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Abstract

The next generation of broadband access networks is expected to be
heterogeneous. Multiple wired and wireless systems can be integrated,
in order to simultaneously provide seamless access with an appropriate
Quality of Service (QoS). Wireless networks support ubiquitous con-
nectivity yet low data rates, whereas optical networks can offer much
higher data rates but only provide fixed connection structures. Their
complementary characteristics make the integration of the two networks
a promising trend for next generation access networks. With combined
strengths, the converged network will provide both high data rate ser-
vices and connectivity at anytime and anywhere.

One major challenge in the interworking is how to achieve seamless
integration. There are many aspects involved in designing an integrated
control platform, such as QoS provisioning, mobility, and resiliency. This
dissertation introduces the complementary characteristics of the optical
networks and the wireless networks, addresses motivations for their in-
terworking, discusses the current progress in hybrid network architec-
tures as well as the functionalities of a control system, and identifies
the achieved research contributions in the integrated control platform
design.

To achieve an integrated and unified control platform, enhanced sig-
nalling protocol plays an important role in gluing the two different tech-
nologies. Consequently, an integrated resource management system is
developed. Furthermore, an admission control scheme for connections in
the wireless domain can be jointly designed with the optical upstream
bandwidth allocation scheme in the optical domain. Higher resource
utilization is achieved due to an effective manipulation of the overall
resources of two networks.
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ii Abstract

In the converged optical and wireless network scenario, multiple wire-
less networks are adjacent to the backbone optical network. Although
the local resource allocation mechanisms implemented in the wireless
networks individually can provide certain levels of QoS provisioning,
proper load balancing and resource allocation schemes are needed in
order to utilize the integrated resources effectively and efficiently. An
integrated load balancing mechanism is proposed to take advantage of
the centralized control in the optical network. A modified signalling
protocol is developed to improve information exchanged between optical
and wireless domains. Traffic load and network resources are distributed
based on the network states, channel conditions, and QoS requirements.

A new aspect in the design of future network is the energy efficiency.
An energy management mechanism is proposed and evaluated for the
optical network. With regard to power saving, a sleep mode operation
is developed. Therefore, power is conserved by switch off some operat-
ing functions. The sleep period and wakeup period are computed and
assigned using two alternative scheduling schemes, which show trade-off
performances on energy efficiency, queuing delay and network bandwidth
utilization.

To summarize, this dissertation presents new knowledge by devel-
oping a novel integrated control platform for the converged optical and
wireless network. Several contributions are presented by investigating
network architectures, protocols, and energy issues to obtain efficient
hybrid networks.



Resumé

Den næste generation af bredb̊andsnetværk forventes at være hetero-
gene. Flere kablede og tr̊adløse systemer kan integreres og samarbejde
om at levere en forbindelse med en passende Quality of Service (QoS).
Optiske netværk kan tilbyde meget høje datahastigheder, men kræver
en fast tilslutning, hvorimod tr̊adløse netværk er mindre afhængige af
nodernes geografiske placering, men opererer ved meget lavere hastigheder.
Deres komplementære egenskaber gør integrationen af de to netværk-
styper oplagte for næste generations tilgangsnetværk. Det resulterende
netværk kombinerer styrkerne ved de to og tilbyder høj datahastighed
samt mulighed for tilslutning n̊ar som helst og hvor som helst.

En stor udfordring i det indbyrdes samarbejde er, hvordan man
opn̊ar problemfri integration. Der er mange aspekter involveret i udar-
bejdelsen af en integreret kontrol platform, s̊asom QoS provisionering,
mobilitet, og robusthed. Denne afhandling gennemg̊ar de forskellige
karakteristikker ved optiske og tr̊adløse netværk. Derudover diskuteres
motivationen for, og den nuværende status for udviklingen af, s̊adanne
hybride netværksarkitekturer, herunder kontrolfunktionaliteten, og de
opn̊aede forskningsresultaters bidrag til designet af den integrerede kon-
trolplatform identificeres.

For at opn̊a en integreret og ensartet kontrolplatform, er det nødven-
digt med udvidede signaleringsprotokoller ofr at sammenkoble de to
forskellige teknologier. Derfor er et integreret ressourcestyringssystem
blevet udviklet.

Herudover er udviklet en kontrolmetoder, der sammenkæder en kon-
trolmetode for forbindelser i det tr̊adløse domæne med uplink b̊andbredde-
allokerings-metoden i optiske netværk. Herved opn̊as bedre ressourceud-
nyttelse, ved effektiv styring af de samlede ressourcer i de to netværk.
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iv Resumé

I det sammensmeltede optiske og tr̊adløse netværksscenarie, arbe-
jder flere tr̊adløse netværk sideløbende med det optiske kernenetværk.
Selvom de lokale ressourcetildelingsmekanismer, der fungerer p̊a det
tr̊adløse netværk individuelt kan tilbyde visse niveauer af QoS provi-
sioning, er overordnet ressourcetildeling og udjævning af belastnings-
graden p̊a de enkelte forbindelser en nødvendighed for at udnytte de sam-
lede ressourcer effektivt. Til balancering af trafikbelastningen foresl̊as
en mekanisme, som drager fordel af den centrale kontrol i det optiske
netværk, og en modificeret signaleringsprotokol er udviklet til at forbedre
udvekslingen af oplysninger mellem optiske og tr̊adløse domæner. Trafik-
belastning og netværksressourcer fordeles baseret p̊a netværkstilstande,
kanal betingelser og QoS krav.

Et nyt perspektiv i udformningen af fremtidige netværk er energi-
effektivitet. I denne sammenhæng er en energistyringsmekanisme til
optiske netværk blevet udviklet og evalueret. Dette inkluderer blandt
andet en dvaletilstandsoperation, som sparer strøm ved at slukke visse
systemfunktioner n̊ar de ikke benyttes. Dvaleperioden og oppeperioden
er beregnet og tildelt ved hjælp af to forskellige planlægningsmekanis-
mer, hvilket viser de forskellige kompromiser mellem energieffektivitet,
kø forsinkelse og udnyttelsen af netværkets b̊andbredde.

For at opsummere, præsenterer denne afhandling ny viden ved at ud-
vikle en ny integreret kontrol platform for integrerede optiske og tr̊adløse
netværk. Herudover undersøges netværksarkitekturer, protokoller og en-
ergioptimeringer for at opn̊a de mest effektive hybridnetværk.
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Chapter 1

Introduction

With a rapid growth of new services based on multimedia applications,
broadband access is demanded due to dramatically increasing in Internet
traffic. New service patterns have been propelled from text- and voice-
based services to user generated interactive multimedia services. Voice
over IP (VoIP), Video conferencing, Video on Demand (VoD), online
gaming and High Definition Television (HDTV) broadcasting services
will keep growing in the near future and result in increasing bandwidth
requirements. In response to this remarkable development, the underly-
ing telecommunication networks have evolved to support new emerging
applications with tremendous growth in bandwidth and capacity.

In today’s broadband access networks, there has been successful de-
ployment and fast evolution of various new wired and wireless access
technologies. Operators have a strong interest to introduce new systems
while corporately exploiting their legacy systems. Therefore, scenarios,
where an operator is in charge of multiple wired and wireless networks
are common. However, simply combining existing optical networks and
wireless networks may not provide highly efficient and effective network
performances based on their original and static infrastructure. Thus,
an update on advanced and collaborative control plane will be intro-
duced to the converged network. There has been growing interest in
academia and industry in how the integration of wired and wireless net-
works should be designed to exploit resources efficiently and to deliver
various services to serve both fixed and mobile users.

The viewpoint taken in this dissertation is that achieving optimal
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2 Introduction

performances is even more challenging in integrated optical and wireless
networks. This thesis relies on the protocols in current optical and
wireless networks and investigates a way to novel integrated control.
The aim of this thesis is summarized as:

The objective of this work is to present an integrated
optical and wireless network architecture and espe-
cially focus on protocol design and service provision-
ing in such highly demanded network environments.
The intended performance of a converged network
architecture can be improved using a collaborative
and cooperative control platform. Novel network
protocols and algorithms are proposed and network
simulation is carried out for evaluation.

In this dissertation, both the term of integrated networks and the
term of hybrid networks are used to present the convergence architecture
of optical networks and wireless networks.

1.1 Background

1.1.1 Evolution of optical access networks

In the wired regime, optical access networks, most notably Passive Opti-
cal Networks (PONs), have received a worldwide deployment to provide
FTTx (x stands for home, building, curb, etc.), because of the band-
width enhancement and lower maintenance cost offered by optical fibres.
The traditional PON access solution is single wavelength based, known
as Time Division Multiplexed PONs (TDM-PONs), where users access
and share the bandwidth in time domain. Broadband PON (BPON),
Gigabit PON (GPON), Ethernet PON (EPON) have been standardized
as TDM-PONs. Next generation PON architectures increase the band-
width by employing Wavelength Division Multiplexing (WDM) tech-
nology. In WDM-PONs, multiple wavelengths are supported over the
same fibre on either or both the upstream and downstream directions.
Table 1.1 compares standardized EPON and GPON approaches. [20–22]
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EPON GPON

Standards IEEE 802.3ah ITU G.984

Framing Ethernet ATM/GEM
(GPON Encapsulation Method)

Max. Bandwidth 1 Gbps 2.5 Gbps

Users/PON up to 32 up to 128

Max. Reach 20 km up to 60 km

Table 1.1: TDM-PON comparison of EPON and GPON.

1.1.2 Evolution of wireless access networks

In the wireless regime, various wireless access technologies have been
developed with an intention to satisfy the continuously growing demand
for ubiquitous communication. These different wireless technologies,
such as cellular network, Wireless Fidelity (Wi-Fi), World Interoper-
ability for Microwave Access (WiMAX), can locate in the same area
and support diverse communication capabilities. Different technologies
are adopted for different applications environments and have their own
technical specifications, as briefly introduced in Table 1.2. [23–26]

1.1.3 Evolution of converged optical and wireless
networks

A convergence of the optical and wireless technologies is proposed for
the future broadband access networks. It has created a new design
dimension in terms of protocol and architecture design, infrastructure
deployment, and control and management. The resultant network will
achieve a converged network architecture, where two types of networks
complement with each other. Hybrid optical and wireless access net-
works are proposed in [27–32]. This hybrid architecture 1) provides
high-bandwidth and reliable service via the backhaul optical networks,
and 2) supports flexible and ubiquitous access connections to the end
users via the wireless access networks.

In this work, EPON and WiMAX networks are investigated and
modeled in the optical domain and the wireless domain, respectively.
EPON has been widely deployed in the access networks. The control sys-
tem and protocols in EPON have been studied and standardized [33,34].
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3G cellular Wi-Fi WiMAX
fixed mobile

Standards 3GPP 802.11a/b/g/n 802.16d 802.16e

Operation Centralized Infrastructure Point-to-
mode mode with mode with Multipoint

base central base (PMP) mode;
station. station; Mesh mode.

Ad-Hoc mode
with no

administrator.

Data 14.4 Mbps 54 Mbps Up to Up to
rate as peak using 75 Mbps. 15 Mbps.

downlink 802.11a/g;
data rate; More than
5.8 Mbps 100 Mbps
as peak using
uplink 802.11n.

data rate.

Coverage 1.6-5 km <30 m indoor; 4-8 km 2-4 km
(typical) <300 m outdoor

Mobility High Low No Middle

Table 1.2: Brief summary of broadband wireless technologies.
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On the other hand, WiMAX is a new-generation wireless technique and
it has now been standardized. Many network operators and equipment
manufactures have expressed their support for WiMAX technology [35].
WiMAX aims to provide broadband support to both fixed and mobile
users. The convergence of EPON and WiMAX networks is an attractive
alternative for the next generation broadband access system. There-
fore, it is of interest to study the interworking problem in the integrated
EPON and WiMAX networks.

1.2 Research Contributions

This dissertation makes four important contributions in studying and
designing the converged optical wireless networks. These contributions
are briefly stated in the following subsections.

• Converged optical and wireless networks and integrated
control platform : Chapter 2 first introduces an overview of the
optical wireless convergence network architectures. The design of
hybrid EPON and WiMAX networks is studied, where the back-
end is a wired EPON optical access network, and the front-end
is managed by WiMAX wireless access networks. The connection
unit in between operates as both the Optical Network Unit (ONU)
and the wireless Base Station (BS). An integrated control platform
is proposed and the basic idea is to improve cooperation between
converged optical and wireless networks. Collaborative control
functions, such as uplink scheduling, call admission control, load
balancing, and energy efficiency are considered.

• Integrated resource management mechanism with call ad-
mission control : In the integrated network, a resource manage-
ment mechanism is responsible for optimizing both optical and
wireless channel utilization. In Chapter 3, a novel call admission
control scheme is proposed to examine and qualify wireless con-
nection requests. The expected transmission delay is calculated
in the optical domain and disseminated to wireless networks as a
parameter in call admission control. It tightly couples the optical
bandwidth allocation and wireless call admission control through
an enhanced signalling protocol. Therefore, the overall resource
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utilization is improved with the aid of exchanged information be-
tween optical and wireless networks.

• Integrated load balancing mechanism : Chapter 4 proposes
and investigates the characteristics of a power control model for
the integrated network. The feature of centralized management
in EPON allows to assign power levels to multiple wireless net-
works simultaneously. The cell breathing technology is applied at
the wireless network to adjust wireless network coverage sizes and
user numbers according to the assigned transmit power. In order
to assign proper power levels, an optimization model is formulated
and an iterative algorithm is developed with two different schedul-
ing schemes. Two alternative feedback schemes are proposed and
compared, which are used to inform the central controller in the
optical domain with current wireless network status.

• Energy management control in optical access networks:
Chapter 5 explores a major research opportunity in developing
an energy management mechanism for the EPON system to pur-
sue power saving. The sleep mode operation is proposed in order
to minimize power consumption. An EPON unit turns to low
power consumption mode when there are no communication tasks
in neither upstream nor downstream directions. Two scheduling
schemes are investigated and compared, which are used to assign
a sleep period and a wake up period to multiple associated EPON
units. The proposed energy management control schemes are mod-
eled. Simulation results show a significant power saving. Fur-
thermore, various network performances of the proposed energy
management mechanism are studied.

1.3 Outline of the Dissertation

Chapter 2 provides background knowledge of the EPON and WiMAX
technologies and defines a functional overview of the proposed integrated
control platform. This work has been published in [1, 7].

Chapter 3 focuses on an integrated resource management mechanism
with a call admission control algorithm, aiming to regulate incoming
traffic with delay bound. This chapter envisions how the integrated
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control platform can be deployed to improve cooperation between the
original control functions in the optical and wireless network. This work
has been published in [2, 3].

Chapter 4 explores a load balancing mechanism, coupled with cell
breathing technology, to achieve an optimal solution of power manage-
ment and traffic distribution for integrated optical and wireless networks.
Optimization formulation, intuitive iterative algorithms, and alternative
information exchange schemes are designed and presented. This work
has been accepted for publication in [5, 6].

Chapter 5 discusses an energy management mechanism for the op-
tical access network. A novel sleeping mode enabled ONU operation is
proposed, and two scheduling schemes are proposed to preserve energy
consumption and maintain conflict-free communications. The poten-
tial moderate degradation of network performances caused by the con-
sideration of power saving as the first design criteria is examined and
compared. This work has been published in [8, 10].

Conclusion of this dissertation is given and future research is ad-
dressed in Chapter 6.





Chapter 2

Converged Optical Wireless
Networks and Integrated
Control Platform

2.1 Converged Optical Wireless Network

Architectures

One of the most recent strategic issues within the telecommunication in-
dustry is the subject of hybrid optical and wireless networks. These net-
works aim to enable Telecom operators provide a complete environment
for deployment, management and administration for a set of wireless and
wired technologies. The general context that underlies this dissertation
is to exploit the synergy of complementary technologies. Converged op-
tical and wireless networks represent the convergence of cost-efficient
fiber-based networks and ubiquitous radio-based networks, where two
different and complementary technologies are integrated. Optical com-
munication provides high-bandwidth as backbone network, while wire-
less communication is deployed as front-end network. It is viewed as an
attractive solution and considered as a candidate for the next generation
access networks [27–31].

The main driver for the development of the integrated network is
the growing demand of high-bandwidth applications. Fiber-based com-
munication systems offer high bandwidth. However, deploying a fiber

9
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directly to each home requires high expenses in deployment and main-
tenance. Moreover, the optical networks have fixed infrastructures and
limit coverage. In contrast, wireless techniques provide low cost and
mobility to the end-users. Nonetheless, wireless techniques generally
operate with low bandwidth. Therefore, the convergence of optical and
wireless networks enables the two techniques to complement each other
in many aspects.

Recent advances in optical and wireless communications certainly
provide ample opportunities of integrated network architectures that
benefit the broadband access transmission. Various optical- and wireless-
access solutions have been developed over the past decades. In this work,
the integrated network is modeled as a convergence of an EPON as a
backhaul, and multiple WiMAX networks as the front-end networks,
as illustrated in Figure 2.1. In the optical domain, EPON is a cost-
effective solution, which uses inexpensive optical splitters to divide the
single fiber to individual subscribers and provides easy-to-manage con-
nectivity to Ethernet-based equipment. In the wireless domain, a recent
broadband wireless technology, WiMAX, has promised high bandwidth
over long range transmission and supports both fixed and mobile trans-
mission. A combination of EPON and WiMAX networks will provide a
desirable solution with advantages in terms of low-cost, high-bandwidth
and broad-coverage.

2.1.1 Overview of the EPON MAC operations

A typical EPON system consists of one Optical Line Terminal (OLT)
functionalized as a central office, one passive optical splitter imple-
mented in the remote node, and multiple Optical Network Units (ONUs)
residing at subscribers’ locations. IEEE 802.3ah [36] specifies the phys-
ical layer and MAC layer characteristics of EPON. The MAC layer op-
erations are briefly introduced in this subsection.

In the downstream direction from the OLT to the associated ONUs,
data are broadcasted to each ONU in a point-to-multipoint architec-
ture. On the other hand, it is a multipoint-to-point architecture in the
upstream direction from the ONUs to the OLT. The OLT allocates up-
stream bandwidth among the ONUs and each ONU transmits packets
in dedicated time slots. A proper access control mechanism is required
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in order to efficiently coordinate transmission among multiple ONUs.

The signaling access protocol in the EPON MAC layer, known as
the MultiPoint Control Protocol (MPCP), is defined in IEEE 802.3ah
Ethernet in the First Mile (EFM) Task Force. MPCP provides the sig-
nalling infrastructure for coordinating data transmission from the ONUs
to the OLT. MPCP uses two types of control messages: the REPORT
message is used by an ONU to report bandwidth requirements (nor-
mally based on queue occupancies) to the OLT and the GATE message
is transmitted by the OLT to issue transmission grants to each ONU.

The upstream bandwidth is divided into subframes in a manner of
the Time Division Multiplexing (TDM) and shared by multiple ONUs.
The assignment of the limited upstream bandwidth is done by the OLT
according to the deployed bandwidth allocation algorithms. Resource
management issues in EPONs have been studied in [33,34]. The network
resources can be allocated among ONUs either statically or dynamically.
In the static approach, the uplink bandwidth is distributed with a fixed
amount, which is the Time Division Multiple Access (TDMA) scheme.
On the other hand, Dynamic Bandwidth Allocation (DBA) algorithms
are proposed to increase the efficiency of bandwidth utilization by adapt-
ing to instantaneous bandwidth requirements [37]. Among them, a pi-
oneering and effective DBA algorithm is the Interleaved Polling with
Adaptive Cycle Time (IPACT) algorithm [38,39], where its basic idea is
that each ONU requests its demanded bandwidth in advance, and the
OLT assigns bandwidth to the ONUs based on their requirements.

2.1.2 Overview of the WiMAX MAC operations

WiMAX has evolved from IEEE 802.16a to 802.16e for both fixed and
mobile wireless access support. The standards specify the air interface,
including the Medium Access Control (MAC) and physical layers. Two
modes of MAC operation are specified: Point-to-MultiPoint (PMP) and
multipoint-to-multipoint (mesh) [23, 25]. In this dissertation, the PMP
operational mode is used.

