 

which shows that the expansions tend to increase quite rapidly 

with the number of variables and order.  The coefficients of the expansion (19) are here 

calculated via spectral projection (Eldred et al. 2011). This approach projects the response G 

against each basis function using inner products and employs the polynomial orthogonality 

properties to extract each coefficient. Each coefficient in Eq. (29) is calculated as: 

2 2

, 1
( )

l j

lj j

j j

G
G d 




  

   Ȥ Ȥ                             (32) 

where the inner product involves a multi-dimensional integral over the support of the 

weighting function ( ) Ȥ . Analytical expressions of the mean and covariance matrix are then 

available as: 

0

0

2

1

[ ] [ ]

[( ) ( ) ] ( ) [ ]

p

G j j

j

p
T T

G G G j j j

j

E E

E E





   

    





ȝ G Į Į

P G ȝ G ȝ Į Į
                      (33) 

G
ʅ  and 

G
P  are the exact moments of the expansion, which converge to moments of the true 

response function; the vector jĮ represents the j-th column of the matrix Į  of components 


lj . The computation of the multi-dimensional integral can be done using a MCS with low-

discrepancy sequences or a quadrature formula using Gauss points and weights. The latter, 

however, requires a full tensor product and a number of points that increases exponentially 

with the number of dimensions. As proposed in Xiu and Hesthaven (2005), a more attractive 

choice, is based on sparse grids generated using Smolyak’s algorithm (Smolyak, 1963). 

Smolyak’s approach provides a general tool for constructing efficient algorithms able to solve 

multivariate problems with orders of magnitude reduction in the number of support nodes 

while giving the same level of approximation as the usual tensor product. In this framework, 

the work of Genz and Keister (1996) introduced fully symmetric interpolatory integration 

rules for Smolyak sparse grid of Gauss-Hermite nodes.  
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3.4.1 Gauss-Hermite Cubature rules  

The multi-dimensional integral in Eq. (32) can be approximated as the sum of discrete 

number of terms: 

1

( ) ( ) ( ) ( )
ngrid

l j l i j i i

i

G d G w




   Ȥ Ȥ Ȥ Ȥ Ȥ                       (34) 

The set of points iȤ  and weights ( )iw Ȥ  are defined by the Gauss-Hermite cubature rule in 

Genz and Keister (1996). These rules are optimal for the solution of multidimensional 

integrals over infinite regions with a Gaussian weight function. In the work of Genz and 

Keister (1996), it is shown that a Gaussian integral for a polynomial of order n can be 

calculated perfectly using a grid of level 2 1l n  . Figure 4 shows a normalised sparse grids, 

with different level of accuracy, for 3 uncertain parameters 
1

 , 
2

  and 
3
 using Hermite 

polynomials as bases.  

 

Figure 4. Smoliak grid for Hermits polynomials with different levels of accuracy 

As one can see when the level of accuracy is increased the grid is populated by a higher 

number of samples, which cover also a broader portion of the uncertainty space. For example, 

the max and min values of the uncertain parameters are respectively 1.7ı and -1.7ı for a 
level 2 grid, while they are 4ı and -4ı for a level 6 grid. This gives the possibility to better 

cover the uncertainty space, generating samples with low associated probability. Table 2 

shows the minimum number of points needed to calculate the discrete integrals in Eq. (33), 

for 6 uncertain variables, as a function of the order of the polynomials. As a reference, the 

table reports the number of nodes for a classic sparse grid cubature rules (see Heiss and 

Winschel, 2007), for the same order of expansion. As one can see Genz-Keister grids allows 

decreasing the number of sampling points as the order of the polynomial increases while 

maintaining the same accuracy level (see the work of Genz and Keister, 1996 where a 

detailed comparison was carried out).  
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Table 2. Minimum number of points required for calculating Gaussian integrals of a 

certain order. 

Order 1 3 5 7 9 11 

Genz-Keister 

sparse grid 

1 13 73 257 749 2021 

Classic 

Sparse grid 

1 13 85 389 1433 4541 

 

4. Uncertainty Analysis 

This section starts with a comparison among the methods presented in Section 2.2 to select 

the most suitable alternative to MCS for the case analysed in this paper. Then the study of the 

probability of impact on the surface of the Moon for the disposal trajectory described in 

Section 4.2 follows. 

