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ABSTRACT

iii

The state of a dynamical system will rarely be known perfectly, requiring the vari­

able elements in the state to become random variables. More accurate estimation of the 

uncertainty in the random variable results in a better understanding of how the random 

variable will behave at future points in time. Many methods exist for representing a random 

variable within a system including a polynomial chaos expansion (PCE), which expresses a 

random variable as a linear combination of basis polynomials.

Polynomial chaos expansions have been studied at length for the joint estimation 

of states that are purely translational (i.e. described in Cartesian space); however, many 

dynamical systems also include non-translational states, such as angles. Many methods of 

quantifying the uncertainty in a random variable are not capable of representing angular 

random variables on the unit circle and instead rely on projections onto a tangent line. Any 

element of any space V can be quantified with a PCE if V is spanned by the expansion’s 

basis polynomials. This implies that, as long as basis polynomials span the unit circle, an 

angular random variable (either real or complex) can be quantified using a PCE.

A generalization of the PCE is developed allowing for the representation of complex 

valued random variables, which includes complex representations of angles. Additionally, it 

is proposed that real valued polynomials that are orthogonal with respect to measures on the 

real valued unit circle can be used as basis polynomials in a chaos expansion, which reduces 

the additional numerical burden imposed by complex valued polynomials. Both complex 

and real unit circle PCEs are shown to accurately estimate angular random variables in 

independent and correlated multivariate dynamical systems.
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1. INTRODUCTION

1.1. MOTIVATION AND LITERATURE SURVEY

Engineering is an imperfect science. Noisy measurements from sensors in state 

estimation1,2, a constantly changing environment in guidance3,4,5, and improperly actuated 

controls6 are all major sources of error. The more these sources of error are understood, 

the better the final product will be.

The question that arises is in what way should the error in a state be represented? 

Ideally, every variable with some sort of uncertainty associated with it, i.e. a random vari­

able, would be completely and analytically described with its probability density function 

(pdf). Unfortunately, even if this is feasible for the initialization of the random variable, the 

pdf's evolution through time rarely yields a pdf with an analytic form when the governing 

dynamics are nonlinear.

When representing the error using the random variable's pdf is impractical, then 

an alternative is to use the moments of the pdf to represent the random variable in a 

dynamical system. The statistical moments of the random variable describe the shape of 

the pdf, including the average, the concentration, symmetry about the mean, etc.; therefore, 

providing enough information about the shape of the pdf is seemingly sufficient to describe 

the pdf. Given a finite number of parameters in the form of moments of the random 

variable that need to evolve over time, which is surely better than a continuous function 

without an analytic form. Unfortunately, it isn’t the case that describing the random 

variable using only moments enables a sufficient quantification of the random variable 

for multiple reasons. Firstly, the complexity associated with calculating a moment and 

transforming it in time increases with each successive moment. Secondly, unless the pdf has 

a closed support (i.e. [a, b]), or has open support with specific properties (determinateness),



2

the complete sequence of moments is not sufficient to uniquely describe the pdf. For 

further discussion on the moment problem the reader is encouraged to reference Sohat 

and Tamarkin7, which covers the Hausdorff moment problem for supports over closed 

intervals8,9, the Stieltjes moment problem for supports over the semi-infinite interval10 (i.e. 

[0, to)), or the Hamburger moment problem for supports over the infinite interval11 (i.e.

(-TO, TO)).

Some sort of concession must be made, resulting in an approximation of the random 

variable or its pdf. Many times, instead of the entire sequence of moments, only the 

first two moments (mean and variance/covariance) are considered, as with the unscented 

transform12 (UT) and the Kalman filter including extended13, quadrature14, cubature15, 

etc. variants. If the dynamics governing a state are not highly nonlinear, then assuming 

the pdf maintains a consistent relative shape (e.g. the pdf remains Gaussian, uniform, etc.) 

is not necessarily a poor assumption, if the shape of the pdf is known, then the moment 

problem becomes easier. Also, smaller uncertainties in the random variable generally result 

in smaller deformations of the pdf when compared with larger uncertainties. In these 

cases, the higher order moments are highly dependent on the first two moments; i.e., there 

is a minimal amount of unique information in the higher order moments. In contrast, if 

either the uncertainty is large or the dynamics become highly nonlinear, the higher order 

moments become less dependent on the first two moments and contain larger amounts of 

unique information. As a result, the error associated with using only the first two moments 

becomes significant16,17.

In terms of computational resources, it is generally much easier to propagate the 

uncertainty of a random variable through time when the governing dynamics are linear. 

Even if the dynamics are nonlinear, they can be approximated as linear over very small time 

intervals by using a linearization method like the Taylor series expansion18. The Taylor 

series expansion, as it is used in the extended Kalman filter13 for state estimation, utilizes 

the dynamics Jacobian to propagate the first two moments forward in time. Similar to the
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UT, linearization can be very useful (even utilized in crewed missions to the surface of 

the M oon19). However, while the inclusion of higher order moments20 is possible, and 

helps capture some higher order effects resulting in more accurate state estimation21,22, it 

generally requires an assumption that the pdf is normal*. Additionally, the accuracy of a 

linearization deteriorates as the dynamics become nonlinear.

One method of quantifying uncertainty that does not require an assumption of the 

random variable’s pdf, but is still able to approximate the shape of the pdf is the polynomial 

chaos expansion (PCE)23,24,25,26. PCE characterizes a random variable as a coordinate in a 

polynomial vector space. Useful deterministic information about the random variable lies 

in this coordinate, including the moments of the random variable27. The expression of the 

coordinate depends on the basis with which it is expressed. In the case of PCE, the bases 

are made up of polynomials that are chosen based on the assumed density of the random 

variable; however, any random variable can be represented using any basis28. It is strongly 

noted that assuming the density of the random variable simply eases computation; with 

enough computing power, any random variable can be quantified with any basis29. The 

most common basis polynomials are those that are orthogonal with respect to common pdfs, 

such as the Hermite-Gaussian and Jacobi-beta polynomial-pdf pairs.

One of the first uses of PCE with different Askey polynomials was to model the 

uncertainty in boundary conditions in computational fluid dynamics (CFD) simulations30, 

showing that PCE can be used with Legendre polynomials to propagate initial uncertainty 

and that the estimates using PCE are shown to converge to the results of Monte Carlo 

simulations. Additional studies31,32,33 into using PCE for CFD simulations have been 

performed, favoring PCE not only for the accuracy in the propagation of uncertainty, but for 

the ease of implementation. As opposed to linearization, which requires partial derivatives 

of the state, PCE can use existing dynamical models without alteration.

*Within this document “normal” and “Gaussian” are used interchangeably referring to a Gaussian pdf.
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In addition to the aerodynamics, PCE has been used used to propagate the uncer­

tainty of space based objects. Space presents a very challenging environment, requiring 

large amounts of autonomy in an extremely isolated environment; as a result, poor knowledge 

and utilization of uncertainty in the system can cause cascading, potentially catastrophic, 

errors, especially when considering missions can last years. Although PCE is a relatively 

new concept within the orbital mechanics field, it has proved to be a useful tool in uncer­

tainty propagation including, the propagation of uncertainty using Cartesian and Poincare 

elements34. This study observed the performance of PCE compared with linearization and 

the UT as methods of uncertainty propagation, showing that PCE is the only method (as they 

have been presented) that is capable of capturing higher order moments and propagation 

in Cartesian space required more samples than Poincare elements for the same level of 

accuracy.

By no means is PCE confined to use in different disciplines of aerospace engineering. 

The study of epidemiology contains many mathematical models, the inputs of which are 

often not known deterministically. As opposed to measurable quantities like fevers or 

the presence of antigens, epidemiologists must include symptomatic factors that are much 

harder to model. For example, the transmission rate of a disease is of importance when 

estimating the impact of the disease. Using PCE to model the uncertainties in the human 

interactions that drive transmission rates not only provides a method of predicting the 

growth of a disease, but a sensitivity analysis using PCE (without additional computation) 

indicates how the transmission rate is affected by different types of human interaction.

While polynomial chaos has been well-studied for variables that exist in the n- 

dimensional space of real numbers (Rn), many variables do not lie in this field. For 

example, if an angular random variable, such as the true anomaly of a body in orbit or 

vehicle attitude, were to be estimated using Askey-chaos, the random variable’s projection
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from Sn onto a tangent plane in Rn would be estimated, rather than on its natural manifold 

Sn. When the uncertainty is very small, this approximation is relatively effective; however, 

as the uncertainty increases, this approximation becomes invalid.

In addition to increased approximation error as the uncertainty of an angular random 

variable increases, there are additional properties that must be considered. For example, 

the support of a 1-dimensional angle is of length 2n, but when considering the common 

unit circle, the points at 0° and 360° are the same point. Not only do the pdfs of angular 

random variables have to have the same value at these points, they must be continuous across 

them. Approximating an angle as a translational random variable makes no guarantee of 

this continuity.

Possibly the most beneficial aspect of polynomial chaos is that assumptions about 

the random variable are not necessary. Approximating an angular random variable as a 

translational random variable would induce an assumption that is not necessary. Rather 

than make this type of approximation, directional statistics can be used, which are statistical 

methods that are specifically formulated to analyze angular random variables on their 

natural manifold, the n-dimensional sphere Sn. The directional statistics associated with 

angular random variables has been incorporated into state estimation, providing a method 

for estimating angular random variables directly on the n-dimensional special orthogonal 

group (SOn)35,36,37.

1.2. CONTRIBUTIONS

This dissertation presents two different methods of representing an angular random 

variable as a polynomial chaos expansion. The proposed families of polynomials used for 

angular random variables are orthogonal with respect to measures on either the complex or 

real unit circle.
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The existing framework of PCE uses the orthogonality of the basis polynomials in 

many ways that are invalid if the polynomials are complex valued. The first contribution of 

this dissertation is the generalization of PCE for use with complex valued basis polynomials. 

Recent work38,39 has made a similar generalization of PCE presenting favorable results in 

the estimation of angular mean and variance; however, the work presented herein has been 

explored independently and includes the additional development of correlation between 

angular random variables. The presented PCE form is usually discussed as a method of 

representing an angular random variable; however, any random variable with a pdf on a 

complex manifold can be represented as a result of this generalization.

The second major contribution of this dissertation is the use of real valued poly­

nomials that are orthogonal with respect to measures on the real unit circle in a chaos 

expansion. With real valued polynomials, the existing PCE framework is appropriate; as a 

result, the correlation between translational and angular random variables can be estimated 

directly.

Together, these methods present a way to represent angular (and general complex) 

random variables using a PCE without having to make any assumptions about the random 

variable at all. The reduction in assumptions not only produces more accurate results, 

but also allows produces a more adaptive tool that is not problem specific. Even when a 

real valued random variable is expanded using the complex expansion is considered, the 

mathematics result in an expansion that is equivalent to the traditional PCE. The primary 

benefits of PCE that are of most interest in this work are that PCE:

• does not make an assumption based on the shape of the random variable;

• represents the random variable itself, not just the pdf or the moments of the pdf, 

meaning higher order effects are not neglected; and

• it can be used with existing “black box” dynamics.
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1.3. ORGANIZATION

The remainder of this dissertation is organized as follows:

• Section 2 contains mathematical preliminaries, including general concepts of bases 

that span different vector spaces. Bases of polynomial vector spaces are discussed in 

length including the established Askey and Szego polynomials, as well as polynomials 

that are orthogonal with respect to arbitrary measures. Additionally, some of the 

common pdfs on both Rn and Sn are given along with the general form of statistical 

moments.

• Section 3 provides overviews of the UT and PCE as they are used for random variables 

on the real line. The process for implementation is also given for PCE.

• Section 4 presents the quantification of an angular random variable on either the 

complex or real unit circle. The generalization of PCE to suit complex valued random 

variables is developed as well as expressions for the first two moments of a correlated 

multivariate angular state. Then, the framework and specifications necessary for PCE 

on the real valued unit circle are given. The numerical complexities of each method 

are also discussed.

• Section 5 presents two simulations to evaluate the feasibility of PCE on the unit circle 

and compares results against the UT:

-  First, the two angles describing the state of a double pendulum are jointly 

estimated. Feasibility of PCE on the unit circle is examined by comparing the 

estimation of the first two moments against estimates achieved via Monte Carlo

simulation.
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-  Second, an object in orbit governed by two-body dynamics with initial uncer­

tainty in the mean longitude and semimajor axis is simulated. The first two 

moments and the Hellinger distance from a Monte Carlo simulation are exam­

ined to determine not only feasibility, but also performance against other PCE 

methods and the UT.

• Section 6 presents conclusions about polynomial chaos on the unit circle based on 

performance and provides suggestions for continued development.
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2. MATHEMATICAL PRELIMINARIES

2.1. MATHEMATICAL BASES

Let Vn be an n-dimensional vector space. A basis of this vector space is the minimal 

set of vectors that spans the vector space. An element a e V can be expressed in terms of 

an ordered basis, B = {fi1, fi2, . . . ,  f3n}, as the linear combination

a = a i Bi + a2 fi2 + ••• + an Bn, (2.1)

where [a] = [a1, a2, . . . ,  an] is the coordinate of a. While any set of independent vectors can 

be used as a basis, different bases can prove beneficial -  possibly by making the system more 

intuitive or more mathematically straightforward. When expressing the state of a physical 

system, the selection of a coordinate frame is effectively choosing a basis for the inhabited 

vector space. Figures (2.1) show how the comparison between the two different points in 

Figure (2.1a) can be expressed using the three different sets of bases in Figure (2.1b).

The different bases in Figure (2.1b) are polar (in blue), orthogonal Cartesian (in 

black), and a nonorthogonal basis in R2 (in red). The corresponding coordinates are 

3ur + 3ug, 2ux + 2uy, and 7/3ua + 3ub, respectively. All three expressions describe the 

relative position of the green dot with respect to the black dot; however, the resulting 

coordinates are all different.

Consider two types of frames commonly used in orbital mechanics, Earth-fixed 

frames and body-fixed frames. Earth-fixed frames are fixed at the center of the Earth and 

rotate about the z-axis along with the Earth, in other words, a fixed point on the Earth will 

not have any velocity in an Earth-fixed frame. For this reason, if a satellite’s ground track 

is of high importance (such as weather or telecommunications satellites), the translational 

states (position, velocity, etc) in an Earth-fixed frame (e.g. latitude, longitude, altitude)
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(b) Two points in a vector space with three different sets of bases. 

Figure 2.1. Description of two points within a vector space.
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are easiest to visualize. However, in cases where a satellite’s actions are dictated by other 

space-based objects (such as proximity operations), an Earth-fixed frame would not be ideal. 

In this case, the position of the space-based objects with respect to the satellite gives a more 

clear understanding of proximity and relative motion. In both cases, any frame could be 

used, but some frames have advantages over others.

While all of the simple coordinate systems mentioned are unique, they are all used 

to describe points in the vector space Rn, where n = 2 in the example from Figures (2.1). 

This vector space consists of all matrices of size [n x 1] with real valued entries. In general, 

the vector space of matrices is Fmxn where F could be the field of real (R), imaginary (I), 

or complex (C) numbers: implying Fmxn is the vector space of F valued matrices of size 

m x  n. These matrix spaces are not the only types of vector spaces, even though they are 

the most common (especially in elementary mathematics).

2.1.1. Inner Product. In general, not all vector spaces are inner product spaces; 

however, only inner product spaces will be considered herein. An inner product space is a 

vector space that has a defined inner product. For a vector space V over the field F , let there 

be any elements x, y, z e V and scalars a, fi e F . The inner product performs the following 

mapping

<x, y> : V x V ^  F ,

effectively mapping any two elements of V to a scalar value in F . Additionally, the inner 

product has the following properties:

• linearity in the first argument:

<ax, y> = a  <x, y> (2.2a)

< x + y, z> = < x, z> + < y, z> (2.2b)
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• conjugate symmetry

<x, y )  =  <y, x ) (2.3)

• positive definiteness

<x, x) = S  > 0 x e V \0 , (2.4)

where 0 is the zero element of V. Alternatively, the inner product can be thought of as the 

percentage of x that lies in the y direction, or the projection of x onto y. If x is orthogonal 

to y, the inner product is 0, if x = ay then the inner product is a. Figure (2.2) shows 

projection of a point A onto vectors x and y. Using the point A and its projection onto y 

from Figure (2.2), it is clear that a right triangle is formed between A, y, and the vector 

orthogonal to y (in this case x). Trigonometric properties can then be used to relate the 

angle between A and y according to

cos 6 =
Real( A, y)
IIA||||y|| '

2.1.2. Orthogonal Bases. An orthogonal basis of an n-dimensional vector space 

is a subset of bases consisting of exactly n bases

B  = {£ 0 , . . . ,£ n - l } , (2.5)

such that the inner product between any two basis elements, Sj  and S k, is proportional to 

the Kronecker delta (6j k = l if j  = k and 6j k = 0 otherwise). Given mathematically with 

angle brackets, this orthogonal inner product takes the following form:

<S j , S k) = cS 6jk Vj, k = 0, l , . . . ,  n .
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A

9
X

/  J’ 1

Figure 2.2. Application of inner product to describe projection and angle.

where the normalization factor cp associated with the basis B . In the event c = 1, the set is 

termed orthonormal. The kth standard basis vector of Vn is generally the k th vector of the 

n-dimensional identity; for example, consider the rows of the n x  n identity matrix (In) and 

the unit vectors (uk) that form the traditional basis for the n-dimensional Euclidean space

1 0 • • 0

0 1 • • 0
In =

0 0 • • 1

U1 = [1 0 • • 0]

U2 = [0 1 • • 0]

Un = [0 0 • • 1]

Note that while the general definition of a basis in Eq. (2.5) contains a zeroth element, many 

geometric spaces (like the Euclidean space in Eq. (2.6)) begin with the first element for 

practicality. The standard bases are most common; however, there are infinitely many bases 

for each vector space. While it is possible to have a basis that is not an orthogonal set (as 

shown in Figure (2.1b)), the use of nonorthogonal bases is practically unheard-of and will 

not be considered in the remainder of this work.
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2.2. POLYNOMIAL BASES

While it is common to restrict the idea of a vector space to matrix spaces, due to their 

relatively intuitive visualization, it was previously mentioned that polynomial vector spaces 

also exist. This type of vector space is of particular importance for polynomial chaos.