A centralized Base Station (BS) serves a set of subscriber stations
(SSs) and the operation of MAC protocol is connection oriented. Traf-
fic communicated between BS and SS peers are in context of a unidi-
rectional connection and each traffic flow is classified by a Connection
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Identifier (CID). SSs medium access is coordinated by the BS through a
poll/request/grant mechanism, where bandwidth is requested by an SS
and the BS grants uplink bandwidth to an SS. At the beginning of each
downlink subframe, the BS broadcasts the uplink and downlink control
messages to associated SSs. The control messages are used to notify
the SSs of the start time and the end time of the granted transmission
periods in the uplink and downlink directions.

In WiMAX, QoS differentiation is defined for various applications,
which supports five different traffic types: Unsolicited Grant Service
(UGS) supports real-time constant bit rate applications that periodi-
cally produce fixed size data packets, Real-time Polling Service (rtPS) is
appropriate to real-time applications that periodically generate variable
size data packet, extended real-time Polling Service (ertPS) is ensured
with a default bandwidth allocation from the BS, non-real-time Polling
Service (nrtPS) is appropriate for delay tolerant applications with vari-
able packet size and with a minimum data rate requirement, and Best
Effort (BE) services.

There have been many research done for the QoS and the resource
management in WiMAX. In [40], the system performance under different
traffic scenarios has been evaluated for a WiMAX network working in
the PMP mode. To achieve QoS provisioning in WiMAX, the resource
management and scheduling algorithms have been discussed in [41–43].
In order to obtain QoS and fairness, wireless channel aware scheduling
algorithms are conceived in [44,45]. In [46], the Call Admission Control
(CAC) schemes are investigated in the WiMAX access networks for the
provision of QoS guaranteed services. The priority based resource allo-
cation schemes and CAC schemes are proposed and the scheme based on
either a Markov decision process approach or a non-cooperative game
theoretic approach are addressed in [47,48], so that the network reward
from the real-time application is increased and resource utilization is
maximized.

2.1.3 Motivations

The integration of the optical networks and wireless networks offers an
attractive and feasible solution to broadband network access. Motiva-
tions behind the integration are addressed from aspects of low cost of
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deployment, high bandwidth provision, and scalable extension of com-
munication coverage.

• Cost: The economic limitation prevents fiber from directly reach-
ing individual customers, especially for those areas with low sub-
scriber density. In contract, wireless technique with low deploy-
ment costs alleviates such difficulty. By replacing fiber with free
radio media, the cost of last-mile transmission is reduced by an
integrated optical and wireless network.

• Bandwidth: Due to the emergence of Wavelength Division Multi-
plexing (WDM) technologies, the bandwidth of backbone network
has increased substantially. In the integrated optical and wireless
network, EPON fills in the gap between the subscriber network
and the core network.

• Coverage: In the integrated optical and wireless network archi-
tecture, high-speed communication is extended by using antenna
for wireless distribution. One important good feature in WiMAX
technology is its scalability. Without affecting the existing cus-
tomers, the service provider could install new service areas by
adding new base stations as the user demand grows.

2.1.4 Interworking Architectures

Many interoperated architectures have been proposed to support com-
munications in the integrated network, mainly aimed to extend EPON
system with wireless transmission penetrating to the local area [27–29,
32]. The interworking architectures can be classified into three categories
according to the interdependence between the two access networks.

• Independent architectures (shown in Figure 2.2a): the EPON
and WiMAX are combined as two isolated networks, where the
ONU and the BS are implemented in two nodes. There is a com-
mon standardized interface of exchanging control and data mes-
sages, and there is no direct communication between the ONU and
the SSs. This is an easy-to-deploy interworking architecture. The
main disadvantages of this independent approach are that:
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Figure 2.2: Interworking architectures: a. independent architecture; b. Integrated
architecture.

- Since the two domains are separated, control signaling travels
between the ONU and the BS, which may introduce relatively
high latency.

- The induced large amount of control and data traffic may
cause a network bandwidth bottleneck.

• Integrated architectures (shown in Figure 2.2b): The ONU and
BS functions are implemented and integrated into a single device,
where an access gateway control block is designed to coordinate
the integration of two domains. The integrated architecture adopts
an integrated platform design, which allows to develop an opti-
mal resource management mechanism with significant impact on
the overall system. Integrated interworking architecture of optical
networks and wireless networks matches well the emerging evolu-
tion toward a fixed mobile network infrastructure. With proper
control and administration, the optical and wireless domains are
seamlessly incorporated through an integrated control platform to
provide end-to-end QoS services. The integrated control platform
contains cooperative and collaborative control functions located in
both the OLT and ONU/BS units.

• Radio-over-fiber (RoF) architecture : RoF based wireless ac-
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cess technology has been researched and proposed as a promising
alternative to broadband wireless access network [49]. The RoF
architecture consists of a central head-end and a remote antenna
unit connected by an optical fiber link, on which the microwave sig-
nals are distributed. The advantages of RoF architecture include
low attenuation loss, immunity to radio frequency interference and
reduced power consumption. However, because RoF involves ana-
logue modulation and analogue signal transmission, the signal im-
pairments, such as noise and distortion, become challenging issues.

In our work, the integrated architecture is deployed, where ONU and
BS functions are embedded into a single device, so called Access Gate-
way (AG). The migration requires changes in the MAC layer and the
network layer that bring services to end-users with complied quality of
service requirements. In the AG node, a MAC layer mapping and inte-
grating mechanism between the optical domain and the wireless domain
needs to be developed, so that is able to translate the communication
between two different interfaces. To some extent, the performance of the
hybrid network solution relies on the design of AG nodes, which plays
an important role for the EPON and WiMAX integration.

2.2 Design of an Integrated Control Platform

The optical and wireless access technologies are originally designed to
address different issues and deployed in different scenarios. Therefore
any simple combination of them cannot derive optimal network perfor-
mances. The two parts of the integrated network, the optical domain
and the wireless domain, have to be considered and designed altogether.
That is, the network conditions, in terms of link resource usage and
traffic load, are monitored and exchanged under both the optical and
wireless networks. The heterogeneous control plane of the integrated
network becomes a key design issue, which can be exploited to maxi-
mize the overall resource utilization and optimize the overall network
QoS performance.

Traditionally the mechanisms of resource management are designed
separately and exclusively for either optical networks or wireless net-
works. The characteristics and challenges of the hybrid network are
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ignored. Thus, this has led to a need for an integrated resource man-
agement for integrated networks. There are two approaches to manage
both optical and wireless channel resources simultaneously for the over-
all integrated architecture.

- The first approach is to design a resource management scheme
from scratch, which deploys newly designed signaling, resource
allocation, call admission control, and scheduling algorithms. This
approach often incurs a design of new network architectures.

- The second approach is to investigate the existing resource man-
agement methods and implement them with modifications and en-
hancements in the integrated network. This approach is much
more agile, effective and has less time-to-market than the previous
one. In a practical network development, these two approaches
can complement each other. In this work, the second approach is
chosen and studied.

Figure 2.3 depicts an overview of functions proposed in the integrated
control platform. Basic functions in the EPON and WiMAX MAC lay-
ers are modified and extended to support cooperative signalling access
between the optical and wireless domains. The whole integrated system
is controlled by a set of protocols that manage both wired and wireless
networks. In this study, the following control functions are considered:

• Call Admission Control (CAC): Call admission control is a
provisioning process to limit the number of call connections into
the network in order to reduce the network congestion and call
dropping. In integrated networks, another regulation is added: call
connection failure is possible due to violation of QoS requirements
in one of two adjacent networks. Although intensively studied
in the latest few years for wireless networks, CAC becomes more
complicated in the hybrid network architecture. The AG receives
numerous requests to set up upstream connections across optical
and wireless networks. Traffic flows experience delays from both
the optical and wireless domains. The CAC algorithm considers
the end-to-end delay across the WiMAX and EPON network, for
each connection request to guarantees QoS. For the reason that
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without considering the queuing delay and polling delay in the op-
tical system, the base station in the wireless domain may grant
bandwidth to non-conforming traffic, for which QoS requirements
(e.g. delay) cannot be satisfied. In this work, an integrated admis-
sion control is achieved by the cooperation of the CAC function
at the AG and the EPON MPCP controller at the OLT (shown in
Figure 2.3). The CAC decides whether to accept connection re-
quests or reject unserviceable requests based on the potential delay
calculated by the polling cycle function, which is implemented in
the EPON MPCP controller at the OLT.

• Packet Scheduling : Packet scheduling is an important function
in the MAC layer to achieve fairness and maximization of channel
utilization. Intensive research of upstream scheduling algorithms
for EPON system can been found in the literature. In the hy-
brid optical wireless network, cross-domain traffic flows arrive at
the gateway node from mobile users via wireless upstream links,
which are subject to signal attenuation, fading, interference and
noise. Thus, these existing algorithms cannot be directly adapted
without taking features of wireless links into consideration. For the
integrated network, a channel-aware scheduling algorithm should
be considered, which assigns the optical uplink bandwidth to con-
nections according to the corresponding radio channel quality in
the wireless domain. The optical uplink scheduler allocates the
assigned optical uplink bandwidth to the multiple queued wireless
connections. In a conventional schedulers design in an EPON sys-
tem, the packet and queue information, such as traffic types and
queue sizes, is measured as priority metrics. Designing an inte-
grated scheduling algorithm, the optical uplink scheduler function
communicates with the channel condition monitor function to ob-
tain channel conditions. When the quality of a channel drops
below a threshold value, no traffic can be transmitted. Once a
connection is detected suffering bad channel condition, the future
incoming data rate could be predicted to decrease. In this work,
an integrated upstream packet scheduler is achieved by the coop-
eration of the channel condition monitor and the optical uplink
scheduler at the access gateway (shown in Figure 2.3). The basic
idea is to increase the throughput of connections in good channel
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condition. The advantage of the channel-condition aware schedul-
ing algorithm compared to priority based one is the QoS assurance
of low priority classes with ”good” channel condition. That is, the
excessive bandwidth of a lightly loaded class is shifted to the highly
loaded one to meet the urgent bandwidth demand.

• Load Balancing : In a broadband wireless access network, the
base station power is typically managed to minimize mutual inter-
ference among adjacent cells. By lowering the transmit power, a
base station could further reduce the coverage dynamically during
heavy network load. Reducing the coverage could reduce the num-
ber of subscribed users and relieve itself from the excess traffic bur-
den. Similarly, a neighboring base station could share the excess
traffic load by expanding its coverage. This operation is called cell
breathing, and such dynamically balanced network could provide
better QoS within a single cell or statistically support more mobile
users. At any one time, unbalanced load could occur in wireless
networks either due to over-utilization or due to poor channel con-
ditions. To determine whether cell breathing is necessary, a central
controller calculates the expected total service time and equalizes
them across all wireless networks. During cell breathing, wire-
less networks could loose connections to some subscribers. In this
work, an integrated admission control is achieved by the cooper-
ation of the channel condition monitor at the AG and the EPON
MPCP controller at the OLT (shown in Figure 2.3). The OLT
makes joint processing of traffic and cell power assignments based
on the current wireless network status in terms of backlog data
size and channel conditions.

• Energy Efficiency Control : In energy-efficient network sys-
tems, the sleep mode operation is introduced. Nodes (or stations)
are allowed to switch to the sleep status when they are idle and
to wake up when they receive or transmit packets. There is a
trade-off decision between maximizing the power saving and guar-
anteeing the network performance at the same time. The design
of an efficient power saving control scheme needs to be a feasi-
ble solution to both enable power saving and minimize the impact
of traffic. The main idea is to put ONUs into the sleep mode
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and determine a suitable wake-up time schedule at the OLT by
means of jointly scheduling upstream and downstream transmis-
sion periods. In this work, the energy efficiency is achieved by
introducing a new function at the OLT (shown in Figure 2.3).
The energy consumption for an EPON model is examined and
evaluated. Two downstream scheduling algorithms are analyzed
to enable the power saving mode. Necessary extensions are intro-
duced to the traditional MPCP control messages and formulate
the energy consumption equations in both downstream scheduling
cases.

2.3 Summary

In this chapter, the architecture and a vision for the integrated optical
wireless networks are introduced. Motivations are presented to articu-
late the trend of combining the complementary characteristics of optical
and wireless technologies. The main focus of this work is placed on the
design of an integrated control platform in order to maximize network
performances. Among cooperative control functions, the admission con-
trol, load balancing, packet scheduling, and energy efficiency functions
of the integrated control platform are discussed.





Chapter 3

Enhanced Signalling
Scheme with Admission
Control in the Integrated
Control Platform

The hybrid optical wireless network has been presented as a promising
solution to meet the increasing user bandwidth and mobility demands.
Due to the basic differences in the optical and wireless technologies, a
challenging problem lies in the Media Access Control (MAC) protocol
design, so that it can support stringent Quality of Service (QoS) require-
ments. Efficient utilization of available bandwidth over hybrid optical
wireless networks is a critical issue, especially for multimedia applica-
tions with high data rates and stringent delay requirements. In this
chapter, a resource management framework is presented for a hybrid
EPON and WiMAX network. At first, the problem of sharing resource
allocation information between optical and wireless domains is formu-
lated and studied. The existing signaling protocol in EPON is modified
and enhanced. Secondly, a novel integrated admission control scheme
is proposed. Simulation results show the performances of the system
in terms of throughput, delay and packet dropping probability under
different system parameters. These parameters include the frame dura-
tion, the traffic load and the total number of shared users. The results
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also highlight that the proposed system achieves significant improve-
ments over the traditional approach in terms of user QoS guarantee and
network resource utilization.

3.1 Introduction

Recent years have witnessed the explosive growth of multimedia ap-
plications, which are characterized by high speed and stringent QoS
requirements. An integration of optical and wireless technologies has
been viewed as a viable solution to delivery the quadruple play services
(data, voice, video and mobility). A hybrid EPON and WiMAX net-
work is an example of the integrated network, where EPON deployed as
the backhaul network and multiple WiMAX networks connected as the
front-end networks.

In order to design an unified control system in the hybrid network,
an integrated resource management needs to be considered and accom-
plished. It can dynamically allocate network resources based on the
current wireless network and optical network conditions. The objective
is to improve the existing protocols and to design an integrated resource
management in the integrated EPON and WiMAX network. Moreover,
it can optimally admit the requests and allocate the network resources
in order to maximize the resource utilization and satisfy the prescribed
QoS requirements.

In the integrated optical wireless network, resource management is
implemented in a centralized architecture, where an intelligent control
mechanism in the EPON polls and allocates bandwidth to all access
gateways, which connect with wireless systems. There are several meth-
ods that can be used to achieve efficient resource management, such as
using dynamic bandwidth allocation algorithms and admission control
schemes. The resource management functions should be designed with
consideration for QoS provision, such as packet delay, network through-
put and so forth. In the hybrid optical wireless network, the resource
management is composed of two stages. The first stage is the optical re-
source allocation among attached access gateways in the optical domain.
The second one is the radio resource allocation among connected mobile
users in the wireless domain. Appropriate cooperation and integration
of resource allocations in these two domains are crucial to investigate.
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The node located at the common boundary of these two domains needs
an advanced resource management, in order to coordinate the commu-
nication between the optical and the wireless domains. In this chapter,
QoS performance enhancements by determining proper admission deci-
sion over the whole integrated network are presented.

The framework consists of a modified resource negotiation scheme in
EPON and a polling-delay-aware admission control scheme in WiMAX.
The admission control scheme is located at the interface node of the
optical and wireless networks and collects network information from both
networks. Thus, the potential network congestion is able to be detected
and avoided. The achievements of this work include:

- calculation of the joint delay time while packets transmit through
the wireless and optical domain;

- guarantees of bandwidth allocation for the requests with conformed
traffic;

- maximization of network throughput from QoS guaranteed flows.

The rest of this chapter is organized as follows. For completeness as
background knowledge, Section 3.2 briefly introduces related work in the
integrated resource management scheme . In Section 3.3, following a de-
scription of the hybrid system model, a two-step resource management
approach is proposed. The proposed integrated resource management
mechanism with an enhanced MPCP scheme and an integrated admis-
sion control scheme is addressed in detail in Section 3.4 and Section 3.5,
respectively. Simulation results of the proposed approach are provided
and discussed in Section 3.6. Conclusions are given in Section 3.7.

3.2 Related Work

In order to achieve a highly efficient integrated resource management
mechanism, several aspects should be addressed in advance. The main
technical issues are: (1) routing algorithm, (2) packet classification and
scheduling mechanism and (3) resource management and call admission
control mechanism.

At first, a routing algorithms is used to locate the optimum routes
for packet transmissions in the hybrid network. In [50], an integrated
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routing algorithm is proposed to select the optimum routes for trans-
missions in both optical and wireless domain. The routes are computed
in the optical domain, while the decision is based on the exchanged in-
formation from wireless domain, such as wireless link state and average
traffic rate. For the front-end wireless network in integrated networks, a
delay-aware routing algorithm is proposed in [51], which selects a path
with the minimum predicted delay.

Second, traffic from various applications should be treated differ-
ently. Since the granularity of classifying different services (DiffServ)
are defined distinctly in the optical network and the wireless network,
a unified packet classification scheme is required for the integrated net-
work. Packet scheduling algorithms have been investigated extensively
for the wired [52] and wireless network [53] over the past decades. Packet
scheduling algorithms are used to select the sequence of transmitting
packets, while satisfying QoS requirements. In the reference [54], capac-
ity analysis and wavelength multiplexing are exploited, and a central-
ized MAC layer is designed with discussions on scheduling and resource
sharing policy. In work [1], a priority-based scheduler is proposed for the
uplink stream transmission in the integrated network. Its key feature is
that the scheduler prioritizes connections in the optical domain, while
taking wireless channel quality into account.

At last, for the resource management and CAC issues, an integrated
resource management is required to ensure the QoS over the overall in-
tegrated network. Bandwidth is allocated and distributed according to
the applied bandwidth allocation schemes. The reference [55] presents
an integrated wireless and SONET architecture. An optimal utility
based bandwidth allocation scheme is designed for multimedia appli-
cation. The reference [56] investigates a dynamic bandwidth allocation
(DBA), which takes into consideration the specific features of the con-
verged network to enable a smooth data transmission across optical and
wireless networks.

Research work on CAC for wireless technologies, such cellular net-
works and WLAN, has been discussed in [46, 57, 58]. For integrated
optical and wireless networks, as proposed in [59], a central controller is
designed in the optical domain to maintain an integrated view of the hy-
brid network. The connection requests submitted in the wireless domain
are delivered to the optical domain. Moreover, a QoS-aware scheduling
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scheme is used in the call admission control scheme, which aims to in-
crease network throughput while reducing overhead of the cross-domain
(between the optical domain and the wireless domain) communication.
In this chapter, CAC is achieved with an enhanced signaling protocol
and admission control scheme, which has not been discussed previously
in the integrated network.

3.3 System Model and Problem Definition

An integrated EPON and WiMAX network consisting of two parts, the
backhaul EPON infrastructure and the front-end WiMAX networks, is
considered as the system model. The node with integrated ONU and
BS functions is referred to as an Access Gateway (AG). As shown in
Figure 3.1, there are K AGs at the interface and there are N Subscriber
Stations (SSs) connected in the WiMAX network. In this integrated
architecture, the upstream traffic is first aggregated at an AG and then
forwarded to the OLT. The upstream transmissions from the associated
ONUs are scheduled in a TDM manner. Each ONU transmits during
the assigned transmission period in order to avoid a traffic congestion
at the splitter. For the downstream traffic, packets are first transmitted
to the AG and then forwarded to each SS in the allocated channel slots.

The AG is the interface between the EPON and WiMAX networks.
It handles communications as within its own wireless network (e.g. a
single-domain connection), and across both optical and wireless net-
works (e.g. a multi-domain connection). QoS improvements for the
single-domain connections in the WiMAX network has been discussed
extensively. This work focuses on providing QoS guarantees to the multi-
domain connections, because the new features of an integrated network
are highlighted in the multi-domain communication.

