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Non-coherent MIMO Scheme Based on OFDM-MFSK
Evgeny Tsimbalo, Robert J. Piechocki, Andrew Nix, Paul Thomas

Abstract—We propose a non-coherent transmission system
based on orthogonal frequency division multiplexing (OFDM)
for low-power applications. The proposed system uses M -ary
frequency shift keying (MFSK) and employs two transmitting and
two receiving antennas, with encoding across the space, frequency
and time domains. For the resulting scheme, we develop a novel
optimal non-coherent detector that produces soft bit information
for a state-of-the-art error correction decoder. The proposed
solution eliminates the need for channel knowledge and enables a
simple receiver structure. Simulation results demonstrate an up
to 8 dB coding gain of the proposed scheme over single-antenna
OFDM-MFSK. When compared with coherent systems based
on OFDM and binary phase shift keying (BPSK), the designed
scheme offers a receiver sensitivity gain of 9 dB and beyond.

Index Terms—OFDM, MFSK, MIMO, non-coherent detection.

I. INTRODUCTION

Orthogonal modulation such as M -ary frequency shift
keying (MFSK) combined with non-coherent detection is an
appealing choice for low-rate low-power machine-to-machine
(M2M) applications and has received significant attention in
the literature [?], [?]. The authors of [?] were the first to
propose MFSK to be used with orthogonal frequency division
multiplexing (OFDM) as an alternative to bandwidth-efficient
modulation schemes traditionally used with OFDM. OFDM-
MFSK improves receiver sensitivity at the expense of data rate
and enables non-coherent reception, eliminating the need for
channel knowledge.

To further improve receiver sensitivity, multiple antennas
with space-time (ST) coding can be employed. Traditional
ST codes, such as the Alamouti code [?], assume perfect
channel knowledge. Several studies into ST codes, which do
not require channel knowledge, have been made over the years.
The initial attempt [?] considered unitary ST codes, but only
for the frequency-flat channel. The problem of non-coherent
multiple-input multiple-output (MIMO) OFDM communica-
tion in the frequency-selective channel was treated in [?],
where the authors introduced the concept of space-frequency
codes. However, the emphasis was put on bandwidth-efficient
communication, while in the power-efficient mode relevant to
MFSK the information rate of the suggested codes was much
lower than in the single-antenna case.

In this work, we adopt the MIMO ST encoding scheme
proposed previously [?] for M -ary pulse position modulation
(MPPM) and integrate it in the OFDM-MFSK transmitter.
Our main contribution, however, is a simple, non-coherent
decoder, as opposed to the more complex sphere decoder
used in [?] that requires channel knowledge. In addition,
the proposed decoder generates soft inputs (in contrast with
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Fig. 1. Block diagram of the proposed 2× 2 MIMO OFDM-MFSK system.
The 2×2 single-tap fading channel represents the combination of the OFDM
modem and multiple-tap channel.

the decoder of [?]) and therefore can be combined with a
state-of-the-art error correction decoder. The proposed scheme
can be seamlessly integrated into existing OFDM modems to
complement bandwidth-efficient modulations for low-power
applications.

II. SYSTEM MODEL

A single-input single-output (SISO) OFDM-based MFSK
system is described in [?]. For modulation purposes, each set
of log2M bits, where M is the alphabet size, is mapped to
M subcarriers, with only one subcarrier being non-zero. In
this way, information is encoded in the index of the non-zero
subcarrier. The total number of subcarriers N is chosen to be
a multiple of M , hence the system can be viewed as a set of
N/M parallel independent subsystems, each operating in its
own subband.

The block diagram of the proposed 2 × 2 MIMO OFDM-
MFSK system is depicted in Fig. 1. Here, the combination
of the OFDM modem and multiple-tap fading channel is
represented by an equivalent 2×2 single-tap channel for which
each subcarrier experiences narrowband fading. The input of
the system are bits encoded by a forward error correction
(FEC) encoder. The output is the soft information about each
bit for the FEC decoder. We adopt the rate-1 2 × 2 ST code
proposed in [?] by deploying it in the frequency domain and
renaming it to a space-frequency-time (SFT) code.