Let Pn+1 be an (n + 1)-dimensional vector space made up of all polynomials of 

positive degree n or less with standard basis B = {1, x , . . . ,  xn}. The inner product for 

polynomial vector spaces over R (the field of real numbers) is defined as the functional 

inner product with respect to the function m (x )

( f  (x), g (x)>m (x) = f f  (x)g (x)dm (x), (2.7)
J x

where m (x) is a non-decreasing function with support X and f  and g are any two polynomials 

of degree n or less. Let Y n (x) be a set of n + 1 polynomials, with monotonically increasing 

order up to and including n. These polynomials form an orthogonal basis of Pn+1 if, 

V j ; k = 0 ,1 , . . . ,  n;0 ,1 , . . . ,  n,

(Yj  (x), V  (x )>m (x ) = f  Y j  (x)Y k  (x) dm (x) = cf 5j k , (2.8)
J x

where Yk (x ) is the polynomial of order k and c^ is the normalization factor for the 

polynomials Y.
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2.2.1. Askey Polynomials. The most commonly used orthogonal polynomials are 

categorized in the Askey scheme, which groups the polynomials based on the generalized 

hypergeometric function,

pFq (ai, . . . ,  ap; bh . . . ,  bq; x) = ^
n=0

(a1 )n ' ' ' (ap )n Xn 

(bi )n • • •  (bp )n n!

(a)0 = i
n>1

(a)n = (a + j ),
j =0

with which they are generated40,41,42. Table 2.1 lists some of the polynomial families, their 

support, the non-decreasing function they are orthogonal with respect to (commonly referred 

to as a weight function), and the hypergeometric function they can be written in terms of. 

Among many other applications, the continuous polynomials are of particular importance 

when using Gauss quadrature for numerical integration. For an integral approximation of 

the form

p b  m

I g (x)dx «  Z  W k g ( X k ),
^ a k=0

where the abscissas (x k ) and weights (W k ) are most commonly generated using the con­

tinuous polynomials in Table 2.1. For example, the Legendre polynomials are used in 

Gauss-Legendre quadrature for integrals over [-1 ,1], the Laguerre polynomials in Gauss- 

Laguerre quadrature for integrals over [0, to), and the Hermite polynomials in Gauss- 

Hermite quadrature for integrals over (- to, to). Additional types of Gaussian quadrature 

are given by Abramowitz and Stegun43. Similarly, the discrete polynomials have been used 

for Gaussian summation formulas44.
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For completeness, Table 2.1 lists both continuous and discrete polynomial groups; 

however, the remainder of this work only considers continuous polynomials. The reader is 

encouraged to reference Xiu28 for the generalization of polynomial chaos to use discrete 

polynomials.

Table 2.1. Common sets of Askey polynomials.

Type Polynomial Hypergeometric Support Weight
Series Function

C
on

tin
uo

us Legendre 2 F1 [-1, 1] Uniform
Jacobi 2 F1 [-1, 1]* Beta

Laguerre 1F1 [0, to) Exponential
Probabilists’ Hermite 2 Fo (-TO, TO) Normal

D
is

cr
et

e Charlier 2 F0 {0,1, 2 , . . . } Poisson
Meixner 2 F1 {0,1, 2 , . . . } Negative Binomial

Krawtchouk 2 F 1 {0,1, . . . ,  N } Binomial
Hahn 3 F2 {0,1, . . . ,  N } Hypergeometric

2.2.2. Szego Polynomials. While the Askey polynomials are useful in many ap­

plications, their standard forms place them in the polynomial ring R[x], or all polynomials 

with real-valued coefficients that are closed under polynomial addition and multiplication. 

Additionally, these polynomials are orthogonal with respect to measures on the real line. 

In the event that a set of polynomials orthogonal with respect to a measure on a complex 

interval (e.g. the complex unit circle) is desired, the Askey polynomials are insufficient.

In his book, Szego45 uses the connection between points on the unit circle and 

points on a finite real interval to develop polynomials that are orthogonal on the complex 

unit circle, as well as any manifold in complex space. As a result of his work, polynomials 

orthogonal on the unit circle are now known as Szego polynomials. Because the unit circle

is defined to have unit radius, every point can be described on a real interval of length 2n

*Support of the beta function could either be the closed interval shown or the open interval (-1,1) based 
on the specified shape parameters.
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(the entirety of this work will use the interval [-n , n)) and can be mapped from the angle 

0 e [-n , n] to the complex variable z = ei0, where i is the imaginary unit. All use of the 

variable z in the following work will correspond to this definition. Recall that the inner 

product in Eq. (2.7) is defined for polynomial vector spaces over R . Now that the standard 

polynomial basis is complex, this definition is insufficient. For polynomial vector spaces 

over C (the field of complex numbers), the inner product introduces the complex conjugate 

from Eq. (2.3). When the Szego polynomials are of concern, the inner product is given as

1 Cn -------
(zX (z))m(0) = 2n J  (Z)^n (Z)m (0)dm (0) = ^mn , (2.9)

where the second argument of the inner product attains a complex conjugate (denoted by 

a bar) and m (0) is a monotonically increasing weight function over the support. Note that 

the Kronecker delta is not scaled, implying all polynomials using Szego’s formulation are 

naturally orthonormal.

One example of a set of Szego polynomials is the Rogers-Szego polynomials, 

which have been well-studied46,47,48 and were developed by Szego based on work done by 

Leonard James Rogers over the q-Hermite polynomials. For a more detailed description of 

the relationship between the Askey scheme of polynomials and their q-analogs, the reader 

is encouraged to reference Koekoek and Swarttouw42.

The popularity of these polynomials is partially due to the fact that they are orthog­

onal with respect to the mean centered wrapped normal distribution

m (0) =
ln(q) .=■£ exp

1 (0 -  2nj  )2 ] 
-2 ln (q)  J , (2.10)

where q e (0,1) describes the concentration of the pdf. Further discussion of the wrapped 

normal pdf can be found in Section 2.3.2.I.
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The Rogers-Szego polynomials are generated according to

pn (z; q) = Y j n zk
k=0

0 < q < 1,

where (fy is the q-binomial coefficient

(q ; q)n
k ) q (q; q)k(q; q)n-k'

and

n - 1

(a; q)n = (1 -  aqj ) .
j =0

(2.11)

(2.12)

Because q is not constant, it is interesting to observe the polynomials at the asymp­

totic limits of q. As q approaches its bounds, the q-binomial, and thus the generating 

function, approach two different analytic polynomials. The q-binomial can be expanded as 

the product of k fractions

n\ = (1 -  qn-k+1 )(1 -  qn-k+2) • • • (1 -  qn) 
k =q (1 -  q 1 )(1 -  q2) ••• (1 -  qk)

1 -  qn 
1 -  qk

(2.13)

1 -  qn k+1 1 -  q 
1 -  q 1 -  q2

n-k+2

Written in this way, it is apparent that as q approaches zero, each fraction approaches 1/1, 

and thus the limit of the q-binomial is

lim = 1.
q —>0 \ k j

(2.14)

n

q
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Using the limit behavior in Eq. (2.14) to generate polynomials using Eq. (2.11) results in 

polynomials whose coefficients all unitary with generating function

pn (Z) = ^  Zk . 
k=0

As q approaches 1, each of the fractions in Eq. (2.13) approaches 0/0 necessitating 

L’Hopital’s rule. The limit is therefore transformed into

lim
q^1

ni
k ]

q

lim
q ^ 1

(n -  k + 1)q‘n-k
q0

n - k + 1 n - k + 2

(n -  k + 2)qn-k+1
2 q

n
1 2 k

nqn-1
kqk-1

It becomes apparent that the limit can be expressed in terms of factorials as

lim
q^1

q

n!
(n-k)!

k !
n!

(n -  k )!(k !) ’

which is the standard binomial coefficient resulting in the generating function

p n (z) = (n) z k .

Table 2.2 lists the polynomial coefficients in the two limit cases for n = 0 , . . . ,  4 and 

k = 0 , . . . ,  n in a type of “q-Pascal’s triangle”. In looking at the difference in the limit cases, 

it is obvious that coefficients increase with increasing q; in fact, the coefficients increase 

monotonically with increasing q. In effect, for the polynomial

pn (z) = a0 + a1 z + a2 z2 + • • • + awzn ,

the limit cases provide bounds for the coefficients such that ak e ^1, (
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Table 2.2. q-binomial coefficients limit behavior as q ^  0 and q ^  1 for n = 0 to 4 and 
k = 0 to n.

n = 0

lim (f\
q->o VkA lim (n)q̂ 1 W (

n = 1 1 1 1 1
n = 2 1 1 1 1 2 1
n = 3 1 1 1 1 1 3 3 1
n = 4 1 1 1 1 1 ^ 1 4 6 4 1

A
%

\
A

%
A °5

A A A \A A °5
A A

In addition to the generating function in Eq. (2.11), a three-step recurrence49 exists, 

which is given by

<pn +1 (z; q ) = (1 + z)(pn (z; q) -  (1 -  qn)z<pn - i (z; q).  (2.15)

For convenience, the first five Rogers-Szego polynomials are

po = 1

p1 = z + 1

p2 = z2 + (q + 1) z + 1

p3 = z3 + (q2 + q + 1) z2 + (q2 + q + 1) z + 1

p4 = z4 + (q + 1)(q2 + 1) z3 + (q + 1)(q2 + q + 1) z2 + (q + 1)(q2 + 1) z + 1.

As is apparent, the q-binomial term causes the coefficients to be symmetric, which eases 

computation, and additionally, the polynomials are naturally monic.
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2.2.3. Arbitrary Polynomials. While the more common polynomials have attrac­

tive analytic generating functions or recursion expressions, it is sometimes necessary to 

use polynomials that are orthogonal with respect to different (possibly non-analytic) weight 

functions. In these cases, methods for defining arbitrary orthogonal polynomials are re­

quired.

Two different methods of generating polynomials with respect to specified weight 

functions are discussed. These methods are the the one outlined by Szego specifically for 

polynomials orthogonal on the unit circle, and the Gram-Schmidt50 orthogonalization.

2.2.3.I. General polynomial formulation. The following is a method of formu­

lating orthonormal polynomials with respect to a given measure. While very similar, the 

method for measures on the real line and on the unit circle have slight differences. Where 

appropriate, the differing equations based on measure type are given in parallel.

The process begins with computing the moments of real line measures, and the 

Fourier coefficients of unit circle measurements, which are

m (x) xndx and c n
i

2 n
m (6 )e-in6 de V n e N +0,

respectively, where X c  R is the support of x and N+0 is the set of natural numbers including 

zero. These coefficient are then collected into three different matrices. The first two are 

standard Hankel matrices Hn-1 and Hn, with the generic forms

H k (m)

mo mi mk co ci Ck

mi m2 ci c2

and Hk (c ) =

m2k-2 m2k-i c2k-2 c2k-1

mk m2k-i m2k Ck C2k-i C2k
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respectively, where m and c are the sets of moments and Fourier coefficients respectively. 

The third matrix is a slightly altered Hankel matrix, where the bottom row is the standard 

polynomial basis for real or complex unit circle measures, i.e. xk or zk = el6k, k = 

0 ,1 , . . . ,  n. This gives the results for X n(m) and X n(c), respectively to be

m0 m1 ••• mn c 0 c 1 • • • cn

m1 m2 c i  C2

Xn(m ) and Xn (c ) =

m2n - 2 m2n - 1 C2n-2 C2n-1

1 xn-1 xn 1 • • •  z n-1 zn

With the matrices H n-1, H n, and Xn computed, the nth order polynomial can be computed 

directly according to

<Pn = ( I H n-1 I I  H n | )-1/21 Xn | ,

where | • | denotes the matrix determinant. The zeroth order polynomial is simply

<Po = H-1/2 , (2.16)

which is 1 if the measure m is a pdf.

Now consider the computational requirements associated with this method. For 

a polynomial of degree n, 2n + 1 moments or Fourier coefficients must be calculated to 

populate the Hankel matrices. Then, the determinants of H n-1 (n x n), H n (n +1 xn  + 1), and 

Xn (n + 1 x n + 1) must be calculated. While this general formulation is cumbersome, it does 

provide a framework for developing a set of polynomials orthogonal with respect to any 

conceivable continuous weight function. It is additionally beneficial that this process is not 

preformed sequentially, which reduces cascading numerical inaccuracies. Beyond the work
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by Szego, Simon51,52 and Geronimus53 have written books on polynomials orthogonal on 

the unit circle, providing in-depth analysis of many aspects of the polynomials including the 

generation process: specifically the asymptotic behaviors in polynomials with very large 

orders.

2.2.3.2. Gram-Schmidt. Another method of developing a set of orthogonal poly­

nomials is the Gram-Schmidt method of orthogonalization. The most commonly used 

application of this process is to orthogonalize a set linearly independent vectors into an 

orthonormal basis (which can be used for matrix QR decomposition), but the process ex­

tends to polynomials. As a result the polynomial Gram-Schmidt orthogonalizes the linearly 

independent set of polynomials {xn} for n e N +0 with respect to a weight function m (x). 

The Gram-Schmidt is performed sequentially and is initialized with the zeroth polynomial 

being 1 just like Eq. (2.16)

p0 (x ) = 1.

From here the first order polynomial, x, is orthogonalized by removing any amount of x 

that is not orthogonal to p0 (x ) with respect to m (x)

pi (x ) = x -
(x, Po)<m(x) p 
(p0, p0)m(x)

resulting in a first order polynomial orthogonal to p0(x ) with respect to m(x). The orthogo­

nalization of a vector A given a vector p0 is shown in Figure (2.3). A is linearly independent 

of p0, so when the components of A that line in the p0 direction are removed, the remaining 

vector (p1) is nontrivial and lies orthogonal to p0. In the figure, geometric notation is used 

indicating the parallelism of the two horizontal lines and the orthogonality of p0 and p1. 

While this figure shows vectors and not polynomials, the same basic principle applies. In 

Figure (2.3), the double arrows indicate parallel lines.
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Figure 2.3. Generation of an orthogonal vector given an initial vector p0 and a linearly 
independent vector A.

This process continues for the nth element by taking the polynomial xn and removing 

any part of that polynomial that is not orthogonal with respect to all of the previous 

polynomials.

(pn (X) = Xn
n-1 (xn, p k)w(x) p

<p k, p k)w(x) k

The computation of inner products is particularly important to this process, and 

can therefore become numerically unstable. For this reason, polynomials in this work 

that do not have established generating functions are developed according to Section 2.2.3. 

If Gram-Schmidt orthogonalization is preferred over the methods in Section 2.2.3, many 

variants of this process exist including the modified Gram-Schmidt and block Gram-Schmidt 

algorithm54.
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2.3. PROBABILITY DENSITY FUNCTIONS

The final mathematical preliminary to be covered is the probability density function. 

The pdf describes a random variable based on the likelihood it has of taking on a certain 

range of variables. While the probability of a random variable X taking a singular value x 

is zero, the probability P  that X = x can be approximated by integrating the pdf of X (pX)

Jr'X + S
PX (t) d t .

x

where 6 is an infinitesimally small element. Note that the probability P  and pdf p  are not 

the same quantity. As 6 approaches 0, the approximation becomes more accurate.

In addition to the pdf, random variables are also described by a function taking on 

values from 0 to 1 that describes the probability that the random variable takes a value less 

than or equal to a given value, known as the cumulative distribution function (cdf). If the 

random variable X has lower bound X, then the probability X is less than or equal to x is 

given by

Fx (x ) = P  (X < x)

f  Px (t) d t . 
J x

Because a pdf can never take a negative value, the cdf is a monotonically increasing 

function (assuming a continuous pdf) between 0 and 1. These properties are obvious when 

considering that the pdf is a positive function and that the probability that a random variable 

can assume any of the values in its domain is 1, implying the random variable exists over 

its domain, i.e.

»Y
f  px (t) dt = 1. 

