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Abstract 

The performance of direct and hetedyne detection optical intersatellite communication links are 

evaluated and compared. It is shown that the perfonnance of optical links is very sensitive to the pointing 

and tracking e m  at the transmitter and receiver. In the presence of random pointing and tracking errors, 

optimal antenna gains exist that wiU minimize the required transmitter power. In addition to limiting the 

antenna gains, random pointing and tracking emrs also impose a power penalty in the link budget. This 

power penalty is between 1.6 to 3 dB for a direct detection QPPM link, and 3 to 5 dB for a heterodyne 

QFSK system. For heterodyne systems, the canier phase noise presents another major factor of 

performance degradation that must be considered. In contrast, the loss due to synchronization error is 

small. 

The Link budgets for direct and heterodyne detection systems ye evaluated. It is shown that, for 

systems with large pointing and tracking errors, the link budget is dominated by the spatial tracking error, 

and the direct detection system shows a superior performance because it is less sensitive to the spatial 

tracking error. On the other hand, for systems with small pointing and tracking jitters, the antenna gains 

are in general limited by the launch cost. and suboptimal antenna gains are often used in practice. In which 

case, the heterodyne system has a slightly higher power margin because of the higher receiver sensitivity. 
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1. INTRODUCTION 

Intersatellite links (ISLs) between satellites in low earth orbits (LEOS) and the geosynchronous orbit 

(GEO) are essential for future space missions [1],[2]. An effective ISL can reduce the dependence on ground 

tracking and data relay stations, increase the flexibility in choosing satellite orbits, and improve the data rate. 

Recently, with the advances in semiconductor laser and detector technologies, there has been considerable 

interest in developing an optical ISL as an alternative to microwave systems. Compared to the state-of-the-art 

microwave link, the optical system offers higher bandwidth and lower power requirements. In addition, the 

shorter optical wavelength implies smaller antenna diameters and hence a smaller size and weight of the 

communication system. The combination of these advantages makes the optical system highly attractive for 

ISL implementations. 

Optical links can be implemented using either direct or heterodyne detection receivers [1]-[SI. In a 

direct detection receiver [3], the received optical intensity is detected without extensive front-end optical 

processing. The direct detection system is structurally simple and easy to implement. The technology needed 

to implement the direct detection receiver has been studied for land-based optical fiber links [9],[10] and, more 

recently. for free space communication channels [4],[51,[11]-[191. For the free space optical link, pulse- 

position modulation (PPM) is known to be the optimal modulation scheme [ll]. [12]. The performance of the 

PPM channel has been analyzed extensively [3],[4], [11]-1141, and progresses have been toward implementing 

a PPM channel capable of communicating at 2.5 bits per detected photon [17]-[20]. In order to achieve h e  

detection sensitivity needed for the ISL. avalanche photodiodes (APDs) [21], [223 with sufficiently high gain 

and low noise are required. The performance of APD-based direct detection channels has been studied for 

both fiber and free-space communication links [41, [51, [231-[251. 

Unlike the direct detection receiver which detects only the intensity fluctuation, the heterodyne receiver 

detects both amplitude and phase of the signal by first mixing the the received optical signal with a strong local 

oscillator (LO) output, then detecting the combined optical signal. This heterodyne process effectively shifts 

the spectrum of the incoming signal from the optical frequency down to an intermediate frequency (IF) where 

it c3n be easily processed. Because of the large IF signal strength, detector thermal noise can often be ignored 

in the heterodyne receiver. Furthermore, because the frequency filtering is c'arried out at the IF frequency 



where a much narrower bandwidth can be used, noncoherent background radiation can be better rejected by 

the heterodyne receiver. As a result, the heterodyne detection receiver offers a near quantum limited detection 

sensitivity [3], [%I, [27]. Receiver sensitivity can be further improved by using frequency and phase 

moduhtions. In the limit of Iarge LO strength, the LO shot noise at the output of the heterodyne receiver can 

be approximated by a white Gaussian noise. Therefore, the analysis of the optical heterodyne system is similar 

to that of an additive white Gaussian noise (AWGN) channel [281-[31]. The application of heterodyne 

technology in fiber-optic links has been studied [321-[371, and the use of heterodyne receivers in ISL 

applications has also been proposed [61-[8]. These studies suggest that the heterodyne system offers a 5-10 dB 

advantage in the detection sensitivity over the comparable direct detection PPM channel [6]-[8]. However, the 

heterodyne receiver is more complicated than the direct detection receiver. Furthermore. the performance of 

the heterodyne receiver is very sensitive to the carrier phase noise which is prominent in semiconductor lasers 

[38]-[43]. The impact of the laser phase noise on the performance of the heterodyne system has been studied 

by various authors [44]-[53]. Because of the difficulties in analyzing the statistics of the phase noise, however, 

most of these studies offer only an approximation to the system error rate. 

Both direct and heterodyne detection systems have been proposed for ISL implementations. The 

purposes of this study are to compare the performance of these systems under a realistic operating environment 

and to analyze the various design trade-offs. 