4.1 Comparison 

Given that the uncertainty analysis of disposal trajectories from LPO to the Moon is a new 

application of PCE in astrodynamics, we first compare the methods presented in Section 2.2 

to evaluate their accuracy and computational cost and establish which one provides the best 

representation of the dispersion of the final states. Section 4.1.1 derives the reference 

distribution using a Monte Carlo Simulation.  Section 4.1.2 compares the ability of each 

method to correctly predict mean and covariance while Section 4.1.3 tests the ability of STT 

and PCEs to represent the full distribution versus their computational cost. The dynamical 

model used in all the tests in this section includes only Earth, Sun and Moon and light 

pressure and does not consider the full harmonic expansion of the gravity field of the Moon 

or the n-body perturbation 
pb

a . The dynamic equations were numerically integrated with an 

explicit, variable step size, Runge-Kutta 4-5 integration method (ode45 function of MatlabTM) 

with respectively a 10-9 and 10-9 relative and absolute accuracies. 

4.1.1 Reference Distribution 

In this section we derive the reference distribution used in the following comparisons. The 

distribution is derived from a full MC simulation using the complete model. The simulation 

was run for an increasing number samples, from 104 to 106, to verify the correctness of the 

predicted distribution. 

The uncertain quantities are assumed to be uncorrelated and normally distributed with 

standard deviation  
4 4 4[5 5 5 3.89 10 / 7.68 10 / 2.59 10 / ]Tkm km km km s km s km s     ı  and zero mean. 

These values are typical position errors for this kind of mission (see Godard et al. 2009) and 

will be used for the analysis in the remainder of this paper. The variation in velocity 

represents 1% (1) of the disposal manoeuvre. Note that trajectories are propagated up to 12 

hours before the nominal impact because the numerical integration of the STTs beyond that 

point resulted very difficult due to the proximity to the singularity (represented by the Moon 

centre) of the equations of motion. 
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Figure 5 to Figure 7 show the contour plots of the resulting distributions in the final position 

projected on the plane x-y and the final velocity projected on the plane x-z. These projections 

show the most significant nonlinearities and asymmetries in the final distributions. The 

probability density was computed as the ratio between fraction of particles within a circle 

centred in each MC sample and the corresponding area. Radii of 100 km for the position and 

of 20 cm/s for the velocity were used. To be noted that final distributions are not Gaussian, 

although the initial samples were drawn from a Gaussian distribution.  

Figure 5 to Figure 7 show the shape can be described fairly well even with 10,000 samples, 

although the tails fail to cover all the range which only more samples are able to describe. 

More samples define low probability density more accurately such that the transition between 

the different density levels becomes smoother, as in Figure 7.  

 

 
Figure 5. Statistical distribution for Monte Carlo Simulation and 10,000 samples: x-y 

position distribution (a), x-z velocity distribution (b). The colorbar represents the 

probability density. 

 
Figure 6. Statistical distribution for Monte Carlo Simulation and 100,000 samples: x-y 

position distribution (a), x-z velocity distribution (b). The colorbar represents the 

probability density. 

a) b) 

a) b) 
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Figure 7. Statistical distribution for Monte Carlo Simulation and 1,000,000 samples: x-y 

position distribution (a), x-z velocity distribution (b). The colorbar represents the 

probability density. 

If we then evaluate the impact rate for these cases as reported in Table 3, we see that the 

relative difference is below 0.3 per mille between 105 and 106 samples. We can conclude that 

105 is a sufficient sample size to describe the distribution of the final states in the case under 

investigation. 

Table 3: Impact rate convergence for increasing number of MC samples. 

Number of samples 10,000  100,000 1,000,000 

Impact rate % 19,740 19.951 20.007 

Difference % -1.335 -0.029 / 

4.1.2 Estimation of Mean and Covariance  

The first comparative analysis considers the evolution of the maximum error on the 

estimation of mean and covariance calculated with the methods in Section 3. The maximum 

error was defined as the absolute value of the difference between the mean calculated with 

UT, PCE, SSTs and the one calculated with MCS plus the max norm of the difference 

between the covariance matrix calculated with UT, PCE, SSTs and the one calculated with 

MCS. Figure 8 reports the results for the STTs, with order up to 4, and the UT, while Figure 

9 shows the same analysis for PCE, with order up to 6. PCE were generated using grids with 

l n  because we noticed that the best results are achieved when the number of samples is 

higher than the number of coefficients in the expansion.  