J x
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2.3.1. Densities in R. Most common in real-life applications utilize random vari­

ables in R, resulting in univariate pdfs on the real line. A real valued pdf can have any 

support on real line; e.g., the beta pdf has a closed, bounded support, the exponential pdf 

has a semi-infinite support, and the normal pdf has infinite support. The most naturally 

occurring pdf in practical aerospace applications is the normal, or Gaussian, distribution 

with its distinctive “bell” shaped pdf. For convenience, the univariate normal pdf is given 

as

/ \ 1 -1 ( )2Pn(x ; a  a ) = — —  e -  ’
a V  2n

and the univariate normal cdf is

(2.17)

F ( x ;  ) = 2 + 1 er f ( (2.18)

where ^  and a  are the mean and standard deviation, respectively, and erf(-) is the error 

function given by

2  r  _ 2erf(x) = —  e - d t .
Vn J  0

Note that in Eqs. (2.17) and (2.18) the subscript n indicates a random variable that is 

distinctly random in shape, parameterized by ^  and a,  as opposed to the generic X  in 

Section 2.3.

2.3.2. Densities on S. Since the primary focus of this dissertation is angular random 

variables on both the complex and real unit circles, the most important pdfs are those on 

the unit circle. The pdfs of circular random variables have the same properties as real line 

random variables, with the addition that the support of any circular random variable must 

be 2n or shorter, and the pdf must be continuous across the end points of the support.
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2.3.2.I. W rapped norm al density. Any pdf on the real line can be wrapped around 

the unit circle creating circular analogs to pdfs on R. Let g (x ) be a pdf; then, the associated 

wrapped pdf pw (6) is

TO
Pw (6) = 2  g (6 + 2nk ) .  (2.19)

k=-TO

For example, wrapping a normal distribution takes the pdf

r\
Pn (x; p , a  )

1

V 2na2
exp (x -  p )2 

2 a 2
-TO < x < TO ,

where p  and a  are the mean and standard deviation, respectively, and wraps it around the 

unit circle, resulting in

Pwn (6; p, a 2) =
2n a 2k=—to

exp
(6 -  p  + 2nk)2 

2 a 2
1

-  n < 6 < n (2.20)

which was mentioned briefly in Section 2.2.2 due to its connection with the Rogers- 

Szego polynomials.

In many instances, the cdf is required. In general, the cdf of a wrapped distribution 

can be written in terms of the unwrapped pdf, similar to Eq. (2.19). If G (x ) is the cdf of 

g (x ), then the cdf of p w is

Fw(6) = ^  G (6 + 2n k ) -  G(n(2k -  1)).
k=-TO

If the standard normal distribution (i.e. p  = 0, a  = 1) is wrapped around the unit circle, the 

result is the standard wrapped normal pdf. This pdf is of particular interest in this work; 

therefore, the cdf is given for convenience

1 TO
Fwn (6) = ^  2  erf |

k=-TO

6 + 2 n k N

~ i r l erf
'n(2k -  1)'

, V2 ,
(2.21)
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The error function is symmetric about zero and it asymptotically approaches ±1 at a rate 

such that erf(±2n) « ±1; therefore, the infinite summation can be approximated as

Fwn(0) 2  e r f ( 2,
+ £  erf

k=-1

(e + 2n k N 

v V2 ,

This expression becomes particularly useful when drawing samples of the wrapped normal 

distribution, both randomly and intelligently.

Written according to Eq. (2.20), it is easy to see the similarity between the wrapped 

normal pdf and the normal pdf; however, the implementation of an infinite summation can 

be computationally inefficient. It is therefore important to acknowledge another form of the 

wrapped normal pdf:

Pwn (0; P,V2) = 2“ #3 ,

where &3 is the Jacobi-theta function given by43

TO
&3 (z, q) = 1 + 2 ^  qk  cos (2kz ) .

k=1

(2.22)

While the Jacobi-theta function contains an infinite summation, many programming lan­

guages have built-in functions that provide more accurate results than user coded summa­

tions.

Zero-mean normal distributions with varying values of a  are wrapped, with the 

results shown in Figure (2.4). For relatively small a  values (0.5 and 0.7 in Figure (2.4)), 

the wrapping effect is not very noticeable; however, as a  increases, the pdf approaches a 

wrapped uniform distribution. Additionally, with a  values greater than 1, the pdf across 

the entire support becomes non-zero and the “tails” that are present in normal pdfs are no 

longer present.
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---- a  = 0.5 ---- a  = 0.7 ---- a  = 1.0 ---- a  = 1.5 ---- a  = 2.5

Figure 2.4. Wrapped normal distribution with multiple values of a .

2.3.2.2. von Mises density. Another common pdf used in directional statistics is 

the von Mises/von Mises-Fisher distribution. The von Mises distribution lies on S1 (the 

subspace of R2 containing all points that are unit distance from the origin), whereas the von 

Mises-Fisher has extensions into higher dimensional spheres. The circular von Mises pdf 

is given as

e K cos (d-u)
pvm (e ; u,K) = , (2.23)

2n 1o ( k )

where u  is the mean angular direction, k is a concentration parameter, similar to the 

inverse of standard deviation, and 10 is the zeroth order modified Bessel function of the first 

kind. Unfortunately, the von Mises distribution does not have a cdf with an analytic form, 

presenting a distinct advantage for the wrapped normal pdf. For multiple concentration 

parameters, the von Mises pdf is shown in Figure (2.5). It is clear to see the similarities 

between the Gaussian pdf for higher concentration parameters, and similar to the wrapped 

normal pdf, as the spread of the pdf increases, it approaches a wrapped uniform pdf.

2.3.2.3. Bingham density. Another circular distribution is the Bingham distribu­

tion55. Like the von Mises distribution, the Bingham distribution is similar to the normal 

distribution; however, it has the distinct difference of being antipodally symmetric, i.e.
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Figure 2.5. von Mises distribution with multiple values of k.

p b(6) = p b(-6 ). This property has made it appealing for expressing attitude pdfs when 

quaternions are used37. The pdf of the circular Bingham is given as

Pb (x ; Z, M ) = | i  z ) )  exp {tr(ZM Tx x TM)} (2.24)

where x e S1, M  is a matrix describing the orientation of the mean direction, Z is a diagonal 

matrix of concentration parameters, and 1F1 is a confluent hypergeometric function. For 

the circular case, the matrices Z and M  have dimension 2 x 2. If the final element of Z = 0, 

then only one value, z, remains to be set. Figure (2.6) shows the result of setting M  as the 

identity matrix, (i.e. no rotation) and varying z. Note that if positive values are used for Z , 

the mean direction axis lies through the trough of the distribution, rather than the apex.

The zeroth order modified Bessel function of the first kind in Eq. (2.23) and the 

confluent hypergeometric function in Eq. (2.24) are both functions of infinite summations, 

this along with the Jacobi-theta form of the wrapped normal pdf in Eq. (2.22) helps to show 

some of the similarities in the three pdfs, as well as challenges in implementation.

2.3.3. Statistics. While the pdf fully describes a random variable, it can rarely be 

described in full after evolution of the random variable over time. Instead, the state and its 

uncertainty are commonly defined by the moments of the pdf, which can be approximated 

much more easily than the full pdf. Most notable of these moments are the mean and
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---- z = 0 ---- z = -0 .5  ---- z = -1 .0  ---- z = -1 .5  ---- z = -2 .0

Figure 2.6. Bingham distribution with multiple values of z.

variance, the first two central moments. For pdfs (p(x)) on the real line that are continuously 

integrable, the central moments are given as

Pi = I s xp( x ) dx

Pk = £ ( x -  p i )kp (x )dx k > 2. (2.25)

Although less utilized, the raw moments are given as

p k = £  xkp (x )dx . (2.26)

In directional statistics, raw moments are used exclusively and have a slightly different form, 

which is

mk = j (e‘̂ kp(6)d6, (2.27)

which is commonly broken up into an angular (6k) and a length (Rk) part according to

6 k = Arg(mk) = tan 1
imag (mk) 
real (mk)

and Rk = II mk ||
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where || • || is the L2-norm. Similar to pdfs on the real line, the higher order moments 

give additional information about the shape of the pdf that is not captured by the mean and 

concentration; however, for circular pdfs the mean direction and the concentration are both 

derived from the first central moment35. Whereas the mean direction comes directly from 

the angle of the first moment, the “spread” of the pdf comes from the length as either the 

circular variance (V) calculated by

Vi = 1 -  R i , (2.28)

or the “circular standard deviation” (^ ) calculated by

a 1 = a/ -  2ln( R1) . (2.29)
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3. UNCERTAINTY QUANTIFICATION

The quantification of a random variable and associated propagation of its uncertainty 

is a well-studied topic. The true state of an element in all but the simplest of environments 

is typically unknown, requiring an expression for the uncertainty associated with the state. 

Not only must the uncertainty in the state be quantified at a given point in time, but as 

the state evolves, the uncertainty does as well. In cases where the governing dynamics are 

linear, the entire, continuous, pdf of the state can be propagated directly. However; the types 

of dynamics considered herein are nonlinear, given by a differential equation of the type

X (t) = f  (x (t)), (3.1)

where x (t) is continuous-time state of the system and f  is the nonlinear function describing 

the evolution of x in time, t . In many cases, the differential equation in Eq. (3.1) cannot 

be solved analytically, and as a result, the pdf describing the state uncertainty becomes 

non-analytic.

While the full knowledge of the uncertainty in the state provided by the pdf is ideal, 

its application is generally implausible. This introduces the need for different methods of 

quantifying the uncertainty in a state that are feasible when the dynamics governing the 

state are nonlinear.

Choosing a type of uncertainty quantification (UQ) is a trade-off between numerical 

complexity and accuracy. a Monte Carlo simulation56 is simple to implement, as only 

a singular sample is transformed by the dynamics at a time; however, a large number of 

independent samples are required to achieve an accurate estimate of the propagated state. 

As a result, Monte Carlo simulations tend to be used as a baseline to evaluate estimates 

obtained via other, more computationally efficient methods of UQ.
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Of particular interest in this work are the unscented transform and polynomial chaos 

expansion. Chief among reasons for their interest is that when propagating uncertainty, 

neither require an assumption be made with regards to the shape of the random state’s pdf.

3.1. UNSCENTED TRANSFORM

The unscented transform12 utilizes a number of specifically, and deterministically, 

chosen sigma points and associated weights to quantify the first two moments of a random 

variable (or collection of random variables). When drawn, the sigma points and weights 

fully capture the mean and covariance of an n-dimensional state. At time t , calculation 

of the sigma points utilizes the mean (pt) and matrix square root factor V P  such that
Tp t = V P V P  , which can be attained using methods such as LU decomposition57 (section 

3.5), Schur decomposition57 (section 2.3), or Cholesky decomposition58. The expressions 

for drawing 2n + 1 sigma points are give as

Zt,o = Pt (3.2)

2 t,k=l:n = Pt + Vn + A [ (3.3)

2 t,k=n+1:2n = p t — Vn + A  ̂VP ]̂ k , (3.4)

where [-]k indicates the kth column of the matrix and A is a parameter defined by59

2
A = a (n + k) -  n .

In A, the value of a  is directly related to the distance of all but the centroid, or zeroth, sigma 

points from the mean, as a  approaches zero, the non-centroidal sigma points converge on the 

mean, and as |a | increases, so do the distances of the non-centroidal sigma points from the 

mean. The same is true for k, but large changes in k more slowly affect the non-centroidal 

sigma point placement.
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The two sets of weights for the mean ( w a n d  covariance (wE) are calculated 

according to

A
w

w

n + A
A

n + A
+ (1 -  a 2 + S )

1
w

w

2 (n + A) 
1

2 (n + A)

(3.5)

k = 1,2,. . . ,  2 n , (3.6)

where S  is used when prior information about the covariance is available59,60. The choices 

of a  and k not only affect the placement of the sigma points, but also the weights. In 

general, increasing |a | and k decrease the weights.

After being generated, each of the sigma points are transformed according to some 

nonlinear function

E f+i = f  (Ef+1) ,

which are then used to estimate the mean and covariance of the transformed state according 

to

2 n
Vt+ 1 » wkZ t+\,k

k=0
2n

P t+1 ~ w k (^t+1,k — ^ t+1 )(^t+1,k — ^ t+1) .
k=0

To visualize this process, refer to Figure (3.1). The analytic true initial (left) and final 

(right) states are represented by the mean (“+”) and 1 -  a  covariance interval (ellipses). The 

5 sigma points (using a = 0.5, S  = 0, and k = 1) that fully capture the mean and covariance 

of the initial state are shown scaled according to weight. From the initial state, the sigma 

points are transformed (connected to show initial and final locations, not necessarily the 

path taken) and used to estimate the final mean (“x ”, which appears as a * at the final 

time due overlapping with the true mean) and covariance (dashed ellipse). The true and
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Figure 3.1. Estimation of propagated mean and covariance using the unscented transform 
with 2n + 1 sigma points.

estimated mean and covariance are both shown clearly indicating the accuracy of the UT. It 

should be noted that the error ellipses suggest Gaussian distributions; however, the ellipse 

is chosen purely for illustrative purposes as the UT makes no assumption on the shape of 

the pdf.

The accuracy in estimating the mean and covariance of a state in nonlinear dynamics, 

as well as a relatively low number of sigma points, has made the UT a popular choice not only 

in uncertainty propagation, but also in filtering based state estimation61,60. While higher 

order moments can be can be calculated using the unscented transform62, the process to 

develop expression for these moments is cumbersome requiring additional weights and 

sigma points and associated rules for calculation. Beyond the estimated moments, all other 

information about the pdf is lost.

3.2. POLYNOMIAL CHAOS EXPANSION

In many cases, the mean and variance of a random variable are insufficient represen­

tations of a random variable. It is therefore necessary to use a more complete representation

of a random variable.
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The following provides a brief overview of how polynomial chaos was initially 

conceptualized. There are many instances where specific types of random variables are 

mentioned; however, generalizations have been made and are covered in this work following 

the conceptualization.

Every random variable X is defined in some probability space (Q, F , P), where Q is 

the sample space of X , F  is the associated ^-algebra, and P  is the probability measure. The 

space of mean centered Gaussian random variables is a Gaussian linear space, which when 

closed is known as a Gaussian Hilbert space G, meaning any sequence in G converges to 

an element in G. This closure becomes useful when examining the moments of an element 

£ e G. Gaussian Hilbert spaces are subspaces of L2(Q, F ,  P), which means that the L2 

inner product and norm is defined on these spaces24. With the space defined, a way to 

quantify G is needed, providing a way of describing a random variable £ e G.

The fundamental component of polynomial chaos is that the space L2 can be ex­

pressed as the infinite direct sum of polynomial spaces that have strictly increasing orders, 

known as the Wiener chaos decomposition24. The application of this in homogeneous 

chaos23 uses the Wiener chaos decomposition to expresses the element e e L2(Q, F ,  P) in 

terms of a linear combination of elements that span the previously mentioned polynomial 

spaces. Since £ e G is a Gaussian random variable and the (normalized probabilists’) 

Hermite polynomials have strictly increasing orders and are orthogonal with respect to 

the standard normal distribution63, these are the logical choice for the polynomial space 

spanning elements. In other words, e can be expressed as a linear combination of Hermite 

polynomials evaluated at £.

Not only does this decomposition apply for Gaussian processes, but the Cameron- 

Martin theorem64 says that any process with a finite second moment can be expressed as 

a linear combination of dense orthogonal polynomial basis functions. In other words, any 

set of dense orthogonal polynomials and associated standard random variable can be used 

to express a random variable. In general, the approximation of e by a linear combination
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converges to the true random  variable as the num ber o f elem ents in the linear com bination 

approaches infinity; however, intelligently selecting the orthogonal polynom ials can increase 

the rate o f convergence28. The different selection o f orthogonal polynom ials to represent 

different types o f random  variables is the generalization from  W iener’s hom ogeneous chaos 

to polynom ial chaos (PC).

L et a stochastic variable, e, be expressed over the polynom ial vector space PTO, 

w hich is spanned by the set o f orthogonal polynom ials Y  = {Y0, Y ^ . .  .}*, i.e.

TO
e (x ,£ ) = ^  6k(x )Y k(£ ) , (3.7)

k=0

w here [e]  is the infinite dim ensional coordinate (called chaos coefficients) of e, x is redefined 

from  Section 3.1 as a determ inistic com ponent (usually taken to be time), and Y k(£) is the 

kth-order polynom ial of Y  that is evaluated at, and orthogonal w ith respect to, the standard 

w eight function £. This is a polynom ial chaos expansion o f the random  variable e. The 

polynom ial fam ilies listed in Table (2.1 have been shown by X iu 28 to provide convenient 

orthogonal bases/w eight function pairs based on the approxim ate pd f o f e.

Since the L 2 inner product can be used, the basis polynom ials (which do not h a v e  

to com e from  Table 2.1) satisfy the general orthogonality condition in Eq. (2.8).

