39 research outputs found

    An energy-efficient distributed dynamic bandwidth allocation algorithm for Passive Optical Access Networks

    Get PDF
    The rapid deployment of passive optical access networks (PONs) increases the global energy consumption of networking infrastructure. This paper focuses on the minimization of energy consumption in Ethernet PONs (EPONs). We present an energy-efficient, distributed dynamic bandwidth allocation (DBA) algorithm able to power off the transmitter and receiver of an optical network unit (ONU) when there is no upstream or downstream traffic. Our main contribution is combining the advantages of a distributed DBA (namely, a smaller packet delay compared to centralized DBAs, due to less time being needed to allocate the transmission slot) with energy saving features (that come at a price of longer delays due to the longer queue waiting times when transmitters are switched off). The proposed algorithm analyzes the queue size of the ONUs in order to switch them to doze/sleep mode when there is no upstream/downstream traffic in the network, respectively. Our results show that we minimized the ONU energy consumption across a wide range of network loads while keeping delay bounded.Postprint (published version

    New dynamic bandwidth allocation algorithm analysis: DDSPON for ethernet passive optical networks

    Get PDF
    This project aims to present the state of the art in Dynamic Bandwidth Allocation (DBA) solutions, as well as the study and evaluation of one proposal of DBA algorithm: the Distributed Dynamic Scheduling for EPON (DDSPON), which is the UPC contribution to the research in scheduling algorithms for EPON

    Integrated control platform for converged optical and wireless networks

    Get PDF

    Design and Analysis of IPACT-based Bandwidth Allocation for Delay-Guarantee in OFDMA-PON

    Get PDF
    To guarantee delay performances for timesensitive services in an orthogonal frequency-division multiple access passive optical network (OFDMA-PON), we propose a two-dimension (i.e., subcarriers and time) upstream bandwidth allocation method based on interleaved polling with adaptive cycle time (IPACT). We first analyze its delay performance in terms of cycle time, i.e., the length of a polling cycle. Then, by setting the maximum polling cycle so as to guarantee timely transmissions for time-sensitive services, we identify the requirements, i.e., maximum bandwidth allocation, maximum number of allowed optical network units (ONUs), and optimum number of subcarriers, for upstream bandwidth allocation with delay guarantees. The proposed scheme is evaluated both numerically and via simulation

    Topics in access, storage, and sensor networks

    Get PDF
    In the first part of this dissertation, Data Over Cable Service Interface Specification (DOCSIS) and IEEE 802.3ah Ethernet Passive Optical Network (ETON), two access networking standards, are studied. We study the impact of two parameters of the DOCSIS protocol and derive the probability of message collision in the 802.3ah device discovery scheme. We survey existing bandwidth allocation schemes for EPONs, derive the average grant size in one such scheme, and study the performance of the shortest-job-first heuristic. In the second part of this dissertation, we study networks of mobile sensors. We make progress towards an architecture for disconnected collections of mobile sensors. We propose a new design abstraction called tours which facilitates the combination of mobility and communication into a single design primitive and enables the system of sensors to reorganize into desirable topologies alter failures. We also initiate a study of computation in mobile sensor networks. We study the relationship between two distributed computational models of mobile sensor networks: population protocols and self-similar functions. We define the notion of a self-similar predicate and show when it is computable by a population protocol. Transition graphs of population protocols lead its to the consideration of graph powers. We consider the direct product of graphs and its new variant which we call the lexicographic direct product (or the clique product). We show that invariants concerning transposable walks in direct graph powers and transposable independent sets in graph families generated by the lexicographic direct product are uncomputable. The last part of this dissertation makes contributions to the area of storage systems. We propose a sequential access detect ion and prefetching scheme and a dynamic cache sizing scheme for large storage systems. We evaluate the cache sizing scheme theoretically and through simulations. We compute the expected hit ratio of our and competing schemes and bound the expected size of our dynamic cache sufficient to obtain an optimal hit ratio. We also develop a stand-alone simulator for studying our proposed scheme and integrate it with an empirically validated disk simulator