Let b denote a vector of 2 log2M input bits and s =[
sT1 , s

T
2

]T
denote a vector of two consecutive M -tuples at the

output of the MFSK mapper. Based on [?], the corresponding
SFT codeword X can be written as follows:

X =

[
s1 Ωs2
s2 s1

]
, [X1 X2] , (1)

where the subscript denotes the time index and Ω is an M×M
cyclic permutation matrix defined as

Ω =

[
01×M−1 1
IM−1 0M−1×1

]
. (2)

In effect, the permutation matrix cyclically shifts the compo-
nents of the vector it applies to by one position down.
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For each codeword (1), the corresponding matrix of received
samples in the frequency domain can be written as

Y , [Y1 Y2] . (3)

The input-output relationship for each time slot can be ex-
pressed as follows:

Yt =

[
y
(1)
t

y
(2)
t

]
=
√
EsHtXt + Wt, t = 1, 2. (4)

Here, the superscript denotes the antenna index, Es

is the average symbol energy per receiving antenna,
Wt ∼ CN (02M×1, N0I2M ) is a vector of AWGN samples
at time t and Ht is a MIMO channel matrix:

Ht ,

[
H

(11)
t H

(12)
t

H
(21)
t H

(22)
t

]
, (5)

where H
(ij)
t = diag(h

(ij)
t ) and h

(ij)
t ∼ CN (0M×1, IM ),

t = 1, 2 is a vector of the channel frequency response samples
at the subcarriers in question between the j-th transmitting and
i-th receiving antennas. It is assumed that the channel remains
constant over a single OFDM symbol period but changes in
an i.i.d. fashion from one OFDM symbol to another.

III. PROPOSED NON-COHERENT RECEIVER

The authors of [?] proposed an ML decoding algorithm
assuming perfect channel knowledge. In this section we de-
rive a non-coherent way of joint SFT decoding and MFSK
demapping assuming that no channel knowledge is available.

Let (m,n), m, n = 0, ...,M −1, denote a pair of indices of
non-zero subcarriers in s1 and s2 obtained from the vector of
source bits b. This set of indices uniquely determines the SFT
codeword X, as per (1). Given equiprobable b, the optimum
maximum likelihood (ML) detector produces the following
decision:

(m̂, n̂) = arg max
(m,n)

p(Y|X), (6)

Given the knowledge of the transmitted codeword X, the
received samples are statistically independent across the two
received antennas and two time slots. As a result, the likeli-
hood in (6) can be factored as follows:

p(Y|X) =
∏
t=1,2

∏
k=1,2

p(y
(k)
t |Xt), (7)

where y
(k)
t is a vector of M samples received at antenna k

and time slot t. By defining q = (n+1) modM , the following
cases can now be considered:

1) m 6= n, q: In this case, assuming no knowledge of
the channel, each of the four constituent vectors of Y has
two components distributed as CN (0, Es + N0), while the
other M − 2 components are distributed as CN (0, N0). The
likelihood for t = k = 1 can be expressed as follows:

p(y
(1)
1 |X1) =

1

(πN0)
M

exp

(
−
∥∥y(1)

1

∥∥2
N0

)(
Es

N0
+ 1

)−2

· exp

Es

N0


∣∣∣y(1)1,m

∣∣∣2 +
∣∣∣y(1)1,n

∣∣∣2
Es +N0


 , (8)

where
∥∥·∥∥ denotes the Euclidean norm. Expressing the other

three likelihoods in a similar manner, the total likelihood (7)
can now be written as

p(Y|X) = C exp (E − δ) , (9)

where C = (πN0)
−4M

exp
(
−
∥∥Y∥∥2/N0

)
,

E =
Es

N0

2∑
k=1

∣∣∣y(k)1,m

∣∣∣2 +
∣∣∣y(k)1,n

∣∣∣2 +
∣∣∣y(k)2,q

∣∣∣2 +
∣∣∣y(k)2,m

∣∣∣2
Es +N0

, (10)

δ = ln

(
Es

N0
+ 1

)8

. (11)

2) m = n: In this case, vectors y
(k)
1 , k = 1, 2, have only a

single component distributed as CN (0, 2Es + N0), with the
other M − 1 components distributed as CN (0, N0). At the
same time, vectors y

(1)
2 and y

(2)
2 have components distributed

identically to the previous case. The total likelihood can now
be expressed as (9), but with E and δ this time calculated as
follows:

E =
Es

N0

2∑
k=1

 2
∣∣∣y(k)1,m

∣∣∣2
2Es +N0

+

∣∣∣y(k)2,q

∣∣∣2 +
∣∣∣y(k)2,m

∣∣∣2
Es +N0

 , (12)

δ = ln

(
2Es

N0
+ 1

)2(
Es

N0
+ 1

)4

. (13)

We note that (12) is distinct from (10) due to the different
denominator (2Es + N0) of the first fraction under the sum-
mation.