Figure 8 shows that the error remains negligible for 40 days till the contribution of the gravity 

of the Moon becomes significant. At that point the first order STTs depart from the MCS 

reference solution. At the end of the simulation when the trajectories get closer to the moon 

and the distribution gets stretched, the order of the STTs needs to be increased to recover the 

nonlinearities. The accuracy of the results depends on the order for the STTs for both the 

position (Figure 8a)) and velocity (Figure 8b)). Remarkably, the UT is equivalent to second 

order STTs at representing the dispersion of the position but is better than a 4th order STT at 

representing the dispersion of the velocities. Although the UT is not modelling the full shape 

of the distribution, it is still able to pick a set of points that provides a good approximation of 

the covariance. The STTs of order 4, instead, do not capture, with sufficient accuracy, the 

a) b) 
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deformation of the uncertainty region and as a consequence the following calculation of the 

covariance results less accurate.  

    

Figure 8. Maximum position (a) and velocity (b) error for STTs and UT with respect to 

the MC simulation. 

  

Figure 9. Maximum position (a) and velocity (b) error for STTs and UT with respect to 

the MC simulation.  

The result in Figure 9 shows that, on this test case, a PCE of order 2 achieves a better 

approximation of mean and variance of an STT of order 4 for both position and velocity. In 

particular, the error in velocity, at the final time, is about one order of magnitude lower than 

the 4th order STT and the UT. 

4.1.3 Approximation of the Full Distribution  

The second comparative analysis computes the maximum absolute difference (maximum 

absolute error) in the distributions of position and velocity at the final time between the STTs, 

the PCE and the full MCS predictions with 105 samples. With the STTs the distribution is 

derived by integrating all the partials only once and then running a MCS on expansion (16).  

Figure 10 to Figure 13 show the resulting distributions for different levels of expansion. Note 

that the distribution returned by the UT would look like the one in Figure 11. While the 

position distribution can be approximated quite well with low order STTs (Figure 10a) to 

Figure 13a)), the same is not possible for the velocity (Figure 10b)) to Figure 13b)).  

a) b) 

a) b) 
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Figure 10. Statistical distribution with 1st order STTs x-y position distribution (a), x-z 

velocity distribution (b). The colorbar represents the probability density. 

 

Figure 11. Statistical distribution with 2nd order STTs: x-y position distribution (a), x-z 

velocity distribution (b). The colorbar represents the probability density. 

 

Figure 12. Statistical distribution with 3rd order STTs: x-y position distribution (a), x-z 

velocity distribution (b). The colorbar represents the probability density. 

a) b) 

a) b) 

a) 
b) 
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Figure 13. Statistical distribution with 4st order STTs: x-y position distribution (a), x-z 

velocity distribution (b). The colorbar represents the probability density. 

The distribution obtained from STTs of order 1, for both position and velocity, are simply 

ellipsoids (see Figure 10). This first order approximation partially captures the shape of the 

distribution in position but fails to represent the velocities. From Figure 11 one can see that 

the 2nd order STTs distribution of velocity has a teardrop shape which is still far from the 

result in Figure 7. The third order STT approximation performs slightly better (Figure 12b)) 

and only the fourth order STTs approximation resembles the uncertain region obtained with 

the full MCS, although with many samples scattered far from the actual uncertain region (see 

Figure 13b)). 

PCEs show better accuracy in the description of the distribution (see Figure 14 to Figure 18). 

A 2nd order PCE provides a better representation than 2nd and 3rd order STTs, as can be seen 

in Figure 14. The representation improves as the order increases from 3rd to 6th (see Figure 

15b) to Figure 18b)). The 6th order PCE distributions, in Figure 18, are almost coincident with 

the full the ones derived from the full MCS. The PCE displayed the remarkable ability to 

globally represent the distribution better than the SSTs. As to be expected the STTs 

representation is more accurate nearer the nominal solution and loses accuracy as the sampled 

points move away from it. The PCE instead is computed by sampling globally over the 

uncertain space and, thus, achieves a better global representation. 

 

Figure 14. Statistical distribution with 2nd order PCE: x-y position distribution (a), x-z 

velocity distribution (b). The colorbar represents the probability density. 

a) b) 

a) b) 
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Figure 15. Statistical distribution with 3rd order PCE: x-y position distribution (a), x-z 

velocity distribution (b). The colorbar represents the probability density. 

 

Figure 16. Statistical distribution with 4th order PCE: x-y position distribution (a), x-z 

velocity distribution (b). The colorbar represents the probability density. 