    Architectures and dynamic bandwidth allocation algorithms for next generation optical access networks

    Get PDF

    Contributions towards softwarization and energy saving in passive optical networks

    Get PDF
    Ths thesis is a result of contributions to optimize and improve the network management systme and power consumption in Passive Optical Network (PON). Passive Optical Network elements such as Optical Line Terminal (OLT) and Optical Network Units (ONUs) are currently managed by inflexible legacy network management systems. Software-Defined Networking (SDN) is a new networking paradigm that improves the operation and management of networks by decoupling control plane from data plane. Currently, network management in PON networks is not always automated nor normalized. One goal of the researchers in optical networking is to improve the programmability, efficiency, and global optimization of network operations, in order to minimize both Capital Expenditure (CAPEX) and Operational Expenditure (OPEX) by reducing the complexity of devices and its operation. Therefore, it makes sense to use an SDN approach in order to manage the passive optical network functionalities and migrating must of the upper layer functions to the SDN controller. Many approaches have already addressed the topic of applying the SDN architecture in PON networks. However; the focus was usually on facilitating the deployment of SDN-based service and so Service Interoperability remains unexplored in detail. The main challenge toward this goal is how to make compatible the synchronous nature of the EPON media access control protocols with the asynchronous architecture of SDN, and in particular, OpenFlow. In our proposed architecture, the OLT is partially virtualized and some of its functionalities are allocated to the core network management system, while the OLT itself is replaced by an OpenFlow switch. A new MultiPoint MAC Control (MPMC) sublayer extension based on the OpenFlow protocol is presented. The OpenFlow switch is extended with synchronous ports to retain the time-critical nature of the EPON network. Our simulation-based results demonstrate the effectiveness of the new architecture, while retaining a similar (or improved) performance in term of delay and throughput when compared to legacy PONs. Nowadays, many researchers are working simultaneously to develop power saving techniques and improves energy efficiency in the PON network, and since the contribution of access networks to the global energy consumption is large, energy efficiency has become an increasingly important requirement in designing access networks. Therefore, energy-saving approaches are being investigated to provide high performance and consume less energy. Several techniques have been proposed to increase energy efficiency in PON networks. Such techniques are related to the centeralized DBA but the advantage of power saving in a distributed DBA remains untouched. We present a distributed energy-efficient Dynamic Bandwidth Allocation (DBA) algorithm for both the upstream and downstream channels of EPON to improve energy efficiency in EPON networks. The proposed algorithm analyzes the queue status of the ONUs and OLT in order to power-off the transmitter and/or receiver of an ONU whenever there is no upstream or downstream traffic. We have been able to combine the advantage of a distributed DBA such as DDSPON (a smaller packet delay, due to the shorter time needed by DDSPON to allocate the transmission slots) and the energy-saving features (that come at a price of longer packet delays due to the fact that switching off the transmitters make the packet queues grow). Our proposed DBA algorithm minimizes the ONU energy consumption across a wide range of network loads, while maintaining at an acceptable level the