492 research outputs found

    Comparison of direct and heterodyne detection optical intersatellite communication links

    Get PDF
    The performance of direct and heterodyne detection optical intersatellite communication links are evaluated and compared. It is shown that the performance of optical links is very sensitive to the pointing and tracking errors at the transmitter and receiver. In the presence of random pointing and tracking errors, optimal antenna gains exist that will minimize the required transmitter power. In addition to limiting the antenna gains, random pointing and tracking errors also impose a power penalty in the link budget. This power penalty is between 1.6 to 3 dB for a direct detection QPPM link, and 3 to 5 dB for a heterodyne QFSK system. For the heterodyne systems, the carrier phase noise presents another major factor of performance degradation that must be considered. In contrast, the loss due to synchronization error is small. The link budgets for direct and heterodyne detection systems are evaluated. It is shown that, for systems with large pointing and tracking errors, the link budget is dominated by the spatial tracking error, and the direct detection system shows a superior performance because it is less sensitive to the spatial tracking error. On the other hand, for systems with small pointing and tracking jitters, the antenna gains are in general limited by the launch cost, and suboptimal antenna gains are often used in practice. In which case, the heterodyne system has a slightly higher power margin because of higher receiver sensitivity

    On the synchronizability and detectability of random PPM sequences

    Get PDF
    The problem of synchronization and detection of random pulse-position-modulation (PPM) sequences is investigated under the assumption of perfect slot synchronization. Maximum likelihood PPM symbol synchronization and receiver algorithms are derived that make decisions based both on soft as well as hard data; these algorithms are seen to be easily implementable. Bounds were derived on the symbol error probability as well as the probability of false synchronization that indicate the existence of a rather severe performance floor, which can easily be the limiting factor in the overall system performance. The performance floor is inherent in the PPM format and random data and becomes more serious as the PPM alphabet size Q is increased. A way to eliminate the performance floor is suggested by inserting special PPM symbols in the random data stream

    Optical Communication with Semiconductor Laser Diode

    Get PDF
    Theoretical and experimental performance limits of a free-space direct detection optical communication system were studied using a semiconductor laser diode as the optical transmitter and a silicon avalanche photodiode (APD) as the receiver photodetector. Optical systems using these components are under consideration as replacements for microwave satellite communication links. Optical pulse position modulation (PPM) was chosen as the signal format. An experimental system was constructed that used an aluminum gallium arsenide semiconductor laser diode as the transmitter and a silicon avalanche photodiode photodetector. The system used Q=4 PPM signaling at a source data rate of 25 megabits per second. The PPM signal format requires regeneration of PPM slot clock and word clock waveforms in the receiver. A nearly exact computational procedure was developed to compute receiver bit error rate without using the Gaussion approximation. A transition detector slot clock recovery system using a phase lock loop was developed and implemented. A novel word clock recovery system was also developed. It was found that the results of the nearly exact computational procedure agreed well with actual measurements of receiver performance. The receiver sensitivity achieved was the closest to the quantum limit yet reported for an optical communication system of this type

    Stacked Modulation Formats Enabling Highest-Sensitivity Optical Free-Space Communications

    Get PDF
    Die vorliegende Arbeit befasst sich mit hochempfindlichen optischen Kommunikationssystemen, wie sie z.B. bei Intersatellitenlinks verwendet werden. Theoretische Überlegungen zur Steigerung der Empfängerempfindlichkeit werden mit Simulations- und Messergebnissen ergänzt und verifiziert. Auf Grund der steigenden Nachfrage nach optischen Links zwischen Satelliten stellt sich die Frage, was sind geeignete Eckparameter, um ein solches System zu beschreiben. Die gigantischen Datenmengen, die von diversen Messgeräten, wie z.B. hochauflösende Kameras auf einem Satelliten generiert werden, bringen die Kapazitäten klassischer HF-Datenlinks an ihre Grenzen. Hier können optische Kommunikationssysteme auf Grund ihrer hohen Trägerfrequenz im Infrarotbereich sehr hohe Datenraten im Terabit/s Bereich ermöglichen. Systeme mit Radiowellen im GHz Bereich als Trägerfrequenz sind hier deutlich limitierter. [7] Linkdistanz, verfügbare Leistung, Pointinggenauigkeit und verfügbare Antennengröße sind einige Parameter, die einen wichtigen Einfluss auf die Leistungsfähigkeit des Systems haben. Je größer die Distanz und desto kleiner die verfügbare Antennengröße sowohl am Sender als auch am Empfänger sind, desto weniger Signalleistung wird den Detektor erreichen. Nimmt man dann noch ungenaues Pointing hinzu, d.h. Sender und Empfänger sind nicht exakt aufeinander ausgerichtet, treten zusätzliche Verluste auf. [7] Ziel dieser Arbeit ist es, ein vereinfachtes System zu implementieren und zu testen, das mit möglichst wenigen Photonen pro Bit bei einer gegebenen Bitfehlerwahrscheinlichkeit bei einer möglichst hohen Datenrate arbeiten kann. Hierfür werden alle Freiheitsgrade einer optischen Welle zur Modulation verwendet, um mit sog. „Stapeln“ von Modulationsformaten eine Empfindlichkeitssteigerung zu erreichen. Die Amplitude des Signals wird durch Pulspositionsmodulation (PPM) moduliert, wobei das zeitlich variable Vorhandensein eines Pulses innerhalb des Symbols die Information enthält. Dieses Modulationsformat weist bis dato die höchste Empfindlichkeit in Literatur und Experimenten auf [4]. Je mehr Möglichkeiten es gibt, einen Puls in einem Symbol zu platzieren, desto höher ist die zu erwartende Empfindlichkeit des Systems. Mit anderen Worten: Steigert man die zeitliche Dauer eines PPM-Symbols, so wächst ebenfalls die Empfängerempfindlichkeit. Da bei diesem Ansatz die Datenrate sinkt, wird in dieser Arbeit eine andere Methode vorgestellt, die Empfindlichkeit eines Übertragungssystems zu steigern, ohne die Symbollänge unnötig in die Länge zu ziehen. Diese Arbeit befasst sich mit dem Stapeln (sog. „Stacking“) von Modulationsformaten, in dem neben der Amplitudenmodulation weitere Freiheitsgrade, wie die Frequenz, Phase und Polarisation geschickt genutzt werden. Bei der Frequenzumtastung (FSK) wird die optische Frequenz je nach Symbol um ein gewisses Maß verschoben. Bei der polarisations-geschalteten Quadratur-Phasenumtastung (PS-QPSK) werden sowohl die Phase, als auch die Polarisation der optischen Welle moduliert [12]. Als Endergebnis erhält man PPM-FSK-PS-QPSK als Modulationsformat mit hoher Empfindlichkeit. Gegenüber dem reinen PPM wird eine theoretische Empfindlichkeitssteigerung von mehr als 1 dB erreicht. Sowohl Simulations- als auch Messergebnisse bestätigen den Empfindlichkeitsgewinn