 

Figure 17. Statistical distribution with 5th order PCE: x-y position distribution (a), x-z 

velocity distribution (b). The colorbar represents the probability density. 

a) b) 

b) 

b) 

a) 

a) 
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Figure 18. Statistical distribution with 6th order PCE: x-y position distribution (a), x-z 

velocity distribution (b). The colorbar represents the probability density. 

 reports the maximum error on the representation of the probability distribution, the number 

of required integrations, the number of samples, in brackets, and the computational time. In 

the case of the STT calculation, the number of required integrations is defined as the number 

of components of the STT that need to be integrated. In all other cases, the number of 

required integrations is the number of equations to be integrated times the number of 

samples. For example, for the UT, one needs 13 samples and for each sample 6 differential 

equations are integrated forward in time. For example, in the case of MCS and PCE the 

distribution is built by propagating a number of sample points, where each point requires the 

integration of 6 nonlinear equations.  

The computational time, reported in the last column of , includes also the time required to 

compute the coefficients of the PCE and to resample the STTs and PCE representations. For 

the PCE expansion the velocity error is, in general, at least one order of magnitude lower than 

for the STTs and UT. As the order of the PCE increases, the error goes down to less than 2 

cm/s (for a PCE of order 6). This level of accuracy was obtained with less than one twentieth 

of the samples of the MCS. The most expensive method is the SST of order 4 as it requires 

9,330 integrations of the partials. In fact, the computational cost for a 4th order STTs has the 

same order of magnitude as the propagation of 105 samples of the full MC simulation. A 6th 

order PCE is as computationally expensive as 3rd order STTs.  

The computational cost of the STT can be explained by looking at ratio between the 

computational time required to evaluate the right hand side of Eqs. (19) to (21) and the time 

required to evaluate the 6 dynamic equations in (1), times the number of integration steps. In 

this paper all partials required to compute the STT were generated with a symbolic 

manipulator and the full analytical expressions were inserted in a Matlab function. All 

calculations were vectorised to improve speed. As an example, we considered the 

propagation of a single trajectory for 0.25 days using the nominal initial conditions specified 

in section 3.3. For the single trajectory the propagator required 18 time steps. The 

propagation of a 1st order STT required 28 integration steps and 7.35 times the computational 

cost of a single integration of the dynamics.  The propagation of a 2nd order STT required 30 

integration steps and about 51.62 times the computational cost of a single integration of the 

dynamics. Likewise the propagations of a 3rd and 4th order STTs required 35 integration steps 

and resulted to be, respectively,  833.14 and 17,710 more expensive than a single integration 

of the dynamics. An STT of order 3 is, therefore, almost as expensive as a PCE of order 4 

a) b) 
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though delivering a significantly worse approximation of the distribution. To be noted, 

however, that the cost of the STTs can be further reduced by exploiting the symmetries and 

(potential) sparsity in their structure, as well as ad hoc propagation schemes. Symmetry and 

sparsity are problem dependent and were not exploited in these simulations.  

Table 4: Comparison between STTs, PCE and MCS for a 56 days propagation from 

LPO to Moon disposal manoeuvre. A 64-bit Linux CentOS 5.4 2.93GHz Intel(R) 

Xeon(TM) X5570 was used. 

Method Maximum position 

error (1-ı) [km] 
Maximum 

velocity error 

(1-ı) [m/s] 

Number of 

integrations  

(samples) 

CPU time [s] 

UT 107.594 8.869 78 (13) 63.53 

STTs 1n   265.196 18.282 42  22 

STTs 2n   110.323 13.061 258 154 

STTs 3n   47.295 13.222 1,554 2,492 

STTs 4n   17.470 11.743 9,330  52,970 

PCE 2n   4.936 1.539 438 (73)  222 

PCE 3n   3.660 0.449  1,542 (257) 773 

PCE 4n   3.356 0.122 4,494 (749) 2,244 

PCE 5n   3.353 0.070 12,126 (2021) 6,050 

PCE 6n    3.344 0.038 28,350 (4725) 14,139 

MCS 0 0 600,000 

(100,000) 

299,093  

For the calculations presented in the previous paragraph and in Table 4 we considered an 

adaptive step size integrator of Section 4.1. Thus, part of the cost of the STT, compared to a 

single integration of the dynamics, comes from the increased number of steps. Therefore, in 

order to remove any bias introduced by the integrator we propagated all STTs with a Runge-

Kutta integrator of order 5 with a fixed step size of about 0.3 days (i.e. one two-hundredth of 

the disposal interval). The result, reported in Table 5, shows an improvement in the 

computational time but a worsening of the accuracy. For order four, the position error is 20 

times bigger than in the case of the variable step-size integrator.  