To set up a multi-domain connection in the hybrid network (a con-
nection from an SS to the OLT), the SS initiates a request to the corre-
sponding AG. The acceptance or rejection of a request is determined by
the admission control scheme in the AG. A request can be accepted if
there is enough buffer size and the QoS requirements can be satisfied. A
channel resource control is assumed to manage the optical channel and
wireless spectrum allocation and scheduling in the integrated network.
It can collect information, including traffic demand and channel avail-
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Figure 3.1: Illustration of the integrated optical wireless network architecture

ability, from both optical networks and wireless networks. The central
controller computes the scheduling and channel allocation solution for
a multi-domain connection. The considered performances are the QoS
experiences for both optical and wireless domains.

As mentioned in the previous section, the bandwidth allocation and
admission control algorithms have been extensively researched in EPON
and WiMAX networks, respectively. However, these are all studies in
either EPON or WiMAX, and no model exists to evaluate the network
performances in the case of transmissions through both the optical and
the wireless domain. In the hybrid optical wireless network, numerous
requests are transmitted to the AG to set up upstream connections from
an SS to the OLT. Admitting a new connection request in a WiMAX
network, without considering the queuing delay and polling delay in the
following EPON system will grant bandwidth to nonconforming traf-
fic, e.g. to grant bandwidth to a service request, for which the delay
requirement cannot be met. Allocating transmission opportunities to
nonconforming traffic will cause waste of scarce bandwidth and QoS
degradations to already conforming traffic.

In order to provide a sustainable and consistent hybrid access net-
work, an integrated resource management framework on the upstream
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channel is essential. The basic idea in the enhanced admission control
mechanism is to integrate information derived from both optical and
wireless domain and then take the overall delay into account to pro-
vide optimal admission decisions. In order to calculate the overall delay,
the network information needs to be exchanged between the optical and
wireless networks. Our proposed approach consists of two schemes: (1)
an enhanced signalling protocol and (2) an integrated CAC scheme. In
the following sections, the existing control functions are investigated.
Furthermore, enhancement and improvement are presented in details.

3.4 Integrated Resource Management
Framework Part I - Enhanced MPCP
Scheme

3.4.1 Basic MPCP Operations

As introduced in 2.1.1, two control messages, REPORT and GATE, are
defined in the MPCP as signaling between the OLT and AGs at the
EPON domain in the hybrid network. The GATE message is initiated
by the OLT and sent to AGs carrying granted bandwidth information.
The REPORT message is directed to the OLT and used to indicate the
residual queued data size in AGs.

Two processes are performed: the discovery process and the normal
process. During the discovery process, the OLT searches for AGs, reg-
isters attached AGs, and calculates the the Round Trip Time (RTT).
The RTT is calculated at the OLT using the stamped packet and the
value is determined by the distance between the OLT and the AG. The
discovery process is repeated periodically, so that newly connected AGs
can seamlessly be added without interrupting the current network op-
eration. After discovering and registering the connected AGs, the OLT
sets up an entry table, which contains the AG Logic Link Identification
(LLID) and the round trip time (Trtt).

A key perspective of the normal process is the ability to assign band-
width and schedule transmission for all registered AGs in a manner of
fairness and without conflict. In the upstream direction, multiple AGs
share a common optical medium. The upstream transmission period is
divided into multiple time slots. Each ONU can only transmit during



30
Enhanced Signalling Scheme with Admission Control in the Integrated

Control Platform

its own slot time. The OLT polls registered AGs and assigns time slots
either statically based on the TDMA scheme or dynamically based on
the resource requirement negotiation, e.g. IPACT.

- TDMA scheme: each AG is granted a fixed time slot length for
upstream transmission. TDMA scheme is simple to implement.
However, without considering the instantaneous changes of traffic,
the OLT assigns some time slots to AGs under very light load.
This leads to the bandwidth resources being under-utilized.

- IPACT scheme: a resource negotiation is applied between the
OLT and the AGs. The OLT polls AGs and issues transmission
grants to them in a round-robin fashion. The AG generates the
request message and reports the queued data size to the OLT. The
request data size is used to determine the grant transmission period
for the next grant of the AG. Therefore, bandwidth is dynamically
assigned to AGs according to their queue occupancies. The OLT
keeps track of the Trtt of all AGs . The value of Trtt is computed
based on the distance between the OLT and the attached AG. By
being aware of the round trip time, the OLT can calculate the ar-
rival time of the REPORT message from each AG. As a result, the
OLT can grant the ONUs and schedule their upstream transmis-
sion. By dynamically allocating time slots based on instantaneous
buffer size, the bandwidth utilization is improved.

In this thesis, a polling cycle (Tcycle) refers to a period in which
all AGs are served and a granted subframe period (Tsp) refers to a
period, which is assigned to an AG for the uplink transmission. The
order of transmitted polling messages is determined by the deployed
scheduling algorithm (e.g. simple round robin fashion or priority based).
In this work, the round robin scheduling scheme is considered.

3.4.2 Enhanced MPCP Operations

In the integrated architecture, an AG performs resource management op-
erations for both optical and wireless networks. In order to calculate the
packet transmission delay in the optical domain, the AG needs to know
the estimated waiting time for its next poll. This extra information can
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be derived from the OLT using a modified GATE message. Originally
defined in MPCP, the GATE message consists of a 1-byte granted start
time (tstart) and a 2-byte granted bandwidth. There is a new 2-byte
field, Tnext, is added to original MPCP GATE control message. The
field Tnext indicates the interval between the time of the current and the
next polling operations to an AG. In this section, t is used to indicate
the instant time and T is used to indicate the duration between two time
points (e.g. tx − ty).

After the OLT computes the start time and subframe length for each
AG, the OLT can obtain the total transmission length (Tcycle) for all k
AGs (as illustrated in Equation 3.1).

Tcycle =

K∑
i=1

(
BW i

Ro
+ Tg

)
(3.1)

where BW i is defined as the granted bandwidth as the size of trans-
mission capacity (in bits). Ro is the transmission rate of the optical
uplink and Tg is the guard time between two successive upstream trans-
missions. After a period of Tcycle, an AG is polled again. The interval
between two adjacent polling operations, the next cycle time, can be cal-
culated and added into the original GATE message as a new field. The
GATE control message can be embedded within an Ethernet frame. The
receiver recognizes the GATE control message and then extracts the fol-
lowing 6-byte grant information. The modified GATE message can be
used when either the TDMA or the IPACT bandwidth allocation scheme
is deployed in the optical domain in the integrated networks.

3.4.3 Enhanced MPCP Operations under TDMA
scheme

The modified resource sharing scheme under the TDMA scheme is shown
in Figure 3.2. The polling sequence of AGs is scheduled in the OLT.
Here a round robin scheduler is assumed so that all AGs are polled in
turn. We assume the scheduling principle will not change. The value of
granted bandwidth (BW i) is fixed and same to all AGs. In other words,
the values of polling cycle (Tcycle) are same for each AG. The expected
next cycle time for the ith AG is calculated in Equation 3.2. The value
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Figure 3.2: Illustration of the modified GATE message with a new field, the next
cycle time, is used with TDMA scheme.

of tnext for each AG is computed and transmitted to the AG via the
GATE message at the beginning of each cycle.

tinext−TDMA = tistart + Tcycle−TDMA

= tistart + K ·

(
BW i

Ro

+ Tg

)
(3.2)

3.4.4 Enhanced MPCP Operations under IPACT
scheme

Compared to the TDMA scheme, the IPACT scheme is more compli-
cated. The AGs are polled by the OLT in an interleaved manner. The
(i+1)th AG is polled via the downlink GATE message, while the ith AG
is in the uplink transmission. The distribution of upstream bandwidth
is based on AG’s requests rather than on a fixed generic amount. The
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modified resource sharing scheme under the IPACT scheme is shown in
Figure 3.3.

After the discovery process, the OLT fills the entry table with ini-
tial information (e.g. node ID, RTT value and granted bandwidth) of
AGs. The granted bandwidth, BW i, is assigned for the ith AG as the
scheduled upstream transmission period. When the discovery process is
completed, the OLT starts to poll the AGs via the GATE message. Here
a round robin scheduler is assumed so that all AGs are polled in turn.
As explained in [37], the OLT grants AGs in an interleaved manner and
distributes the length of the time slot based on their requests. For each
AG, the polling time and the start time for its upstream transmission
are computed using Equation 3.3 and Equation 3.4. As illustrated in
Figure 3.3, tipoll is the time when the OLT polls the ith AG. At this time,
the GATE message is transmitted with the bandwidth grant informa-
tion. Therefore, after receiving an updated bandwidth request from the
ith AG, the time to start upstream transmission in the (i + 1)th AGs
calculated in Equation 3.4.

ti+1
poll = tipoll + T i

rtt +
BW i

Ro

+ Tg − T i+1
rtt (3.3)

ti+1
start−IPACT = ti+1

poll +
T i+1

rtt

2

= tipoll + T i
rtt +

BW i

Ro
+ Tg −

T i+1
rtt

2

(3.4)

When the IPACT scheme is deployed, the period of a polling cycle
is determined by the total granted bandwidth (as illustrated in Equa-
tion 3.5). The value of Tcycle−IPACT needs to be calculated, when there
is new update on the bandwidth assignment. as illustrated in Figure 3.3,
after AG1 is polled, AG1 transmits REPORT message, including LLID,
required bandwidth (BW 1

req) and data. The OLT updates the entry
table while the request bandwidth is granted (the BW 1

1 is replaced by
BW 1

2 , where BW i
j means the bandwidth for ith AG in the jth round of

polling). For example, the Tcycle−IPACT for AG2 is computed, after the
OLT updates the entry table with new granted bandwidth (BW 1

2 ).
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T i
cycle−IPACT =

K∑
i=1

BW i

Ro
+ K · Tg (3.5)

The new field, tnext−IPACT , is computed and sent to the next polled
AG using Equation 3.6. The value of tnext−IPACT indicates the waiting
period for an AG to its next poll, which is calculated according to the
total number of connected AGs and their assigned bandwidth.

tinext−IPACT = tistart + T i
cycle−IPACT , i ∈ K (3.6)

For the reason that granted bandwidth is changed according to ith

AG’s request, the value of Tcycle−IPACT becomes different in cycles. The
entry table is updated and the tnext−IPACT is computed for the (i+1)th

AG when the REPORT message from ith AG is received. It is noticed
that the request bandwidth from the ith AG need to be received before
the OLT sends a grant message to the (i+ 1)th AG in order to calculate
tnext−IPACT for the (i + 1)th AG. In another words, the time to update
the entry table (t1rev−1) should before the time to poll the next AG
(t2poll−1). This condition is expressed using Equation 3.7.

ti+1
poll > tirev

⇒ ti+1
poll > tipoll + T i

rtt + T i
req

⇒ tipoll + T i
rtt + BW i/Ro + Tg − T i+1

rtt > tipoll + T i
rtt + T i

req

⇒ tipoll + T i
rtt + (T i

req + T i
data) + Tg − T i+1

rtt > tipoll + T i
rtt + T i

req

⇒ T i
data + Tg > T i+1

rtt

(3.7)

In above equation, the assigned upstream bandwidth includes 1) the
transmission of a REPORT message (T i

req), which is used to carry the
bandwidth request information; 2) the transmission of payload (T i

data).
It is shown that the entry table can be updated and the polling cycle
delay can be calculated if the transmission period of payload for last
polled AG (T i

data) plus the guard time (Tg) is larger than the return trip
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time (T i+1
rtt ). Under these circumstances, the GATE message to the next

AG is able to be transmitted after the arrival of the REPORT message
from the ith AG. When this condition cannot be satisfied, the polling
cycle time for next AG is calculated with a maximum grant bandwidth,
in stead of the actual request bandwidth value.

3.5 Integrated Resource Management
Mechanism Part II - Integrated Admission

Control

An uplink transmission scenario from an SS to the OLT through the
integrated optical wireless network is considered. Although EPON and
WiMAX use different channel access mechanisms, they both need ad-
mission control to determine how much traffic can be handled in the
optical and the wireless domains separately, so that the prescribed QoS
for each traffic stream can be maintained. Implementing two individual
admission control schemes for each network is not effective and efficient.
An Integrated Optical Wireless Admission Control (IOW-AC) scheme
is proposed to cope with this problem, which provides delay bounds to
multidomain connections. This chapter first presents a model to evaluate
the delays experienced by the requests from the SSs, and then describes
the proposed IOW-AC scheme.

3.5.1 System description

As illustrated in Figure 3.4, AGs transmit traffic to the OLT on the
uplink channel within their respective assigned slot times. The assigned
transmission period can be equal and fixed to all AGs or be different and
dynamic. If it is dynamically changed based on the AG’s request, the
GATE and REPORT messages are exchanged between the ONU and
the OLT before the upstream transmission starts.

Since the IEEE 802.16 MAC protocol is connection oriented, an SS
first initiates a connection with an AG and informs the associated service
flow (i.e., real-time traffic or BE traffic). The SS request, with the
QoS requirements from the application layer, is passed to the admission
control mechanism and the AG grants the request based on pre-defined
criteria, such as the queue size and the delay. The connection signalling
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Figure 3.4: The upstream communication in the hybrid optical wireless network.

messages (request and response) between the SS and AG are defined
in IEEE 802.16 standard. Once the connection is set up, the packets
received at AG are classified and forwarded to the appropriate queue.

The IOW-AC is aware of the transmission status in the optical do-
main. Upon receiving a GATE message from the OLT, the AC re-
ceives knowledge about the length of the optical uplink transmission
period (Tgranted) and the length of waiting time to the next polling cy-
cle (Tcycle). The Tgranted consists of Treq and Tdata. The selection of
the queued packets into the upstream Tgranted is determined by the AG
based on the deployed scheduling algorithm, e.g. evenly or proportion-
ally distributed among different service queues. In this chapter, a strict
priority based scheduling algorithm is adopted. At the beginning of
an uplink transmission to the OLT, t0, a scheduler is used in the AG
to select packets from queues of different service classes. Every service
class may be guaranteed a minimum bandwidth (Vmin) and a maximum
bandwidth (Vmax) so that all service classes receive their shares of the
scheduled uplink channel. The scheduler selects packets from each ser-
vice queue based on the priority of traffic types, where the real-time
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traffic has the highest priority and the BE traffic has the lowest. The
number of packets is proportional to the incoming throughput of each
traffic class.

Based on the traffic type, the queue of AG is logically divided into
several subqueues, e.g., voice traffic is sorted into the Qsubvoice

subqueue,
video traffic is sorted into the Qsubvideo

subqueue, and BE traffic is sorted
into the QsubBE

subqueue. Within a granted time slot, the bandwidth is
distributed to each type of traffic with a maximum limit, e.g. Vmax−voice,
Vmax−video and Vmax−BE .

3.5.2 Delay analysis

As explained in Section 3.4, the ith AG receives the estimated next
transmission time tinext from the OLT via the GATE message. On the
other hand, the AG receives requests from its connected SSs. Assuming
that the traffic arrival time, t, of any requests from an SSj to the corre-
sponding AGi are uniformly distributed in the interval [ti0, ti0 + Tcycle],
where ti0 indicates the starting time of the subframe AGi. The probabil-
ity of an SS traffic arriving at the ith AG during the time of an uplink
transmission to the OLT (T i

granted) will be Equation 3.8:

P[ti0 ≤ t < (ti0 + T i
granted)] =

T i
granted

T i
cycle

(3.8)

When traffic arrives at the AGi from the wireless domain, AGi is
able to estimate the waiting time for the traffic to be served. Calculated
as in Equation 3.9, the overall estimated delay (dest) includes the waiting
time until AGi is polled by the OLT (dpolling), the waiting time for the
prior data in the same queue being served (dqueueing) and the wireless
transmission (dtx−wireless) and propagation delay (dprop−wireless).

dest = dpolling + dqueueing + dtx−wireless + dprop−wireless (3.9)

Where dpolling is calculated based on the next cycle time (tnext) and
the packet arrival time (t). The tnext is computed as explained earlier.
dqueueing is determined by the current subqueue size and the assigned
bandwidth within a subframe. If the subframe has enough empty space,
the new coming packet can be served right after the queued packets
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in the following subframe. Since the queuing delay is not a focus of
this work, it is assumed that the available buffer size in AG is enough.
dtx−wireless is calculated based on the packet size and the wireless link
rate.

dpolling is determined by the information provided in the GATE mes-
sage (e.g. the starting transmission time t0, the granted slot time tgranted

and the next transmission time tnext). As shown in Figure 3.4, there are
three different cases, where AG receives the connection request from SSs
and the polling delay is calculated.

• Case1: the request of jth SS, SSj, arrives when the AGi is being
polled. A request can be accepted and served within the current
subframe only if the following two conditions are fulfilled: (1) the
corresponding packets can be received before the current subframe
is finished; (2) there is enough space in the ongoing upstream sub-
frame to carry the arriving packet from the SS at the instant t.
In this situation, Case1a, the polling delay is dpolling = 0. Oth-
erwise, as Case1b, the arriving packet will be stored in the AG’s
buffer and transmitted in the next assigned upstream subframe.
Therefore the polling delay is dpolling = tnext - t.

• Case2: the request of SSj arrives when the AGi is being polled. If
the corresponding packets can not be received (at time t) before
the current subframe is finished, the request has to wait until the
next cycle to be served. Thus, dpolling = tnext - t.

• Case3: the request of SSj arrives when the AGi is waiting to be
polled. The earliest time for the request to get served is the next
polling time. Thus, dpolling = tnext - t.

In the case t ∈ [ti0, ti0+T i
granted), the request arrives at the time when

the AG is being polled. The polling delay is determined by the packet
arrival time and the available amount of buffer. If the request of SSj

arrives at the AGi, which is waiting to be polled, i.e., t ∈ [ti0 + T i
granted,

ti0+T i
next−tx), the packet has to wait until the remaining part of an uplink

transmission from other AGs to the OLT is completed. It is noted that
an increase on the subframe size T i

granted can result in a larger number
of accepted requests, but it also increases the polling delay.
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Thus, the overall estimated delay for a connection request from SS
to the OLT is calculated as indicated in Equation 3.10. Lpacket is the
length of upstream packets of SSj . Rwireless is the wireless transmission
rate of SSj . T i

j,prop−wireless is the propagation time from SSj to AGi; ti0
is the starting time of the subframe of AGi and tinext is the time when
next polling message arrives.

dest =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Qi(t)

Ri
optical

+ 0 +
L

j

packet

R
j

wireless

+ T i
j,prop−wireless , if Case1a

Qi(t)

Ri
optical

+ (tinext − t) +
L

j

packet

R
j

wireless

+ T i
j,prop−wireless , if Case1b

Qi(t)

Ri
optical

+ (tinext − t) +
L

j

packet

R
j

wireless

+ T i
j,prop−wireless , if Case2,3

(3.10)
In above equation, the first element calculates the queuing delay.

The second element indicates the polling delay. The last two elements
represent the transmission and propagation delay in the wireless trans-
mission.

3.5.3 CAC in the Hybrid Optical Wireless Network

In order to support and protect the QoS of real-time traffic streams, in
addition to bandwidth allocation, an AC scheme is required to decide
whether to admit a real-time traffic stream based on both admission
policies and QoS requirements supplied by the application at the end
users. Assuming for real-time services, QoS metrics are predefined and
various thresholds are specified. As mentioned earlier, the problem of
the existed resource management in hybrid optical wireless networks is
the lack of overall considerations to both optical and wireless network
conditions. Admitting a new connection request in a WiMAX network,
without considering the queuing time and polling time in the following
EPON system will grant bandwidth to nonconforming traffic, e.g. to
grant bandwidth to a service request, for which the delay requirements
cannot be met.