3.2.1. Statistics. U sing the coordinate, the useful inform ation about e  including 

the m om ents and shape o f e  can be estim ated. For example, the m ean (u ) and variance ( ^ 2) 

o f the univariate state e  in Eq. (3.7) are

TO
U = 6o and ^ 2 = ^  62kc ^ ,

k=i

respectively, w here c^ is the scale factor associated w ith the orthogonality o f the polynom ial 

basis Y .

*Discussion of the truncation follows in Eqs. (3.23)-(3.24) as well as in Section 3.2.4.
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Now, let some multivariate state include the two elements a  and b , which have 

independent expansions

OO CO
a  (x , Z ) = ^  a  j  (x )V j  (Z ) and b (z , Z ) = ^  P k  (z)Ok (Z), (3.8)

j =0 k=0

where T  and O  are two, possibly different, sets of basis polynomials, with standard random 

variables Z and Z, respectively. For now, x and z  are kept independent for completeness. In 

this case, the expansion of the correlated system uses a set of multivariate basis polynomials 

that are a combination of T  and O. The orthogonality of the new multivariate basis can easily 

be proven since Z and Z remain independent. Beginning with the integral representation of 

an inner product

(V  Om, Vj On) = f  f  [V  (Z)Om ( Z )][Vj (Z ) On (Z )]p(Z ) P(Z ) ̂ Z^ Z,
J x J Z

it is apparent that each of the elements are with respect to only one of the integration 

variables; therefore, the double integral can be split into the multiplication of single integrals 

as

( VOm , V j On) =  f  V i (z ) V j ( z )p ( z ) d z [  ® m ( Z ) ® n ( Z)p ( Z ) dZ . 
J x J  Z

(3.9)

The orthogonality of both O  and T  reduce the integrals in Eq. (3.9) to

(ViOm, Vj On) = cf  c<p̂ ij$mn , (3.10)

where c^ and are the normalization factors associated with T  and O, respectively.
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Let r  be the multivariate orthogonal basis polynomials formed from the univariate 

bases Y  and If the elements a and b from Eq. (3.8) are expressed using r  as the basis 

polynomials, their expansions then become

OO CO
a (x, z,Z) = ^  aj  (x )Tj (z,Z) and b(z, z,Z) = ^  fik(z )r (z,Z) . (3.11)

j=0 k=0

In all cases where the weight function is a pdf, the zeroth polynomial of an orthogonal 

set is 1; therefore, the mean of a random variable expanded with a multivariate basis will 

still be the corresponding zeroth coefficient, i.e.

ju = E
a (x, z,Z) 

b(z, z,Z)

ao (x )

fio (z )
(3.12)

where E[-] denotes the expected value of the input. For the general n dimensional state, the 

mean is

U = eo . (3.13)

On the other hand, expanding the expression for the second moment is not quite 

as straight-forward. The covariance between a and b (<ra,b) can be expressed in terms of 

nested expected values as

a a,b = E[(a -  E[a])(b -  E[b])]p(a, b) ,
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where p(a, b) is the joint pdf of a and b. The external expected value can be expressed as a 

double integral yielding

a a,b = I I (a -  E[a])(b -  E[b])p(a, b)dbda, (3.14)
A J  B

where A and B are the supports of a and b, respectively. Expanding Eq. (3.14) as

V a,b If (ab -  aE[b] -  bE[a] + E[a]E[b])p(a, b)dbda,

acknowledging the expected value is the zeroth coefficient, and breaking using the linearity 

of the integrals gives

V a,b = I abp(a, b)dbda -  I a fiop(a, b)dbda -  I ba0p(a, b)dbda+
A B A B A B

+ I a 0fi0p(a, b)dbda.
A B

The standard random variables z and Z are independent by design; therefore, the joint pdf 

can be broken into the product of two independent pdfs, yielding

V a,b n abp(a)p(b)dbda -  I a fi0p(a)p(b)dbda -  I ba0p(a)p(b)dbda+
J a J b J a J b

+i f a 0fi0p(a)p(b)dbda.

Since the zeroth coefficient is a constant value, at least one of the integrals can be removed 

in each of the terms, except the first resulting in

V a,b = I abp(a)p(b)dbda -  fi0 ap(a)dbda -  a 0 bp(b)dbda + a 0fi0 .
A B A B
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The two single integrals reduce to the product of means, resulting in the expression

& a,b = - a o  00 +n ( ab) p( a, b)dbda. (3.15)

Substituting the expansions from Eq. (3.11) into Eq. (3.15) gives

& a,b = - a o 0o + I I a j (x )Tj(z,Z) J ]  0 t (z )Tk(z,Z)p(Z)p(Z)dZdZ.
J x J z  j=o k=0

(3.16)

Recall that the Wiener chaos decomposition is performed on a Gaussian Hilbert space, as 

opposed to a Gaussian linear space, which means that the convergence of any sequence 

will be in the same space. It can therefore be concluded that the sequence in Eq. (3.16) 

converges to a finite number. With a finite covariance, the summation and the integrals can 

be interchanged65, leading to

& a,b
oo oo r  r

ZZ a  j (x) 0k (z) LL
j=1 k=1 ^ Z

r j  (Z,Z) rk (Z,Z) p ( Z) p ( Z) dZ d Z. (3.17)

From Eq. (3.10), the double integral in Eq. (3.17) reduces to a Kronecker delta scaled by 

c^ and c^, such that the final form of the covariance is

&a,b = ^  ak (X)0k (Z)% Ĉ  . 
k=1

(3.18)

Assuming the variance of a (&a) is desired instead, it follows that

&a
a y  ^a  k(x) ct  c$>,

k=1
(3.19)
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which is the same as the univariate expansion, except for the additional normalization factor 

c#. A similar expression is given for ab by replacing a k with (3k resulting in

TO
a 2b = Y  fi2k(x )c# c# . (3.20)

k=i

Placing Eq. (3.19) in the upper diagonal, Eq. (3.20) in the lower diagonal, and 

Eq. (3.18) in both off-diagonals the covariance matrix of the 2 x 2 system of a and b is given 

as

TO

p  = Zk=i

a k a  k fik

a  k fik fi2k
c# c$ .

Letting the multivariate state be n-dimensional, and e be the n x to matrix for the n -  

theoretically infinite -  chaos coefficients, the covariance matrix can be written generally as

P  = Y e ke[c#c#. (3.21)
k=i

In cases where orthonormal polynomials are used, the normalization factors disappear 

completely leaving only the summation of the estimated chaos coefficients

TO
P  = Y  e k e k . (3.22)

k=1

As is expected, expressions for higher order moments can be developed; however, 

the complexity of development, and of the expressions themselves, increases. For this 

reason only first and second order moments are of concern, but if higher order moments 

are of interest, the reader is strongly encouraged to reference Savin and Faverjon27, which 

includes expressions for third and fourth order moments for Jacobi, Hermite, or Laguerre
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chaos expansions. This work may only include first and second order moments for PCE 

like the UT; however, the chaos coefficients can still be used to approximate the shape of 

the pdf, not just the moments.

3.2.2. Coefficient Approximation - Least Squares. In Eqs. (3.7)-(3.22) the ran­

dom variable e is expressed as an infinite summation, which is impractical. It is therefore 

necessary to truncate the summation, yielding

N
e (x, g ) « e (x, g ) ek(x ) (g),  (3.23)

k=0

where the truncation term N , which depends on the dimension of the state n and the total 

expansion order p, is generally defined as

N + 1
(n + p)! 

n!p! ,
(3.24)

where n is the dimension of the state, and p  is the total expansion order. Section 3.2.4 

provides additional details pertaining to the “total expansion order” as well as how it affects 

the number of terms in the expansion. For the remainder of Section 3.2.2, it is sufficient to 

understand that the truncation term N is some strictly positive (N > 1), finite integer.

In general, the chaos coefficients in Eq. (3.7) are solved for either with sampling- 

based or projection-based methods. The first, and most common, approach is performed by 

drawing Q samples of g , where Q > N , and evaluating T k and e at these points, effectively 

randomly sampling e. After initial sampling, e can be transformed in x (commonly x is 

taken to be time, so this indicates propagating the variable forward in time) resulting in a 

system of Q equations with N + 1 unknown chaos coefficients. This system of equations
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takes the form

e (x, £1) 

e (x ,£2 )

To(£i) T 2 (£1) 

To(£2) T 2 (£2)

•• T n (£1) 

•• T n (£2 )

e 1 (x ) 

e 2 (x )

e (x, £q ) To (£q) T 2 (£q) •• T n (£q )_ e n (x)_

where [e] is unknown. This overdetermined system can be solved to produce an estimate 

of e using a least-squares solution, i.e.

[e] = ( m * m ) -1 m * M , (3.26)

where [T] and [e] are the matrices in Eq. (3.25) populated by those elements, and [•]* 

refers to the conjugate transpose. The coefficients can then be used to approximate the 

random variable or its moments, e.g. the mean and covariance from Eqs. (3.12) and (3.22), 

respectively.

3.2.2.I. Sampling methods. The sampling of the standard random variable £ in 

Eq. (3.25) can be performed in a number of different ways. The simplest of sampling 

methods is implemented by numerically generating random^ numbers, where the probability 

of a given sample is reliant only on the random variable’s pdf. While random samples are 

generally the easiest to generate, there is no assurance that the samples will adequately 

represent the pdf.

Alternatively, samples can be drawn deterministically such that some elements of the 

pdf are fully characterized; for example, the placement of the UT sigma points in Eq. (3.2) 

and selection of their weights in Eq. (3.5) fully capture the given mean and covariance. 

While deterministically choosing samples can better represent the pdf, computation can 

become expensive when many samples or higher order moments are required.

Tt is noted that computer generated samples are pseudo-random, not truly random; however, for conve­
nience, computer generated random samples are simply referred to as random samples.



46

It should be noted that any linearly dependent expansion samples provide no addi­

tional information to the least squares approximation in Eq. (3.25). Beyond providing no 

new information, linearly dependent samples increase computation, if there are not at least 

N linearly independent samples, the matrix inverse in Eq. (3.26) can become singular.

As is expected, there are numerous sampling methods that combine deterministic 

and random sampling techniques such as Latin hypercube66 (LHC) and Hammersley67 

sampling. As opposed to random sampling, LHC and Hammersley sampling break the cdf 

of the random variable into equal segments and create a sample within each segment, which 

can be seen for 10, two dimensional (each in different colors) samples from the standard 

normal pdf in Figures (3.2a)-(3.2c). These figures contain the standard normal cdf and the 

uniform samples on the interval [0,1] that are used to produce normally distributed samples. 

The horizontal lines are included to better indicate the positioning of each sample within 

the cdf segments. It is important to note that these are not whisker plots nor are they meant 

to show a range of x values for a given F  (x ).

In Figure (3.2a) it is apparent that the samples from one variable predominately 

come from the top half of the cdf, and the other variable samples predominately come 

from the bottom, which produces an incomplete representation of the pdf. Obviously, the 

clustering in Figure (3.2a) is the result of a singular instance of sample generation, and there 

is no guarantee of repeatability. The likelihood of drawing all 10 samples exactly uniformly 

is the same as any other possible spread of samples.

Contrarily, the LHC and Hammersley samples in Figures (3.2b) and (3.2c), respec­

tively, more completely sample the cdf. LHC sampling randomly samples each dimension 

once in every segment while Hammersley deterministically sets every sample such that the 

first dimension’s samples are the endpoints of each segment, and the remaining dimensions’ 

samples are set based on a van der Corput sequence68. The resulting bivariate normal 

samples for each sampling method are shown in Figures (3.3a)-(3.3c).
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Figure 3.2. Uniform cdf sampling.
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The random and LHC sample (Figures (3.3a) and (3.3b)) sets both give the ap­

pearance of random sets; however, the deterministic quality of the Hammersley technique 

is immediately apparent in Figure (3.3c). Ultimately, the choice of sampling technique is 

problem specific depending on how the samples are used.

4 - 2 0  2 4 4 - 2  0 2 4
x 1 x 1

(a) Random normal (b) LHC normal
4

2

0

-2  

- 4
- 4  -2  0 2 4

x i

(c) Hammersley normal

Figure 3.3. Bivariate normally distributed samples with Gaussian 1, 2, and 3 -  a  intervals.

3.2.2.2. Im plem entation procedure. For convenience, the procedure for estimat­

ing the mean and covariance of a random state using the coefficient approximation method in 

Section 3.2.2 is given in Algorithm 1. Let s  be the state of a system with initial uncertainty 

of any type defined by mean m0 and covariance P0 subject to a set of system dynamics f  (•) 

over the time vector T . The algorithm outlines the steps required to estimate the state (by
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chaos coefficients, mean, and covariance) at the times in T . It should be noted that it is 

possible to represent any uncertainty in the governing dynamics ( f ) with PCE; however, it 

is assumed the dynamics are perfectly known.

Algorithm 1 Estimation of mean and covariance using a polynomial chaos expansion.
1: procedure PCE_EST(m 0, P0) > State estimation using PCE with deterministically

known system dynamics.

2: for k = 1 to T do

3: Draw samples of £ based on sampling type > Refer to Section 3.2.2.1

4: [Y] ^  Y (£)

5: S k-i ^  mk-i  + VPk-1 £

6: S k ^  f  (Sk-i)

7: € k ^ E q . (3.26)

8: m k ^ E q . (3.13)

9: P k ^ E q . (3.21) > Summation truncated by user

10: end for

11: re tu rn  € , m, P

12: end procedure

This implementation is similar to that of the UT, specifically lines 3, 6, 8, and 9. 

In both cases, samples are obtained, transformed, and then used to estimate the mean and 

covariance at some future point in time. In general, the matrix inverse used in the least 

squares on line 6 is computed using methods that are computationally negligible when 

compared with the dynamics in line 6. Any additional run time between the UT and PCE 

is therefore driven by the number of UT sigma points compared with the number PCE 

samples. It should again be noted that while PCE may be more computationally expensive, 

estimation of the state is not restricted to the moments.

3.2.3. Coefficient Solution - Inner Product. While the sampling-based method 

is more practical to apply, the projection based method does not depend on sampling the 

underlying distribution. Recall the projection of the point A onto the x  and y  directions in



50

Figure (2.2). These projections can be used to write the point A as the linear combination 

of the bases x and y  as

A =
(A, x )
< x, x ) X +

( A y )
< y , y ) y

which strongly resembles the Gram-Schmidt orthogonalization in Section 2.2.3.2. In both 

cases, the normalized projection helps isolate the portion of an element (in this case A) that 

lies in a certain direction. In this way, the an expression for the coordinates of A can be 

found. The same process can be done to solve for the chaos coefficients in the polynomial 

chaos expansion.

To find the j th coefficient, project the chaos expansion onto the j th basis yielding

(s  (x ,f ), T j ( f )) = ( f  e k (x) Tk ( f ), T j ( f  ) \  .
h=o

Utilizing the property of first argument linearity from Eq. (2.2), the summation in the first 

argument can be removed from the inner product, resulting in

TO
( s (x ,# ), T j ( f ) )p(f) = f  (ek (x)T k (f), T « ))p(f) .

k=0

Additionally, the inner product is with respect to the variable f ; therefore, the coefficient e 

acts as a scalar and again by Eq. (2.2), can be removed from the inner product giving

TO
( s (x,fX  T j ( f ))  = f  ek(x) (T k (f ), T ( f ) ) p(f) . (3-27)

k=0

Consider, for the sake of argument, a similar inner product that has the summation 

in the second argument, i.e.

TO
Xj ( f ), f  bk (x )Xk ( f  ) \

k=0 p(f)
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In this case, the summation can still be brought out of the inner product in the same way, but 

the order of the inner product has to be flipped before the coefficient can be removed. From 

the conjugate symmetry property in Eq. (2.3), the flipped inner product takes the form

TO
£ ( bk(x)Xk ( f ) , j ) ) .
k=0

Now that the coefficient is in the first argument it can be removed from the inner product 

resulting in

TO
£  f e w  ( w i t  j ) ) p (f) .
k=0

When all the values are real, the complex conjugate has no affect; but, it is important to 

recognize the underlying mathematical operations.

Returning to Eq. (3.27) and expanding the summation gives

(s(xx fx  t , ( P ) M ) = €0 (x) (T o (f), Tj ( f ) ) ^  + ■ ■ ■ €j(x) ( T , ( f ), T j ( f ) ) ^  + ■ ■ ■ .

Recall the basis polynomials are specifically chosen to be orthogonal, so the only inner 

product on the right-hand side that remains non-zero is the j th one, resulting in

(s  (x, f )  T j  ( f  >)p(f) = € k ( x) {V, ( f )  T j  ( f  )}p(f) ,

which can easily be arranged according to

( s (x , f  x j  ̂  ) 

<Tj2 ( f  )>,({)
(3.28)

isolating €j (x ).
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Systematically projecting s  onto each orthogonal basis yields similar expressions 

for each coefficient such that the full coordinate takes the form

[e ]

<s(x,g ),¥o (g ))p(g)
<r 0 (g ))p ) 

<s(x,g ),¥i (g ))p(€)
<r- (g ))p u )

<s( ),rj (g))p(g) 
<¥- (g ))p )

(3.29)

These coefficients can then be used to calculate moments according to Section 3.2.1.