Table 5: STTs performance using a fixed step Runge-Kutta integrator of order 5.  

Method Maximum position 

error (1-ı) [km] 
Maximum 

velocity error 

(1-ı) [m/s] 

CPU time [s] 

STTs 1n   1,711.33 32.29 20.7 
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STTs 2n   1,643.66 29.70 137.8 

STTs 3n   686.08 24.83 1,981 

STTs 4n   558.28 23.99 33,960  

4.2 

4.2 Impact Probability Analysis 

The analyses in Section 4.1.2 and 4.1.3, have shown that, in the case under investigation, 

PCEs offer a better approximation of the final distribution compared to UT and STTs and a 

lower computational cost compared to STTs and MCS. Therefore, in this section, PCEs are 

the method of choice to estimate the impact rate with the Moon.  The distribution of virtual 

impactors is reconstructed 8 hours before the time of the nominal impact. Then for the i-th 

virtual impactor the osculating orbital elements of an orbit intersecting the Moon are 

computed and the anomaly corresponding to the intersection with the surface of the Moon 


impact , is obtained simply from: 

r(impacti)=RMoon                                                      (35) 

The approximation in Eq. (35) allows one to use a lower order representation of the 

distribution at the Moon and avoid the discontinuity due to the fact that some virtual 

impactors hit the surface and others miss the Moon. The Cartesian coordinates at impact are 

then recovered from  impact  and the orbital elements of the virtual impactor. For these analyses 

we used the full dynamical model. 

Table 6 shows the impact rate for MCS and PCE using 105 virtual impactors. From this table 

one can see that the difference between PCE and MCS progressively reduces as the order of 

the PCE increases. The increase in the error between order 2 and 3 is probably due to 

numerical inaccuracies in the calculation of the coefficients of the PCE expansion given the 

extended uncertainty region. In fact, as shown below in the case with a reduced uncertainty, 

order 3 is more accurate than order 2.  

Table 6: Impact rate comparison between MCS and PCE: 1% manoeuvre error and 5 

km dispersion error (per component). 

 MCS  PCE ord 2 PCE ord 3 PCE ord 4 PCE ord 5 PCE ord 6 

Impact rate % 19.951 20.858 21.007 20.515 20.430 20.180 

Relative error % / 4.55 5.41 2.83 2.40 1.14 

The small error in the impact rate is consistent with the small error in the distribution of the 

virtual impactor. Figure 19 to Figure 21 report the density and distribution of the virtual 

impactors on the south hemisphere of the Moon. The density distribution was calculated as 

the percentage of impactors hitting a circle of 30 km radius centred on each virtual impactor 

divided by the corresponding area.  

For order 2 the PCE representation is particularly effective at reconstructing the area closer to 

the mean, given the shape of the grid shown in Figure 4 of Section 3.4.1, with all virtual 

impactors concentrated in the area closer to the nominal trajectory. The MCS distribution, 

however, appears to be multimodal, which is better captured by a higher order PCE. To be 
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noted that given the low impact rate, these considerations are limited to the distribution only 

of the virtual impactors that hit the Moon, while Table 6 accounts also for the virtual 

impactors that miss the Moon. As one can see, MCS and PCE return a similar distribution 

and density of virtual impactors already for order 2 with a progressive improvement as the 

order increases.  

 

Figure 19. Particles dispersion and density at impact for 1% manoeuvre error and 5 km 

dispersion error (per component): MCS (a) and PCE order 2 (b). The colorbar 

represents the probability density. 

 

Figure 20. Particles dispersion and density at impact for 1% manoeuvre error and 5 km 

dispersion error (per component): PCE order 3 (a) and PCE order 4 (b). The colorbar 

represents the probability density. 

b) 

b) 

a) 

a) 
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Figure 21. Particles dispersion and density at impact for 1% manoeuvre error and 5 km 

dispersion error (per component): PCE order 5 (a) and PCE order 6 (b). 

One can now check the sensitivity to a resampling of the PCE with a higher number of virtual 

impactors. Figure 21 shows the result for 200,000 samples and an order 6 PCE. The resulting 

distribution appears even closer to the MCS one with comparable density of virtual 

impactors. 