Allocating transmission opportunities to nonconforming traffic will
cause waste of scarce bandwidth and QoS degradations to conforming
traffic. Intelligent decisions could be made to admit suitable traffic flows
with guaranteed QoS in the network. Our proposed admission control
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algorithm is a rate-based Integrated Optical Wireless Admission Control
(IOW-AC) scheme, by which the admission mismatch between the opti-
cal and wireless networks is avoided and the overall delay in the hybrid
network is evaluated.

The real-time traffic flows are characterized by the demanded QoS
parameters, for example, the delay bound (dmin). The AG can perform
the admission control, which is based on the delay requirement of the
new arriving flow and the estimated delay. The IOW-AC provides guar-
anteed QoS and increases the network throughput by accepting requests
without violating the delay constraints. The proposed IOW-AC scheme
can be accomplished as illustrated in Figure 3.5. When a new request re-
ceived at AG, the transmission and propagation delay are first calculated
according to the wireless network conditions and traffic profile. Secondly,
the queuing delay is evaluated based on the current buffer occupancy.
Then, using the polling status information, the expected polling delay
is computed as explained in Equation 3.2 and Equation 3.6. Finally,
when the IOW-AC approach determines the overall delay, dest, for a
multi-domain connection request. This value is compared to the delay
with the delay bound, dmin. If the required delay bound is satisfied, the
request is accepted (dest < dmin). Otherwise, the request is rejected.

3.6 Performance Evaluation

Extensive simulations have been conducted to evaluate the performance
of the proposed enhanced resource negotiation and integrated admission
control for hybrid optical wireless network. A discrete event system,
OPNET modeler [60] , is used to provide simulation results. Detailed
simulation platform is given and results are presented to compare the
proposed mechanism with the traditional admission control scheme. The
simulations are carried out for different network sizes and different pa-
rameter settings.

The total number of AGs K is 32 and the EPON link rate is assumed
as 1 Gb/s. The guard time between two adjacent transmissions on the
optical uplink fiber is 5 μs. The upstream traffic from SSs to the OLT
is considered and generated. The EPON MPCP operation is modeled.
In WiMAX, the request/grant control mechanism is simulated. The
traffic pattern is generated as Poisson distribution. Both real-time traffic
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Is the total queue full?
no

Reject request

yes

Is t when AG 
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and the optical upstream link rate 
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Figure 3.5: Flowchart of the proposed uplink IOW-AC scheme operations.
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Figure 3.6: Comparison of IOW-AC and Normal-AC on the percentage of conform-
ing traffic throughput.

and BE traffic are considered. For users of real-time traffic, e.g. video
streaming service, the traffic profile has a variable packet size, uniformly
distributed between 400 and 1500 bytes. The delay bound for the real
time traffic is 75 ms. This threshold value is chosen as: in Reference [23]
the end-to-end delay requirements for real-time application is less than
150 ms. In this work, the transmission covers from the user to the OLT,
which is half of end-to-end transmission. Therefore, the delay threshold
is 75 ms in this simulation.

Figure 3.6 shows the percentage of conforming traffic throughput for
different traffic arrival rate and compares results between the IOW-AC
scheme and the Normal-AC scheme. Results show that the IOW-AC
shows better admission control ability to the nonconforming traffic. Be-
ing aware of the next cycle time, IOW-AC is able to take the polling
delay in the EPON system into account and therefore block more non-
conforming traffic than the normal AC. The IOW-AC shows superior
behaviour especially when the real-time traffic arrival rate becomes high.
The channel utilization becomes better in the IOW-AC scheme because
there is wastage in the Normal-AC scheme taken by the nonconforming
traffic.

Figure 3.7 shows the ratio of admitted requests in the total received
requests for both real-time traffic and BE traffic, using the two different
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admission control schemes. The incoming requests that can be admitted
only when their QoS requirements are met. This figure shows that the
IOW-AC admitted larger amount of conforming traffic than the Normal-
AC for both the real-time and BE traffic. The differences become more
significant when the traffic arrival rate increases.

In Figure 3.8 the simulation results of the dropping probability are
simulated for the real-time traffic and BE traffic, under a condition of
limited buffer size at an AG node. IOW-AC scheme achieves lower drop-
ping probability for both real time traffic and best effort (BE) traffic.
This is because IOW-AC only accepts conforming traffic and saves more
bandwidth for the conforming real time traffic without any drop even
under high real-time traffic rate. It is observed that there are similar
results as throughput performance. The IOW-AC scheme serves more
BE traffic instead of dropping packets, which yields better bandwidth
utilization.

In Figure 3.9 the percentage of accepted requests are plotted for dif-
ferent length of subframe period ranging from 1 ms to 5 ms. As been
mentioned before, when the subframe period (Tgranted) increases, there
are more requests can be served in the uplink optical link. However,
the total cycle time (Tcycle) becomes larger and the polling delay in-
creases simultaneously. In this figure, the IOW-AC scheme blocks non-
conforming traffic especially when the subframe period is large. Under
the Normal-AC scheme, the accepted real-time traffic is most of non-
conforming traffic type.

In Figure 3.10, the polling delay (dpolling) experienced at the AG
node in the IOW-AC scheme is examined. The buffer size is specified as
unlimited. Therefore, the Tqueuing of voice and video traffic will not be
a dominating factor in the AC. On the contrary, the influence of Tpolling

on AC is highlighted, which is important to observe in simulations. The
value of the polling delay is zero if the request packet is received during
the subframe period. Otherwise, the polling delay is the interval between
the current time and the next poll time. In this figure, the polling delay
is a time average value. As the subframe period increases, the polling
delay becomes larger because it takes longer time for the OLT to serve
all AGs. Therefore, the polling delay is also depending on the number
of connected AGs. The more the number of AG, the longer the polling
delay.
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Figure 3.7: Comparison of IOW-AC and Normal-AC on the percentage of admitted
request number.
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Figure 3.8: Comparison of IOW-AC and Normal-AC on packet dropping probability
under limited buffer size.
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Figure 3.9: Comparison of IOW-AC and Normal-AC on accepted request under
limited buffer size.
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Figure 3.10: Time average polling delay in IOW-AC scheme under different number
of AGs and different length of subframe period.



3.7 Summary 47

� �� �� �� �� �� ��

��

��

��

��

��

��

��

	�

	�


�


�

���

���

�
�
��
�
�
��
�
�
	

�	
�
�

��
��
�
	�
�
�
��
��

�
	�
��
��
��
	

��
	�
�
�
��
�
	�
�
�
�

�
��

�

��������	�
��

�������	�����

��������	����

��������	����

��������	����

Figure 3.11: Percentage of admitted real-time traffic in IOW-AC scheme under
different number of AGs and different length of subframe period.

In Figure 3.11 and Figure 3.12, the admitted real-time traffic and
the BE traffic are compared under different number of AGs and different
length of subframes, in the IOW-AC scheme. The number of blocked
real-time requests increases using the IOW-AC scheme when the number
of AGs and the period of subframe become larger. It is observed that
the benefit of the proposed integrated resource management mechanism
highly depends on the network size and traffic profile.

3.7 Summary

In this chapter, an integrated resource management mechanism is pre-
sented for the hybrid optical wireless networks aiming for maximum user
QoS and maximum network throughput. The optical network and wire-
less network is jointly optimized using an integrated resource reservation
and admission control scheme. The control platform aims to enhance the
signaling communication with the least modification to the existed pro-
tocols in optical and wireless domains and the highest network channel
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Figure 3.12: percentage of admitted BE traffic in IOW-AC scheme under different
number of AGs and different length of subframe period.

utilization. The integrated resource management is favorable to provide
QoS guarantees of real-time applications and improve the throughput
of the best effort traffic. The main contributions of this chapter are as
follows:

• An enhanced resource negotiation scheme, where the control mes-
sages in the existing EPON signalling protocol, MPCP, are ex-
tended with a field to carry the additional information of optical
network conditions;

• An integrated optical wireless admission control algorithm, which
makes decisions for the overall integrated network.

Simulations conducted using the OPNET modeler show that the pro-
posed system achieves significant improvements over the traditional ad-
mission control approach in terms of the user QoS experiences and the
network resource utilization. These gains are achieved without com-
plex modification on the existed network protocols. Another interesting
observation is that if the assigned subframe period for each AG are
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increased, the proposed admission control scheme achieves more signif-
icant improvements. Since the network throughput is relevant to the
AG parameters, an operator can estimate the performance based on
this simulation results. The benefit of the proposed integrated resource
management mechanism highly depends on the network size and traffic
profile. The analysis provides a good assistance or guidance in the re-
search of hybrid optical wireless network architecture, including resource
management, optimizing QoS and demanding service provisioning.





Chapter 4

Load Balancing Mechanism
in the Integrated Control
Platform

In this chapter, the problem of load balancing in terms of optimal cell
selection and transmission power assignment is covered. The model
applies for the convergence network of EPON and WiMAX where the
TDM-like resource assignment scheme and the WiMAX air interfaces
are used. Cell breathing is a well known cellular telephony concept that
handles congestion by changing the coverage area of a fully loaded cell.
In WiMAX, cell breathing can be achieved by changing the transmit-
ting powers of the base stations. In the integrated EPON and WiMAX
system, access gateways, i.e. EPON integrated base stations, report
their residual downlink queue sizes to the central office using modified
Multi-Point Control Protocol (MPCP). In this chapter, the cell breath-
ing technology is studied as a load balancing mechanism into WiMAX
network with an integrated EPON backbone. Centralized gateway se-
lection and power allocation can be made jointly in the central office for
all connected access gateways.

The major research issues are outlined and a cost function based op-
timization model is developed for power management. An iterative al-
gorithm is proposed that equalizes the expected transmission time based
on the reported queue sizes and adjusted transmission power level. In
particular, two alternative feedback schemes are proposed to report wire-
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less network status. For a given set of multimedia users with minimum
quality of service requirements and a set of best effort users, the op-
timal resource allocation is decided, so that services for the users are
guaranteed and the total network utilization is maximized. The pro-
posed algorithm is simulated in integrated EPON and WiMAX system
and the results show validation of the framework, i.e., load balancing
schemes significantly outperforms fixed power control schemes.

4.1 Introduction

Optical networks offer greater bandwidth and reliability while wireless
networks can support greater coverage and mobility. In hybrid network
architectures, the resource management mechanism plays a key role to
ensure an efficient usage of both optical link and radio spectrum. This
is of particular importance for next generation broadband access net-
works which support simultaneously data, voice and multimedia services
(triple play services) to multiple users. A system level control platform
for integrated resource management is required to be considered since
most of research efforts in this field have been focused in either optical
networks or wireless networks solely. Our previous chapter shows de-
mands for an integrated control plane to achieve overall and cooperated
administration. Study of several system functions are of interest, includ-
ing resource distribution, scheduling, and call admission control. This
chapter continues the investigation of the integrated control platform in
the hybrid EPON and WiMAX network. In particular, a load balancing
scheme using the cell breathing technique is explored. The integrated
network architecture is illustrated in Figure 4.1, which shows a map-
ping between clients and AGs. In the hybrid optical wireless network,
the Optical Network Unit (ONU) functions and the Base Station (BS)
functions are integrated into a single device, namely an Access Gateway
(AG), which handles connections within the wireless network (single-
domain connections), or cross both EPON and WiMAX (multi-domain
connections). Clients associate with an AG with the strongest Received
Signal Strength Indicator (RSSI) of the AG’s beacon. Previous studies
[61] [62] show that client service demands highly vary in terms of both
time-of-day and location. Thus, traffic loads are often distributed un-
evenly among AGs, which results in congestions at popular locations.
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As shown in the figure, AG1 can become overloaded while nearby AGs
are lightly loaded.

OLT
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Figure 4.1: Illustration of imbalanced load distribution among AGs in the hybrid
network. All AGs are assigned the same power value. AG1 becomes heavily loaded,
as indicated by red color, while its neighboring cells have sufficient resources.

In an integrated optical and wireless network, coordinated control
could be accomplished through the use of an integrated control frame-
work. There are many opportunities to exploit the interworking be-
tween integrated EPON and WiMAX networks. The principles of the
hybrid network architecture allow the OLT to distribute data to AGs,
which further relay data to the target clients. To take advantage of the
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centralized system and the integrated control scheme, a load balancing
algorithm and an optical downlink scheduler are proposed, which is able
to control the AG transmit power dynamically and relocate traffic load
in the edge area away from the heavily loaded cell. In load balancing,
AGs are assigned with appropriate power level to avoid overload situa-
tions if a collocated system still has sufficient resources. A centralized
power allocation control is implemented in the OLT unit. In each front-
end wireless network, the base station is assigned with a proper power
level to achieve quality transmission. This is done by exploiting a set
of suitable power profiles that derive the maximum network through-
put and user quality of service. The concept of cell breathing is used
in conventional cellular networks to dynamically change the coverage
area of cells. Fully loaded cells contract their coverage area whereas the
lightly loaded cells expand their coverage area. Basic idea of load bal-
ancing is to relocate users in boundary regions from fully loaded cells to
lightly loaded cells. Our goal is to propose a novel integrated load bal-
ancing scheme, which utilizes a cooperative signalling protocol to collect
WiMAX network information and makes centralized power assignment
decisions in the EPON. The remainder of this chapter is organized as
follows. After presenting related work in Section 4.2, the system model is
introduced and the optimization power allocation problem in Section 4.3.
The relevance for MPCP-based load balancing mechanism is addressed
in Section 4.4. This approach is validated by simulation results for an
integrated network scenario is formulated in Section 4.5. Finally, this
chapter is summarized in Section 4.6.

4.2 Relate Works

Several researchers have studied resource allocation in wireless networks
in different environments, aiming at balancing load distribution and
achieve efficient channel utilization. As suggested in previous works, one
approach to addressing the load balance issue is to dynamically adjust
the coverage area of a cell to reduce or increase loads. Because the find-
ing of the appropriate power assignment to the cell tower to achieve load
balancing is a challenging problem, proposed cell breathing algorithms
typically rely on local heuristics [63–71]. Qiu and Mark [72] propose
to use perceived Signal to Interference plus Noise Ratio (SINR) at cell
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to determine if the cell is sufficiently crowded. Du et al. [73] present a
distributed bubble oscillation algorithm to achieve load balancing as a
multidimensional resource allocation problem. Recently, there are also
increasing efforts in applying cell breathing techniques to other wireless
packet communication network such as WLAN [74] to achieve efficient
resource utilization. While these schemes are able to achieve load bal-
ancing through the contraction/expansion of the cell sizes, they rely on
heuristic algorithms because the cell breathing decision is made through
distributed mechanisms. Besides adjusting the cell size, there are other
ways to achieve cell breathing. Sang et al. [75] propose a cross-layer
framework that enables call-level cell site selection and handoff. The
algorithm is a coordinated one and utilizes a central server to make the
scheduling parameter based on feedbacks on current cell loads. The
loads are calculated based on the minimum rate requirement for each
clients and the mean measured rate of each link. Instead of varying
coverage area through the use of power control, the algorithm reduces
the amount of time slots allocated to the users at the boundary.

Recently, there are significant interests in converging optical and
wireless networks to exploit the complementary characteristics of the
two networking technologies. These papers primarily focus on the ar-
chitectures for integrated access networks and offer examples of poten-
tial enhancement. Shaw et al. [50] present a novel integrated routing
method to achieve load balancing through the use of load-aware routing
in multi-hop network. The approach is applicable to mesh network, but
it does not provide the mechanism to achieve load balancing in single
hop Point to Multiple Point (PMP) networks. To the best of author’s
knowledge, load balancing method with detailed protocol design has not
been proposed in this area. This chapter takes a look at the challeng-
ing yet interesting multi-cell load balancing problem in view of network
capacity maximization, by utilizing the integrated EPON backbone to
make cooperative and centralized decisions for traffic distribution and
power assignment. The proposed cell breathing mechanism is based on
interworking between AG and EPON Optical Line Terminal (OLT) to
dynamically adjust the number of Subscriber Stations (SS) associated
to each AG.
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4.3 System Model

We consider the hybrid architecture with multiple WiMAX cells as
frond-end networks, where K AGs that connect to a central control
station, OLT, via the optical link. There is one AG in each cell. As
shown in Figure 4.1, the wireless network consists of a set of k cells {k
= 1, 2, . . . , K} of and a set of m users {m = 1, 2, . . . , M } in each cell.
The service area is partitioned so that each client connects to only one
AG at any given time.

For simplicity of presentation, a system consisting of two cells is
used to illustrate the cell breathing technique as shown in Figure 4.2.
Cell operation area is modeled by a circle with a coverage radius (Rr).
At any given time slot n, the cell coverage, the number of connected
SSs, and the offered data rates to SS are varied by allocating different
transmit power levels (Pt) to the AG. For instance, AG1 initially is
assigned with power P 1

t and covers SS1
1−4. After AG1 is reported as

overloaded, R1
r is contracted and its neighboring cell (R2

r) is expanded
in order to accommodate and serve additional SS1

3−4. Thus, the traffic
load is balanced between AG1 and AG2 with minimized packet loss.

Within a WiMAX cell all users share the common channel by using a
Time Division Multiple Access (TDMA) radio interface. The delivery of
the packets to subscriber users is performed on a TDM frame consisting
of N slots. Mobility is not considered in our simulation scenario, only
stationary (e.g. fixed terminals) or quasi stationary users (e.g. pedes-
trian) are assumed. The handover procedure is out of the scope of this
work. We assume that fast handover is supported to minimize delay and
delay jitter. In order to optimize the system and ensure overall QoS, the
queue size and delay merit are used to determine whether or not a cell
is overloaded. A cell overloading is said to occur, if 1) the total queued
data for all traffic classes exceeds a threshold, Qthr, or 2) delay to trans-
mit the queued real-time traffic is violated to the requirement, Dthr. In
the former case, the cell cannot take more traffic due to the buffer size
limitation. In the latter case, the cell cannot guarantee real-time traffic
with satisfied QoS requirements.
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Figure 4.2: Cell breathing in wireless network. The solid circles represent initial
coverage areas (at time n) and the dashed circles represent adjusted coverage areas
(at time n+1).

4.3.1 Air-interface in Wireless Networks

The size of cell coverage depends on transmit power, noise and path loss.
The received signal at the mth user in the kth AG, SSk

m, is an attenuated
version of the transmitted power level. The propagation model includes
path loss, shadowing and fading. In this chapter, the propagation model
defined in the IEEE 802.16 standard [76–78] is used to calculate the path
loss (PL).

PL(dB) = 20 log10

(4πd0

λ

)
+10γ log10

(d0

d

)
+ΔPLf +ΔPLh + s (4.1)

where λ is the wavelength. γ is the path-loss exponent. The pa-
rameter d is the distance between the BS and receiver. The parameter
d0 is 100 m. The parameter PLf is the frequency correction term and
the parameter PLh is the receiver antenna height correction term. The
parameter s is a log-normal shadow fading component.

The mean received power (Pr) is the difference between the sum of
the transmit power (Pt) and the antenna gains (Ga) and the path loss
(PL). The Signal to Interference plus Noise Ratio (SINR) is the ratio
of received signal power to the interference plus noise signal power (In),
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which is computed by Equation 4.2. There is a minimum acceptable
SINR (SINRthr) for receiving a quality satisfied signal.

SINR(dB) = Pr − In = Pt + Ga − PL − In (4.2)

where In denotes the total interference received at each user, which
consists of two parts: intra-cell interference and inter-cell interference.
The intra-cell interference is caused by other SSs within the cell and the
inter-cell interference is caused by the neighboring BSs. In this scenario,
TDMA scheme is applied and only one SS transmits during the assigned
slot time. It is assumed that there is no mutual interference among SSs in
a cell. On the other hand, the initial cell coverages of AG1 and AG2 are
non-overlapping by assigning proper transmission power values in order
to avoid cross-cell interference. Our analysis is restricted to a static
scenario, where it is assumed that all channel gains are constant. The
theoretical system throughput of a Single Input Single Output (SISO)
system, AGk, can be derived from the Shannon capacity [79] using the
expression in Equation 4.3:

T k
total =

N∑
i=1

log2(1 + SINRi), ∀k (4.3)

Clearly, the throughput is determined by the interference level, the
channel condition, applied transmitting power, and distance between
the AG and SSs. For simplicity, it is assumed that the dynamic power
control at AG allowing unique data rate for individual SS is not consid-
ered here. Thus, once the transmission power for the kth AG during a
slot time t, P k

t (t), is assigned, the system capacity can be estimated.