penalty introduced in terms of channel utilization and packet delay.Las contribuciones de esta tesis se centran en mejorar el sistema de gestión de red y el consumo de energía en redes de acceso ópticas pasivas (PON). Los elementos de las redes PON, como el terminal de línea óptica (OLT) y las unidades de red ópticas (ONU), se gestionan actualmente mediante sistemas poco flexibles. El nuevo paradigma de redes definidas por software (SDN) mejora la gestión de redes al desacoplar el plano de control del plano de datos. Actualmente, la gestión de redes PON no está automatizada ni normalizada. Uno de los objetivos de los investigadores en redes ópticas es mejorar la programabilidad, la eficiencia y la optimización global de las operaciones de red, con el fin de minimizar tanto el gasto de capital (CAPEX) como el gasto operativo (OPEX) al reducir la complejidad de los dispositivos y su funcionamiento. Por lo tanto, tiene sentido utilizar un enfoque SDN para gestionar las funciones de red óptica pasiva y migrar algunas de las funciones PON de capas superiores al controlador SDN. Otros investigadores han estudiado esta aproximación. sin embargo; el enfoque generalmente estaba en facilitar la implementación del servicio basado en SDN y, por lo tanto, la interoperabilidad de los servicios permanecía sin ser explorado en detalle. El principal desafío hacia este objetivo es cómo compatibilizar la naturaleza síncrona de los protocolos de control de acceso a medios EPON con la arquitectura asíncrona de SDN y, en particular, OpenFlow. En nuestra propuesta de arquitectura, la OLT se virtualiza parcialmente y algunas de sus funcionalidades se asignan al sistema de gestión de red centralizado, mientras que la OLT se reemplaza por un conmutador OpenFlow. Proponemos una nueva extensión de la subcapa de control múltiple de MAC (MPMC) basada en el protocolo OpenFlow. El conmutador OpenFlow se amplía con puertos síncronos para asegurar la naturaleza de tiempo real de la red EPON. Nuestros resultados basados ¿¿en simulaciones demuestran la efectividad de la nueva arquitectura, al tiempo que se mantiene un rendimiento similar (o mejorado) en términos de retardos y rendimiento en comparación con las PON clásicas. Por otro lado, se están desarrollando técnicas de ahorro de energía y mejora de la eficiencia energética en redes PON, y dado que la contribución de las redes de acceso al consumo total de energía es importante, la eficiencia energética se ha convertido en un requisito cada vez más importante. Se han propuesto varias técnicas por parte de otros autores para aumentar la eficiencia energética en las redes PON, relacionadas con algoritmos DBA (Dynamic Bandwidth Allocation) centralizados, pero las ventaja del ahorro de energía en un DBA distribuido no se ha explorado todavía. Por ello nuestra segunda contiribución es un algoritmo distribuido de asignación dinámica de ancho de banda energéticamente eficiente tanto para los canales ascendentes como descendentes de EPON para mejorar la eficiencia energética en las redes EPON. El algoritmo propuesto analiza el estado de cola de las ONU y la OLT para apagar el transmisor y/o el receptor de una ONU cuando no hay tráfico en sentido ascendente o descendente. Hemos podido combinar la ventaja de un DBA distribuido como DDSPON (que asegura retardos más pequeños, debido al menor tiempo que DDSPON necesita para asignar las ranuras de transmisión) y las características de ahorro de energía (al precio de tener retardos de paquete más grandes debido al hecho de que apagar los transmisores hace que las colas de paquetes crezcan). Nuestro algoritmo de DBA propuesto minimiza el consumo de energía de la ONU en una amplia gama de cargas de red, mientras mantiene a un nivel aceptable la penalización introducida en términos de utilización del canal y retardos