Before a comparison can be carried out between the direct and heterodyne detection ISLs, performance 

of individual systems must be carefully studied. In Chapter 2, components of an optical channel are discussed 

individually and the signal and background powers detected by the receiver are derived as functions of link 

parameters. Given the receiver S N R  and the modulation format, the performance of both direct detection and 

heterodyne receivers will be studied in Chapters 3 and 4, respectively. For direct detection systems, it is 

shown that the PPM system offers a significant performance advantage over the on-off-keying (OOK) 

system [3], [ 111, [ 121. For heterodyne systems, the sensitivity towards carrier phase noise suggests that the 

noncoherent frequency-shift keying (NCFSK) scheme should be used for the heterodyne ISL [61-[81. 

In addition to the receiver S N R  and the modulation scheme, the performance of the ISL is very sensitive 

to the spatial and temporal tracking errors between the two satellites. Both direct dctcction and heterodyne 

systems are susceptible to tracking errors in the mutual line-of-sight &OS). The implementation of the spatial 
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tracking and acquisition system has been studied by various groups [54]-[59]. The impact of spatial tracking 

error on the performance of direct detection ISLs has been analyzed in terms of the probability of burst errors 

[57], [a]-[63]. The use of burst error probability to analyze the design of optical ISLs is simple, straight- 

forward, and in most cases provides adequate design rules. However, it is of interest to derive an optimal 

system design which maximizes the overall system performance. Such an analysis is carried out in Chapter 5. 

It is shown that, in the absence of spatial tracking error, the performance of the ISL improves with increasing 

transmitter and receiver antenna gains. When a random pointing error is present in the ISL, however, an 

optimal transmitter antenna gain exists which minimizes the required signal power. When pointing errors in 

each of the two gimbal axes can be modeled as identically distributed, zero-mean, Gaussian random variables, 

the product of the optimal transmitter antenna gain and the mean square pointing jitters is shown to be a 

constant which is independent of the RMS pointing error. Similarly, for heterodyne systems, the presence of 

random tracking error implies that an optimal receiver antenna gain exists which optimizes the receiver SNR. 

The product of this optimal receiver antenna gain and the mean square tracking error is again a constant which 

is independent of the RMS tracking error. In addition to limiting the antenna gains, random pointing and 

tracking errors also impose an additional power penalty in the system link budget. This power penalty is 

shown to be between 1.5 to 3 dB for a direct detection QPPM system, and between 3.8 to 5 dB for a 

heterodyne QFSK system. 

Receiver timing synchronization is another major factor of performance degradation. For direct 

detection PPM systems, early-late gate [3], [281, [31] and phase-locked loop (PLL) [28]-[31], [HI-[68] timing 

synchronizers can be used to synchronize the receiver timing. It can be shown that, with nonlinear 

preprocessing, PLLs can be used to achieve effective symbol synchronization of the direct detection PPM 

receiver [66]. For heterodyne systems, techniques for synchronizing the RF channel can be applied without 

extensive modification. The impact of symbol synchronization on the performance of direct and heterodyne 

detection ISLs is studied in Chapter 6. It is seen that, with a narrow tracking loop bandwidth, receiver 

synchronization can be implemented with only a small power penalty. 

Finally, Chapter 7 summarizes the findings of previous chapters and analyzes thz various design 

tradeoffs. It is shown that, for systems with large (>OS wad) RMS pointing and tracking jitters, spatial 

tracking errors are the dominating loss factor in the link budget. As a result, the direct detection PPM system 
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has a higher power margin because it is less sensitive to the spatid tracking error. On the other hand, for 

systems with small ( ~ 0 . 2  pad) pointing and tracking jitters, losses due to spatial tracking errors are small and 

the heterodyne system actually shows a superior performance because of the higher receiver sensitivity. 

ff 
I 
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2.THEOpTICALLINK 

Like most communication links, the performance of optical links depends critically on achieving high 

signal-to-noise ratio (SNR) at the receiver. The higher the receiver SNR, the lower the error rate. Unlike the 

RF receiver, however, the output of the optical detector is contaminated by the shot noise in addition to the 

thermal noise. Given the received signal power, the presence of the shot noise imposes a limit on the 

maximum S N R  that can be achieved by the detector. This shot noise limited S N R  dictates a lower bound on 

the performance of the optical link. In this chapter, we are interested in evaluating the detector S N R  as a 

function of link parameters. In addition, expressions for the signal and background power received by the 

receiver will be derived and evaluated. 

2.1 Optical Detectors and Noise 

Detection of optical radiation differs from conventional RF field detection in that the signal intensity, not 

the amplitude, is detected. Detectors commonly used in optical communication include photomultiplier tubes 

(PMT). pin photodiodes, and avalanche photodiodes (APD). Pin diodes and APDs are solid state devices, 

while PMTs are vacuum photoemissive devices. 

A typical PMT consists of a photocathode, followed by a series of dynodes and an anode. An incoming 

photon event is detected by the generation of a photoelectron at the photocathode. This photoelectron is 

accelerated toward the first dynode in the tube by the applied field. The impact of this accelerated electron on 

the dynode creates secondary electrons that are then accelerated by the external field toward the next dynode. 