4.3.2 Service Queues

The main challenge for an integrated cell breathing algorithm is to
choose the optimal AG association and combination of power assign-
ments. At the same time, it is of importance to ensure transmission
rate and delay. To formulate the queuing states in this integrated cell
breathing problem, following notations are used:

ri(N): residual queue length in AGi at the beginning of period N
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Figure 4.3: Downstream queue occupancy for AG
i during cell breathing control.

αi(N): total traffic in AGi arrived from OLT during period N

di(N): total traffic departed from AGi to the SS during period N

Qi(N): downlink queue size in AGi at the beginning of period N

To visualize the problem, Figure 4.3 illustrates the AGi queue oc-
cupancy under integrated cell breathing control. At the beginning of
period N , a burst of packets αi(N) arrive at the AGi from the OLT and
a control message may also be sent to the AGi with the power assign-
ment if power control is issued. At the beginning of period N , AGi holds
the amount ri(N − 1) of data in the queue from previous period N − 1.
During this period N , the AGi is expected to transmit E[di(N)] to its
SS. E[di(N)] is denoted as di(N) in the following discussion and the
difference between E[di(N)] and di(N) are reconciled when the actual
queue length, ri(N)), is reported. The relationships between the queue
size and residual queue length are:

Qi(N) = ri(N) + αi(N) (4.4)

ri(N + 1) = Qi(N) − di(N) (4.5)

Thus, the difference equation for the AGi queue length is:

Qi(N +1) = ri(N +1)+αi(N +1) = Qi(N)− di(N)+αi(N +1) (4.6)

In the proposed integrated cell breathing problem, the AG load is
seen as the aggregate load contributed by its associated users. During a
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given network state, a subset of the AGs that suffer from maximal load is
called the congested AGs. The objective of the load balancing algorithm
is to minimize AG congestion load. The OLT determines the load of
the AGs by allocating different power levels. The optimal controller
would move the congested AGs into un-congested states and minimize
the impact of the transfer loads to neighboring AGs. We refer to the
resulting optimum queue length qi∗ from the optimization, where the
AG is neither under or over utilized under the optimal load allocation.
To quantify the effectiveness of such cell breathing controller, a state
variable xi(N) is introduced to quantify the difference between the actual
queue length from the desired queue length, xi(N) = Qi(N) - qi∗. The
difference equation for xi(N) can be further derived as the following:

xi(N +1) = Qi(N +1)− qi∗ = {Qi(N)−di(N)+αi(N +1)}− qi∗ (4.7)

It is further defined ui(N) = αi(N + 1) - di(N), then there is:

xi(N + 1) = Qi(N) + ui(N) − qi∗ (4.8)

The variable ui(N) contains two quantities, αi(N + 1) and di(N),
to denote the traffic to be allocated to AGi (control variable) and ex-
pected amount of traffic departed during current period N (measurement
variable). The second parameter is not exact and in this formulation,
the deviation between E[di(N)] and the actual di(N) is considered as a
source of noise. The expected amount of departed data can be estimated
using theoretical system throughput.

4.3.3 Problem Formulation

After the definition of the air-interfaces and service queues including the
constraint, the optimization problem is now formulated. The cost that
an AG suffers from assigned resources can be measured. System cost
merits contain the system throughput, delay, and the backlogged data
size. From the operator’s perspective, the profit increment represents
minimizing the total cost over all possible resource assignments. The
objective is to assign resources so that:

• The sum throughput of all AGs is maximized;
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• All connections with assigned transmission power deliver quality
services;

• The congested load in AGs is minimized.

The output of the optimization is a table consisting of the cell that
the downstream data should transmit to, and the power that is assigned
for the corresponding AGs. The cost is a measure of how efficiently re-
sources can be exploited if an AG is assigned with a certain amount of
downstream data packets. Given a finite horizon of n frame, an optimal
cell breathing controller would maximize the total network throughput,
defined as Equation 4.9. Each AGk attains its individual fixed transmit-
ting power level during a time slot, P k

t , to provide services with satisfied
QoS constraints of each user, while optimizing the global multi-cell sys-
tem throughput through balancing traffic load between AGs. Define
p = [p1, p2, . . . pmax] as the vector of cell power levels assigned to AGs
by the OLT.

maximize

K∑
i=1

Ti(pi) (4.9)

Subject to

p1 ≤ pi ≤ pmax, i ∈ K, (4.10)

SINRij ≥ SINRthr
ij , i ∈ K, j ∈ M (4.11)

Qi ≤ Qthr, i ∈ K, (4.12)

In the above program, the first constraint indicates that each AG
is assigned within a maximum power pmax. The second constraint
shows that quality transmission is ensured with assigned power. The
last constraint represents that the expected traffic load is less than a
pre-determined congestion level (e.g. queue size limitation Qthr).

4.3.4 General Iterative Algorithm

When a data frame arrives at the OLT for an SS, the central scheduler
has two decisions to make: 1) find the associated AG to transmit the
packet and 2) choose the minimum transmitting power to setup a qual-
ified transmission from the associated AG to the destination SS. It is
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necessary for AGs to report information of their connected SSs to the
central control office, the OLT. Required information includes the wire-
less channel condition (e.g. link rate), the distance between a user to the
base station, the residual buffer size (Qres), and the Residual Expected
Wireless Transmission Time (REWTT). Upon receiving feedback from
an AG, the OLT examines the load volume, evaluates congestion level,
and assigns a value of transmit power to the AG. Having defined the cost
minimization problem and derived the power assignment rules, an iter-
ative algorithm is presented, in order to solve the optimization problem
in centralized OLT unit. Each iteration consists of four steps:

1. If the cell is lightly loaded, such as Qi
res < Qi

thr or REWTT i <
Di

thr, the power levels remain their latest value without any change.
Otherwise go to Step 2

2. When Qi
res or REWTT i exceeds the threshold values, the cell

is sufficiently crowded and the step 1) is executed for neighbor-
ing cells. The procedure finds available nearby cells, which have
enough bandwidth to accept additional traffic load. If there is no
such cell, then go to Step 4. Otherwise go to Step 3.

3. The transmission power of the highly loaded cell is reduced, and at
the same time, the power levels in the lightly loaded neighboring
cells are increased. Some users in the boundary region will be
forced to handover from the overloaded cell to neighboring cells.
There is a minimum power level, so that the transmission power
cannot decrease unlimited.

4. If all neighboring cells unfortunately cannot assist, the power val-
ues will not be changed. Packet dropping may occur in the con-
gested cell.

In Step 3, the OLT needs to decide the size for the highly loaded cell
to shrink its range and for neighbouring cells to expand. In addition,
a set of users in the boundary region is chosen to change their serving
AGs by handover. The rules to select SSs are discussed in next section.
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4.4 Proposed Load Balancing Mechanism

As previously introduced in 3.4, EPON relies on Multi-Point Control
Protocol (MPCP) that is based on GATE and REPORT messages to
grant and request for uplink bandwidth. The GATE message is broad-
casted to all ONUs and target ONU receives the packets based on the la-
beled Link Layer Identification (LLID). The REPORT message is trans-
ferred to the OLT by ONU within its uplink transmission window. OLT
allocates uplink bandwidth based on either fixed bandwidth allocation or
Dynamic Bandwidth Allocation (DBA) algorithms. Here in the hybrid
architecture, ONU functions are implemented within the AG unit.

The load balancing mechanism is implemented based on the tradi-
tional MPCP framework. In order to achieve load balancing, the cell
breathing mechanism extends the MPCP control and incorporates two
frames to achieve power control and load feedback. The two frames
are GATE-p and REPORT-p. Similar to GATE, GATE-p is broadcast
downlink and contains the LLID and Pt to indicate allocated power
level to individual AGs. The GATE-p message is used for both assign-
ing power information and upstream bandwidth allocation information.
REPORT-p is a modification of the existing REPORT message and adds
the residual queue length (Qres) and Residual Expected Wireless Trans-
mission Time (REWTT ) to the message.

4.4.1 Information Exchanged and Cell Selection

Since the OLT has global knowledge of the state of the entire network,
the process of power assignment and traffic distribution is globally opti-
mized. Monitoring wireless network status is a mandatory feature in the
load balancing mechanism in order to guarantee correct and sufficient
knowledge at the OLT. Each AG is required to report information of
connected SSs, including position (rk), downstream bandwidth request
(bk, which is represented by the backlog information), and transmission
data rate (Rk) of each SS.

Within a highly loaded cell, two factors are taken into account when
choosing SSs to balance traffic load. First, SSs located at the edge of
a highly loaded cell are considered. The OLT starts to scan SSs with
low SINR (to its corresponding AG). If multiple users have the same
distance, all of them are chosen because they are forced to be adjacent
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cells at the same time, once the cell range is reduced. All SSs, S, are
arranged in an order based on their distances to the center base station
in the highly loaded cell. A set of h SSs are chosen to be disconnected
and reallocated:

S∗ = [SS1, SS2, . . . , SSh], where r1 ≥ r2 . . . ≥ rh and S∗ ∈ S (4.13)

Second, the number of SSs which are redirected to other cells should
be taken into account due to the handover overhead. The more SSs the
longer time is required to reconnect to other cells. The total bandwidth
request for S∗ to be sent to other cells should be as close as possible
to the difference between Qres and Qthr (or difference in mean delay),
because impressing large bandwidth demand to the neighboring cells
might cause congestions in the cells in the future.

h∑
i=1

bi = Qres − Qthr, i ∈ h (4.14)

h∑
i=1

bi

Ri
= REWTTi − Dthr, i ∈ h (4.15)

The implementation presented in next section considers a set of dis-
crete and restricted power levels in order to reduce computational com-
plexity and maintain sufficient interference control, respectively. After
the AG selection and power assignment are completed, the OLT labels
the messages with the appropriate target address and conveys to each
AG via MPCP control message.

As presented earlier, congestion in a cell, if observed, is solved by
contracting cell coverage and reallocating SSs to neighboring cells. In
order to determine the size of reduced cell range, the OLT requires de-
tailed information of SSs from each AG. To take the control message
overhead into account, it is impractical to report the current queue sta-
tus for each user. In order to scale the amount of control messages, a
partitioning of the wireless coverage area is considered by dividing this
into several inner circles. As shown in Figure 4.4, the total cell range is
divided into a set of regions, A = A1, A2, . . . Aα, where α is the fraction
number to fragment the maximum cell radius. Within an inner circle,
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Figure 4.4: Partition of the wireless coverage area into inner circles.

the wireless link rates (considering the wireless channel condition) are
averaged, and the queued data size is aggregated. Thus, the information
embedded into the REPORT-p message is classified and simplified. The
granularity of cell fragment decides the number of residual queue size
and expected transmission time embedded in the REPORT-p message.
The transmission power cannot decrease indefinitely. There is a mini-
mum value and the power level is decreased step-wisely according to the
division of inner circles. It is worth noticing that there is a trade-off
between the number of reported queues and the additional overhead of
REPORT-p message.

4.4.2 Feedback Schemes for the Load Balancing
Mechanism

In order to collect network status from all connected AGs, two cell infor-
mation feedback disciplines are developed and their performances in the
MPCP based load balancing mechanism are compared. The first disci-
pline is called Polling Period Report (PPR) scheme, where cells update
their network status whenever they are polled by the OLT. We show
that without increment of complexity compared to traditional MPCP,
the scheme attains improved performances in terms of network through-
put and delay. The second feedback discipline is called Short Period
Report (SPR) scheme, which is an extension to the PPR scheme. We
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describe these two feedback schemes in the following subsections and
then illustrate their performances by simulation results.

Polling Period Report (PPR) feedback scheme

Using the GATE-p message, granted bandwidth and start time are as-
signed to AGs. AGs are polled in sequence based on the scheduling
policy used in the OLT. In this example, AGs are polled in an increased
order of their LLID number using Round Robin (RR) scheduling. The
following load balancing procedure is carried out (illustrated in Fig-
ure 4.5):

- At time t1, the OLT broadcasts power assignments to its con-
nected AGs via GATE-p message. Each AG adjusts its transmit-
ting power and associates SSs.

- After receiving the GATE-p message, AG1 is polled and starts its
uplink transmission at t2. Along with data, the current Qres and
REWTT information of the AG1 are reported to the OLT. Upon
receiving the REPORT-p message at t3, the initial entry table is
updated at the OLT.

- If the AG1 is highly loaded, the OLT reduces the assigned power
to AG1 (Pt12 < Pt11) and increases its neighboring cell power
(Ptk2 > Ptk1). Traffic load is examined for neighboring cells. If one
neighboring cell is also highly or near highly loaded, the power
value cannot be increased. In this case, some SSs are not able to
handover to a new service BS.

- The GATE-p message is broadcasted along with the GATE-p mes-
sage at t4, and all AGs adjust their transmission power levels.
Since the subscriber device chooses the base station with the strongest
Received Signal Strength Indication (RSSI) among all received sig-
nals from AGs. When the cell coverage changes, some subscribers
in the boundary region (e.g. SS1

3 , SS1
4 in Figure 4.1) will be forced

to handover to a less loaded neighboring cell.

- The GATE-p message destined to AG2 contains both information
for transmission power adjustment and information for upstream
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bandwidth allocation. At t5, only AG2 is granted with upstream
transmission bandwidth.

- The new network status of AG1 is updated again when AG1 is
polled again by the OLT. If there is power adjustment during the
polling cycle (from t2 to t8), the feedback from AG1 after decreas-
ing/increasing its transmission power and contracting/extending
its region is reported to the OLT at its next polling time, t8.

As explained above, in the PPR scheme, an AG reports its current
traffic load and channel conditions to the OLT only at the time the AG
is polled. For example, the AG1 changes its power at time t2, and the
consequence of power adjustment is learnt at the OLT at time t9. When
the fixed upstream bandwidth allocation (i.e. TDM) is used, the polling
interval for an AG is fixed, so that the interval for each AG to report
is also a fixed amount of time. When DBA is employed instead of fixed
bandwidth allocation, REPORT-p message and the embedded downlink
load information is fed back to the OLT aperiodically. As discussed in
Section 3.4, a polling cycle (Tcycle) refers to a period in which all AGs are
served. Along with an increasing number of AGs, waiting for a polling
cycle to update the cell status may either result in a congestion that
cannot be discovered on time, or, alternatively, yield improper power
adjustment due to out-of-date information. Particularly, to account for
random wireless channel fluctuations, the feedback mechanism is impor-
tant to attain real-time cell status.

Short Period Report (SPR) feedback scheme

Although the implementation of PPR scheme is simple, the load balanc-
ing may be not optimized and effective because precise network status
cannot be attained, especially when the polling interval for an AG is
increased. Therefore, a feedback scheme with short updating period is
proposed. This scheme can be implemented by coordinating the up-
stream bandwidth allocation at the OLT and AGs.

The basic idea of SPR scheme is to grant AGs upstream bandwidth
to report their cell information after an AG is polled. As indicated in
Figure 4.6, the OLT broadcasts the GATE-p control message to all AGs
and assigns transmission power value according to the cell breathing al-
gorithm to attain global network throughput optimization (at t1). Upon
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receiving the GATE-p message, all AGs are required to inform their net-
work conditions by transmitting the REPORT-p message (during t2 to
t3). The OLT allocates a period for receiving REPORT-p messages from
all AGs and an upstream transmission period for the polled AG. Dif-
ferent from the PPR scheme, the entry table maintained in the OLT is
updated every granted slot time (at t4 and t8) to each AG instead of
being updated after all AGs are granted.

Compared to PPR scheme, the period in the SPR scheme that the
OLT receives network updating information is decided by the granted
upstream transmission bandwidth to each AG using SPR scheme. Cell
status is updated more frequently, so that the power management deci-
sions are made according to nearly real-time network conditions. The
period that the OLT allocates for receiving REPORT-p messages from
all AGs is defined as the REPORT-p window. It is worth noting that
the length of the REPORT-p window is determined by the number
of connected AGs and the size of REPORT-p message. Obviously,
the upstream link capacity is reduced by introducing the overhead of
REPORT-p window. Next section will show the increment on network
performance as a trade-off of introducing more control message overhead
in the SPR feedback scheme.

It is well known that the uplink optical bandwidth is shared by mul-
tiple AGs in the hybrid network architecture. The most important op-
eration at the OLT is to arbitrate the time for sending REPORT-p
messages by allocating upstream transmission periods precisely to AGs.
Using the PPR scheme, it requires no change on the uplink bandwidth
scheduling function at the OLT. On the other hand, the SPR scheme
requires two modifications:

1. The length of REPORT-p window (LRPWin) is the sum of the
transmission time of REPORT-p from every AG (SRP ). For the
polling cycle of an AG (Tcycle−SPR), the calculation takes account
of this newly introduced REPORT-p window.

LRPWin =

∑K
i=1 Si

RP

Ro
(4.16)
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Lcycle−SPR =

K∑
i=1

(
BW i

Ro
+ Tg + LRPWin

)
(4.17)

where BW i is the granted bandwidth to the AGi and Tg is the
guard time.

2. For the reason that the grant start time is used for transmitting
both the REPORT-p message and data payload in the polled AG,
the polled AG starts its transmission after other AGs, so that
REPORT-p messages from other AGs are not delayed because of
data payload transmission. The start time of the polled AG is
calculated by Equation 4.18.

tistart = tigrant +
max{T 1

rtt, T
2
rtt, . . . , T

K
rtt}

2
+

(
LRPWin −

Si
RP

Ro

)

(4.18)

where tigrant denotes the time to transmit the GATE-p message.
The second term on the right-hand side of the above equation
selects the largest return trip time value, because the GATE-p
messages are delivered to all AGs. The third term indicates that
the polled AG is the last one to start upstream transmission.

4.5 Simulation Results

4.5.1 Simulation Scenario

In this section, the integrated load balancing using cell breathing scheme
is evaluated in OPNET simulation environment [60]. The integrated
system is similar to Figure 4.1 and consists of K AGs (K = 16, 32,
64, or 128). The downlink optical transmission rate is 1 Gbps and
downstream data are broadcasted from the OLT to AGs. There are up
to 200 SSs connected into a wireless network. Traffic arrival process
follows a Poisson distribution and the mean arrival rate varies from 0.01
to 0.1 Mbps per SS. The guard time is 5 μs and the AG buffering queue
size is 50 MB. In the WiMAX system, network parameters are configured



72 Load Balancing Mechanism in the Integrated Control Platform

Parameters Value

System TDMA

Frequency band 3.5 GHz

System bandwidth 10 MHz

Path loss Erceg model [78];
model

Propagation typeC: flat terrain with light
environment tree densities [78];

User distribution Uniform distribution

BS transmit 40 dB
power

Fading st. dev 8 dB

BS antenna gain 17 dB

SS antenna gain 0 dB

BS antenna 35 m above ground
height

SS antenna 2 m above ground
height

Noise power −138.41 dB

Noise figure 7 dB

Table 4.1: A summary of WiMAX system parameters
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as in Table 4.1 [80, 81]. For simplicity there is one AG per wireless cell
and SSs are distributed randomly over the cell region.

For the simulation study, one heavily loaded cell at AG1 is con-
sidered. The neighboring cells of AG1 are lightly loaded. Thus, the
neighbor cells of AG1 are available to load balance bandwidth from the
boundary region of the AG1. The simulation compares the performances
of the load balancing (LB) solution against a scenario without using load
balancing (NLB). In the simulation, AG drops incoming packet when ei-
ther the queue is full or the delay requirement for real-time traffic is not
met.

4.5.2 Test Case1: Comparison of LB and NLB
mechanisms

We begin by testing the behavior of our load balancing scheme by vary-
ing the network traffic load. The scenario consists of 16 AGs. The
number of SSs is fixed as 200 SSs per AG. There are up to 80 percent
SSs located in the area, where is possible taken over by neighboring cells.
The admitted downlink rate is varied, so that the overall traffic load in-
creases incrementally as higher rate is assigned. Under different amount
of allocated bandwidth, various performance merits including network
throughput, average delay, and dropping packet size are measured.