    Contributions towards softwarization and energy saving in passive optical networks

    Get PDF
    Ths thesis is a result of contributions to optimize and improve the network management systme and power consumption in Passive Optical Network (PON). Passive Optical Network elements such as Optical Line Terminal (OLT) and Optical Network Units (ONUs) are currently managed by inflexible legacy network management systems. Software-Defined Networking (SDN) is a new networking paradigm that improves the operation and management of networks by decoupling control plane from data plane. Currently, network management in PON networks is not always automated nor normalized. One goal of the researchers in optical networking is to improve the programmability, efficiency, and global optimization of network operations, in order to minimize both Capital Expenditure (CAPEX) and Operational Expenditure (OPEX) by reducing the complexity of devices and its operation. Therefore, it makes sense to use an SDN approach in order to manage the passive optical network functionalities and migrating must of the upper layer functions to the SDN controller. Many approaches have already addressed the topic of applying the SDN architecture in PON networks. However; the focus was usually on facilitating the deployment of SDN-based service and so Service Interoperability remains unexplored in detail. The main challenge toward this goal is how to make compatible the synchronous nature of the EPON media access control protocols with the asynchronous architecture of SDN, and in particular, OpenFlow. In our proposed architecture, the OLT is partially virtualized and some of its functionalities are allocated to the core network management system, while the OLT itself is replaced by an OpenFlow switch. A new MultiPoint MAC Control (MPMC) sublayer extension based on the OpenFlow protocol is presented. The OpenFlow switch is extended with synchronous ports to retain the time-critical nature of the EPON network. Our simulation-based results demonstrate the effectiveness of the new architecture, while retaining a similar (or improved) performance in term of delay and throughput when compared to legacy PONs. Nowadays, many researchers are working simultaneously to develop power saving techniques and improves energy efficiency in the PON network, and since the contribution of access networks to the global energy consumption is large, energy efficiency has become an increasingly important requirement in designing access networks. Therefore, energy-saving approaches are being investigated to provide high performance and consume less energy. Several techniques have been proposed to increase energy efficiency in PON networks. Such techniques are related to the centeralized DBA but the advantage of power saving in a distributed DBA remains untouched. We present a distributed energy-efficient Dynamic Bandwidth Allocation (DBA) algorithm for both the upstream and downstream channels of EPON to improve energy efficiency in EPON networks. The proposed algorithm analyzes the queue status of the ONUs and OLT in order to power-off the transmitter and/or receiver of an ONU whenever there is no upstream or downstream traffic. We have been able to combine the advantage of a distributed DBA such as DDSPON (a smaller packet delay, due to the shorter time needed by DDSPON to allocate the transmission slots) and the energy-saving features (that come at a price of longer packet delays due to the fact that switching off the transmitters make the packet queues grow). Our proposed DBA algorithm minimizes the ONU energy consumption across a wide range of network loads, while maintaining at an acceptable level the penalty introduced in terms of channel utilization and packet delay.Las contribuciones de esta tesis se centran en mejorar el sistema de gestión de red y el consumo de energía en redes de acceso ópticas pasivas (PON). Los elementos de las redes PON, como el terminal de línea óptica (OLT) y las unidades de red ópticas (ONU), se gestionan actualmente mediante sistemas poco flexibles. El nuevo paradigma de redes definidas por software (SDN) mejora la gestión de redes al desacoplar el plano de control del plano de datos. Actualmente, la gestión de redes PON no está automatizada ni normalizada. Uno de los objetivos de los investigadores en redes ópticas es mejorar la programabilidad, la eficiencia y la optimización global de las operaciones de red, con el fin de minimizar tanto el gasto de capital (CAPEX) como el gasto operativo (OPEX) al reducir la complejidad de los dispositivos y su funcionamiento. Por lo tanto, tiene sentido utilizar un enfoque SDN para gestionar las funciones de red óptica pasiva y migrar algunas de las funciones PON de capas superiores al controlador SDN. Otros investigadores han estudiado esta aproximación. sin embargo; el enfoque generalmente estaba en facilitar la implementación del servicio basado en SDN y, por lo tanto, la interoperabilidad de los servicios permanecía sin ser explorado en detalle. El principal desafío hacia este objetivo es cómo compatibilizar la naturaleza síncrona de los protocolos de control de acceso a medios EPON con la arquitectura asíncrona de SDN y, en particular, OpenFlow. En nuestra propuesta de arquitectura, la OLT se virtualiza parcialmente y algunas de sus funcionalidades se asignan al sistema de gestión de red centralizado, mientras que la OLT se reemplaza por un conmutador OpenFlow. Proponemos una nueva extensión de la subcapa de control múltiple de MAC (MPMC) basada en el protocolo OpenFlow. El conmutador OpenFlow se amplía con puertos síncronos para asegurar la naturaleza de tiempo real de la red EPON. Nuestros resultados basados ¿¿en simulaciones demuestran la efectividad de la nueva arquitectura, al tiempo que se mantiene un rendimiento similar (o mejorado) en términos de retardos y rendimiento en comparación con las PON clásicas. Por otro lado, se están desarrollando técnicas de ahorro de energía y mejora de la eficiencia energética en redes PON, y dado que la contribución de las redes de acceso al consumo total de energía es importante, la eficiencia energética se ha convertido en un requisito cada vez más importante. Se han propuesto varias técnicas por parte de otros autores para aumentar la eficiencia energética en las redes PON, relacionadas con algoritmos DBA (Dynamic Bandwidth Allocation) centralizados, pero las ventaja del ahorro de energía en un DBA distribuido no se ha explorado todavía. Por ello nuestra segunda contiribución es un algoritmo distribuido de asignación dinámica de ancho de banda energéticamente eficiente tanto para los canales ascendentes como descendentes de EPON para mejorar la eficiencia energética en las redes EPON. El algoritmo propuesto analiza el estado de cola de las ONU y la OLT para apagar el transmisor y/o el receptor de una ONU cuando no hay tráfico en sentido ascendente o descendente. Hemos podido combinar la ventaja de un DBA distribuido como DDSPON (que asegura retardos más pequeños, debido al menor tiempo que DDSPON necesita para asignar las ranuras de transmisión) y las características de ahorro de energía (al precio de tener retardos de paquete más grandes debido al hecho de que apagar los transmisores hace que las colas de paquetes crezcan). Nuestro algoritmo de DBA propuesto minimiza el consumo de energía de la ONU en una amplia gama de cargas de red, mientras mantiene a un nivel aceptable la penalización introducida en términos de utilización del canal y retardos.Postprint (published version