This process is repeated until photoelectrons hit the anode. However, by this time the original photoelectron 

has been amplified considerably so that a very high current gain is associated with a single photon event. 

Gains of 105 to 106 are typical for PMTs. When operating at such high gains, the detector thermal noise and 

gain noise usually can be ignored. Consequently, PMTs are essentially quantum limited devices. However, 

because of the time it takes the electrons to traverse the dynode chain, PMTs have an inherent bandwidth 

limitation. Typical bandwidths for PMTs are around 20-2OOMHz. Such bandwidths are considerably lower 

than the desired information bandwidth. Furthermore, the lack of suitable materials for photocathodes at the 

high visible and near JR wavelengths is a significant disadvantage. The detector quantum efficiency, which is 

the ratio between the number of detected and incoming photons, is typically on the order of 10-20% at visible 
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wavelengths, and drops off rapidly in the near i n k e d  region 1691, [70]. In addition to being slow and 

inefficient, PMTs are bulky, and require a high power supply voltage (=1-3KV) and extensive thermal 

cooling. 

In contrast, solid state detecton have an inherently higher bandwidth because of their smaller size. In 

addition, solid state devices are more reliable and exhibit higher quantum efficiency. Typical quantum 

efficiencies for solid state detectors range from 20 to 90% throughout the visible and near IR ranges [69]-[72]. 

Solid state detectors commonly used include the pin diode and the APD. Pin diodes are simpler to operate 

and easier to fabricate than APDs [21]. Under a normal operating condition, the p-n junction is reverse biased 

so that in the absence of light only a small leakage current will flow through the diode. When a photon enters 

the depletion region, it is absorbed and the excess energy generates an electron-hole pair. Both electron and 

hole are rapidly drawn toward the opposite electrodes where a current pulse is generated. The generation of 

electron-hole pairs depends on the detailed interaction between the radiation field and the detector material. 

For detection of multimode radiation, photoelectron generation can be modeled as a Poisson arrival process 

with arrival rate Vt). which can be related to the total incident optical power PR by [31,[741 

where q is the detector quantum efficiency. and h v  is the energy of the photon. The output of the 

photodetector. which can be modeled as the superposition of detector response to the primary photocurrent, 

can therefore be written as 131, [741 

i ( t )  = &eh(t-,) + id+ia , 

where the summation is extended over the photon arrival times (7, 1, e is the electron charge, h ( f )  is the 

detector impulse response, id is the detector dark current, and ilk is the detector thermal noise current. 

Because there is no internal gain mechanism, the bandwidth of the pin diode is limited only by the time it 

takes the electron and hole to travel through the depletion layer. Bandwidths of IOGHz can be easily achieved 

for InGaAs pin diodes [21] and bandwidths as high as 20 GHz have been reported [731. 

The main disadvantage of pin diodes in optical ISLs is their low gain. When operating at extremely low 

signal levels, thermal noise current generated by the detector frontend can be more significant than the signal 
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current. This thermal noise limited situation can severely degrade the signal-to-noise ratio of the detector and 

increase the system error rate. Consequently, pin diodes are typically used in heterodyne systems where the 

large local oscillator (LO) strength ensures that the SNR is not limited by the detector thermal noise. For 

applications where the incident optical power on the detector is weak , such as in a direct detection ISL 

receiver, the APDs with their internal gain are generally preferred. 

Avalanche photodiodes are similar to pin diodes in that they operate under reverse bias 

[21], [22], [71], [72]. Unlike pin diodes, however, APDs operate with high internal electric fields so that when 

carriers are generated, they are accelerated to high velocities. These high velocity carriers can subsequently 

ionize other electron-hole pairs which in Run generate additional carriers. This impact ionization mechanism 

gives the APD an internal gain so that the device can operate above the detector thermal noise limit. Typical 

gains of APDs range from 100 to 300 and, because the ionization process is random, gains associated with 

different photon events are independent. By assuming that each primary electron-hole pair is associated with a 

random gain C , the output of the APD can be modeled as [31, [751 

i ( f  ) = &eCj h ( t  -s, ) + id + it,, , (2.3) 

where G, is the gain associated with the j h  photoevent. 

Because of the large gain (100-300) associated with each photon event, detector thermal noise can often 

be ignared at the APD output. The principal noises at the APD output are, therefore, the detector shot noise 

and noise associated with the avalanche gain mechanism. The avalanche noise is lowest in devices where the 

avalanche process is generated primarily by the carriers of higher mobility, because although a large number 

of secondary carriers can be generated by the primary electron-hole pair, the higher canier mobility implies 

that carriers will spend a shorter time within the avalanche region and, consequently, a smaller number of 

secondary carriers will induce further ionization. The ratio between the hole and electron ionization 

coefficients is known as the effective ionization coefficient ratio, k d .  For a well-designed APD, keff should be 

much smaller than 1. The value of kcff as low as 0.007 has been reported for selected commercial devices. 