We first simulate the network throughput rate vs. input traffic amount
(shown in Figure 4.7). Input traffic amount is used instead of the input
optical rate because optical line rate is significantly higher than wireless
data rate. Thus, total input traffic amount is presented and the simula-
tion generates the indicated amount of input traffic periodically over the
entire observation period. As expected, when the load balancing scheme
is applied, overloaded traffic in the AG1 can be shared by neighbouring
cells, and therefore, the overall network throughput increases. The LB
solution increases the network throughput in excess of 25% at best and
the improvements become more obvious when the input traffic load in-
creases. It demonstrates that the proposed cell breathing operation can
effectively handle heavy load in AG1 by reducing the transmit power
of AG1 and reallocating boundary SS. Hence, with the load balancing
of network, the congestion of the cell and in turn the whole system is
effectively relieved. However, the total output throughput in the heavily
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loaded cell is decreased due to reduced transmission power. When input
traffic load becomes heavier, AG1 cannot shrink the cell range since there
is a minimum power bound. In the case of NLB, AG1 continues to serve
the boundary SS, which overloads the AG while demanding relatively
longer transmission time due to low SINR available at the crowded cell
boundary. Hence it is advantageous to balance traffic load among cells.
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Figure 4.7: Comparison of LB and NLB mechanisms - overall network throughput

Next shown in Figure 4.8, the amount of dropped packets at AG1

is evaluated under different input traffic load. Under light traffic load,
the dropping probability of LB solution is zero, which performs better
than the NLB solution. However, when the input traffic load continues
to increase, neither LB nor NLB can meet the delay requirement or the
maximum buffer size. The gap between the two curves consists of the
output throughput rate difference and the traffic load from the boundary
area. We note that LB algorithm outperforms NLB and the amount of
improvement depends on the availability of boundary SSs that can be
reallocated to neighboring cells.

Then the average transmission delay in the AG queue is investigated.
The end-to-end transmission delay consists of the queuing delay in the



4.5 Simulation Results 75

OLT, the transmission delay in the optical downstream link, the queu-
ing delay in the AG, and the transmission delay in the wireless down-
stream. Because sufficient optical resources are assumed and high speed
optical link is available, the queuing delay in OLT and the optical down-
stream transmission delay are neglected. The queuing delay in the AG
is mainly determined by two factors: the queue length and the schedul-
ing scheme. Using load balancing algorithm, the queue length in AG
is affected, which is our focus. The benefit of using advanced schedul-
ing schemes is discussed later. In this test case, the First-In First-Out
(FIFO) scheduler is deployed for downstream transmission in wireless
networks. Shown in Figure 4.9, when the input traffic load is moder-
ate, using the load balancing algorithm achieves reduced queuing delay.
This is because AG1 is relieved from excess loads after load balancing
and can more efficiently handle the remaining queued data. Therefore,
using load balancing improves the delay performance.

4.5.3 Test Case2: impact of scheduling policies

We now show the impact of different scheduling policies at AG for down-
stream transmission in wireless networks. We choose a priority based
scheduling policy, High Rate First (HRF), as a comparison. Simulation
results show these measurements with LB and without LB (using FIFO
and HRF schedulers). The HRF scheduler improves network perfor-
mances by favoring connections with higher data rates when congestions
occur in wireless networks. Note that by using load balancing scheme,
congestions are avoided. Therefore, results in terms of network through-
put and dropped packet size are similar under FIFO case and HRF case
when LB is utilized (Figure 4.10 and Figure 4.11).

As for average delay performance in Figure 4.12, the HRF scheme
outperforms the FIFO scheme in both NLB and LB cases. On the other
hand, when the HRF scheduler is applied, the load balance scheme does
not reduce transmission delay. This is due to the fact that when more
input traffic load are admitted and AG power value is decreased, the
bandwidth that was assigned for the high data rate connections is now
shared by connections with lower data rates.
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Figure 4.8: Comparison of LB and NLB mechanisms - size of dropped packets
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Figure 4.9: Comparison of LB and NLB mechanisms - average delay
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Figure 4.10: Impact of scheduling policies - overall network throughput
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Figure 4.12: Impact of scheduling policies - average delay

4.5.4 Test Case3: impact of multiple feedback queues

We further investigate our load balancing scheme by measuring network
performances with various numbers of queues, which are reported to the
OLT via REPORT control messages. Although a small number of re-
ported queues generates low overhead of control messages, it will result
in an inaccurate estimation of the power adjustment for a cell. For ex-
ample, the AG power changes in fine granularity and more queue status
are required to be reported. If the AG is overloaded and has more traffic
to transmit, then the OLT allocates a reduced transmission power and
remove a certain traffic load. Unlike larger number of reported queues,
where for a given overloaded cell the OLT determines total connections
that should be shifted and the coverage range that should be reduced,
for the case where insufficient queue information is provided, if more
coverage range is decreased than necessary, then more users are forced
to be redirected, and this results in wastage of the bandwidth utilization
in the cell and high risk of causing congestion in neighboring cells.

We run simulations for aggregating queue status into 2, 4, 8, 16,
and 32 groups and reporting to the OLT. The number of redirected
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users is shown in Figure 4.13. When report group is 2, half of SSs
in the boundary area are removed even if only 10 percent of them are
necessary. As for a report group with large number, it makes sure to
satisfy the guaranteed bandwidth by removing suitable number of SSs.
When the traffic load is increased, the number of redirected SSs becomes
higher. However, when the system reaches saturation, the number of
redirected SSs starts decreasing. This is due to the fact that when more
incoming traffic is admitted, the cell becomes overloaded and contracts
its coverage sooner. Accordingly, as illustrated in Figure 4.14, results
show that there is at most 40% increment in network throughput. This,
in real and practical settings, will cause a trade-off between the overhead
of REPORT control messages and network transmission efficiency.

4.5.5 Test Case4: impact of multiple AGs

In this scenario, performance of the load balancing scheme with different
number of AGs is analyzed. When the number of AGs is increased,
the interval between two successive polling control messages for an AG
is increased. In other words, the period of updating the cell status
(i.e., queue sizes and channel conditions) is increased, which may cause
problems if the out-of-date information is utilized during load balancing.
Figure 4.15 depicts the amount of redirected packet size from the heavily
loaded cell to neighboring cells. We observe that the volume of traffic is
less when the OLT can derive information of the heavily loaded cell more
frequently. The difference in the power adjustment and the number of
reallocated SSs is due to the difference in the frequency of updating cell
status. Subsequently, performances in terms of throughput, dropped
packet size, and delay are simulated. From Figure 4.16 to Figure 4.17 it
is observed that the results for the 16 AGs case are better than higher
AG numbers. The load balancing scheme is more effective when the
updating period is moderate.

4.5.6 Test Case5: Comparison of PPR and SPR
feedback schemes

In this test case, performances of PPR and SPR feedback schemes are
shown by simulation results. As discussed in Section 4.5.5, the network
performances are degraded when the number of AGs is increased. The



80 Load Balancing Mechanism in the Integrated Control Platform

0 2 4 6 8 10 12 14 16 18 20

0

10

20

30

40

50

60

70

80

90

100

N
u

m
b

e
r 

o
f 
re

d
ir

e
c
te

d
 S

S
s

Input Traffic Load (downstream) (Mbps)

 report group = 2

 report group = 4

 report group = 8

 report group = 16

 report group = 32

Figure 4.13: Impact of multiple feedback queues - size of redirected SSs
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Figure 4.14: Impact of multiple feedback queues - overall network throughput
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Figure 4.15: Impact of multiple AGs - size of redirected SSs
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Figure 4.17: Impact of multiple AGs - size of dropped packets

reason is that the interval to update cell status becomes larger. We
consider a network scenario with 64 and 128 AGs.

Figure 4.18 shows the size of redirected SSs as a function of the
input traffic load of the overall network. We can see that the SPR
scheme outperforms the PPR scheme in terms of resource utilization
especially when the traffic load is high. The reason is that when the
system load is high, the network status, such as queue size, is changed
within shorter period compared to the case when system load is low.
SPR scheme makes sure that the congestion in a cell can be reported
and discovered on time, so that the OLT can adjust the power value
of the overloaded cell and the size of redirected SSs is decreased. A
relatively long interval to update cell status increases the buffer size, so
that more SSs are reallocated. In other words, using SPR scheme, a cell
serves more traffic and generates better network utilization.

Figure 4.19 shows the average transmission delay experienced by the
data in the overloaded cell. Using PPR scheme the cell experienced
high delay, because the heavily loaded situation cannot be solved on
time, . On the other hand, with SPR scheme, it is observed that the
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Figure 4.18: Comparison of PPR and SPR feedback schemes - size of redirected
SSs

load balancing mechanism is more effective to relieve high traffic load
burden from the overloaded cell.

Next, the percentage of the REPORT-p window versus the allocated
upstream bandwidth is measured. The smaller percentage is, the lower
overhead produced by the REPORT-p window. In this simulation, the
TDM upstream bandwidth allocation is used, so that each AG is polled
and assigned with fixed upstream transmission period. We define the
overhead of REPORT-p window as Equation 4.19:

Overhead(%) =
NAG · (Sbasic + Ngroup · Saddt)

SBW

· 100% (4.19)

where NAG is the total number of connected AGs. Sbasic is the
size of the basic fields in the REPORT message, including source and
destination address, synchronization time, and so on. Saddt is the ad-
ditional information, such as grouped residual queue size and residual
expected transmission time, which are used for adjusting power assign-
ment. Ngroup is the division of total cell coverage. SBW is the assigned
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Figure 4.19: Comparison of PPR and SPR feedback schemes - average delay

upstream bandwidth to each AG, which is a fixed amount in this sce-
nario.

Figure 4.20 shows the overhead of the REPORT-p window when
the assigned upstream bandwidth for data payload is increased. We
can see that when the number of AG grows, the variation of the over-
head grows as well, while the overhead in the PPR case remains as the
lowest. Using the PPR scheme, only the polled AG needs to transmit
REPORT-p message. Therefore, the overhead is much smaller in the
PPR case. We conclude that the SPR scheme improves the load bal-
ancing efficiency and results in better network performances, however,
at the cost of moderately increased control message overhead.

4.6 Summary

In this chapter, an efficient load balancing mechanism using cell breath-
ing technique has proposed for the integrated EPON and WiMAX net-
work. A load balancing algorithm using dynamic power control to effec-
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Figure 4.20: Comparison of PPR and SPR feedback schemes - overhead of
REPORT-p control messages

tively adjust the size of cell coverage to maximize overall network capac-
ity is considered. Specifically, centralized gateway selection and power
allocation scheme are presented. A modified MPCP control is presented
where downlink power allocations and loads feedback are made through
the modified EPON control messages. In the OLT, the objective is to
make jointly downlink scheduling decision and determine the transmit
power. The basic idea of this algorithm is that when a cell sends out a
heavily loaded indicator, the OLT starts redirecting some SSs that are
located in boundary region to less loaded neighbouring cells by reducing
the transmit power. The term ’cell breathing’ is referring to the phe-
nomenon where the size of a cell shrinks when the load increases, and
expands when the load decreases. In this way, the heavily loaded cell
can shift its load in the boundary area to its neighboring cells.

An iterative algorithm is proposed that equalizes the expected trans-
mission time based on the reported queue sizes and adjusted transmis-
sion power level. This algorithm, refering to as the integrated load
balancing problem, improves two main network performances while en-
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suring that users achieve QoS targets. Firstly, it reduces the possibility
the case that a cell becomes overloaded, which reduces the probability
of packet dropping and overdue delay. Secondly, it increases the band-
width utilization in multi-cell system. The performance of the proposed
cell breathing in integrated EPON and WiMAX system is evaluated in
terms of network throughput, packet dropping probability and average
queuing delay. Simulation results show that cell breathing significantly
outperforms fixed power scheme.



Chapter 5

Energy Management
Mechanism in Ethernet
Passive Optical Networks
(EPONs)

As concerns about energy consumption grow, the power consumption
of the EPON becomes a matter of increasing importance. In respect
of energy efficiency, the current standard has no management protocols
aiming to reduce power consumption in EPONs. In this chapter, we pro-
pose an Energy Management Mechanism (EMM) for downlink EPON
systems. The proposed mechanism is designed to enhance the stan-
dardized control scheme in EPON with the objective to increase energy
efficiency while satisfying diverse QoS requirements. The main idea is to
put an Optical Network Unit (ONU) into the sleep mode and determine
a suitable wakeup time scheduler at the Optical Line Terminal (OLT).
A generic EPON system is considered, which is composed of an OLT
and several ONUs that are EMM enabled. An energy consumption op-
timization problem aimed at saving energy is proposed and two heuristic
sleep mode scheduling policies are addressed to solve it. The scheduling
algorithms are tightly coupled with the upstream bandwidth allocation
and downstream transmission scheduling together through an integrated
approach in which the total awake time in ONUs is minimized. There

87



88
Energy Management Mechanism in Ethernet Passive Optical Networks
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is a trade-off decision between maximizing the power saving and guar-
anteeing the network performance at the same time. Simulation results
show that an EMM-based EPON with well designed scheduling disci-
plines is essential to achieving significant energy saving while meeting
the delay and throughput constraints.

5.1 Introduction

As studied in [82–86], it has been widely recognized that reducing power
consumption in data communication network becomes an important is-
sue to global environment and future human life. Recent research has
shown that, among all network segments, broadband access networks are
the highest share of the network energy consumption, which consumes
more than 75 percent of energy consumption by all telecommunication
equipments today. Due to the rapid expansion of access network con-
nectivity, increasing number of users and data rate are foreseeable in the
future broadband access networks. As a result, energy consumption of
future broadband access networks would continue to rise, with a steady
annual growth rate in the near future. Therefore, it has raised atten-
tion in both academia and industry to design energy efficient network
systems. Commonly, sleep mode operation is introduced to allow that
nodes (or stations) can switch to sleep when they are idle and wake up
when they receive or transmit packets. Such approach has been widely
exploited in wireless networks, where saving battery power in mobile sta-
tions is of paramount importance due to finite power supplies in wireless
devices [87–92].

The EPON, a prevailing deployed broadband access technology, pro-
vides cost efficiency and high data rate for the last mile access. A typical
EPON is a Point-to-Multipoint (PMP) network with a tree based topol-
ogy, where an OLT connects multiple ONUs via optical links. The OLT
plays a role of distributor, arbitrator and aggregator of traffic. In the
upstream direction (from ONUs to the OLT), multiple ONUs share a
single link and traffic may collide. The OLT distributes the fiber ca-
pacity using an upstream bandwidth arbitration mechanism to avoid
collisions. In the downstream direction (from the OLT to ONUs), data
frames are broadcasted to all ONUs. ONUs filter and accept data that
are addressed to them. However, ONUs have to constantly listen and ex-
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Figure 5.1: EPON upstream (multi-point to point) and downstream (point to multi-
point) transmission.

amine downstream traffic, which results in wasting significant energy in
the ONU. Shown in Figure 5.1, in the traditional EPON, ONUs consume
energy to keep active when there is neither upstream nor downstream
traffic (illustrated as the dashed boxes). As a result, minimizing power
consumption is a major factor driving the design of EPON devices and
of the protocols therein. An effective Energy Management Mechanism
(EMM) that schedules the sleep mode period to ONUs is a key to con-
serve power.

The major sources of energy waste of shared resource EPON sys-
tem include: overhearing, control packet overhead, and idle listening.
Overhearing represents that an ONU receives and decodes packets that
are not destined to it. Control packet overhead means the transmission
of control messages, which are necessary to coordinate transmission be-
tween the OLT and ONUs, and unfortunately increases time and energy
consumption. At last, idle listening means active time and energy ONUs
spent on waiting for the next upstream and downstream transmission. It
is clear that an energy efficient scheduler is designed aiming to eliminate
these sources of useless energy consumption.

To reduce power consumption, ONUs are designed to enter sleep
mode when they do not need to either receive or send traffic. During
a sleep period, ONUs turn off the transceiver in order to save energy.
In case there is incoming data for a sleeping ONU, data is queued in
buffers at the OLT. Obviously, it is better to keep an ONU to stay in
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sleep mode as much as possible to conserve its energy. However, a power
management mechanism with efficient scheduling for sleep and wake-up
periods among multiple ONUs is a challenging task due to:

- ONUs should wake up and exchange traffic with the OLT. How-
ever, arrival traffic profile is not always known by the device, be-
cause the downstream and upstream traffic can either periodically
or aperiodically arrive. Therefore, the sleep period should be care-
fully assigned in order to avoid missing any incoming packets.

- During sleep period, data is buffered and prescheduled for up-
stream and downstream transmission in both the OLT and ONUs.
Due to QoS constraints in terms of delay and latency, the sleep
period should be carefully scheduled, so target ONUs can wake up
and complete transmission without violating QoS requirements.

As discussed in next Section 5.2, several studies have been proposed
to analyze the power consumption for EPON, while applying the ap-
proach of allowing ONUs to sleep mode. Although different aspects
have been investigated on how to minimize energy consumption in PON
systems, there have been few studies focusing on the protocol design for
supporting sleep mode ONUs in EPON. To implement EMM in EPON,
the legacy control scheme requires modifications and extensions. More-
over, very few have explicitly addressed the trade-off between energy
consumption and network performances. To the best of our knowledge,
our work is the first to propose the assignment of sleep period to ONUs
taking into account of the traffic transmission in both upstream and
downstream directions.

The remainder of this chapter is organized as follows. We first give
a brief description of related works in Section 5.2. The introduction
of the system model is addressed in Section 5.3. The design of EMM
based EPON with two different downstream schedulers is introduced
in Section 5.4. Simulation environments and results are outlined and
discussed in Section 5.5. Finally, conclusions and future work are drawn
in Section 5.6.



5.2 Related Works 91

5.2 Related Works

Issues of energy efficiency have been studied in EPONs as well as in
other optical access networks. In this section, we present related works
and compare their models with ours.

Authors in [93] propose a management protocol for ONUs to request
entering in sleep mode. The OLT reserve a minimal bandwidth for ONUs
in sleep mode. During a sleep period, no connection is established and
no traffic is delivered. The sleep mode can be terminated by either the
OLT or the ONU by using an administration message. This protocol
eliminates conventional requirements for a complete activation proce-
dure in ONUs. The authors address the impact of sleep mode protocol
for re-activation process in GPON.

In [94], the authors present implementation challenges of sleep mode
operation in PONs, such as achieving clock synchronization and reduc-
ing the clock recovery overhead. The process of regaining network syn-
chronization after waking up from sleep mode is studied in both GPON
and EPON system. Two novel ONU architectures are proposed and
compared with current ONU architectures on power consumption and
wakeup overhead. As already indicated, we focus on protocol design
and do not address the physical implementation issues in our work. The
architectures as well as the overhead values proposed in [94] can be used
for this purpose.

Another paper [95] proposes a power saving mechanism for 10 Giga-
bit class PON, where ONUs are implemented with a sleep and periodic
wakeup regime. The sleep mode is triggered based on negotiations be-
tween the OLT and the ONU, and a variable sleep time is allowed. The
authors use a prediction model of traffic profiles to determine the ini-
tiation and the duration of sleep mode. A probabilistic analysis of the
presence or absence of downstream traffic is required in order to ensure
the ONU can wake up and the packet is delivered on time. This model
differs from ours in that our model does not use estimation and the
energy management mechanism is mapped in EPON MAC layer.

Author in [96] presents the EPON power saving issue on the IEEE
802.3az meeting in September 2008. The functions for power saving are
proposed to be implemented in both the OLT and ONUs. The initiation
and termination of sleep mode by using handshake messages are drafted.
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The attention of energy efficiency is raised in the IEEE standardization,
however, there are considerably few research works in saving energy
consumption of optical network management systems. Our work inves-
tigates the current control mechanism for EPON and proposes control
protocol for sleep mode operation.