It should be recalled that the inner products in Eq. (3.29) represent integrals of the

form

ej ( x ) =
f X s( x ,g ) r j (g ) dp(g) 

J x r -  (g) ip (  g )
(3.30)

where X is the support of g . The integral in the denominator is usually straightforward, 

and is even given analytically for many common families of orthogonal polynomials, but 

the integral in the numerator is more complicated. The only instances where the integral in 

the numerator may have an analytic form is when s  is known analytically. For the purposes 

of state estimation, perfect knowledge of s  would not require a method of uncertainty 

quantification such as PCE. It is therefore assumed that the integral

f s  (x .g ) ¥ j  (g) dp(g),

must be approximated using any of the numerous methods numerical integration methods 

such as quadrature or cubature69.
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3.2.4. Expansion Truncation. In the event the random variable is fully character­

ized by a PCE with a finite number of terms, the truncation in Eq. (3.23) can impose no 

approximation error. Consider, for example, the initialization a Gaussian random variable

x ,

x (£) = u  + a£ ,  (3.31)

where u  is the initial mean, a  is the initial standard deviation, and £ is the standard normal 

random variable. Now, consider the Hermite polynomials

Ho (£) = 1 

Hi (£) = £

Hi (£) = £2 -  1

H„ (£) = ( -1 )  ne£ 2/2 d l e - £2'2
d £

n = 3,4,.

Writing x as a linear combination of Hermite polynomials gives

x (£) = uHo (£) + a  Hi (£) + OH2 (£) + ••• + 0 Un + (3.32)

Collecting the coefficients results in a coordinate of the form

[e ]
0

(3.33)
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which has infinite dimension, but only two nonzero coefficients. In general, a finite PCE is 

not possible, and Eq. (3.23) is an approximation with error (6) given by

TO
e(x ,£ ) = Y  6k(x ) ¥ k(£),

k=N+1

which contains all elements of Eq. (3.7) with orders greater than the truncation.

As long as the orthogonal polynomials Y  are dense in L2, then the summation in 

Eq. (3.7) converges to the true random variable. For rates of convergence, the reader is 

encouraged to refer to Xiu28 and Ernst70. In relative terms, convergence rates increase as the 

standard random variable in the expansion approaches the random variable. For instance, 

the number of terms required to represent the random variable in Eq. (3.31) using any basis 

polynomials other than the Hermite polynomials will have more than 2 coefficients.

Recall the truncation term N in Eq. (3.24), and its dependence on the dimension 

n and is the total expansion order p. The total expansion order refers to the maximum 

order of all multivariate basis polynomials. The number of combinations of n univariate 

polynomials, whose orders add to p, or number of n-tuples that add to p  including zero is 

known as the stars and bars combinatorial problem71. When 0 is included in the selection 

set (since polynomials of order 0 are allowed), the number of n-tuples that sum to p  (Np) is

n p =
n + p  -  1 

n -  1

Combining this with the number of n-tuples that sum to p  -  1, p  -  2 , . . . ,  0 is

t-
Np,p-1,...,0 = Yu

k=0

In + k -  1  
n 1

which has the form of the hockey-stick identity72,
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for positive integers and c > b. Using this identity produces the truncation term N from 

Eq. (3.24),

N + 1
(n + p)!

n!p! ’

where the left-hand side is because the polynomial chaos expansion begins with a zeroth 

term.

Let a 2-dimensional state be expanded with respect to £ and Z such that the univariate 

polynomial bases are Y  and O. The resulting multivariate basis for a p th total order 

expansion is constructed according to the products in Table 3.1, which clearly that indicates 

no multivariate bases are constructed that have a total order greater than p. The partiality 

of the tensor product is evident in the empty lower triangle of Table 3.1.

Table 3.1. Traditional construction of multivariate basis polynomials r  from univariate 
orthogonal polynomials Y  and O  by total expansion order.

Yo Yi • • Yp-i Yp
Oo YoOo YiOo • • Yp-iOo YpOo
Oi YoOi YiO i • • Yp-iOi

Op-i
Op

YoOp-i
YoOp

YiOp-i

For this type of truncation, all univariate expansions have the same order. As was 

discussed, the rate of convergence of the PCE increases as the random variable diverges from 

the standard random variable. In these cases, a higher PCE expansion order is required to 

produce a more accurate approximation of the random variable. But, if one variable requires 

a larger expansion, the multivariate basis with terms according to Eq. (3.24) expands every 

element of the state. In other words, if within an n-dimensional state expanded using 

Hermite-chaos has one state that is very non-Gaussian requiring a p th order expansion 

and n -  1 dimensions requiring kth order expansions such that p  is significantly larger
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than k , the multivariate basis with Eq. (3.24) terms expands every element with a p th order 

expansion. The additional expansion in the majority of states is not necessary, and increases 

the computation burden of PCE.

Instead of representing every element of the state with a p th order expansion, allowing 

each state to be expanded to a unique expansion order reduces the total number of terms in 

the multivariate expansion, and ensures computation resources are efficiently applied to the 

states that require larger expansions. For an n-dimensional state, if no total expansion order 

is defined and the individual expansion orders are {p \ , . . . , pn}, the “full tensor” truncation 

term becomes

N  + 1 = ["[ (Pj + D j  = 1 , . . . , n . (3.34)
j =1

In the case p j = p  Vj, the number of terms is simply

N + 1 = (p  + 1)n .

For convenience, the multivariate bases resulting from a full tensor expansion in 2 dimen­

sions are collected in Table 3.2.

Table 3.2. Full tensor construction of multivariate basis polynomials r  from univariate 
orthogonal polynomials Y  and ^  by individual expansion orders.

^o ¥ 1  • • Ypj-1 Yp1
$0 Y0O0 Y 1O0 • • Ypj-1^0 Yp: O0
$1 Y0O1 ¥ 1O1 • • Ypj-1^1 Yp! O 1

°p 2-1 Y0O 2- 1 Y 1 Op2—1 • • Yp1-1°p2-1 1cs
" ^

O 2 Y0 Op2 Y1O 2 • cs
O

1 Ypx Op2
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Additionally, each dimension can have a unique expansion order and a total expan­

sion order can be defined which would result in yet another truncation factor. For example, 

the same 2-dimensional basis with individual expansion orders of p i and p 2 and a total 

expansion order of p  < pi + p 2 in Table 3.3.

Expansions of this type are not considered in this work.

Table 3.3. Partial tensor construction of multivariate basis polynomials r  from univariate 
orthogonal polynomials Y  and ^  by individual expansion orders with a total expansion 
order.

Yo Yi ■ ■ YP1—i Y pi
Oo YoOo YiOo ■ ■ Ypi_i Oo Ypi Oo
Oi YoOi YiO i ■ ■ Ypi_i Oi Ypi Oi

° p2 -i
Op2

YoOp2_i
^0Op2

Y i Op2—i
YiOp2 ■ ■ Yp_p2 Op2

Ypi Op_pi

3.2.5. Coefficient Analysis. Inspection of the chaos coefficients can lead to a better 

understanding of how the uncertainty of one random variable affects another random vari­

able. Again, let a and b be two random variables in a state with coefficient order according 

to Table 3.4.

Inspection of the zeroth coefficient does not provide much insight beyond translation 

of the mean. The remaining coefficients, on the other hand, can be used to estimate higher 

order moments as well as indicate divergence from the standard random variable in the 

expansion and interaction between the variables.

Table 3.4. Example coefficient ordering of a bivariate, full tensor, expansion.

Y  (Z) Yo Yi ■■■ Yo Yi ■■■ Yo Yi ■ ■ Ypi
* (  Z) Oo Oo ■ ■ Oi Oi ■ ■ Ok Ok ■ ■ Op2

a (x, Z,Z) ao a i  ■ ■ a pi a  pi+i ■■ a kpi a  kpi + i ■ ■ a  pi p_ i
b( a  Z,Z) ySo ySi ■■■ Ppi Ppi+i ■■ fikpi Pkpi + i ■ ■ Ppi ■pi_i

V a,b
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For example, take the pair of coefficients a k and p k. The covariance between a and 

b is influenced by these two coefficients only if both a k and p k are nonzero. If a k is zero, 

and p k is nonzero, p k contributes to but provides no impact on a at all, which holds for 

if p k is zero and a k is nonzero.

Of specific consideration are the multivariate polynomials of degree 1. In these 

cases, only one of the polynomials is a function of its standard random variable. The 

coefficients a kpi and p kpi correspond to the basis T 0Ok, which is equivalent to the univariate 

polynomial Ok: implying a kpi and p kpi are coordinates with respect to only the standard 

random variable Z and not Z. The opposite is true for the multivariate basis T kO0. As a 

result, the coefficients corresponding to first order, multivariate bases indicate the portion of 

the random variable (or its moments beyond the first) that is attributed to the corresponding 

standard random variable, i.e. a kpi and p kpi provide an indication as to the isolated effects 

of Z on a and b. Again, this applies to all univariate bases.

Additionally, observing the chaos coefficient rate of convergence can indicate the 

relative divergence or convergence of the random variable from the standard random vari­

able. Consider, for example, the Gaussian random variable expanded using Hermite-chaos 

resulting in the chaos coefficients in Eq. (3.33). If, after a transformation, the first two chaos 

coefficients remain the only two coefficients that are nonzero, it can be concluded the ran­

dom variable is still Gaussian, without additional analysis or computation. Conversely, as 

the other chaos coefficients diverge from zero, the random variable becomes less Gaussian. 

It should be noted that this is a very high-level analysis, and while it may be possible to 

define a divergence metric, such as the Kullback-Leibler73 or Hellinger74 distances.

In many instances, the dynamics governing a state are not known. Analyzing the 

chaos coefficients may not provide the user with the means of reverse engineering the 

dynamics, but it can provide additional insight into how the different states interact beyond 

the covariance or implementation factors including if certain variables that require higher 

levels of accuracy.
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4. CHAOS ON THE UNIT CIRCLE

4.1. COM PLEX EXPANSION

A PCE is effectively the projection of the L2 (O, F ,  P) vector space onto an infinite 

set of orthogonal polynomials. When a complex space is projected onto a set of complex 

polynomials, the basis can either be the original set of polynomials or their complex 

conjugates. To maintain a distinction between PCE for real polynomials (which is denoted 

as PCER) and PCE for complex polynomials (which is denoted as PCEC), the complex 

conjugate of the basis polynomials is used in the chaos expansion. Obviously, this notation 

holds for PCER since R = R. Using the complex conjugate of the set of polynomials, the 

familiar expansion in Eq. (3.7) becomes

TO
£(x, z) = ^  ek (x ) ,  (4.1)

k=0

where, once again, z = eie, e is the random variable, ek is the kth chaos coefficient, ¥ k is 

the kth order basis polynomial, and ¥ k (z) indicates a complex conjugate. Because the inner 

product naturally conjugates the second element, the inner product representation of each 

chaos coefficient from Eq. (3.28) does not change, but a complex conjugate is introduced 

into the integral form in Eq. (3.30). The resulting expressions for the chaos coefficients
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when the basis polynomials are complex are given as

6j ( x ) =
(e (xZ  >• Wj (Z ]) p(z) 

< ĵ2 ( z )>p(z) 

f Z e (x, z ) Wj (z ) dp( z ) 

JZ Wj (z) Wj- (z) dp( z)

(4.2a)

(4.2b)

4.1.1. Statistics. Taking an approach similar to the one taken in Section 3.2.1, 

expressions for the first two moments can be developed for a multivariate state that includes 

the two elements a  and yS, which have independent expansions

OO CO
a (x, z) = ^  a j (x)Wj (z) and b(y,g) = ^  Sk (y )%  (?) • (4.3)

j =0 k=0

where Y  and ^  are two, possibly different, sets of complex basis polynomials, with standard 

random variables z and ?, respectively. Note the change in notation from Eq. (3.8) to 

Eq. (4.3). This is done to ensure the variable z is consistent with the eld notation.

The integral expression for the mean of a takes the form

E[a] = I a (x, z)p (z )dz •
J x

where a can be replaced with its expansion giving

E[a] = a k (x )Wj (z )p (z )d z . (4.4)

The zeroth polynomial of the Szego polynomials is 1, just like the Askey polynomials, so 

an equivalent statement to Eq. (4.4) can be written that includes the zeroth polynomial. 

Including the zeroth polynomial and moving the summation/coefficient pair outside of the
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integral gives the expression

E [a] = ¥ k (z) ¥ 0  (z) p( z ) d z ,

which can be written as the inner product

E[a] = £  ak (x ) (¥k (z ), ¥ 0 (z)) . (4.5)
k=0

The inner product in Eq. (4.5) represents the orthogonality condition of the polynomials Y, 

and as a result, when k ^  0, the inner products evaluates to 0, and when k = 0, the inner 

product evaluates to 1 (because the pdf of z evaluates to 1). Therefore,

E[a] = ^  ak (x) (¥k (z), ¥ 0 (z)) , (4.6)
k=0

when the polynomials are complex.

Even if the mean is written according to

E[a] = 2  ak (x) (¥k (z), ¥ 0 (z)) , (4.7)
k=0

the result is the same because

¥ 0  (z) = ¥ 0  (z) .

The multivariate first moment is the same for complex random variables as it is for 

real random variables in Eq. (4.8). The first moment of the multivariate system including 

complex random variables a and b is therefore,

a (x, y £) 

b( x, y ,g )

a0 (x ) 

P0 (z)
(4.8)
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Unfortunately, the orthogonality of the polynomials utilized in the simplification 

from Eq. (3.17) to Eq. (3.18) is not valid for complex valued polynomials, resulting in more 

complicated expressions for the raw second moments as

E[a2] =
CO CO ^

Z  £  a  a  k £
;_n b — d  Xj=0 k=0

Yj (z) Y  (z ) p ( z) dz

E[ab] =
O O

Z Z  a j p k f  f
j=0 k=0

Y j(g) % ( z)p(z, g)dg d z ,

(4.9)

(4.10)

where the expression in Eq. (4.9) is similar for b when the appropriate chaos coefficients 

(yS) and basis polynomials (O) are used. If z and g are the same standard random variable, 

then one of the integrals in Eq. (4.10) is eliminated yielding

E[ab] = Z Z  ajpk \ ^ j  (z)¥k (z)p(z)dz
j=0 k=0 J X
O O

= Z Z  ajPk<^j (z), Yk (z))p(z). (4.11)
j=0 k=0

Consider using a standard random variable that does not have the form eie. This results in a 

real valued standard random variable and real valued orthogonal basis polynomials. In this 

case Eqs. (4.9) and (4.10) become

E[a2] = ajak  I Yj(z )Yk(z)p(z)dz
j =0 k=0 J X

E[ab] =
O O

Z Z aj p k f  frxkrxk J x J  yj =0 k=0
¥ j (g )Ok (z) p ( z, g ) d g d z .

(4.12)

(4.13)

Now, the orthogonality of real valued polynomials can be utilized. Additionally, beginning 

the summations at one instead of zero (i.e. the difference between a central moment and a 

raw moment) results in the equations for the variance and covariance in Eqs. (3.18) and (3.19)
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from Section (3.2.1). It is implied that Eqs. (4.9) and (4.10) are the general form of the 

moment equations, because Eqs. (3.18) and (3.19) can be derived from Eqs. (4.9) and (4.10) 

after making the specification that real valued polynomials and random variables are used.

4.1.2. Rogers-Szego-Chaos. The Rogers-Szego polynomials and the wrapped nor­

mal distribution provide a convenient basis and random variable pairing for the linear 

combination in Eq. (4.1). The Rogers-Szego polynomials in Eq. (2.11) can be rewritten 

according to46

pn
n
k

n-k
q 2 zk

q
(4.14)

where q is calculated based on the standard deviation of the unwrapped normal distribution
2

as q = e-a  . These polynomials satisfy the orthogonality condition

1
2 n

dO = (q; q)n
qn

dmn ? (4.15)

where (a, S ) is the theta function

TO
&3 (a, fS) = ^  S k2e2ika, (4.16)

k=-TO

which is another form of the wrapped normal distribution. The number of wrappings in 

Eq. (4.16) significantly affects the results. For reference, the results presented in this work 

truncate the summation to ±1000.

For convenience, the inverse of the theta function is

$ 31 (a, /S) = 2a  + n + 2 ^
k= 1

S k  sin(2ka)
k
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The inverse of the theta function is particularly useful if the cdf is required to draw random 

samples, because recalling from Section 3.2.2.1, randomly sampling a pdf is performed by 

uniformly sampling the corresponding cdf.