The exact gain distribution of the APD is difficult to characterize [75]-[77]. However, for most practical 

applications, it is sufficient to characterize the APD by its excess noise factor F, defined as 
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(2.4) 

where the angle brackets <Gj > denote the ensemble average. Experimentally, the excess noise factor is found 

to be closely approximated by [721 

F = G x ,  (2.5) 

where G is the average gain of the detector, and x is some exponent which for Si APD is between 0.2 and 

0.5*. The excess noise factor F can also be theoretically related to k a  by [72] 

The response time of the APD also depends on ka. After the initial avalanche, the signal persists until 

no further avalanche is detected. In the best case where k e O ,  the detector response time is limited only by 

the time it takes for a single electron to travel through the avalanche region. Typical bandwidths of APD range 

from 100 MHz to 4 GHz for visible wavelengths. At wavelengths longer than 1 p, the difficulties of 

obtaining a low bandgap material with small tunnel leakage have limited the use of APDs. However. recent 

progresses in manufacturing the separate-absorption-and-multiplication-region APD (SAM-APD) have 

demonstrated a bandwidth of 5-7GHz with a gain-bandwidth product exceeding 50-GHz [79]. At even longer 

wavelengths ( = l o p ) ,  multiplequantum well (MQW) APDs [80] can be used to detect the signal effectively. 

Given the incident optical power, the mean and variance of the photodetector output can be given by 

Campbell's theorem [73]: 

In writing Eqs.(2.7) and (2.8), it has been assumed that the detector dark current consists of a gain dependent 

part i b  and a gain independent portion is. From Eq.(2.8), it is Seen that the variance of APD output current 

consists of three terms. The first term on the right-handed side of Eq.(2.8) is due to the signal shot and the 

avalanche noise, the second term is due to the detector dark current, and the third term is the contribution of 

the thermal noise. The thermal noise term in Eq.(2.8) can be written as 

'For 1OSGS100, x=0.3 is a g o d  approximation. 
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where kB is the Boltzmann's constant, RL is the detector resistance, Ter is the equivalent noise temperature of 

the detector, and B is the (two sided) detector bandwidth (Hertz) which can be related to the detector impulse 

response h (t ) by 

B = E h 2 ( t ) d t  . (2.10) 

Because the detector bandwidth is usually much higher than that of the signal bandwidth, the convolutions in 

Eqs. (2.7) and (2.8) can be approximated by 

The detector SNR, which can be defined as the ratio between signal and noise power, is therefore I31 

(eG ~ P R  / h  v ) ~  
2kgT ' SNR = 

[G2F(%+ib) e PR + i, + FIB 
L 

(2.1 1) 

(2.12) 

where we have substituted the mean square of G by the product of the excess noise factor F and G2. 

2.2 Optical Sources 

Ordinary incoherent sources, because of the large beam divergence, are not suitable for long-range 

optical links. The output of lasers, on the other hand, is both spatially and temporally coherent. At large 

distances, the use of lasers permits higher signal power to be focused on the detector surface. 

Among the possible contenders for ISL laser transmitters are the CO, lasers [81], [82], solid state 

NdYAG lasers [83]-[85]. and semiconductor lasers based on GaAs-AIGaAs [5], [131,[201. The He-Ne laser, 

although well developed, is not suitable for the ISL application because of its low efficiency (0.01%) and small 

available power output. 

Early efforts in developing optical ISL lasers concenmted on the CO, laser operating at 10.6 pm 

[81] [82]. Researchers have demonstrated CO, lasers capable of delivering several watts at 10% efficiency and 

a lifetime expectancy exceeding 50,000 hours [821. Because of the lack of proper detectors at 10.6 pm 

wavelength, heterodyne receivers must be used in CO, systems. Electro-optic modulation techniques have 
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been developed to modulate the laser at high data rates. Recent results have shown that CdTe modulators 

capable of PSK modulation at bandwidths as high as 5 GHz can be manufactured [82]. The modulator 

produces 1.3 W of averaged modulated sideband power with 6.2 W of input power [82]. However, CO, 

systems are no longer being seriously considered because of the large diffraction loss associated with the long 

wavelength and the complexity of heterodyne receiver needed to detect the long-wavelength radiation. In 

addition, the use of a gas laser operating in space poses additional problems for both reliability and system 

design. 

An alternative to the CO, laser is the solid state Nd:YAG laser operating at 1064 nm and frequency 

doubled, 532 nm, wavelengths [2], [831-[85]. Direct detection laser communication links based on NdYAG 

lasers can be easily constructed because of high detector sensitivities at these wavelengths. In addition, 

mode-locked Nd:YAG lasers can be constructed with high modulation rates. One serious disadvantage of the 

Nd:YAG laser is the required external pump source. This results in considerably lower efficiencies than that 

for the CO, laser and lower overall power output. In addition, to compensate for the lower output power, a 

narrower transmitter beamwidth must be used which in turn demands a more stringent requirement in tracking 

and pointing of the telescopes. Pumping sources for Nd:YAG lasers include lamp pumping with low pressure 

potassium rubidium (KRb) arc lamps, solar pumping, and diode pumping with GaAs lasers [2], [83], [85]. 