3) m = q: This time the constituent vectors corresponding
to the second time slot have only a single signal component,
while in the first time slot both vectors have two signal
components. By analogy to the previous case, E in the total
likelihood can be expressed as follows:

E =
Es

N0

2∑
k=1


∣∣∣y(k)1,m

∣∣∣2 +
∣∣∣y(k)1,n

∣∣∣2
Es +N0

+
2
∣∣∣y(k)2,m

∣∣∣2
2Es +N0

 . (14)

The value of δ is calculated using (13).
Having obtained the total likelihood expression for all cases

and noting that C in (9) does not depend on the transmitted
bits, the ML rule (6) can be rewritten as

(m̂, n̂) = arg max
(m,n)

(E − δ), (15)

where E and δ, depending on the combination of m and n,
are calculated using the equations above. The expressions for
δ can be further simplified by observing common terms in
(11) and (13) not affecting the decision rule. Removing these
terms, δ can be redefined as follows:

δ =

4 ln
(

Es

N0
+ 1
)
, m 6= n, q;

2 ln
(

2Es

N0
+ 1
)
, otherwise.

(16)

The ML rule (15) can be generalized to an arbitrary number
of received antennas Nr by replacing the upper limit of the
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summation index k in (10), (12) and (14) with Nr, and the
coefficient in front of the logarithm in (16) with 2Nr if m 6=
n, q and Nr otherwise.

It can be observed that if no shifting was applied during
encoding based on (1) (i.e., if Ω = IM ), then tuples (m,n)
and (n,m) would have the same value of the decision metric
E − δ, resulting in ambiguity and a high error rate. The shift
eliminates such ambiguity and creates a unique decision metric
for each possible bit sequence.

The decision rule (15) produces optimum indices based on
which the original bits can be identified. However, the channel
decoder that follows the SFT detector requires soft inputs. Soft
information for each individual bit of b in the form of the log-
likelihood ratio can be obtained as follows:

Λ(bj) = ln


∑

m,n: bj=1

p(Y|X)

∑
m,n: bj=0

p(Y|X)

 , j = 0, ..., 2 log2M − 1.

(17)
Using the general expression for the likelihood (9) and utiliz-
ing the approximation ln [

∑
i exp(ai)] ≈ maxi(ai), (17) can

be expressed as

Λ(bj) = max
m,n: bj=1

(E − δ)− max
m,n: bj=0

(E − δ) . (18)

The expression can be interpreted as follows. For each of the
two possible bit values, two sets of possible tuples (m,n) are
identified, with M2/2 tuples in each set. For each set and each
tuple within the subset, the value of E−δ is calculated, where,
depending on the relationship between m and n, E and δ are
defined by (10), (12), (14) and (16). Finally, the largest value
of E − δ is determined for each set, and the LLR is calculated
as the difference between the two largest values.

It can be observed that the ML detector scales and sums
up subcarrier energies across the two receiving antennas and
time slots, with an additional offset applied to account for
the constellation asymmetry. It should be noted that although
the channel knowledge is not required, the knowledge of Es

and N0 is assumed. The former can be estimated using a
synchronization preamble normally represented by a constant-
amplitude sequence, while the latter can be measured in the
absence of transmission.

We emphasize that the derived optimum non-coherent de-
coder does not require channel knowledge and produces soft
outputs, as opposed to the original decoder presented in [?].
Remark 1. The authors of [?] also proposed generalized codes
for more than two transmitting antennas. While it would still
be possible to derive a non-coherent ML decoder for such
codes following the same logic as above, the computational
complexity of the receiver can become prohibitive. For in-
stance, for Nt transmitting antennas, MNt combinations of Nt

unique indices would need to be analyzed for each group of
Nt log2M bits. The number of possible relationships between
the indices would grow exponentially with Nt too.

A. Theoretical Error Performance Analysis
In this section, we provide brief error performance analysis

of the proposed scheme. Detailed mathematical analysis is the

subject of future work.
A detection error occurs if

E < Ẽ (19)

for some Ẽ corresponding to (m̃, ñ) 6= (m,n). Let
q̃ = (ñ+ 1) modM . The diversity provided by the scheme
depends on how many signal subcarriers versus those carrying
noise only are used when comparing the energy metrics. In
the SISO arrangement, the energy of one signal subcarrier is
compared with that of one noise subcarrier, and no diversity
gain is provided. It is clear that some pairs of tuples (m̃, ñ, q̃)
and (m,n, q) have overlapping indices. In such cases, the
number of independent signal subcarriers contributing the left
side of (19) is reduced, and so is the diversity gain. By
inspecting possible pairs of tuples, it can be observed that E
contains at least two signal terms, with not less than one index
from each receiving antenna. At the same time, some pairs of
tuples do not overlap at all, thus maximizing the diversity
gain. It can be concluded, therefore, that on average the code
provides a diversity gain by a factor of two.