Written out, the first five orders of the form of the Rogers-Szego polynomials given 

in Eq. (4.14) are

<Po = 1

(p\ = & -  q 1/2

(p2 = &2 -  q 1/2(q + 1)& + q

<p3 = &3 -  q 1/2(q2 + q + 1)&2 + q(q2 + q + 1)& -  q3/2

(p4 = &4 -  q 1/2(q + 1)(q2 + 1)&3 + q(q2 + 1)(q2 + q + 1)&2 -  q3/2(q + 1)(q2 + 1)& + q2 ,

and are shown graphically in Figure (4.1). Because the polynomials are complex valued, 

the real and imaginary components are shown separately. In both cases, the polynomials 

are oscillatory, with the real component being symmetric about 0 = 0 (even), and the 

imaginary component being antisymmetric about 0 = 0 (odd). Additionally, the amplitude 

of the oscillations increase both with increasing order and distance from 0 = 0, similar in 

behavior to the Askey polynomials. The zeroth polynomial is one, as is standard; therefore, 

the difference between the two generating functions given in Eqs. (4.14) and (4.16) is only 

of consequence in the calculation of moments beyond the first.
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(a) Real Component

(b) Imaginary Component

Figure 4.1. The zeroth through fourth Rogers-Szego polynomials with an unwrapped 
standard deviation of a  = 0.1.

4.1.3. Function Evaluations and Numerical Complexity. As is to be expected, 

the computational complexity associated with estimating a random variable using PCEC in­

creases with increasing state dimension. It is therefore of interest to develop an expression 

that bounds the additional number of function evaluations PCEC requires beyond PCER as 

a function of number of states and expansion order that. Due to the many different methods 

of calculating inner products, all with different computational requirements, the number of 

functional inner products is what will be enumerated.
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Let x e SP be a P-dimensional state vector consisting of angular variables, and let 

q e NP be the expansion order of each element in x , where N is the set of natural numbers, 

including zero. The number of inner products required to calculate the chaos coefficients in 

Eq. (3.30) for element x  is 2(q  + 1), where {i e N : k < P} and qi is the ith element of q.

Assume that the mean, variance, and covariance are desired for/between each ele­

ment. The mean does not require any extra inner products, since the mean is simply the 

zeroth coefficient. The variance from Eq. (4.9) requires an additional (qi +1)2 inner products 

for a raw moment, or q;2 inner products for a central moment. Similarly, the covariance from 

Eq. (4.10) between the ith and j th elements requires (qi + 1)(qj + 1) additional evaluations 

for a raw moment and qiqj- for a central moment. Combining these into one expression, the 

generalized number of inner product evaluations for raw moments with P  > 2 is

2(q1 + 1) + (q1 + 1)2 + ^  j 2(qi + 1) + (qi + 1)2 + ^ (qi + 1)(qj + 1) J
i=2 \  j =1 )

and for central moments is

P j  i-1 \
2(q1 + 1) + q2 + ^  I 2(qi + 1) + q2 + ^  qiqj I .

i=2 \  j =1 )

It should be noted that this is the absolute maximum number of evaluations that is 

required for an entirely angular state. In many cases inner products can be precomputed, 

which reduces the number of computations that must be performed at every time step, if 

orthonormal polynomials are used, the inner product in the denominator of the coefficient 

calculation equation (Eq. (4.2a)) is exactly one, which reduces the coefficient calculation 

inner products by two.
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4.2. POLYNOMIAL CHAOS ON THE REAL UNIT CIRCLE

In the Szego polynomials, the angular random variable is transformed into its 

complex form; it is for this reason that the Szego polynomials are complex valued, and 

the complex conjugate in the inner product (Eq. (4.1)) is important. The complex form 

of a single angle is inherently two dimensional (one real dimension and one complex 

dimension). If the radius is fixed, then any point on a circle can be uniquely defined by 

its angular coordinate. It is proposed that an angular random variable can be treated as 

a one dimensional variable with the conditions that it be confined to a 2n support (again, 

using the support [-n , n )) and that the pdf of the random variable be continuous across the 

endpoints.

Instead of the Szego polynomials, or any other complex valued polynomial, let a 

new set of polynomials be developed according to Section 2.2.3 that are orthogonal with 

respect to a measure on the real unit circle. These polynomials provide a sufficient basis 

for the PCE of an angular random variable like the Szego polynomials, but the additional 

computational burden of the complex conjugate (e.g. Eq. (3.21)) is avoided. A real unit 

circle PCE can use all of the existing framework utilized by traditional PCER methods and 

requires none of the additional inner product computations in Section 4.1.3.

For convenience, the real valued polynomials used in this work are orthogonal with 

respect to the standard wrapped normal pdf (i.e. zero mean and unit variance) and are 

referred to as wrapped normal polynomials (WNP). The first five orders of the WNP are 

illustrated in Figure (4.3). For comparison, the normalized Hermite polynomials are also 

shown. With a standard deviation of 1, the standard normal and the wrapped normal pdfs 

are fairly similar, with the wrapped normal having larger values when evaluated at ±n than 

the normalized Hermite polynomials, as can be seen in Figure (4.2).
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Figure 4.2. Standard normal and wrapped normal pdfs.

4

3

2

1

0

s£

Because of the similarity between the standard normal and standard wrapped normal 

pdfs, the difference between the normalized Hermite and the wrapped normal polynomials 

(WNP) is not very large for the lower ordered polynomials (see Figure (4.3)); however, 

as the order increases, the deviation becomes more apparent. As a result, the difference 

between Hermite-chaos and WNP-chaos will be most noticeable in higher order expansions.

6 [rad]

Figure 4.3. First five orders of the normalized Hermite (solid) and WNP (dashed) polyno­
mials on the interval [-n , n).

A contributing factor of using the standard wrapped normal pdf to develop the WNP 

is the small values of pwn (±n), ensuring the general normal shape is maintained, but the 

tails are not overly large, which would make a wrapped uniform pdf harder to approximate:
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recall the PCE converges quicker when the standard random variable in the expansion has 

a similar shape to the random variable being expanded. In addition, unit variance helps 

simplify the wrapped normal expression to

pWn (6; 0 ,12) =
(6 + 2n k )2 

2
-  n < 6 < n . (4.17)

It is important to note that the reduction of dimension can be performed because 

angular random variables are expressed on the circle with fixed unitary radius; implying the 

two dimensions are linearly dependent. Consider, for example, this equation of a circle:

2 2 2r = x + y -  r < x, y < r .

When the radius is fixed, only one independent variable remains. Instead of using a 

subset Cartesian coordinates, a fixed radius circle can be described entirely by the angle 

- n  < 6 < n, effectively reducing the dimension of the problem from 2 (x and y) to 1 (only 

6). Figure (4.4) shows how the points on a unit circle are mapped onto a tangent line of 

length 2n. Here, the distance between points on the unit circle is preserved so that the arc 

length between points on the circle is the same as the linear distance between the points on 

the tangent line.

1

0.5 

0

-0 .5  

-1

Figure 4.4. Projection of the unit circle onto the line [-n , n ) such that the arc length is 
preserved as linear length.
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It should be noted that this can be performed because the only quantity of interest is 

the angle, which is not deformed by a mapping of this kind. This is because the unit circle is 

a curved line, as opposed to the unit disk, which contains all points enclosed* within the unit 

circle. For random variables on complex manifolds with linearly independent dimensions, 

representation by PCER would be inappropriate.

4.3. POLYNOMIAL DENSITY

The Rogers-Szego polynomials and the proposed wrapped normal polynomials 

are both infinite orthogonal bases; however, the density of the polynomials in L2(O, F ,  P) 

should also be considered to ensure that the chaos expansion approaches the random variable 

as the summation approaches infinity. To prove polynomial density, it is sufficient to show 

that the measure that generates the polynomials is uniquely solved by its moments75,70. 

Carleman’s condition7 says that if the moments {m0, m1, ...}  of the measure satisfy

Zk=0

1
k/m2n

, (4.18)

then no other pdf can have the same moment sequence. For the class of wrapped pdfs, the 

moment sequence is defined by the characteristic equation of the unwrapped pdf when it is 

evaluated at integer values. The Gaussian distribution with mean ^  and standard deviation 

a  has the characteristic function (also called the moment generating function)

0 (t) = ek ̂ 2 a2/2,

*The open unit disk includes all points strictly enclosed by the unit circle, whereas the closed unit disk 
includes the unit circle as well.
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which asymptotically approaches zero with increasing t . The wrapped normal moment 

sequence is therefore

mn = eln̂ n-a2/1 i n  e Z ,

where Z is the set of integers. The limit of the summand within Carleman’s condition then 

becomes

lim —------- = to ,
neN+0̂ ro el̂  n̂

when the mean is finite. The divergence of the summand satisfies Eq. (4.18), implying that 

the WNP polynomials used in this work are dense in L2 (Q  F ,  P ) . If these polynomials 

had not been dense in L2, even the infinite chaos expansion in Eq. (3.7) would be an 

approximation.

As a counterexample, consider the lognormal pdf with moment sequence

mn = en^+nV-/2 i n  e Z .

Again evaluating the limit of the summand within Carleman’s condition yields

lim — - —2 = 0 .
neN+0̂ ro e l̂ +n̂

The Stieltjes-Wigert polynomials10,76 polynomials are orthogonal with respect to the log­

normal pdf; however, because they are not dense, the Stieltjes-Wigert polynomials are not 

uniquely orthogonal with respect to the lognormal pdf. As a result, the Stieltjes-Wigert 

polynomials could be used as the basis for polynomial chaos with a lognormal standard 

random variable; unfortunately, there is no guarantee that the expansion converges to the 

random variable: a guarantee provided when dense orthogonal basis polynomials are used.
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5. RESULTS AND DISCUSSION

Section 4 develops two different methods of representing and propagating the un­

certainty in angular random variables. While the two methods seek to accomplish the same 

goal, the developmental processes required for each method are significantly different. A 

complete generalization of the expansion itself, as well as new derivations of moment equa­

tions are presented in Section 4.1. Because PCEC is entirely novel, its feasibility must be 

determined before its accuracy can be compared with existing methods.

By comparison, PCER (in Section 4.2) has been well established as a viable method 

of representing and propagating uncertainty. Because WNP-chaos does not require any 

changes to existing PCER methodologies, its accuracy can be tested against existing methods 

that do not treat the random variable as an angle.

Because the two methods in Section 4 are at different levels, they are not tested against 

each other. In Section 5.1, PCEC is used to jointly propagate two correlated angles in a 

double pendulum setup. The estimates of the first two raw moments (including correlation) 

are estimated and compared with estimates obtained from Monte Carlo simulation.

Section 5.2 uses the two-body equinoctial dynamics to test WNP-chaos as a more 

accurate method of uncertainty propagation than the UT and Hermite-chaos. Again, the 

first two moments, including correlation, are estimated, and the errors (by comparing with 

Monte Carlo simulation) are compared. In addition, the Hellinger distance of the pdf 

obtained from the different methods from the Monte Carlo simulation is analyzed.
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5.1. ANGLES ONLY UNCERTAINTY PROPAGATION

To test PCEc, consider a double pendulum, as illustrated in Figure (5.1). In this 

case, the angles a  and p  describe the angle each rod (of lengths la and lp , respectively) 

makes with the gravity vector. The rods themselves are massless, but at the end of each rod 

are point masses ma and mp .

Figure 5.1. Graphical state of a double pendulum after approximately 4 seconds indicating 
the angles a  and p  as well as the progression of each point mass throughout the simulation 
(dashed) beginning at the green dots.

The double pendulum presents convenient dynamical behaviors to test the propa­

gation of uncertainty using PCEC due to the nonlinear nature of the double pendulum and 

nonlinear evolution of the uncertainty. The equations of motion can be derived by taking 

the inertial positions of the masses, i.e.

xa = la sin a  

xp = xa  + lp sin p

ya = - la  cos a  

y p = y p - 1 p cos p ,



74

and differentiating twice with respect to time, acknowledging that the only outside force 

acting on the system is gravity. The resulting equations of motion are

-g[(2ma + mp) sin a + mp sin(a -  2p )] -  2 sin(a -  p )mp (p 2lp + a 2la cos (a -  p ))
la (2ma + mp -  mp cos(2a -  2p ))

p  =
2 sin (a  -  p ) (a 2la(ma + mp) + g(ma + mp) cos a + p 2lpmp cos(a -  p )) 

lp (2ma + mp -  mp cos(2a -  2p ))

(5.1a)

(5.1b)

where the dot notation indicates a time derivative (the number of dots indicates the number 

of time derivatives). Let the state of the system x  be comprised of the angles a  and p.  The 

initial state of the simulation is given by

xo W N
45c 

0°
, diag

(5°)2

(5°)2

\
(5.2)

where W N  indicates a wrapped normal pdf with arguments of mean and unwrapped 

covariance and the notation ~ indicates a distribution, i.e. x0 ~ W N  (ppa2) implies a 

wrapped normal pdf with mean p  and variance ^ 2. For this scenario, the angular velocities 

a  and p  are deterministically known and initially zero, the lengths are both 1 m, and the 

masses are both 2 kg.

Recalling Figure (5.1), depicted is the state of the pendulum after approximately 4 

seconds, chosen so both a  and p  are nonzero for graphical purposes. In addition to the 

instantaneous state of the system, the initial locations of m1 and m2 are shown as green dots, 

and the progression each point mass is traced as dotted lines. This figure represents the 

progression of the mean state obtained using a Monte Carlo simulation of 50,000 samples 

integrated using Matlab’s ode45 77 differential equation solver at a rate of 40 Hz for a total 

simulation time of 5 seconds.
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A primary benefit of PCE is the ability to represent a random variable even when 

it diverges from a standard random variable e.g. when a random variable becomes non­

Gaussian but is expanded using Hermite polynomials. The pdfs of a  and S  become 

non-wrapped-Gaussian, as a  and S  are subjected to the dynamics in Eqs. (5.1), especially 

after the 4th second of the simulation, which can be seen in Figures (5.2), which are obtained 

from Monte Carlo simulation.

t = 0 s m  t = 4 s m  t = 4.225 s m  t = 4.475 s m  t = 4.975 s

0.1

0.05

0
-5 0  0 50

a  [deg]

(a) Progression of p(a)

0.09

0.06

0.03

0
40 -2 0  0 20 40 60

S  [deg]

(b) Progression of p(S)

Figure 5.2. Selected histograms from Monte Carlo simulation of a  and S  showing the 
progression from initial wrapped Gaussianity (at t = 0 s) to non-wrapped-Gaussian pdfs, 
particularly after t = 4 s.

Both a  and S  are clearly wrapped normal at the initial time t = 0 sec, and in both 

cases the pdf evolves into an approximate uniform pdf with supports less than 2n. Until t = 4 

s, the double pendulum behaves approximately like a single pendulum. This provides an 

opportunity to observe a system that begins uncorrelated and remains minimally correlated 

until t = 4 s, at which point the correlations increase, and the distributions of the states 

distort exhibiting the range of pdf shapes seen in Figures (5.2).
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To test the feasibility of PCEc, the angular portion of the means (<E[a], <E[yS]), 

length of the means (||E [a]||, ||E[yS]||), second raw moments (E [a2], E[yS2]), and correlation 

(<E[ayS]) are estimated at 40 Hz for 5 seconds. This duration ensures that the pdfs of both 

states evolve into non-wrappped-Gaussian distributions including pdfs resembling the log 

normal pdf and uniform pdf on an interval less than 360°. Both a  and yS are expanded using 

the Rogers-Szego polynomials orthogonal with respect to the wrapped normal pdf, and the 

estimated moment angles are compared against the truth via Monte Carlo simulation.

5.1.1. Assumptions. From the discussion of the generating function for the Rogers- 

Szego polynomials (Eq. (4.14)), it is clear that these polynomials depend on the USTD of 

the wrapped normal pdf. Unfortunately, this means that the polynomials are unique to any 

given problem, and while they can still be computed ahead of time and looked up, it is not 

as convenient as problems that use polynomials that are fixed (e.g. Hermite polynomials).

Additionally, the inner product in Eq. (4.9), which describes the calculation of the 

covariance, requires the knowledge of the joint pdf between the two random variables. This 

presents a cyclic problem where the joint pdf must be known in order to estimate the state. 

In practice, there is no reasonable way of obtaining this pdf; and if there is, then the two 

variables are already so well known that costly estimation methods are irrelevant.

Assumptions about the USTD and the joint pdf must be made. The basis polynomials 

are evaluated when solving for the chaos coefficients (Eq. (4.2b)) and when estimating the 

statistical moments (Eqs. (4.6)-(4.11)) at every time step. If no assumption is made about 

the USTD, then the generating function in Eq. (4.14) (or other method of polynomial 

generation) must be evaluated at every time step as well. In either case, the computational 

burden can be greatly reduced if the basis polynomials remain fixed, requiring only an 

initial evaluation. Additionally, if the same USTD is used for both variables, than the 

simplification from two to one integrals in Eq. (4.11) can be made. For the results herein, 

a fixed USTD of 1 is used for both a  and yS, effectively resulting in the complex analog of

the WNP in Section 4.2.
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While not required for the mean estimate, a simplification of the joint pdf also 

significantly reduces the computational burden and increases the feasibility of the problem. 

The most drastic of simplifications is to use a fixed, uncorrelated joint pdf throughout the 

entire problem. Note that the pdf used in the inner product is mean centered at zero (even 

for Askey chaos schemes); therefore, the validity of the estimation is not affected by any 

movement of the mean.