    Dynamic bandwidth allocation algorithms with non-zero laser tuning time in TWDM passive optical networks

    Get PDF
    The goal of this document is to analyse the functionality of Passive Optical Networks (PONs). The reason for focusing on these technique networks is due to their high efficiency in terms of high bandwidth, high rate, low energy consumption and low cost. PONs are composed of Optical Network Unit (ONU), Optical Line Terminal (OLT) and passive elements (splitters/combiners, optical fibres…). Specifically, this document analyses Ethernet Passive Optical Networks (EPONs) defined by Institute of Electrical and Electronics Engineers (IEEE) in the IEEE 802.3ah standard although there is another standard. The main difference between them is the framing protocol, being the EPONs compliance with Ethernet frames. The first PONs used a single optical carrier. That means that upstream channel is a shared resource and a scheduling is needed to avoid collisions between users’ transmissions, by using Time-Division Multiple Access (TDMA). In PONs the OLT plays an important paper, since it is the responsible of the dynamic bandwidth allocation (DBA). The DBA agent in the OLT has an algorithm that schedules the users’ transmissions. Since the deployment of the first PONs, the requirements of the users have increased, and users need high bandwidth and high rate. Thus, a new generation of PONs (NG-PON) have been designed. These next generation of PONs are multicarrier. That means that upstream channel that is a shared resource needs a Medium Access Protocol (MAC) based on wavelength/time-sharing known as Wavelength-Time Division Multiple Access (WTDMA). The algorithm placed on the DBA agent in the OLT increases its complexity. The algorithm should be able to schedule the transmissions based on time and wavelength. In the new generation of PON, in order to change the transmission wavelength, the ONUs have to retune their lasers. This wavelength change causes a tuning time delay. The target of this project is to design, implement and analyse an algorithm based on WTDMA and able to consider the tuning time delay and to minimize the global average delay of the system. Besides, the algorithm should apply the Just-In-Time (JIT) technique for increasing the system efficiency. All the simulations and implementations have been performed in the OPNET simulator, over a base code based on multicarrier EPON created by another student. In order to implement our algorithm a previous upgrading work has been realized for running the model and adapting it for the new requirements. We have succeeded in simulating an EPON with 4 channels where every channel has a 1 Gbps of bandwidth in OPNET simulator. In EPON we have introduced a laser tuning time control. Finally, we have implemented the designed algorithm. The algorithm schedules efficiently the network transmissions considering the laser tuning time delay. We have successfully simulated an EPON with 4 carriers, with 1 Gbps per carrier. Finally, we have implemented an algorithm able to schedule efficiently the network transmissions considering the laser tuning time delay
    corecore