Flash lamp pumping has been demonstrated to have a 0.1% efficiency which produces a laser power output of 

270 mW with 250 W of electrical input power [2], [83]. Solar pumping has also been demonstrated and the 

results indicate that over 400 mW of average power can be produced with a 60 cm solar collector [2], [83]. For 

satellite applications, diode pumping is by far the most attractive technique for pumping Nd:YAG lasers. By 

doping the GaAs injection laser diode, the device can be made to lase at 810 nm which results in an excellent 

match to the 810 nm NdYAG absorption band [2],[83],[85]. A power efficiency of 0.6% has been 

demonstrated with only 40 W of supply power needed to generate 270 mW of output power[2],[83]. 

Recently, by using a tightly focused end-pump geometry, pumping efficiency as high as 8% had been achieved 

which resulted in 80 mW CW power output with only 1 W of electrical power into a single semiconductor 

laser array pump [85]. In addition to the required external pump source, Nd:YAG lasers also suffer from the 

requirement of an external modulator which can severely attenuate the signal power and consume more prime 

electric power. 
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With the improvements in device efficiency and reliability in recent years, there has been considerable 

interest in developing a semiconductor laser based optical ISL as an alternative to Nd:YAG or CO, systems. 

Semiconductor devices have high power efficiency and offer room temperature operation without extensive 

cooling requirements. However, smaller output power is available from semiconductor devices. The 

sensitivity of lasing frequency with respect to junction temperature and injection current density implies that 

precise control over temperature and current must be maintained. Furthermore, the variation of index of 

refraction in the lasing cavity with varying injection current density can result in a large carrier phase 

fluctuation which can seriously deteriorate the performance of the heterodyne channel. Direct detection 

systems employing GaAs laser diodes are insensitive to the phase fluctuations, and have been thoroughly 

investigated for land-based fiber optics links [10],[86]. For a spacebome, direct detection optical 

communication system, laser power on the order of a hundred milliwatts is necessary. Commercial laser 

diodes are currently available with output power up to 30 mW and product lifetime of approximately 20,000 

hours. These devices generally emit in a single spatial mode but provide very little control over the lasing 

frequency, which depends on the the drive current and temperature 1861. Consequently. such devices are 

suitable only for direct detection system implementations. Higher laser power (several hundred milliwatts in 

CW operation) have been reported in laboratory works [87]-[90]. The modulation bandwidth of the laser diode 

is another important factor in choosing a laser diode. High speed (>lo GHz) [91] operation of the diode laser 

has been reported. However, it should be noted that laser diodes designed for high speed operation generally 

have a small output power. In the near future, it is expected that, with improved fabrication technologies such 

as molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD), better uniformity 

can be achieved for large structures. Multiple quantum-well (MQW) lasers [92].[93] grown with these 

techniques should be more efficient than the currently available devices. A uniform fabrication process will 

also improve device yield and reduce the production cost in addition to offering improved performance. With 

the inclusion of these technologies, it is expected that single laser diodes with 60-100 mW CW output power 

level can be reliably manufactured within the next few years. 

With the output power of a single laser diode limited, further improvement in the transmitter laser power 

can be achieved using a phase-locked diode array, or by noncoherently combining the power from several 

different wavelength sources. The phase-locked laser diode array is currently at its infancy. Lasing power as 



high as several watts has been achieved for laboratory devices [941,[951. However, devices that are presently 

available suffer from poor spatial beam quality as the lasing mode in the diode array is dominated by the 

higher order supermodes that are characterized by the double-lobed intensity pattern at the far-field. Several 

techniques can be used to suppress the higher order supermodes and obtain a single-lobed far-field pattern. 

One such technique is to injection lock the laser diode array with a coherent injection source. This method has 

been successfully demonstrated to generate 315 mW of output power using a 20-element GaAlAs gain-guided 

coupled-strip array with 3.9 mW of incident power [96]. Another technique is to tailor the gain or stripe 

spacing of the array structure in order to suppress the higher order supermodes [97]. Diffraction coupling [98] 

and holographic grating E991 can also be used to channel the output of individual lasers into one central far- 

field pattern. In addition to the linear snipe array, the Y-junction array [lOO], [I011 has also been proposed in 

which the lowest order mode is selected by the interference between lasing stripes. 

Higher laser power can also be obtained by noncoherently combining the output power from a number 

of laser diodes. Several techniques can be used to combine the laser power. Figure 2.1 illustrates the dichroic- 

polarizer combiner with 8 laser diodes [102].[103],[104]. These diodes are organized at 4 different 

wavelengths and different polarizations. A narrow band dielectric polarizer can be designed such that it is 

highly reflective to one polarization state but appears highly transmissive to the other. Optical signals with 

different polarizations can be combined using such a polarizer. Dichroic elements that act as optical edge 

filters can then be used to combine output signals from different wavelengths. Note that the efficiency of the 

power combining technique depends critically on the property of the optical surfaces. When combining output 

from a large number of laser diodes, the losses at the surfaces may offset the gain in the power, making the 

combining system highly inefficient. 