The relationship between energy and data rate in general optical
IP networks was also studied in a different context. For example, [97]
presents power saving of different network architectures, including all-
optical networks, first-generation networks and multi-hop networks. Power
consumption of electronic versus optical components in optical WDM
networks is investigated under different traffic loads. In [85] this prob-
lem is generalized by considering the power consumption in an optical
IP network. A new network-based model is established, which includes
core, metro and access networks.

5.3 System Model

In this chapter, we consider an EPON system consisting of an OLT, 1 : K
splitter and multiple ONUs. The upstream and downstream traffic are
separated in different wavelengths, typically 1310 nm for the upstream
transmission and 1550 nm for the downstream transmission. TDMA is
used in the physical layer where bandwidth is divided in time slots. Each
ONU maintains an upstream buffer and sends upstream data to the OLT
during assigned time slots. For simplicity, we assume in this chapter
that the upstream data rate is fixed for all ONUs. In the downstream
direction, when the arrival rate at the OLT exceeds the output data
rate, data are queued in the OLT and transmitted when downstream
bandwidth is available.

We also assume that the OLT and ONUs can regain synchronization
successfully so that ONUs can enter sleep mode and return back to
awake mode. The power consumption value in the awake state includes
energy consumed in listening to the OLT and in receiving or transmitting
data. We neglect the transition delays and the energy consumption when
an ONU changes states. We assume that the packets are able to be
served within an integer number of time slots. During the observation
period, the number of ONUs is also fixed. Next we list some notations
(Table 5.1) used in the rest of this work and then formulate the energy
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Notations Value

K The number of ONUs registered in the OLT.

i The index of ONUs in EPON. i ∈ K

N The total time slots within the overall observed
transmission period.

n The index of time slot. n ∈ N

sn
i ONU i state indication (awake mode

or sleep mode) in time slot n.

T n
i Period of time slot n in ONU i.

Pawake The average amount of energy (Watt)
consumed during the awake period.

Psleep The average amount of energy (Watt)
consumed during the sleep period.

Table 5.1: Notations in energy efficiency mechanism
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saving scheduling problem.

Assuming that the overall transmission period is divided into N time
slots, ONUs are either in awake mode or in sleep mode during the time
slot n. The total energy expenditure model is formalized as follows:

E =
K∑

i=1

N∑
n=1

T n
i · [sn

i · Pawake + (1 − sn
i ) · Psleep] (5.1)

5.3.1 Analysis of Sleep Mode Operations

Within a period, the total energy consumption includes energy con-
sumed by M ONUs, which are in active state. As expressed in our
energy expenditure model (Equation 5.1), the total energy consumed
by each ONU consists of two parts: in either the awake or sleep mode.
In the awake mode, there are three different states: receiving packets,
sending packets and idle listening. The idle state is defined as the time
when an ONU is active without any receiving or transmitting action. In
the sleep state, ONUs switch off transceiver functions and keep a timer
on to count down the wakeup time. Nodes consume much less power
in the sleep mode than in the awake mode. For instance, regarding to
different architectures for a sleep mode enabled ONU [85], the expected
power consumptions require 2.85 W for active and 750 mW - 1.28 W
for sleeping. When ONUs enter sleep state, ONUs are in the absence of
traffic at the optical transmission interface. However, some functions,
such as clock and data recovery and back-end digital circuit, are still
powered on. In this sense, the sleep mode differs from power down,
which is usually an indication of any equipment fault or disconnection
in EPON. If an ONU is reported as deactivation after a power down, the
ONU has to register itself to the OLT again via the periodic discovery
processing. On the other hand, using the sleeping mode, ONUs can wake
up, listen to, and communicate with the OLT without the registration
process, when the sleep period is finished.

As shown in Figure 5.2, a timer is utilized in the sleep mode control.
Upon receiving notification of entering the sleep mode, the timer counts
down and the ONU wakes up when the timer is expired. When an ONU
wakes up from the sleep mode, there is an overhead time window (Tov)
for recovering the OLT clock (Trecv) and retrieving network synchro-
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Figure 5.2: ONU receiver with sleep control function.

nization (Tsync). The clock recovery time varies in different implemen-
tations of ONU receiver architectures. For synchronization process, a
fixed Start Position Delimiter (SPD) is embedded in the EPON control
message header, which allows ONU to gain synchronization with the
start of the EPON frame. The synchronization time in EPON is up to
125 μs [94].

Following our model, it is obvious that energy depletion is deter-
mined by the time the ONU spends in awake mode. An optimal EMM
solution is to schedule ONUs into sleep mode whenever there is no trans-
mission in order to minimize the overall power consumption. However,
since there are QoS requirements in terms of delay and throughput, it
requires a scheduling policy to improve energy efficiency without violat-
ing the QoS requirements. Therefore, this work deals with the trade-off
between the allocation of wakeup frequency and the queuing delay in
the EPON.
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5.3.2 Analysis of Energy Consumption and Delay
Performance

When energy management mechanism is implemented in EPON, ONUs
turn their optical communication interface on and off to minimize energy
consumption. Therefore, in order for an ONU to communicate with the
OLT, it must be in active mode. As a centralized control station, the
OLT schedules active duty cycles and informs connected ONUs about
its assignments. An ONU must comply with the noticed sleep period
and wakeup time. When an ONU is in sleep mode, the downstream
traffic destined to the ONU is queued in the OLT. This communication
model imposes a clear trade-off between the delay encountered by a
packet and the time during which ONUs are in active mode. Solutions
for addressing this trade-off depend, to a large extent, on the following
aspects:

1. The expected amount of data to be received and transmitted.

2. The polling scheme and upstream bandwidth allocation scheme:
for example, the sequence of polled ONU and the size of bandwidth
granted to the ONU.

3. Whether the OLT process the packets and send to ONUs with
priority discrimination.

With respect to 1, if the data arrival rate is high and continuously de-
livered, data are queued and the OLT can schedule transmission. With
respect to 2, if the polling scheme and upstream bandwidth allocation
are flexible enough, it can determine the order of ONUs to communica-
tion according to the expected delay constraint. With respect to 3, if
the OLT can process packets, it may buffer and merge several packets
for aggregation.

We first formulate our scheduling problem: find an optimal schedul-
ing discipline minimizing the average energy consumption of EPONs
while guaranteeing an upper bound on the queuing delay. This prob-
lem is formalized as an optimization problem. An optimal assignment
of wakeup time to ONUs is an assignment that guarantees an upper
bound Dmax on the maximum delay while minimizing the total energy
spent by the ONUs in awake mode. Let K be a set of ONUs that are
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awake and communicate with the OLT during the whole N observation
periods. Let T n

i and Pawake be the awake period and the average energy
consumption for each ONU i, respectively. Then, the goal is to:

minimize : E =
1

K

K∑
i=1

N∑
j=1

T j
i · Pawake (5.2)

subject to:

dm
i < Dmax (5.3)

where dj
i is the delay experienced by every connections in AG i, which

should deliver qualified services.

5.4 Energy Management Mechanism (EMM)

In this section, we introduce the implementation of EMM together with
EPON MAC protocol, Multipoint Control Protocol (MPCP) [36]. The
OLT is in full control of the bandwidth allocation in both downstream
and upstream. An ONU can associate with the OLT either in normal
mode, referred to as Power Ignoring Scheme (PIS), or in EMM mode.
When an ONU is in normal mode, it constantly stays awake and con-
sumes power, i.e., never goes into sleep mode. In the following, we
assume that all ONUs are EMM-enabled.

In order to minimize power consumption, ONUs remain in a sleep
mode most of the time while adhering to the assignment from the OLT.
We show how being in EMM yields considerable power saving for an
ONU as compared to PIS case. In addition, we introduce how the sleep
mode scheduling scheme has an impact on the energy and delay per-
formance of the EMM ONUs. The sleep period and wakeup time can
be calculated and assigned using either an Upstream Centric Scheduling
(UCS) algorithm or a Downstream Centric Scheduling (DCS) algorithm.

5.4.1 Energy Efficient Scheduler Design

In EPONs, the downstream and the upstream transmission are sepa-
rated, and the OLT plays a central role to reserve bandwidth and to
serve traffic transmission. In this chapter, a subframe period (SP), Tsp,
refers to the time assigned to an ONU to send upstream data to the
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OLT (SP-UL) or to receive downstream data from the OLT (SP-DL).
In this work, we will analyze the energy consumption and determine the
wakeup time by considering both the upstream and downstream data
since the instants of terminating sleep mode by upstream and down-
stream transmission are different.

- Downstream bandwidth allocation : In the MPCP specified
in IEEE 802.3ah, the OLT broadcasts a downstream packet with
destination MAC address to all ONUs. ONUs that are awake to
listen if the OLT has packets to deliver to them check the header for
destination identification. Since there is no retransmission mecha-
nism in the EPON downstream, it takes a long latency if the ONU
misses packets. Therefore, ONUs keep active all the time in order
to listen to the OLT and receive packets if the destination identi-
fication is matched. Since the power saving mechanism is ignored
traditionally, time and energy are wasted when an ONU is active
to listening to the OLT and decoding packets destined to other
ONUs.

- Upstream bandwidth allocation In the MPCP, the OLT main-
tains a polling list and a polled ONU has the right to transmit
data within its assigned upstream time slots. The OLT allocates
upstream time slots to each ONU in order to avoid that multiple
ONUs transmit to the uplink simultaneously. The upstream band-
width information such as the start time and the length of granted
transmission window is carried in the GATE message. The OLT
polls each ONU by sending them GATE message and ONUs trans-
mits traffic within the assigned upstream time slots after receiv-
ing the GATE message. The upstream bandwidth is distributed
among all ONUs by using either a fixed allocation scheme or a
dynamic bandwidth allocation (DBA) scheme [37]. In the former
case, each ONU is scheduled with a fixed amount of upstream
transmission period. In the latter case, the bandwidth is allocated
dynamically with a bounded size according to ONUs’ request. A
cycle (Tcycle) refers to an interval between two successive polling
messages to an ONU. Since the power saving mechanism is ignored
traditionally, the time is wasted when an ONU is active to waiting
for its next upstream transmission period.
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The EPON supports energy management at the MAC layer, and
ONUs need to negotiate with the OLT in order to decide the power sav-
ing parameters. The power saving parameters include the time to sleep
and wake up. Theoretically, the power saving control can be initiated
either at the OLT or at the ONUs, if they are in an idle state, where
no packet to be received or sent. However, as the ONU is an aggre-
gation node that collects traffic from low level networks and relays to
the OLT, it is commonly assumed that ONUs always have queued data
for upstream transmission. In this work, we consider only the OLT to
trigger the power saving mechanism. We focus on protocol design of
EMM and the scheduling schemes to maximize power saving subject to
the constraint of packet delay.

With respect to bandwidth allocating, since the MPCP is central
control protocol, the OLT has full knowledge to assign transmission
bandwidth in both upstream and downstream directions. This implies
that the order of granted ONUs and the amount of granted bandwidth
are determined by the OLT. An intuitive solution for EMM scheduler
is to aggregate the downstream traffic in order to minimize the time
allocated to ONUs for idle states. The general design of EMM based
EPON proposes following functions in the OLT and ONUs:

1. OLT operation :
The OLT can buffer downstream traffic and schedule the appro-
priate transmission period to each ONU. To meet the QoS re-
quirement of delay sensitive traffic, the downstream bandwidth is
allocated such that every packet can be served before its deadline.
The original control message GATE is modified with additional
fields indicating the assigned sleep time and wakeup time. To as-
sign the wakeup time for the next upstream transmission, the OLT
needs to calculate the time for an ONU to upload and download
data packets. Considering the wakeup time to transmit the up-
stream packet, the OLT determines and allocates the upstream
transmission windows for all ONUs. As for the wakeup time to
receive the next downstream packet, since the number of buffered
downstream data is completely known by the OLT, it can calculate
and schedule downstream transmission.

2. ONU operation :
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After scheduling the sleep period, the OLT sends a control message
to the ONU for the permission to transit into sleep mode. Upon
receiving this message with parameters start time for sleep and
wakeup time from sleep, the ONU enters into sleep mode. After a
sleep mode, the ONU transits back to the awake mode. Scheduled
ONUs should wake up according to the assigned wakeup time and
check the sleep-mode GATE message (Gs). Upon receiving the Gs

message, the ONU derives the sleep period and obeys the assigned
upstream and downstream bandwidth allocation. As for the up-
stream subframe period announcement, the assigned wakeup time
implies its next access time to the upstream transmission. For a Gs

message announcing the downstream subframe period, the ONU
should awake at the notified wakeup time to receive the buffered
data and then back to sleep afterwards.

5.4.2 Upstream Centric Scheduling (UCS) Algorithm

The main idea of UCS scheme is that the OLT assigns the awake period
to ONUs according to their corresponding upstream allocation. The
OLT grants the upstream bandwidth by polling each ONU. During the
granted upstream subframe period, the ONU is awake. Once an ONU
transits into the awake state, the OLT with UCS algorithm only trans-
mits downstream packets to the awake ONU, and queues those packets
destined for ’sleep’ ONUs into a buffer.

In this subsection, we give a description of the UCS algorithm. For
simplicity of illustration, we consider a system of an OLT and three
ONUs for two upstream transmission periods. For more ONUs and
transmission periods, the same logic can be applied. Figure 5.3 shows the
process of UCS protocol. In this work, the t denotes for the instant time
and T represents for a period. The OLT maintains an entry table, which
contains 1) the start transmission time (tstart

n
i ) and granted bandwidth

(BW n
i ) for allocating upstream bandwidth; 2) the sleep time (tsleep

n
i )

and the wakeup time (twake
n
i ) for assigning sleep period. The table is

updated every cycle n for ONUi. Downlink data are stored in subqueues
for each ONU.

As shown in Figure 5.3, the ONU1 wakes up at t0 and receives sleep
mode GATE message (Gs

1
1) at the time t1. After learning the granted
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upstream subframe period (Tsp−ul
1
1), ONU1 generates REPORT mes-

sage (R1) and starts upstream transmission (dul
1
1) complying with the

assignment. During Tsp−ul
1
1, the OLT derives downstream data (ddl

1
1)

from the subqueue for the ONU1 and transmits them to the ONU1.
Notice that the data ddl represents either one data packet or a series
of integrated data packets. The start time of sleep mode (tsleep

1
1) for

ONU1 is assigned so that the ONU1 enters into sleep mode immediately
when the upstream subframe period is completed at t2. The calculations
of upstream transmission period and the time to turn into sleep mode
are listed in Equation 5.4 and Equation 5.5.

Tsp−ul
n
i =

BW n
i

Ro
, i ∈ K,n ∈ N (5.4)

tsleep
n
i = tstart

n
i + Tsp−ul

n
i , i ∈ K,n ∈ N (5.5)

where BW n
i is the allocated upstream bandwidth for the ith ONU

during the nth cycle. Ro is the transmission rate of the optical upstream
and Tg is the guard time between two successive upstream transmissions.
The wakeup time (twakeup

1
1), which is same as the length of sleep pe-

riod, is calculated based on the period before the ONU1 is polled again
(Tcycle

1
1). In the Figure 5.3, the next wakeup time for the ONU1 is t3.

The value of wakeup time is computed at the OLT and assigned to each
ONU. The polling cycle is computed using Equation 5.6.

Tcycle
n
i =

K∑
i=1

(Tsp−ul
n
i + Tg)

=

K∑
i=1

(
BW n

i

Ro
+ Tg), i ∈ K,n ∈ N

(5.6)

After a period of Tcycle, the interval between two adjacent polling
messages, an ONU is polled again at t4 (t1 + Tcycle

1
1). The calculation

of ONU wakeup time needs to take the overhead period into account
due to the time of recovering the OLT clock and retrieving the network
synchronization. The computation of the overhead period (Tov) and the
time to wake up are listed as Equation 5.7 and Equation 5.8, respectively.
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Tov = Trecv + Tsync (5.7)

twakeup
n
i = tstart

n
i + Tcycle

n
i − Tov , i ∈ K,n ∈ N (5.8)

During the observation period, the total awake time for each ONU is
the sum of allocated upstream time slots and an ONU enters the sleep
mode otherwise. During the subframe period, the ONUi transmits up-
stream data dul

n
i and receives downstream data ddl

n
i , within the granted

time slot n. Notice that the size of the uploaded and downloaded data
must equal or less than the upstream bandwidth, i.e. size(dul

n
i )≤ BW n

i

and size(ddl
n
i )≤ BW n

i . The total energy consumed by the ONU i is il-
lustrated in Equation 5.9:

EUCS =

K∑
i=1

N∑
n=1

[Tsp−ul
n
i + Tov] · Pawake

+
K∑

i=1

N∑
n=1

[Tcycle
n
i − Tsp−ul

n
i − Tov ] · Psleep

(5.9)

The UCS based scheduler is simple because the sleep period is de-
termined based on the upstream transmission. An OLT with the UCS
based scheduler uses the awake ONU, which is assigned to the upstream
transmission as destination to retrieve buffered data. The algorithm is
presented in the flowchart in Figure 5.4. However, the performance of
downstream data latency and bandwidth utilization may not be satisfied
due to the dependency on the upstream subframe period, the upstream
polling sequence, and the total number of active ONUs. One disadvan-
tage of this scheme is that it is not suitable for delay-sensitive traffic due
to longer queuing delay experienced in the OLT.

5.4.3 Downstream Centric Scheduling (DCS) Algorithm

The second scheduling policy presented in this chapter is that the OLT
stores downstream traffic in a First-In First-Out (FIFO) buffer and the
ONU has to be awake and receive downstream traffic whenever the OLT
sends one. The awake periods are assigned to favor both upstream and
downstream traffic. The DCS scheme is illustrated in Figure 5.5. The
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sleep mode GATE message, Gs
n
i , is used for both upstream bandwidth

allocation and sleep period assignment. The upstream transmission pe-
riod is calculated using the same equations 5.4- 5.8 as in the UCS scheme.
For example, the Gs

1
1 at time t1 indicates that the next polling time is at

time t8 and the ONU1 needs to wake up at time t7. In the downstream,
the OLT serves data in a first-in first-out order. For instance, shown in
Figure 5.5, during the upstream subframe, dul

1
1, the OLT sends packets

to both ONU1 (data ddl
1
1) and ONU2 (data ddl

1
2).

As shown in Figure 5.5, the admission information for both upstream
and downstream transmission is notified by the sleep mode GATE mes-
sage. The Gs

1
1 informs ONU1 the allocated upstream transmission of

dul
1
1 and assigned sleep period during t3 to t7. After transmitting ddl

1
2

to the ONU2, the OLT gets data ddl
1
1 from the head of its downlink

queue and sends to the ONU1 together with Gs
2
1. Since there is data

ddl
2
1 in the buffer, the ONU1 is notified to wake up at t4 instead of t7.

The sleep period is assigned if there is neither upstream nor downstream
transmission scheduled. If the OLT has queued data for the ONU, the
wakeup time for the next data can be calculated. For example, the
period between t3 and t4 is the idle period for ONU1. Otherwise, the
OLT sends a message to inform the ONU of remaining in awake mode
in order to avoid missing any downstream traffic. In the following, the
assignment of sleep period is discussed in details.

Under the condition that the downstream traffic terminates the sleep
mode and the OLT assign the sleep period for the ith ONU, we dis-
tinguish four possibilities as shown in Figure 5.6. The sleep period is
determined by favoring both the successful reception of upstream and
downstream data. Accordingly, we denote Gs as the GATE control mes-
sage carrying the information of sleep period, such as the start time of
sleep period (tsleep) and the wakeup time (twakeup). Let Tsp−ul

n
i and

Tsp−dl
n
i be the nth subframe period of uplink and downlink transmis-

sion, respectively. In addition, the Tov period represents an overhead
time for clock recovery and synchronization.

1. Case0: GATE0 is used to inform the allocated upstream band-
width for the ONUi. Because the OLT has full knowledge about
the upstream bandwidth allocation, the sleep interval is deter-
mined, including both the sleep time (tsleep0) and the wakeup time
(twakeup0).
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Figure 5.6: Downstream transmission in the sleep period model.