 
Figure 22. Particles dispersion and density at impact for 1% manoeuvre error and 5 km 

dispersion error (per component): PCE order 6 with 200,000 samples. The colorbar 

represents the probability density. 

The previous example demonstrated that a 1% manoeuvre error leads to a low impact 

probability. If an impact probability higher than 90% has to be guaranteed a lower error in 

orbit determination and manoeuvre execution is required. One can now consider the case 

where the dispersion in position is limited to 1 km per component, while the one for the 

velocity is just 0.1% of the disposal manoeuvre. Table 7 shows the resulting impact probability 

of both MCS and PCE. As in the previous case, one can see that the higher order PCE are more 

accurate in the description of the overall impact statistics. The difference between MCS and 

PCE is only 0.03 % for an order 2 PCE and drops to 0.005% for a 6th order PCE.  

Table 7. Impact rate comparison between MCS and PCE: 0.1% manoeuvre error and 1 

km dispersion error (per component). 

b) a) 
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 MCS  PCE ord 2 PCE ord 3 PCE ord 4 PCE ord 5 PCE ord 6 

Impact rate % 92.326 92.354 92.337 92.331 92.331 92.329 

Relative error % / 0.03 0.012 0.005 0.005 0.004 

As before, we show also the corresponding distribution and probability density of the virtual 

impactors. From Figure 23 to Figure 25 one can see that the virtual impactors are less 

scattered with respect to the previous case.  Although the distribution is stretched over a half 

circle, the probability density function appears unimodal with the maximum density that is 

approximately one order of magnitude higher than in the previous case (4.5∙10-4 against 

5.4∙10-5). 

 

 

Figure 23. Particles dispersion and density at impact for 0.1% manoeuvre error and 1 

km dispersion error (per component): MCS (a) and PCE order 2 (b). The colorbar 

represents the probability density. 

 

Figure 24. Particles dispersion and density at impact for 0.1% manoeuvre error and 1 

km dispersion error (per component): PCE order 3 (a) and PCE order 4 (b). The 

colorbar represents the probability density. 

b) 

b) 
a) 

a) 
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Figure 25. Particles dispersion and density at impact for 0.1% manoeuvre error and 1 

km dispersion error (per component): PCE order 5 (a) and PCE order 6 (b). 

5. Conclusions 

In this paper we have applied different techniques for Uncertainty Quantification to the study 

of the disposal from LPO to the Moon. We studied in particular the disposal of Herschel from 

the Lagrangian Point L2 where the initial disposal conditions are affected by uncertainties 

due to both orbit determination and system performance.  

From this study it emerged that PCE are an appropriate tool for this type of analyses and 

provide accurate predictions at low computational cost. The particular PCE proposed in this 

paper is based on multivariate Hermite polynomials with integration over Genz and Keister 

sparse-grids. Multivariate Hermite polynomials were chosen because they have infinite 

support and can well represent mixtures of Gaussian distributions. Two key features of PCE 

were exploited in this paper: the ability to produce functional representations of any generic 

stochastic distribution and the direct derivation of the statistical moments from the 

coefficients of the PCE expansion. The latter was used when comparing the mean and the 

covariance against UT and low order SSTs, while the former was exploited when computing 

the impact rate.  

In the case investigated in this paper, Taylor expansions based on the numerical propagation 

of STTs have proved to be not as efficient and accurate as PCEs. This is a problem when 

several reference trajectories have to be tested. On the contrary the PCE expansion proved to 

be a valid alternative to MCS, featuring less computational effort and comparable accuracy. 

The impact probability analysis provided an understanding of the effectiveness of the 

disposal manoeuvre in relation to the accuracy with which the initial position and velocity pre 

manoeuvre are known and the accuracy with which the disposal manoeuvre is performed. In 

order to achieve over 90% success rate, the initial accuracy on the disposal manoeuvre has to 

be as low as 0.1% of the nominal value with 1 km dispersion in position. A 1% error in the 

manoeuvre and 5 km of uncertainty in position reduces the impact success rate to only 20%. 

Future work will see the application of PCE to the study of uncertainties effects on other 

disposal trajectories which can involve multi-revolutions around the Moon and the Earth and 

fly-bys and the treatment of singularities or mixed regimes of motion (for example 

atmospheric entry combined with orbital regime) that might require a partitioning of the 

uncertain domain.       

b) a) 
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