Not only are the Rogers-Szego polynomials dependent on the USTD, they utilize 

a form of the circular standard deviation, which takes values 0 < q < 1 that are inversely 

proportional to the USTD. Because the Rogers-Szego polynomials are orthogonal, the chaos 

coefficients -  beyond the zeroth -  are functions of the polynomial normalization constant 

from (Eq. (4.15)), such that

6n ( X ) a:
1

<% (X), % ( X)>
qn

nn:0 ( 1 -  q‘+1) '

As q approaches zero (the wrapped normal pdf approaches a wrapped uniform pdf), the 

chaos coefficients also approach zero, and as q approaches 1 (the wrapped normal pdf 

approaches the Dirac delta), the coefficients diverge. In addition, as the polynomial chaos 

expansion order increases, the chaos coefficients become even more sensitive to the extremes 

of q. This is not to say that extreme values of q are not viable for PCE, but rather that it 

is important that numerical precision is maintained for both very small (q ^  0) and very 

large (q ^  1) chaos coefficients.

5.1.2. Convergence Behavior. Before discussing the accuracy of each of the seven 

quantities that is estimated, it is important to examine the convergence behavior of the 

polynomial chaos expansion. From Section 4.3, the expansion analytically converges 

to the random variable, but the rate of convergence directly impacts the feasibility of 

implementation. Additionally, increasing expansion orders can cause numerical instabilities 

in the decay/divergence rates of the chaos coefficients discussed in Section 5.1.1.
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To investigate the convergence behavior of the double pendulum, the error in the 

estimated moments via PCEC with orders ranging from two to 100 is shown in Figure (5.3). 

The error is defined as the absolute difference in angular components of each moment 

between the Monte Carlo simulation and Szego-chaos estimate averaged over the simulation. 

For example, the error in the moment E[ay8] is

^Oy ^  | <E[a(t)yS(t)]mc -  <E[a(t)y8(t)]sz|
t eT

T = {0 ,0 .025,..., 5},

where E[-]mc denotes the expected value obtained via Monte Carlo simulation, E[-]sz de­

notes the expected value estimated from Rogers-Szego-chaos, and the time vector has 201 

components.

Note that the chaos coefficients of both angles are calculated from independent 

expansions, not from a multivariate expansion like the ones in Section 3.2.4.

---- a  - - -  S ----- a 2 ---- S2 ----

Figure 5.3. Convergence behavior of average (over the simulation) angular difference be­
tween Monte Carlo (50,000 samples per dimension) and PCEC due to increasing expansion.
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From Figure (5.3), the mean estimates and the second moment of a  (ju2,a ) reach 

steady state errors of approximately 0.3° for expansion orders of six and above. While the 

correlation (y.a,p) and second moment of S  (p2,s) do not approach steady state values, the 

angular difference is consistently at least an order of magnitude less than the errors in the 

means and ju2,a . The increased variability in the errors with increasing orders, which is 

present in the means and ju2,a , although not as apparent in ^ 2,p and the correlation, are 

attributed to numerical inaccuracies in generating the Rogers-Szego polynomials (given the 

required approximation of the &3 function in Eq. (4.14)) as well as in approximating the 

required polynomial inner products (performed herein using Monte Carlo integration with 

12567 points). Additionally, the ji2,p and correlation variation with the large expansion 

orders is exacerbated due to the logarithmic scaling of the plot.

5.1.3. M oment Estimation. Based on the steady state behavior in Figure (5.3), 

the moment estimates across the five second simulation are investigated for individual 

expansion orders of 15. Again, the purpose of this investigation is to observe the behavior 

of the moment estimates, not necessarily the accuracy. In each of the figures in this section 

(Figures (5.4a)-(5.6b)), the angular portion of the moments obtained via Monte Carlo 

simulation (e.g. <E[a]mc) and estimated using Rogers-Szego-chaos (e.g. <E[a]sz) are 

plotted against the left hand axis. The plots from the right hand axis give the difference 

between the moment via Monte Carlo simulation and the estimate of the same moment from 

Rogers-Szego-chaos (e.g. <E[-]mc -  <E[-]sz).

Recall, from Eq. (4.8), that the mean is simply the zeroth chaos coefficient. Addi­

tionally, the zeroth polynomial is analytic, constant, and normalized, implying all error in 

the mean is directly attributed to the inaccuracies in numerically approximating the expected 

value in integral form, i.e., no polynomial self inner products (l^¥j, are required. As a

result, the error in the mean gives an indication of implementation inaccuracies rather than 

fundamental inaccuracies within PCEC.
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Observing the difference in estimates across the simulation in Figures (5.4), the 

largest errors are apparent at the peaks and troughs of each state. Dynamically, the largest 

angles achieved in the simulation occur when the individual pendulum motion changes 

from clockwise to counterclockwise (or vice versa) and are coincidently the most sensitive 

to initial conditions. Throughout the simulation, the errors grow cyclically as a result of 

increasing overestimation of maximum swing angle; however, the general motion of the 

system is captured.
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(a) Angle of a ’s first moment.
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(b) Angle of jS’s first moment.
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Figure 5.4. Angular component of the mean estimated from Monte Carlo and Rogers- 
Szego-chaos on the left axis and difference between estimates on the right axis.
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From Section 2.3.3, recall that the concentration of the pdf is found from the length 

(denoted by || • ||) of the first moment, which is inversely related to the uncertainty in the 

random variable. The lengths of the first moments of a  and yS are depicted in Figures (5.5). 

Rather than the circular variance or standard deviation, the length is shown, providing an 

unaltered form of the estimate and a more direct indication of the feasibility of Rogers- 

Szego-chaos. If the peaks and troughs of the length are compared with the corresponding 

angle at the same time, it is apparent that the highest concentrations appear at the switching 

of swing directions, and the lowest concentration occurs in the middle. Considering the 

dynamics of the problem, the points where the pendulums switch directions should have 

the highest concentration, because the random variable “doubles back” on itself, effectively 

halving the support of the pdfs.

Like the error in the angle, the error in the length grows cyclically, but unlike the 

angular component, the Rogers-Szego-chaos estimate almost always under estimates the 

length of both angles, effectively over estimating the uncertainty in the angle. Rather than 

an effect of the dynamics, this is most likely a result of numerical approximation. To 

substantiate this claim, the error in the angular part does not exhibit a similar drift. Between 

Figures (5.5a) and (5.5b), the error is larger for yS, which is to be expected considering 

the additional range of motion associated with the second pendulum. Whereas the first 

pendulum is inertially fixed at one end, the second pendulum is not, resulting in larger 

uncertainty associated with yS, which can be seen through the overall downward trend in 

Figure (5.5b).

In addition to the first moment, it is important to examine the second moments, which 

use more than just the zeroth chaos coefficient. The estimates of the second raw moments 

of a  and yS are given in Figures (5.6), where similar to the angles in Figure (5.4), the error 

grows cyclically with peaks corresponding to dynamical changes in rotation direction.
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(a) Length of a ’s first moment.
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(b) Length of jS’s first moment.

Figure 5.5. Length of the mean estimated from Monte Carlo and Rogers-Szego-chaos on 
the left axis and difference between estimates on the right axis.

1

2

Comparing the error in the mean against the corresponding second moment does not 

reveal any new behavior, only somewhat increased local maximums. Increased error in the 

peaks is to be expected when considering how the second raw moment is calculated. Recall 

from Eq. (4.9), the second raw moment requires the inner product between nonorthogonal 

polynomials, which for this case are approximated numerically (again with Monte Carlo
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(a) Angular component of a ’s second raw moment.
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(b) Angular component of jS’s second raw moment.

Figure 5.6. Angular component of the second raw moment estimated from Monte Carlo 
and Rogers-Szego-chaos on the left axis and difference between estimates on the right axis.
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integration). It is therefore expected that the errors in higher moments will be larger 

than the first moment due to the increased number of integrals that must be numerically 

approximated.

The difference in computational complexity between the mean and higher moments 

is primarily seen in the polynomial orthogonality factor in the chaos coefficient and the 

self inner product in the moment equation. While not numerically unstable for an assumed 

USTD of 1, it is an assumption nonetheless; additionally, the self inner products are 

numerically approximated in the same way as the chaos coefficients (i.e. via Monte Carlo
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integration). It can, therefore, again be assumed that the error in the estimate is due to 

numerical approximation methods, backed up by the fact that the error in the second raw 

moment behaves similarly to mean in Figures (5.4).

Based on the mean and second moment estimations, it is not surprising that the 

correlation estimate (illustrated in Figure (5.7)) tracks the Monte Carlo estimate throughout 

the simulation with some cyclic growth. What is most apparent is that the errors in the 

correlation are smaller than those in the mean and second moment estimates. Interestingly, 

the errors in estimating a  and S  are similar in value, but opposite in sign. These opposing 

errors have a negating effect on the correlation error.

-50

1.5 2 2.5 3
Time [sec]

— Monte Carlo - - - Rogers-Szego-chaos

£  
. w- 4

Figure 5.7. Correlation angle estimated from Monte Carlo and Rogers-Szego-chaos on the 
left axis and difference between estimates on the right axis.

Given the pattern of error in the estimation of the mean, second raw moment, and 

correlation, it is clear PCEC is a valid method of estimating uncertainty in complex random 

variables, specifically angular random variables on the complex unit circle. Based on the 

assumptions made and numerical integration methods, increased accuracy in the estimates 

can be achieved through the use of basis polynomials that are not problem specific (i.e. 

dependent on the USTD) and more accurate numerical methods (i.e. Szego quadrature).
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While these results indicate PCEc is feasible, it is reasonable to believe the ad­

ditional computation associated with PCEC is too cumbersome for some applications that 

either require speed (i.e. on-board computing), or that are already very computationally bur­

densome when using Askey-chaos (i.e. cfd simulation). In cases where random variables 

must be complex valued, PCEC is more than sufficient; however, being able to represent a 

random variable with real valued polynomials is more efficient.

5.2. TWO-BODY EQUINOCTIAL ELEM ENTS

Recently, the equinoctial element set78 has been gaining popularity in astrodynamics 

with respect to the Keplerian elements, partially due to the fact that the singularities within 

the Keplerian elements are not present in the equinoctial elements79,38. Similar to the 

Keplerian elements, the equinoctial elements, given by

x equ _

semimajor axis a e R [km]

h
e R2eccentricity vector compoments

k
>

[N/A]

p
e R2RAAN vector components

q

[N/A]

mean longitude A e S [rad]

(where RAAN is the right ascension of the ascending node) are a mixture of translational 

and angular states. Also like the Keplerian elements, five parameters (a, h, k , p, and q) are 

used to describe the shape of the orbit and one element (A) describes the position of the 

satellite in its orbit. Under the assumption of two-body dynamics, only the mean longitude
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varies with time according to

d k = d 0 + y  ^3 Tk, (5.3)

where Tk is the time of flight. Uncertainty in both the mean longitude and the semimajor 

axis presents a convenient set of dynamics to test the ability of polynomial chaos to estimate 

the correlation between a translational and angular state.

As is apparent from Eq. (5.3), the mean longitude is dependent on the semimajor 

axis, which presents an opportunity to test the effectiveness of using real valued polynomials 

that are orthogonal with respect to measures on the unit circle as the expansion basis for 

an angular random variable, as well as for testing the ability of mixed expansion PCER to 

estimate the correlation between an angular random variable and a translational random 

variable. Because the existing framework for PCE assumes real valued polynomials, the 

accuracy of the mixed expansion is compared against two-dimensional Hermite-chaos.

In both cases, the chaos coefficients are found using the least squares approach in 

Section 3.2.2, which is effectively a sampling based method of uncertainty quantification, 

like the UT. Due to the similarities in numerical methods, and the popularity of the UT 

in state estimation and uncertainty quantification, the estimates from PCE are compared 

against the UT. In total, three different methods of estimation are compared: 1) mixed 

WNP/Hermite-chaos, 2) two state Hermite-chaos, and 3) unscented transform. Within the 

two types of polynomial chaos, three sampling algorithms are used: random (denoted rand), 

Latin hypercube (denoted LHC), and Hammersley (denoted Ham). This yields a total of 

seven approaches that are evaluated.
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In all cases, the initial uncertainty is fully captured by the mean and standard 

deviation of each state, which are taken to be

Hx = 0° and n a = 7444 km (5.4)

ax = 1° a  a = 100 k m . (5.5)

It should be noted that the uncertainties in this example are very large; this is because 

the primary goal of this work is to test the accuracy of different PCE applications in 

highly uncertain systems. The unscented transform in this example uses 5 sigma points 

(corresponding to the 2n + 1 rule in Section 3.1), and the PCE methods expand X and a 

according to

CO CO
X(t, £) = 'Y_l ex,k(t) ¥ k(£) and a(t, Z) = ^  ea,k(t) % ( Z) .

k=0 k=0

For the mixed PCE, the polynomials Y  are the WNP and £ is the standard wrapped normal 

random variable, while the pure Hermite-chaos uses Hermite polynomials and a standard 

normal random variable. In both expansions, ^  are the Hermite polynomials, and Z is the 

standard normal random variable.

For both PCE cases, 500 samples are drawn for each state, and the total expansion 

is 4th order. A Monte Carlo simulation of 100,000 samples in each state is considered the 

truth and used to calculate percent errors of the mean, variance, and covariance estimates 

using all seven methods. In addition to the first two moments, the Monte Carlo simulation 

provides a full characterization of the random variables; therefore, the accuracy of the full 

pdf via PCE can be analyzed. If the shape of the pdf is assumed, then the same analysis can 

be performed with the UT.



88

by

The squared Hellinger distance between two univariate pdfs, p (x ) and q (x ), is given

H '■(p (x ), q (x )) = (VP(-X) -  Vq(x ))2 d x , (5.6)

where X is the support of x . The Hellinger distance (and squared Hellinger distance) exists 

on the closed interval [0,1], where a Hellinger distance of 0 corresponds to two identical 

pdfs, and a Hellinger distance of 1 occurs when p (x ) and q (x ) are mutually singular. As 

opposed to the Kullback-Leibler (KL) divergence from p  to q, given by

Dk l (p (x )) ||q (x )) = f  p (x ) log 
J x

p( x ) 
q (x)

dx,

if q (x) = 0 and p (x ) ^  0, the Hellinger distance does not diverge. This is particularly 

important when considering the fact that PCE can estimate a pdf that does not have an 

analytic form, resulting in numerical approximations that can reasonably lead to q(x) = 0 

and p (x ) ^  0.

Two different dynamical scenarios are of interest when estimating an angular random 

variable, and each of these scenarios is examined in the following numerical examples. 

The first scenario is examined in Section 5.2.1, which looks at the mean longitude at 

period intervals, beginning after the first orbit and ending after the 50th orbit (i.e. p x = 

2n, 4n, 6n , . . . ,  100n). The second scenario, which is presented in Section 5.2.2, looks at 

estimates across a single orbit, which highlights the need for continuity across the support 

bounds at ±n.

5.2.1. Period Intervals. The first scenario provides an instance when X progresses 

from an approximate normal distribution on the interval [-n , n ) to an approximate wrapped 

uniform distribution. As time progresses, the pdf flattens causing the probability density 

function at ±n to become non-zero, and the approximation of a wrapped normal pdf as a 

normal pdf breaks down. The histograms of X from the Monte Carlo simulation at different
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period intervals are provided in Figure (5.8), where it is apparent that, as the number of 

orbits increases from 1 to 50, the standard deviation of A increases and the pdf flattens.

A [rad]

Figure 5.8. Selected histograms indicating the continuous flattening of A at the same point 
after multiple revolutions.

5.2.1.1. M oment estimation. Using the Monte Carlo simulation as truth, the per­

cent error in the estimated first and second moments from each of the seven different 

implementations is compared. Equation (5.3) describes only the propagation of A, while a 

remains constant; because of this, the estimates of a never change; for brevity, these results 

are omitted. The percent error is given by

%E = E[']mc E[dest 
E[dmc

x 100%

where E[-]mc is the moment (mean, variance, or covariance) obtained via Monte Carlo 

simulation, and E[-]est is the same moment estimated using one of the seven methods. Table 

5.1 presents the percent error of the estimated mean and variance of the mean longitude as
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well as the covariance between mean longitude and semimajor axis. Between the endpoints 

presented in Table 5.1, the percent error in the estimates monotonically decreases from the 

first orbit (t1) to the final estimate after 50 orbits (t50) for all seven scenarios.

Table 5.1. Percent error in the initial and final estimates of the first two moments from all 
seven methods.

Method mean ti 
[rad]

mean t50 

[rad]
var t1 
[rad2]

var t50 
[rad2]

cov 11 
[radtkm]

cov t50 
[radtkm]

H - LHC 
H - H a m  
H - Rand

1.445e-5
1.445e-5
1.445e-5

2.542e-7
2.543e-7
2.539e-7

6.401e-5
6.404e-5
6.404e-5

1.131e-5
1.132e-5
1.129e-5

3.650e-4
3.650e-4
3.650e-4

5.144e-5
5.148e-5
5.134e-5

WNP - LHC 
WNP - Ham 
WNP - Rand

1.430e-5
1.430e-5
1.429e-5

2.505e-7
2.507e-7
2.505e-7

7.457e-4
7.459e-4
7.459e-4

1.120e-5
1.139e-5
1.142e-5

3.649e-4
3.650e-4
3.650e-4

5.071e-5
5.164e-5
5.182e-5

UT 1.464e-5 4.345e-7 1.665e-3 1.056e-3 9.572e-4 5.976e-4

The one method that stands apart from the others is the UT. For all six statistical 

estimates, the UT is outperformed by the PCE methods, especially in the variance and 

covariance. This is to be expected since the UT is designed to use a specific number of 

sigma points, whereas the number of polynomial chaos samples is defined by the user and 

is generally much larger than the number of UT sigma points.