In addition to the dichroic combiner, optical power combining at different wavelengths can also be 

achieved using gratings [102], [103], [I051 or waveguide multiplexing techniques [IOZ], [103]. A grating 

rhomb combiners[105] has been developed with which power combination of more than 100 laser diodes 

appears feasible. However, precision alignment and frequency control are required for the grating combining 

technique. For the waveguide multiplexed system, the large insertion and coupling losses of the waveguides 

can severely reduce the power that can be effectively combined. 

12 



A- 

A? 

A 
A i  ;e hi BY DEVICE SELECTION 

0 POL DIELECTRIC POLARIZER 

0 DICHROIC SHORT WAVE PASS 
DICHROIC MIRROR 

Fig.2.1. The structures of a noncoherent power corn: her for laser diodes. 

I 
I 
I 

13 



Noncoherent combining of several laser diode outputs can be used to generate sufficient power output 

for the direct detection ISL. When a heterodyne receiver, is used to detect the optical signal, however, 

additional constraints must be placed on the frequency stability of the transmitter laser. Laser diodes designed 

for high power output and diode arrays generally have spectral linewidths on the order of 0.01-1 nm or, 

equivalently, 109-1011Hz, and provide little control over the lasing mode. These devices are not suitable for 

the heterodyne system because the lack of mode stabilization implies a large frequency fluctuation at the 

optical output. Furthermore, the large linewidth implies a large Canier phase fluctuation which can seriously 

affect the performance of the decoder. Instead, mode stabilized laser diodes with narrow spectral linewidths 

must be used. These laser diodes generally employ feedback to improve the frequency stability and reduce the 

linewidth. Several approaches can be used to achieve stable single mode operations; they are (a) short cavity 

lasers [106].[107], (b) coupled-cavity lasers [108], [109], (c) external light injection [106],[110], and (d) lasers 

with grating feedback [106], [111]-[116]. However, these frequency control techniques generally have very 

low gains such that small signal power is available from the laser diode. Fortunately, over the past few years, 

steady improvements have been made in the power output and the spectral linewidth of laser diodes. Output 

power on the order of 10 mW and linewidth on the order of several megahertz have been achieved on 

laboratory devices [106], [111]-[116]. When coupled with an external cavity, linewidths as narrow as tens of 

kilohertz have been reported [117]-[119]. Again, it should be noted that lasers designed for narrow spectral 

linewidth operations generally have small output power. In the future, it is expected that, with an improved 

fabrication technology, frequency stabilized lasers with averaged power output on the order of 20-30 mW can 

be manufactured [6]-[8]. 

The comparison of various candidates for spaceborne laser transmitters is shown in Table 2.1. Note that 

semiconductor lasers offer smaller device size, lower cooling requirement, and higher reliability. 

Consequently, for the rest of the discussion we shall assume that semiconductor lasers are used. The output 

powers of lasers are assumed to be 200 mW for lasers used in direct detection systems, and 25 mW for signal 

mode, frequency stabilized lasers used in heterodyne systems. 

I 
I 
1 
1 
I 
I 
I 
I 
I 

1 
I 
1 
1 
I 
I 

14 



Table 2.1 Comparison of ISL laser transmitters. 

System 

co2 

Advantages 

High power output 

Disadvantages 

High efficiency 
High reliability 
High detection sensitivity 
Small diffraction loss 

Easy to modulate 
Small size 

~ 

Large diffraction loss 
Low detection sensitivity 

at 10.6 p wavelength 
Low reliability 

Large frequency and 
phase fluctuations 

Low power output 
Stringent pointing and 
tracking requirements 

Large spurious AM and FN 

Nd:YAG High power output 

High detection sensitivity 

at 1.06 and 0.53 p 

Small diffraction loss 

Low pumping efficiency 

Stringent pointing and 
tracking requirements 

GaAs-AIGaAs 
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2.3 Transmitter Design 

The purpose of the optical transmitter is to focus the optical signal onto the receiver aperture. When a 

laser is used as the primary optical source, a beam expander is often employed to reduce the diffraction loss. 

Depending on the cost, size, and weight constraints, a beam expander can be of either refractive or reflective 

design. Figure 2.2 shows the alternative beam expander configurations. Because of the high cost of low-loss 

lens materials, reflective beam expanders are used almost exclusively for large telescope designs. 

The propagation of the optical signal through a dispersion free media has been studied extensively. The 

intensity of the far-field signal at an angular distance & from the transmitter line-of-sight &OS) can be written 

as 

where GT is the transmitter antenna gain, PL is the transmitter power, q~ is the transmitter optical efficiency, 

and LT(&) is the pointing loss factor associated with the angular pointing error 6 ~ .  For the case where the 

signal at the output of the beam expander can be approximated by a uniformly illuminated, circular disk of 

radius dT, the transmitter antenna gain and the pointing loss term can be written as [O]. [120] 

c 

(2.15) 

The far-field intensity distribution of a uniformly illuminated circular aperture is known as the Airy pattern. 

Figure 2.3 is a plot of the Airy pattern versus the radial angular distance 6~ from the transmitter LOS. It is 

seen that the far-field intensity drops off rapidly when the angular deviation approaches kldT. In fact, the 

magnitude of the Airy function is zero when r l z  Z1.22hld~. 

