86,106 research outputs found

    Pulse-Shape discrimination with the Counting Test Facility

    Full text link
    Pulse shape discrimination (PSD) is one of the most distinctive features of liquid scintillators. Since the introduction of the scintillation techniques in the field of particle detection, many studies have been carried out to characterize intrinsic properties of the most common liquid scintillator mixtures in this respect. Several application methods and algorithms able to achieve optimum discrimination performances have been developed. However, the vast majority of these studies have been performed on samples of small dimensions. The Counting Test Facility, prototype of the solar neutrino experiment Borexino, as a 4 ton spherical scintillation detector immersed in 1000 tons of shielding water, represents a unique opportunity to extend the small-sample PSD studies to a large-volume setup. Specifically, in this work we consider two different liquid scintillation mixtures employed in CTF, illustrating for both the PSD characterization results obtained either with the processing of the scintillation waveform through the optimum Gatti's method, or via a more conventional approach based on the charge content of the scintillation tail. The outcomes of this study, while interesting per se, are also of paramount importance in view of the expected Borexino detector performances, where PSD will be an essential tool in the framework of the background rejection strategy needed to achieve the required sensitivity to the solar neutrino signals.Comment: 39 pages, 17 figures, submitted to Nucl. Instr. Meth.

    Novel electroanalysis of hydroxyurea at glassy carbon and gold electrode surfaces

    Get PDF
    A simple and a novel electroanalysis of hydroxyurea (HU) drug at glassy carbon and gold electrode was investigated for the first time using cyclic, linear sweep and differential pulse voltammetric techniques. The oxidation of HU was irreversible and exhibited a diffusion controlled process on both electrodes. The oxidation mechanism was proposed. The dependence of the current on pH, the concentration, nature of buffer, and scan rate was investigated to optimize the experimental conditions for the determination of HU. It was found that the optimum buffer pH was 7.0, a physiological pH. In the range of 0.01 to 1.0 mM, the current measured by differential pulse voltammetry showed a linear relationship with HU concentration with limit of detection of 0.46 µM for glassy carbon electrode and 0.92 µM for gold electrode. In addition, reproducibility, precision and accuracy of the method were checked as well. The developed method was successfully applied to HU determination in pharmaceutical formulation and human biological fluids. The method finds its applications in quality control laboratories and pharmacokinetics

    Determination of Zinc levels in Healthy Adults from the West of Algeria by Differential Pulse Anodic Stripping Voltammetry

    Get PDF
    An electroanalytical method has been developed for the determination of zinc in whole blood by differential pulse anodic stripping voltammetry (DPASV) on a hanging mercury drop electrode (HMDE). The best conditions were found to be electrolyte support perchloric acid 0.02M, an accumulation potential of -1150 mV, and an accumulation time of 60 s. The optimum value of stirring rate was determined to be 400 rpm. The correlation coefficient and relative standard deviation were 0.9999 and 3.96% respectively with a detection limit of 0.86 µg L-1. Zinc levels in whole blood samples of 53 healthy subjects living in Tlemcen (west Algeria)

    Towards 'smart lasers': self-optimisation of an ultrafast pulse source using a genetic algorithm

    Full text link
    Short-pulse fibre lasers are a complex dynamical system possessing a broad space of operating states that can be accessed through control of cavity parameters. Determination of target regimes is a multi-parameter global optimisation problem. Here, we report the implementation of a genetic algorithm to intelligently locate optimum parameters for stable single-pulse mode-locking in a Figure-8 fibre laser, and fully automate the system turn-on procedure. Stable ultrashort pulses are repeatably achieved by employing a compound fitness function that monitors both temporal and spectral output properties of the laser. Our method of encoding photonics expertise into an algorithm and applying machine-learning principles paves the way to self-optimising `smart' optical technologies

    Optimization of double drive pulse pumping in Ne-like Ge x-ray lasers

    Get PDF
    Pumping of the Ne-like Ge x-ray laser with two 100 ps duration pulses (a prepulse and main pulse) is investigated using a fluid and atomic physics code coupled to a 3D ray tracing postprocessor code. The modeling predicts the optimum ratio of the irradiance of the two pulses for the maximum x-ray laser output resulting from the balance between the relative lower electron density gradients and wider gain region which is produced with a larger prepulse and the higher peak gain coefficients produced with a small prepulse. With a longer pulse interval between prepulse and main pulse, a relatively lower optimum pulse ratio is found. The threshold irradiance of the main driving pulse with a prepulse required to make an order of magnitude enhancement of laser output compared to irradiation without a prepulse is also found at 3-4x10(13) W/cm(2) for Ne-like Ge. (C) 1998 American Institute of Physics

    Photostatistics Reconstruction via Loop Detector Signatures

    Full text link
    Photon-number resolving detectors are a fundamental building-block of optical quantum information processing protocols. A loop detector, combined with appropriate statistical processing, can be used to convert a binary on/off photon counter into a photon-number-resolving detector. Here we describe the idea of a signature of photon-counts, which may be used to more robustly reconstruct the photon number distribution of a quantum state. The methodology is applied experimentally in a 9-port loop detector operating at a telecommunications wavelength and compared directly to the approach whereby only the number of photon-counts is used to reconstruct the input distribution. The signature approach is shown to be more robust against calibration errors, exhibit reduced statistical uncertainty, and reduced reliance on a-priori assumptions about the input state.Comment: 13 pages, 12 figure

    Considerations on the physical and mechanical properties of lime-stabilized rammed earth walls and their evaluation by ultrasonic pulse velocity testing

    Get PDF
    This study examines the influence of moulding moisture content on the compressive strength, dry density and porosity of a rammed earth wall, using ultrasound as a complementary technique. Non-parametric and multivariate statistical techniques were applied to analyse the behaviour of variables with a sufficiently large population. The statistical analysis demonstrated that excessive or insufficient moulding moisture content directly determines the physical-mechanical properties of such walls. Ultrasound was confirmed as a valid technique for assessing the quality of a wall, since its response, albeit with certain limitations, was consistent with physical-mechanical properties
    • …
    corecore