    Multidimensional Optimized Optical Modulation Formats

    Get PDF
    This chapter overviews the relatively large body of work (experimental and theoretical) on modulation formats for optical coherent links. It first gives basic definitions and performance metrics for modulation formats that are common in the literature. Then, the chapter discusses optimization of modulation formats in coded systems. It distinguishes between three cases, depending on the type of decoder employed, which pose quite different requirements on the choice of modulation format. The three cases are soft-decision decoding, hard-decision decoding, and iterative decoding, which loosely correspond to weak, medium, and strong coding, respectively. The chapter also discusses the realizations of the transmitter and transmission link properties and the receiver algorithms, including DSP and decoding. It further explains how to simply determine the transmitted symbol from the received 4D vector, without resorting to a full search of the Euclidean distances to all points in the whole constellation

    Toward Photon-Efficient Key Distribution over Optical Channels

    Get PDF
    This work considers the distribution of a secret key over an optical (bosonic) channel in the regime of high photon efficiency, i.e., when the number of secret key bits generated per detected photon is high. While in principle the photon efficiency is unbounded, there is an inherent tradeoff between this efficiency and the key generation rate (with respect to the channel bandwidth). We derive asymptotic expressions for the optimal generation rates in the photon-efficient limit, and propose schemes that approach these limits up to certain approximations. The schemes are practical, in the sense that they use coherent or temporally-entangled optical states and direct photodetection, all of which are reasonably easy to realize in practice, in conjunction with off-the-shelf classical codes.Comment: In IEEE Transactions on Information Theory; same version except that labels are corrected for Schemes S-1, S-2, and S-3, which appear as S-3, S-4, and S-5 in the Transaction

    A Survey on Modulation Techniques in Molecular Communication via Diffusion

    Get PDF
    This survey paper focuses on modulation aspects of molecular communication, an emerging field focused on building biologically-inspired systems that embed data within chemical signals. The primary challenges in designing these systems are how to encode and modulate information onto chemical signals, and how to design a receiver that can detect and decode the information from the corrupted chemical signal observed at the destination. In this paper, we focus on modulation design for molecular communication via diffusion systems. In these systems, chemical signals are transported using diffusion, possibly assisted by flow, from the transmitter to the receiver. This tutorial presents recent advancements in modulation and demodulation schemes for molecular communication via diffusion. We compare five different modulation types: concentration-based, type-based, timing-based, spatial, and higher-order modulation techniques. The end-to-end system designs for each modulation scheme are presented. In addition, the key metrics used in the literature to evaluate the performance of these techniques are also presented. Finally, we provide a numerical bit error rate comparison of prominent modulation techniques using analytical models. We close the tutorial with a discussion of key open issues and future research directions for design of molecular communication via diffusion systems.Comment: Preprint of the accepted manuscript for publication in IEEE Surveys and Tutorial

    Stacked modulation formats enabling highest-sensitivity optical free-space links

    Get PDF
    A new modulation scheme with a sensitivity of 2.3 photons per bit at a bit-error ratio (BER) of 10-3 is discussed theoretically and demonstrated experimentally. We achieve a limiting sensitivity of 2.3 photons per bit (3.7 dB photons per bit) by stacking the modulation formats 64PPM, 4FSK and polarization-switched (PS) QPSK. This modulation stack encodes 11 bit per symbol (PPM: 6 bit, FSK: 2 bit, PS-PQSK: 3 bit). We also replaced 4FSK by 2ODFM (2-channel multiplex) for comparison. With 64PPM-2OFDM-PS-QPSK a total of 12 bit are encoded (PPM: 6 bit, 2 OFDM channels with PS-QPSK: 2 x 3 bit). Both modulation stacks show a similar limiting sensitivity and are probably the highest sensitivities so far reported for a BER of 10-3, Our theoretical considerations are supported by simulations and experiments

    Non-Coherent MIMO Scheme Based on OFDM-MFSK

    Get PDF
    corecore