The transmitter antenna gain and the pointing loss factor in Eqs. (2.14) and (2.15) are calculated €or a 

uniformly illuminated aperture. In reality, the spatial intensity distribution at the output of the beam expander 

is better approximated by a truncated Gaussian distribution. Furthermore, because of the center obstruction of 

the Cassegrainian reflector, the gain of an actual transmitter antenna is usually smaller than hat given by 

(2.14). The effect of field distribution and Center obstruction on the transmitted signal has been C d U l l y  
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analyzed [120]. It is seen that for a given center obstruction and the transmitter diameter, an optimal RMS 

width of the Gaussian beam can be found which maximizes the on-axis gain at the far-field. The power 

penalty associated with the center obstruction is then plotted in Fig. 2.4. It is seen that a 1 dB power penalty is 

incurred on the system by using a truncated Gaussian beam rather than a uniformly illuminated aperture. The 

power penalty then increases with the obscuration ratio, which is the ratio between the primary and secondary 

mirror diameters. When the obscuration ratio increases from 0 to 0.5, over 3.5 dB of power penalty can be 

expected. In some cases, the spider support for the center reflector can also have a measurable effect on the far 

field intensity [121]. However, such effects are usually insignificant except when the obscuration ratio is small 

(c0.2) [1211. 

In addition to reducing the diffraction loss of the transmitted signal, the transmitter must also maintain 

the line-of-sight (LOS) tracking of the receiver. Because of the small beam divergence of the optical signal (= 

10 pad), care must be taken at the optical transmitter to maintain the receiver within its footprint. Because 

both transmitter and receiver terminals are in motion for an ISL link, their relative angular position is 

constantly changing. In order to maintain the receiver within the primary diffraction pattern of the transmitted 

signal, receiver motion must be acquired and tracked at the transmitter. In practice, this tracking control is 

accomplished using a separate spatial tracking subsystem. Because of noises in the system, however, some 

residual errors will remain in the LOS tracking. Such tracking errors can inflict an additional constraint in 

designing the optical transmitter. This design constraint will be discussed in detail in Chapter 5. 

2.4 Receiver Design 

At the receiver, the transmitted optical signal is collected and focused onto the photodetector. In 

general, a large collecting disk, usually of similar design to that of the transmitter telescope, is used to collect 

the optical radiation. Receiver and transmitter can share the same telescope to reduce the system size, cost, and 

weight. However, for systems employing the single telescope design, cross talk between the transmitter and 

receiver resulting from optical leakage must be carefully minimized. Alternatively, optical links may be 

designed using separate transmitter and receiver telescopes. Such systems offer better transmitter-receiver 

isolation and allow modular design for the optical component. However, the size and weight of the optical 

system must be significantly increased to accommodate the additional optical components. 
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Given the transmitted intensity pattern of (2.13). the total signal power collected by the receiver can be 

related to the transmitter power by [601 

where GT, GR are the uansmitter and receiver antenna gains, q ~ ,  T\R are the transmitter and receiver optics 

efficiencies, and LT(€)T) is the loss associated with a angular pointing error of €IT. The gain of the receiver 

antenna can be related to the diameter of the receiver aperture and the wavelength by [122] 

2 
. (2.17) 

c i  

Equation (2.16) was derived assuming that the area of the receiver aperture is small compared to the primary 

diffraction pattern such that the total power can be approximated by the product of the aperture area and the 

signal intensity. Furthermore, it was assumed that the receiver aperture is uniformly illuminated without 

center obstruction. A smaller receiver gain can be expected when using a Cassegrainian telescope [122]. 

Optical receivers can be divided into two classes: those that detect only the intensity fluctuation, and 

those that detect both amplitude and phase of the optical radiation [3]. The former type, usually known as the 

direct detection receiver, employs little optical processing and detects the signal by directly focusing the 

collected optical signal onto a photodetector. The latter, known as the heterodyne receiver, requires a precise 

alignment between the received optical signal and the local oscillator (LO) laser, but offers a more optimal 

detection sensitivity. 

Figure 2.5 shows the basic block diagram of a direct detection receiver. The optical signal is collected 

by the receiver telescope and, after passing through optical and spatial filters, is focused directly onto a 

photodetector. The optical filter in the receiver allows only radiations near the signal wavelength to pass 

through. Optical filtering can be accomplished using an interference filter, the passband of which is typically 

on the order of tens of angstroms. The spatial filtering in the receiver is achieved using a field stop iris, and is 

necessary to reduce the receiver field-of-view (FOV). Because no use is made of the spatial and temporal 

coherence of the transmitted signal, direct detection receivers are also known as noncoherent receivers. 