IV. PERFORMANCE ANALYSIS

The performance of the proposed system was evaluated via
Monte Carlo simulation. A 6-tap multipath fading channel,
where all taps have the same variance and experience Rayleigh
fading, was employed. The channels between different pairs of
antennas were assumed to be uncorrelated. The total number
of subcarriers was set to 64, with a cyclic prefix length of
16 symbols. A rate-1/2 (408, 204) low-density parity-check
(LDPC) code was employed as a FEC code [?]. For this code,
a log likelihood decoder based on the sum-product algorithm
[?] was implemented. For each signal-to-noise ratio (SNR)
point, 105 random 204-bit packet realizations were simulated.
The SNR used in the analysis below was defined as a ratio of
the average symbol energy at the receiver input to the noise
spectral density. Perfect time synchronization was assumed, as
was the knowledge of Es and N0 at the receiver.

Fig. 2 illustrates the packet error rate (PER) performance of
the proposed SFT-based MIMO system in comparison with a
SISO equivalent as a function of SNR per receive antenna, for
various modulation alphabet sizes. It can be observed that the
MIMO system has a significant SNR gain compared with the
SISO counterpart, which grows with M : from 4 dB for 2FSK
to 8 dB for 64FSK at PER = 10−3. The nature of the gain is
twofold. First, there is a power gain due to multiple receivers.
The power gain suffers when non-zero subcarriers transmitted
from the two antennas have the same index: in this case, fewer
terms are added in the decision rule. As a result, the power
gain increases with M , since the relative number of coinciding
non-zero indices becomes smaller for a larger alphabet size.
The second contribution of the SNR improvement is a diversity
gain that arises from four independent signal paths. Based on
the steepness of the curves, it can be observed from Fig. 2
that the SFT code introduces additional diversity by a factor
of two.

For benchmarking purposes, the performance of coherent
SISO and 2×2 MIMO OFDM systems based on binary phase
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Fig. 2. PER performance of MIMO and SISO OFDM-MFSK as a function
of SNR per receive antenna.

shift keying (BPSK) was also simulated assuming perfect
channel knowledge. In the MIMO case, the Alamouti Space
Time Block Code (STBC) code [?] was implemented, with
a coherent ML detector at the receiver [?] generating soft
bit information for the LDPC decoder. Fig. 3 compares the
PER performance of the proposed non-coherent MIMO MFSK
system and coherent SISO and MIMO STBC BPSK counter-
parts. It can be observed that SISO BPSK system outperforms
MIMO MFSK for M = 2, since the MFSK-based modes
suffer from a penalty due to non-coherent detection. However,
as M increases, the combination of MFSK and the SFT code
outweighs the penalty, providing up to 9 dB gain in SNR at
PER = 10−3. When comparing with the MIMO STBC BPSK
system, it is clear that the proposed scheme provides the same
diversity gain as the STBC. Although only high-order MFSK
modes have an SNR benefit over the coherent case, it should
be noted that the latter assumes perfect channel knowledge. As
a result, in practice the performance of a real coherent MIMO
STBC system will be penalized. By increasing the alphabet
size beyond 64 (if a larger number of subcarriers is available),
the SNR gain of the MIMO MFSK system can be further
increased.

It should be noted that the SNR gain of MFSK comes
at the cost of poorer bandwidth utilization, which for a
given M is equal to (log2M)/M . Nevertheless, the proposed
scheme offers a solution for applications such as long-range
communication, where better receiver sensitivity has a priority
over throughput. In addition, since the proposed solution is
based on the standard OFDM modem, it can be combined with
bandwidth-efficient modulation schemes. This would result in
an adaptive system able to operate in both bandwidth- and
power-efficient modes over a wide range of SNR values.

V. CONCLUSION

In this correspondence, a novel communication system was
proposed that significantly improves the receiver sensitivity
of standard OFDM-based systems. The solution is based on
OFDM-MFSK modulation combined with an SFT code to
enable multiple transmitting and receiving antennas. A simple
energy-based non-coherent detector is derived for a 2 × 2
MIMO case. The designed detector eliminates the need for

SNR [dB]
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Fig. 3. PER performance of non-coherent MIMO OFDM-MFSK and coherent
SISO and MIMO STBC OFDM-BPSK as a function of SNR per receive
antenna.

channel estimation, which is especially beneficial in the low
SNR region where standard pilot-based estimation techniques
usually fail. In addition, the proposed detector produces soft bit
information, which allows state-of-the-art channel codes to be
used. The performance of the proposed system was simulated
and compared with its SISO counterpart, and it was demon-
strated that the SFT code introduces additional power and
diversity gains. When compared with coherent BPSK-based
SISO and MIMO STBC counterparts, the proposed system
exhibited an SNR gain of up to 9 and 5 dB, respectively. This
gain can be attractive in applications where improved receiver
sensitivity is more important than data rate. The proposed
solution can be seamlessly integrated into existing OFDM-
based modems and can coexist with traditional, bandwidth-
efficient modulation schemes and coherent receivers.
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