For the sake of argument, let each of the polynomial chaos methods be expanded 

to a first order total expansion with five total samples. With this type of expansion, only 

the first two moments can be estimated, mimicking the unscented transform. In this very 

extreme case, the PCE methods are slightly outperformed by the UT; however, this is not the 

manner in which PCE should be used at all. It is the ease of increasing expansion order and 

sample sizes that makes PCE a convenient, and accurate, method of quantifying a random 

variable.

While the UT is outperformed in all of the estimates, it should be noted that the 

mean estimate is, relatively speaking, significantly better than the variance and covariance 

estimates. This occurs because, for both PCE and the UT, the mean is estimated using a 

weighted average.
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Now, a comparison of the six chaos/sampling method combinations is considered. 

For all three moments, the estimates produced by each method at t\ are similar. The WNP 

mean is slightly better than the Hermite, this flips for the variance, and the estimates are 

nearly identical for the covariance. More interesting are the estimates at t50. Again, there 

is not a lot of difference between the WNP and Hermite, but for all estimates, the WNP 

with Latin hypercube sampling produces the smallest error, especially for the variance and 

covariance.

The underlying assumption of PCE is that the n standard random variables £ are 

independent; when the samples are drawn using random sampling, there is no guarantee at 

all of independence. Latin hypercube intelligently uses random sampling in all dimensions, 

and Hammersley sampling deterministically sets the first dimension such that the points 

are evenly dispersed, then intelligently uses random sampling for the remainder of the 

dimensions. As a result, the random sampling produces reasonable mean estimates, but 

inconsistent second moments. The even dispersion of the first moment ensures the full 

support of the random variable is sampled, but the dependence of the samples on each other 

can lead to a higher correlation between dimensions in lower dimensional problems. As the 

dimension of the problem increases, the dependence of the samples in the first dimension 

is less impactful. Because the problem is only two dimensional, Hammersley sampling is 

not ideal, and as a result, Latin hypercube sampling produces the best moment estimates for 

this problem.

5.2.I.2. Chaos coefficient examination. While looking at the moment estimates 

is usually the main purpose of PCE, much can be learned about the system by looking at the 

individual chaos coefficients. Recall that, for sampling based PCE, the total expansion order 

describes the multivariate polynomial degree, rather than the univariate polynomial degrees 

for each dimension. For example, the ordering used in this work produces the coefficient-
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multivariate basis pairs given in Table 5.2. The polynomials Y  and ^  correspond to the 

expansions in Eq. (5.4). In this case, the state dimension is 2 and the total expansion order 

is 4; therefore, the total number of terms in the expansion is 15.

Table 5.2. The univariate basis polynomials that are combined to create the multivariate 
basis polynomial associated with each chaos coefficient.

e 0 e 1 e 2 e 3 e 4 e 5 e 6 e 7 e 8 e 9 e10 e 11 e12 e13 e14
fin 0 0 0 0 0 1 1 1 1 2 2 2 3 3 4

0 1 2 3 4 0 1 2 3 0 1 2 0 1 0

The mean estimates obtained from the WNP- and Hermite-chaos do not differ 

greatly, mainly due to the fact that the mean relies only on the zeroth coefficients, which 

has a corresponding polynomial of 1. In effect, the mean becomes a weighted average of 

the sampled states. By contrast, the second moment -  in fact each of the moments beyond 

the first -  uses all of the rest of the coefficients. From Eq. (3.21), the second moment is 

calculated by the sum of the coefficient products. Because all polynomials used in PCE 

are dense, the chaos coefficients decay; therefore, the second moment converges to the true 

second moment as the number of terms in the summation increases. This convergence 

of the coefficients ensures that truncating the summation still produces accurate estimates, 

but raises the question: at what point should the truncation be made? Unfortunately, the 

answer is problem dependent, based on how the random variables are propagated forward 

in time. The two-body propagation in Eq. (5.3) does not significantly deform the pdf of A 

into a non-wrapped-normal pdf (the USTD increases, but the random variable retains an 

approximately wrapped normal pdf); therefore, a relatively small 4th order total expansion 

is sufficient. In problems where the system dynamics cause a more distinct deformation of 

the states’ pdf from their initializations, a larger total expansion is appropriate.

Some of the more interesting coefficients for this example are shown in Figures (5.9). 

The first and fifth coefficients, shown in Figures (5.9a) and (5.9b), are the largest throughout 

the simulation and are, therefore, the major contributers to second moment. Even though 

the fifth coefficient is small compared to the first in Figure (5.9a), a closer inspection of the
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first half of an orbit shows that the variance is initially defined by the fifth coefficient. For 

this problem, and based on the coefficient numbering in Table 5.2, it is apparent that these 

coefficients coincide with the two multivariate polynomials of combined degree 1. This is 

expected based on the discussion in Section 3.2.4. When the univariate basis expansions 

in Eq. (5.4) are expanded using the multivariate basis in Table 5.2, the fifteen element 

expansions of both elements only contain two nonzero coefficients. For both elements, 

the first nonzero coefficient is the zeroth, which indicates the mean; the other coefficient 

is the fifth for A, and the first for the semimajor axis. From Table 5.2, the fifth and first 

coefficients correspond to a multivariate polynomial comprised of first order polynomials 

from the element's univariate expansion and the zeroth order polynomial from the other 

element's expansion. The initial state is uncorrelated; therefore, the standard deviation 

of A in Figure (5.9b) (shown at quarter period intervals to better show convergence) is 

dominated by the fifth coefficient. As the simulation progresses and the mean longitude 

is continuously altered based on the semimajor axis, the first coefficient grows, and the 

contribution from the fifth coefficient becomes overshadowed. It should be noted that the 

coefficients in Figure (5.9c) are estimated at one period intervals, but the figure marks are 

shown less frequently to reduce clutter. It should also be noted that all six methods are 

included in Figures (5.9), even though they are not distinguishable at the shown scales.

Now, consider the difference between how A0 and a are used in Eq. (5.3). The 

mean longitude is a function of the initial mean longitude without alteration, which is why 

the fifth coefficient remains stationary throughout the simulation. On the other hand, the 

semimajor axis is transformed by its -3 /2  power and scaled by the time of flight, which 

obviously changes as the simulation progresses. Shown in Figure (5.9c), the coefficients 

associated with the continuously transformed semimajor axis only (i.e. the second, third, 

and fourth coefficients) linearly increase with time, similar to the first. Additionally, this plot 

serves as an illustration that the coefficients converge to zero with increasing polynomial 

order. The remaining coefficients have similar, approximately linear, trends away from 0.
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---- £ 1 ---- £ 5 ----^t,MC

(a) Standard deviation computed using Monte Carlo as well as first and fifth chaos coefficients at 
one period intervals.

---- £ 1 ---- £ 5 — ^t,MC

Number of Orbits

(b) Standard deviation computed using Monte Carlo as well as first and fifth chaos coefficients over 
the first orbit.

T3a

Figure 5.9. Coefficient evolution at period intervals. The six different methods are shown 
for each coefficient with line markings Hermite-random(-), Hermite-Hammersley (- -), 
Hermite-LHC (- -□), WNP-random(- -◦), WNP-Hammersley (-•), WNP-LHC (••).
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These coefficients are not shown because, while they are not numerically zero, they are 

insignificant compared with the coefficients shown in Figures (5.9), continuing to illustrate 

the mentioned coefficient convergence to zero.

5.2.I.3. Hellinger distance. While it is often sufficient to represent a random vari­

able using only the first and second moments, the necessity sometimes arises to have a full 

understanding of the random variable. The UT provides very good estimates of the first two 

moments, especially when the underlying pdf is not dominated by higher order moments. 

Unfortunately, the first two moments alone do not characterize a unique, and arbitrary, 

pdf. In contrast, a PCE representation characterizes the full random variable. Expressing a 

random variable as a PCE, and using the chaos coefficients solely to estimate the first two 

moments, is a drastic underutilization of its capabilities.

To gain a better understanding of how well the PCE methods are approximating 

the random variable, the squared Hellinger distance of each estimation type (p(x )) from 

the Monte Carlo result (p(x)) given by Eq. (5.6) is calculated and shown in Figure (5.10a) 

at period intervals. Due to the nature of the problem, the moments from the UT are 

assumed to describe a Gaussian pdf. Note that the legend abbreviation “H” indicates PCE 

using Hermite polynomials for the expansion of the mean longitude, and “WNP” indicates 

PCE using wrapped normal polynomials for the longitude. For each of the methods, 

the semimajor axis is expanded using the Hermite polynomials. Once again within the 

legend, “LHC” indicates Latin hypercube sampling, “Ham” is Hammersley sampling, and 

“Rand”is random sampling. From Figure (5.10a), it is apparent that, at the beginning of 

the simulation, the differences between the methods are small, so much so that the UT and 

one of the Hermite-chaos methods performs slightly better than WNP-chaos. In these early 

orbits, the uncertainty in the mean longitude is still relatively small, resulting in very small 

probabilities that A = ±n; therefore, the random variable is reasonably approximated as 

Gaussian. It is unsurprising that the UT produces such good results at the beginning of the
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simulation, since the density obtained from the is assumed to be Gaussian. Similarly, the 

Hermite-chaos provides very good estimates of translational random variables; therefore, 

the initially small Hellinger distance is logical.

The later orbits are of more interest in this work, since, as the simulation progresses, 

the real line approximation of A breaks down. It is between the fifth and tenth orbits that the 

probabilities at ±n become non-zero, and at this point the WNP-chaos Hellinger distance 

begins to level off, while the Hermite-chaos and UT distances grow significantly larger. 

Because the Hermite-chaos and UT do not treat the random variable as an angular random 

variable, any of the pdf outside the interval [-n , n ) is neglected, which clearly adversely 

impacts the estimation of the full random variable.

Between the different sampling methods within each type of chaos, there is only a 

slight difference in Hellinger distances. For both types of chaos, LHC sampling produces 

slightly more accurate estimates (similar to Table 5.1), but the results are too similar to 

decisively state which sampling method is most accurate.

5.2.2. Single Complete O rbit. Now that the different estimation types have been 

examined at period intervals, consider the scenario where the mean is not centered at zero, 

but instead moves around the unit circle across ±n, which causes a discontinuity for a 

translational random variable. Take, for example, the ninth orbit shown in Figure (5.11). 

Because no measurements are taken, the uncertainty in the mean longitude grows throughout 

the orbit; but in general, the points symmetric about the line of apsides should be very similar. 

This is the reason only selected histograms from the first half of the orbit are shown along 

with the histogram at the beginning of the next orbit (included to better indicate how much 

the uncertainty increases over the orbit). Over this orbit, there is not a significant amount 

of increase in the uncertainty, and the general shapes of the pdfs stay fairly consistent. It 

can therefore be concluded that any change in accuracy over this orbit is due primarily to 

the movement of the mean direction around the unit circle.
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(a) A at period intervals.

Figure 5.10. Hellinger distances from each estimation type to the Monte Carlo estimate.

Similarly to the trends seen in Table 5.1, the UT is found to produce the least 

accurate results, and all of the PCE methods perform similarly, with the WNP-chaos with 

LHC sampling producing the best results. What is much more interesting is the Hellinger 

distance in Figure (5.10b). In this measure, the wrapped normal-chaos methods outperform 

both the UT and the Hermite-chaos methods. It is even apparent that the arc present in the 

Hellinger distance for the Hermite-chaos and UT methods is approximately symmetric with 

the maximum point occurring at 9.5 periods, exactly where the discontinuity occurs if the 

random variable is not assumed to be angular. Had the Hellinger distance been calculated 

more frequently than period intervals, the behavior in Figure (5.10b) would be evident 

throughout Figure (5.10a).
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Figure 5.11. Selected histograms indicating the simultaneous shifting and flattening of A 
across the period of a single orbit.

Again, like the Hellinger distance in Figure (5.10a), all three sampling methods 

preform similarly, but for this period, it is apparent that WNP-chaos with Latin hypercube 

sampling consistently produces the best estimates. It is interesting to note that while there 

is some variation in the sampling methods for Hermite-chaos at the beginning and end of 

the orbit, all three sampling methods appear to produce nearly identical results at the half 

period mark. This is a result of the reduced sensitivity from logarithmic scaling as the 

Hellinger distance increases.

From this example, it is clear that an angular random variable can not only be 

propagated using WNP-chaos, but that it can be done so more accurately than the widely 

used Hermite-chaos and UT. This is especially evident when the approximation of A’s pdf as 

a Gaussian pdf is invalid: i.e. when the wrapped normal pdf approaches a wrapped uniform 

pdf, and when the mean direction approaches (and crosses) the support bounds, ±n. Not 

only is A estimated, but its correlation with the translational random variable a is also 

estimated to a high degree of accuracy. In addition, these estimates are produced without
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using the more costly PCEc approach. With respect to the different sampling methods 

presented, Latin hypercube consistently produces the most accurate estimates (when the 

different methods are distinguishable).



100

6. CONCLUSIONS

Quantifying the uncertainty of random variables has been the focus of many prior 

works, including, as one approach, polynomial chaos expansions. The most common types 

of polynomial chaos expansions are performed on random variables in Euclidean space; 

however, this work has developed methods that permit using a polynomial chaos expansion 

to quantify an angular random variable using polynomials that are orthogonal with respect 

to measures on the complex and real unit circles. Additionally, the covariance between 

angular random variables and translational random variables can be estimated using the 

methods developed, even when the expansions of each variable do not use the same basis 

polynomials.

A generalized set of expressions for the mean and covariance of multi-dimensional 

systems for both real and complex systems has been presented that does not make the 

assumption that each variable has been expanded with the same set of basis polynomials. 

A double pendulum with uncertainty in the two angles defining the state of the system 

is simulated, presenting an opportunity to jointly estimate two angular random variables 

under the influence of nonlinear dynamics. When comparing angular portions of the first 

two circular moments -  including correlation -  complex polynomial chaos using Rogers- 

Szego basis polynomials produce estimates that are, on average, within a degree of Monte 

Carlo estimates across the simulation time. Over the course of the simulation, the error 

grows cyclically, corresponding to the largest swings in the pendulums; however, this is to 

be expected due to the nonlinear nature of the double pendulum and the relatively large 

amount of initial uncertainty in the state. Even with the observed cyclic divergence, it is 

clear that the uncertainty in the state governed by nonlinear dynamics can be propagated, 

including the correlation between angular random variables.
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The additional computation required in the estimation of moments, as well as a need 

for more numerical precision than is needed for expansions using real valued polynomials, 

makes complex polynomial chaos unappealing for some problems. As an alternative, 

polynomials that are orthogonal with respect to measures on the real unit circle have been 

presented and tested in a orbital mechanics problem to estimate the mean longitude of 

an orbiting body, which is dependent on the initial mean longitude (an angular random 

variable) and the semimajor axis of the orbit (a random variable on the real line). In 

addition to the unscented transform, two different types of expansions are considered: pure 

Hermite-chaos, where both the mean longitude and semimajor major axis are expanded 

using Hermite polynomials, and a mixed chaos, where the mean longitude is expanded 

using real valued polynomials that are orthogonal with respect to the wrapped normal 

probability density function (pdf) and the semimajor axis is expanded using the Hermite 

polynomials. In comparison with Monte Carlo results, the polynomial chaos expansions 

outperform the unscented transform and provide similar estimates of the first and second 

moments, indicating that mixing the bases of expansions yields accurate results, even 

for covariance estimates. The wrapped normal polynomial chaos expansion significantly 

outperforms the Hermite-chaos and assumed density unscented transform approximations 

in the Hellinger distance from the Monte Carlo pdf.

The proposed polynomial chaos expansions for complex random variables and real 

valued angular random variables are found to be valid methods of representing angular 

random variables. Additionally, the use of real valued polynomials that are orthogonal with 

respect to the real valued wrapped normal pdf produce more accurate results than when an 

angle is expanded using Hermite-chaos.

Future work with the complex chaos expansion includes investigating polynomials 

orthogonal on the complex unit circle that are not dependent on the standard deviation 

of the measure with respect to which they are orthogonal, which will reduce the assump­

tions necessary for implementation. Additionally, more accurate numerical integration are
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expected to produce more accurate moment estimation. Once more accurate numerical 

methods are implemented in complex polynomial chaos, the uncertainty quantification of 

random variables that are complex with respect to measures on other complex manifolds 

can be investigated, and the complex expansion can be compared with polynomial chaos 

using wrapped normal polynomials. Because the wrapped normal polynomials have already 

proven to be an accurate method of representing an angular random variable, future work 

also includes simulating more complex dynamical environments with higher dimensions 

and additional error sources.
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