2. Case1: The transmission of downstream data (Tsp−dl
1
i ) is com-

pleted within the allocated upstream subframe period. If there is
other queued data in the OLT, such as the payload with GATE2,
the sleep period is assigned as same as in Case0. If the next re-
ceived data is the payload with GATE3, the time to wake up is
reassigned as twakeup2. If there is no more queued data in the OLT
for the ONUi, the original assignment, tsleep0, is removed, because
ONUi should keep awake in order to avoid missing future arrival
data.

3. Case2: In this case, the downstream data (Tsp−dl
2
i ) cannot be

finished before the start time of the sleep period as assigned in
Case0 and Case1. Therefore, the start time of sleep period is
postponed to tsleep2. The OLT examines its downstream queue and
schedules the transmission of the next downstream data (Tsp−dl

3
i )

for the ith ONU. Moreover, the wakeup time (twakeup2) is calculated
in order to ensure a successful transmission.

4. Case3: In this case, downstream data is received during the sleep
interval. In GATE3 control message, the new time of entering the
sleep mode is updated, tsleep3, which is calculated based on the
downstream subframe period (Tsp−dl

3
i ).

5. Case4: As shown in the last GATE4 in this figure, downstream
data is arrived during the sleep interval and lasted till the next
upstream subframe period. Until the sleeping period is completed,
the ONU transits into the awake mode and will receive the GATE4
message with the information of upstream bandwidth allocation,
such as the start time and length of Tsp−dl

4
i . Thus, the GATE4
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message contains bandwidth assignments for both upstream and
downstream subframe period.

The flowchart of the DCS algorithm implemented in the OLT is
described in Figure 5.7. Compared to the UCS algorithm, the OLT
checks the available data in the buffer and update the sleep period for
the destination ONU with a sleep mode GATE message. The wakeup
time is precisely calculated and assigned, so that the ONU can be active
to carry out the next upstream or downstream transmission. Since the
operations of the above scheduling mechanism requires the OLT to locate
the next packet in the buffer in order to calculate the wakeup time, ONUs
which have no more queued packets cannot enter the sleep mode. In this
case, the OLT assigns the sleep period as zero.

In order to calculate the total energy consumption in the DCS algo-
rithm based EMM, we define the awake period for upstream transmis-
sions (Tawake−ul) and downstream transmissions (Tawake−dl) separately.
First, we compute the awake period and sleep period in the upstream
direction (shown in Equation 5.10 and Equation 5.11), which is similar
to Section 5.4.2.

Tawake−ul
n
i = Tsp−ul

n
i + Tov, i ∈ K,n ∈ N (5.10)

Tsleep−ul
n
i = Tcycle

n
i − Tsp−ul

n
i − Tov, i ∈ K,n ∈ N (5.11)

Next, we assume that there are M downstream transmissions to the
ith ONU. For the downstream, the awake period is calculated (in Equa-
tion 5.12) differently in each case mentioned in Figure 5.6. In Case1,
ONUi is in awake state, so that the awake period for receiving down-
stream data is zero. From Case2 to Case4, if the time for waking up and
sleeping is assigned, the period that the ONU has to wake up from its
sleep mode is calculated as the interval between tsleep and twakeup. Illus-
trated in Equation 5.13, the sleep period is the upstream sleep period
minus the awake period used for the downstream transmission, which
occurs during the upstream sleep period.
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Figure 5.7: Downstream transmission in the sleep period model.
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Tawake−dl
n
i =

M∑
m=1

Tawake−dl
m
i

=

M∑
m=1

⎧⎪⎪⎨
⎪⎪⎩

0 , if Case1
tmsleep2 − tmsleep1 , if Case2

tmsleep3 − tmsleep2 , if Case3

tmsleep0 − tmsleep3 , if Case4

i ∈ K,m ∈ M,n ∈ N

(5.12)

Tsleep−dl
n
i = Tsp−ul

n
i −

M∑
m=1

Tawake−dl
m
i , i ∈ K,n ∈ N (5.13)

After analyzing the active behavior of an ONU in both the upstream
and downstream transmissions, the total awake and sleep periods are
concluded as Equation 5.14 and Equation 5.15:

Tawake−total
n
i = Tawake−ul

n
i + Tawake−dl

n
i , i ∈ K,n ∈ N (5.14)

Tsleep−total
n
i = Tsleep−dl

n
i , i ∈ K,n ∈ N (5.15)

The total energy consumed is calculated in Equation 5.16. The DCS
sleep mode scheduler transmits downstream traffic in a flexible way,
unlike in the UCS that only the active ONU scheduled with an upstream
transmission period can receive data from the OLT. The OLT tries to
schedule the queued downstream traffic in a way to minimize the delay.
The UCS is simple where the sleep period and wakeup time is determined
only by the upstream bandwidth allocation. On the other hand, the DCS
scheduler requires to keeping track of both downstream and upstream
transmission windows.

EDCS =

K∑
i=1

N∑
n=1

[Tsp−ul
n
i · Pawake]

+
K∑

i=1

N∑
n=1

[Tsleep−total
n
i · Psleep]

(5.16)
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5.5 Simulation Results

5.5.1 Simulation Scenario

In this section, we study performances and features of our proposed
energy management mechanism compared to the fixed power control,
which is represented as Power Ignoring Scheme (PIS). Simulations have
been carried out by means of OPNET network simulator [60] to measure
the performance metrics. The performed simulations aimed to show the
diverse effects of system parameters, such as the upstream scheduling
scheme, the number of connected ONUs, and the arrival packet size.
Then the benefits that can be obtained while utilizing the proposed
EMM in EPON. The following parameters are monitored, such as the
power consumption, the network throughput, and the average queuing
delay. The average awake time in ONUs is used as a merit for energy
efficiency performances. The less time an ONU is awake, the less energy
an ONU consumes.

We have assumed that the OLT is connected to K ONUs (K=16
or 32)., which are enabled with power saving functionality. The optical
link rate is 1 Gbps for both upstream and downstream transmission.
The guard time between two consecutive transmission slots is 5 us. For
allocating upstream bandwidth among ONUs, both fixed scheme (e.g.
TDM) and dynamic scheme (e.g. IPACT) are implemented at the OLT.
The maximum transmission cycle is set to 2 ms. As the proposed power
saving mechanism with two scheduling schemes cooperates the optical
downstream bandwidth scheduler at the OLT, it is reasonable to moni-
tor the performance of downstream traffic. Traffic is generated following
Poisson distribution and the length of packets is generated independently
between 64 bytes to 1200 bytes. Destinations of downstream traffic are
uniformly distributed among connected K ONUs. The MPCP control
messages, GATE and REPORT, are formatted according to the IEEE
802.3ah specification. The sleep mode GATE message, Gs, is an exten-
sion of the standard GATE message. The additional two 4 bytes fields
are embedded as assigned sleep time and wakeup time. The total size
of Gs message is set to 41 bytes.



112
Energy Management Mechanism in Ethernet Passive Optical Networks

(EPONs)

5.5.2 Validation of EMM with the fixed upstream
bandwidth allocation

In Section 5.4, we analyze the energy efficiency mechanism with two
proposed scheduling approaches and derive the consumed power accord-
ingly. The simulation scenario consists of 16 ONUs and the OLT grants
fixed upstream bandwidth to each ONU. The results in Figure 5.8 refer
to the system behavior in the presence of an fixed upstream bandwidth
allocation scheme deployed at the OLT. They show the energy consump-
tion, represented by the ONU awake time, when the downstream traffic
load changes. In the case of PIS, ONUs constantly stay in awake state
and consumes high energy (100% of the observation period). When the
EMM is enabled in the EPON system, the awake time maintains at a low
average percentage value if the Uplink Centric Scheduling (UCS) scheme
is applied. As explained in Section 5.4.2, the period of being power on
is decided by allocated upstream transmission periods in the UCS case.
When each ONU is allocated with fixed amount of upstream bandwidth,
the awake time is also fixed. On the other hand, under the DCS case,
ONUs wake up and communicate with the OLT for either upstream or
downstream traffic. When arrival traffic is less than the optical output
link rate, the awake time of EMM-DC is slightly increased due to the
additional active period for downstream traffic. When the arrival traffic
rate is high, the awake time increases and close to the level as in the UCS
case. With respect with energy efficiency, the proposed energy manage-
ment mechanism outperforms the traditional power ignoring mechanism.
Particularly, using the uplink centric scheduling scheme saves up to 90%
power on time. The energy consumption in the DCS case varies when
the traffic load changes.

Figure 5.9 shows the network throughput under the PIS and EMM
cases. The downstream throughput is monitored, because the upstream
throughput is not affected by the proposed power saving mechanism.
When the EMM is deployed, both DCS and UCS schemes degrade the
throughput performance. In the DCS case, throughput is decreased
due to the additional overhead by introducing the sleep mode GATE
control message. Because the wakeup time and sleep time are assigned
to ONUs when they receive every downstream packet, it causes a portion
of control message overhead. In the UCS case, the network throughput
is reduced greatly. The reason is that the OLT can dispatch downstream
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Figure 5.8: Average ONU awake time in PIS, EMM-UC, and EMM-DC algorithms.

traffic during its allocated upstream transmission period. Assuming the
OLT polls and grants all ONUs in a Round Robin (RR) order, each ONU
can derive one over sixteen percent of total downstream link capacity.
The link utilization factor, computed as the amount of traffic delivered to
the destination successfully over the total link capacity in the simulation
time. The higher the network throughput, the high link utilization. The
proposed EMM receives similar results compared to the PIS case, when
the DCS scheme is applied. However, performance is highly downgraded
in the UCS scheme.

The average queueing delay for analyzing performance differences
under different power saving settings is shown in Figure 5.10. The av-
erage delay of the EMM DC scheme is better than that of the UCS
scheme since, with UCS scheme, downstream packets have to wait for
their awake period in the OLT buffer. We observe that when the traffic
intensity is low, average delay remains constant since the transmission
rate is high enough to serve under a range of values of traffic load. How-
ever, when the incoming traffic intensity reaches a certain point and
causes congestion, average delay increases rapidly. As expected, the
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Figure 5.9: Network throughput in PIS, EMM-UC, and EMM-DC algorithms.

average queueing delay is consistent with the throughput performance,
where the EMM DC scheme achieves better performance.

5.5.3 Impact of Upstream Bandwidth Allocation
Schemes

Now we examine the impact of upstream bandwidth allocation schemes
on the proposed energy management mechanism with the uplink centric
scheme. In this scenario, only upstream traffic from ONUs to the OLT
is considered to highlight the results differed from different upstream
bandwidth allocation schemes. If the downstream traffic is involved,
then additional time is required for transmitting downstream packets.

Figure 5.11 illustrates a simple scenario that shows the relationship
between the upstream bandwidth allocation algorithm, TDM and DBA,
with the ONU awake time. Because the downstream traffic is ignored,
the sleep period is assigned to each ONU only based on the allocated
upstream bandwidth, as the EMM UCS performs. In the TDM case,
each ONU is assigned with a fixed slot time. In the DBA scheme case,
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Figure 5.10: Average queueing delay in PIS, EMM-UC, and EMM-DC algorithms.

the OLT grants ONUs according to their bandwidth requests. Under
low traffic load, buffered data at ONUs are small, and therefore, small
amount of requested time slots. The percentage of awake time is in-
creased along with the increased traffic rate. Because the maximum
upstream slot time is constrained as 2 ms, the DBA based approach has
similar results under the heavy traffic load.

Figure 5.12 and Figure 5.13 show the network throughput and queu-
ing delay for the downstream traffic, respectively. The volume of down-
stream traffic is fixed at 1 Gbps and destination is uniformly distributed
among 16 ONUs. Consistent with the curve of awake time, the down-
stream throughput increases when the ONU receives high input traffic
and requests for large timeslots. On the other hand, when the required
upstream transmission period is small, ONUs are turned off most of the
observation time and downstream data are queued at the OLT. Thus the
queuing delay is high under light traffic load in the dynamic bandwidth
allocation case.

From previous studies [37], dynamic bandwidth allocation schemes
improve EPON channel utilization and provide QoS guarantee. Our sim-
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Figure 5.11: Awake time compared in different upstream bandwidth allocation
schemes.

ulations over the upstream channel have demonstrated that the dynamic
upstream bandwidth allocation scheme gains system power efficiency.
However, the delay performance is downgraded when the upstream traf-
fic load is low.

5.5.4 Impact of the sleep mode GATE message overhead

In this study, simulations show impacts of the sleep mode GATE con-
trol message. The MPCP control messages, GATE and REPORT, are
formatted according to the IEEE 802.3ah specification. The sleep mode
GATE message, Gs, is an extension of the standard GATE message.
The additional two 4 bytes fields are embedded as assigned sleep time
and wakeup time. The total size of Gs message is set to 41 bytes. In the
UCS case, the sleep mode GATE message is used to poll ONUs, grant
upstream bandwidth, and inform assigned sleep period. The Gs is gen-
erated and sent to ONUs in the same means as the original MPCP case.
However, in the DCS case, Gs message is transmitted together with
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Figure 5.12: Network throughput compared in different upstream bandwidth allo-
cation schemes.
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each downstream packet, which results in amount of control message
overhead. Therefore, in this test case, we simulate a network scenario
with 16 ONUs and focus on EMM DCS scheme.

Figure 5.14 shows the number of transmitted Gs as a function of
incoming packet sizes. In all cases, the total number of Gs is increased
at the downstream data rate increases. The size of data packets are
varied between 400 bits and 9400 bits. Under a certain input data rate,
the larger the data size, the less transmitted Gs control message. With
respect to bandwidth utilization, increased number of Gs message intro-
duces high value of control overhead, therefore, results in low bandwidth
utilization.
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Figure 5.14: the number of transmitted Gs as a function of incoming packet sizes.

The delay performance is illustrated by Figure 5.15. The delay dif-
ference is hard to tell when the downstream traffic load is low. When
traffic load becomes high, the large packet size case produces better de-
lay performance. This is for the reason that higher channel utilization
can be achieved by reducing the ratio of the overhead of Gs message and
the size of payload.
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Figure 5.15: Average queuing delay performance as an impact of the sleep mode
GATE message overhead.

5.5.5 Performance comparison with multiple ONUs

We now consider a scenario where 32 ONUs are connected to the OLT.
With this network structure, an ONU is allocated less upstream trans-
mission periods. Figure 5.16 shows the awake periods are reduced in
both UCS and DCS schemes compared to the 16 ONUs structure. Con-
sequently, the queuing delay is increased (shown in Figure 5.17). When
the traffic load becomes high enough, the downstream traffic takes all
transmission time and consumes the same power as in the PIS case.

5.6 Summary

In this chapter, we focus on the energy consumption in the EPON sys-
tem. We proposed and investigated an analytical model for the energy
expenditure in EPON. We developed an energy management mecha-
nism for optimal assignments of sleep periods to ONUs. The delay con-
straints that need to be satisfied is analyzed in the scheduling problem.
We solve the problem by proposing two heuristic scheduling algorithms:
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Figure 5.16: Awake time compared in scenarios with different connected AGs.
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the upstream centric scheduling algorithm and the downstream centric
scheduling algorithm. An EPON system with energy efficiency based
scheduling schemes are simulated in the OPNET simulator. We veri-
fied the solution quality with respect to a set of chosen metrics such
as awake time and queuing delay. Specifically, we compared the energy
performance and the network performance under different traffic load
and different upstream bandwidth allocation schemes. We found that
the energy management mechanism reduces the power consumption, and
the DCS algorithm outperforms the UCS algorithm in the delay perfor-
mance.





Chapter 6

Conclusions and Future
Research

This dissertation has investigated the integrated control platform and
made four important contributions to the design and modeling of in-
tegrated optical wireless networks. In this chapter, the content of this
work is summarized at first, and then suggestions for future research are
provided.

6.1 Summary of Thesis

The objective of this research is to develop and design an integrated
control platform which provides bandwidth efficiency, power efficiency,
and at the same time guarantees QoS requirements. Compared to the
traditional simply connected hybrid network architecture, the integrated
control platform is meant to manage network resources according to an
overview and cooperation of both optical and wireless domains. these
goals are achieved by proposing new functions, extending the legacy
control system, obtaining the solution by theoretical analysis, and eval-
uating performances by simulations.

In Chapter 2, a converged optical wireless network architecture is
introduced and an integrated EPON and WiMAX network model is
presented. Motivations for introducing a joint and cooperative control
platform are addressed. Functions of the integrated control platform are
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outlined and main research topics are addressed. The call admission con-
trol algorithm, packet scheduling schemes, load balancing mechanism,
and energy efficiency scheme are discussed. The algorithms to optimize
the integrated network performances by jointly designing control panels
including both optical and wireless networks are reviewed.

Chapter 3 investigates the admission control scheme for the con-
verged EPON and WiMAX network scenario. A new scheme, Integrated
Optical Wireless Admission Control (IOW-AC), has been proposed to
provide QoS guarantee. The IOW-AC is favorable in providing QoS sat-
isfactions of real-time applications and improve the throughput of the
best effort traffic. The performance differences between the IOW-AC
and traditional AC schemes has been discussed and explained. Results
have shown improvement in the utilization of network resources and
queue sizes of the access gateway as well. To the best of our knowledge,
this is the first traffic management solution that jointly considers QoS
in both the optical domain and the wireless domain and optimizes the
usage of network resources. The analysis can be a good assistance or
guidance in future researches in many fields of hybrid optical wireless
network architecture, including resource management, optimizing QoS
and demanding service provisioning.

In Chapter 4, the load balancing problem is tackled in Integrated Op-
tical Wireless Networks, where cell breathing technique is used to solve
congestion by changing the coverage area of a fully loaded cell. It is aim-
ing to be a load balancing mechanism to minimize network congestion
and maximize overall network throughput. An efficient load balancing
mechanism based on exchange of information between optical networks
and wireless networks is proposed. Specifically, centralized power assign-
ment and traffic allocation are jointly considered in the access gateways
at the border of hybrid network architecture. Two alternative feedback
schemes are proposed to report wireless network status. The perfor-
mance of the proposed cell breathing in integrated EPON and WiMAX
system is evaluated in terms of network throughput, packet dropping
probability, and average queuing delay. Simulation results have shown
that cell breathing significantly outperforms fixed power scheme.

In Chapter 5, the energy consumption issue has been studied for an
EPON model. The main idea is to put ONUs into the sleep mode and
determine a suitable wakeup time schedule at the OLT. The extensions
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to the traditional MPCP control messages are introduced and the energy
consumption equations are formulated in both downstream scheduling
cases. Two types of downstream scheduling schemes, Upstream Centric
Scheduling (UCS) and Downstream Centric Scheduling (DCS), are pro-
posed and compared. They are different in the way of assigning power
’active’ and ’sleep’ states to ONUs. There is a trade-off decision between
maximizing the power saving and guaranteeing the network performance
at the same time. Simulation results in terms of energy consumption and
queuing delay are shown for the power saving enabled EPON system.
It has proved that the energy management mechanism could reduce the
power consumption at the cost of increased queuing delay.

6.2 Directions for Future Research

Convergence of wired and wireless networks is a trend of broadband
access network architectures and benefits operators in terms of more
connected users, higher bandwidth, and more applications. The topic
of integrated control platform design is a timely research topic and our
work provides good guidance and references for future research. Brief
pointers for potential future research in this field are provided.

First, open issues such as mobility and resilience in the integrated
control functions. Secondly, the existing protocols in both EPON and
WiMAX systems have been investigated and the enhanced approaches
are proposed. A design of a unified control platform from scratch,
specifically for the integrated network architecture, could be considered.
At last, the basic design ideas, design methodology, and analysis pre-
sented so far can be applied for investigating other converged optical
and wireless networks, for instance, Gigabit Passive Optical Networks
(GPON) and Wavelength Division Multiplexing Passive Optical Net-
works (WDM-PON) in the optical domain, and Wireless LAN (WLAN)
and cellular systems in the wireless networks.
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