In the absence of the background radiation, the signal-to-noise ratio (SNR) of the direct detection 

receiver is simply the ShT of the detector given by Eq. (2.12). When the background radiation is detected in 
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addition to the signal, the receiver S N R  is given by 

(2.18) 

The numerator in (2.16) is the signal power due to a constant (dc) signal power PS , and the denominator is the 

sum of shot noise and thermal noise power admitted by the receiver of bandwidth B . When the signal power 

is much higher than the thermal and background noise powers, and when the detector dark current can be 

ignored compared to the signal current, the signal shot noise is the dominant noise source. In this case the 

detector is said to be shot noise limited and the receiver S N R  is given by 

(2.19) 

The principal advantage of the direct detection receiver is its simplicity. When operating undcr a 

restricted environment, the simplicity in design usually leads to an improved reliability and a longer mean- 

time-to-failure (-. However, when operating under low signal power and high background levels, the 

S N R  of the direct detection receiver can degrade appreciably because of the large thermal and background 

noise. Performance can be improved by increasing signal power or by using high gain photomultipliers. 

However, both methods are impractical for a spaceborne system because of limitations on the available output 

power and the lack of suitable photomultipliers at the optical wavelengths of interest The effect of thermal 

noise on the detector sensitivity can be reduced by using the avalanche photodetector. Alternatively, the 

detection sensitivity can be improved by using the heterodyne receiver. 

Figure 2.6 depicts the structure of a typical heterodyne receiver. The incoming signal is spatially mixed 

with a strong local oscillator (LO) beam. The combined optical signal is then focused onto a photodetcctor. 

Optical field mixing at the detector surface can be described in terms of the diffraction patterns at the focal 

plane or, equivalently, in terms of the back-projected signal and LO field distributions over the receiver 

aperture plane. If we let 3: and 3 ,  denote the elecmc field vector of the signal and LO field at the receiver 

apeme  plane, respectively, then the total power incident on the detector surface is 

(2.20) 

where LO is the impedance of the media surrounding the photodetector, and the integral is extcndcd over the 
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receiver aperture area AR . The electric field components & and ,?m can be written in the form 

(2.21) 

where &(f3 and &(?) are the vector amplitudes, fs and fu are the optical frequencies, and @S and Cpm are 

the phase of the signal and LO, respectively. The amplitudes and phases of both signal and LO can depend 

upon time and position. When the optical frequencies fs and fm are closely spaced, the interference of the 

optical signals creates a beat frequency at fIF=fS-fU,. By substituting Eq.(2.21) into (2.20) and integrating 

over a time period that is much longer than the optical period, but short compared to the beat period, the total 

optical power incident on the detector surface can be written as 

PR = PS +Pro +PIF , (2.22) 

where PS and Pm are the total power of the signal and LO, respectively, and PIF is the LF signal power which 

is due to the interference between the signal and LO: 

The integral in Eq.(2.23) is very sensitive to the (spatial) mode mismatch between the signal and LO. The 

magnitude of PIF(~) is largest when the signal and LO fields are spatially matched over the entire receiver 

aperture. For intersatellite links, the distance between the receiver and the transmitter is usually so large that 

the received signal can be approximated by a plane wave on the receiver aperture. Then for a uniform LO 

field, the integral in Eq.(2.23) will depend only on the relative polarization and propagation directions of signal 

and LO. By substituting the expressions for plane waves into (2.23) and integrating over the aperture area, the 

IF signal power can be written as 

(2.24) 

where 

(2.25) 
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are the signal and LO powers, and qha is the heterodyne efficiency which is defined as 
. < 

(2.26) 

1 1 
When both the signal and LO are plane waves that cover the entire receiver aperture, the heterodyne efficiency 

can be evaluated to be: 

where yp  and OR are the angular differences between the polarization direction and the propagation axes of 

the signal and LO, respectively. The factor LR ( 9 ~ )  is the loss factor due to the spatial tracking error between 

the signal and LO. When both signal and LO are plane waves extending over the receiver aperture of diameter 

When the incident wavefronts at the receiver aperture 

should be used to evaluate qhu. In order to obtain 

(2.28) 

can not be approximated by plane waves, Eq.(2.26) 

a maximum detection sensitivity, both polarization 

directions and propagation axes of the signal and LO must be carefully matched. Because polarization 

alignment is relatively easy to accomplish, the principal loss in the heterodyne receiver is due to the tracking 

error between the propagation axes. By assuming that the polarization directions of the signal and LO are 

perfectly aligned, the IF power at the output of the receiver can be written as 

Because the signal power is usually much smaller than the LO power, the output of the photodetector 

can be modeled as the sum of a large dc current due to PLO , an IF current due to PIF , and the associated shot 

noise. The dc current can be effectively removed by passing the photodetector output through an IF amplifier- 

filter or, alternatively, it can be removed by using a dual detector configuration shown in Figure 2.7 [123]. By 

using one detector at each port of the beam splitter and coherently subtracting the two detector outputs, it is 

possible to eliminate the large dc contribution from the LO and greatly reduce the noise due to the fluctuation 

in LO strength. After removing the large dc current due to the LO, the IF signal is given by 
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(2.30) 

where $IF is the phase angle of the IF signal, and n, and n~ are the detector shot noise and thermal noise, 

respectively. 

The detector shot noise can be approximated by a white Gaussian noise with power spectral density 

For a given IF bandwidth BIF , the receiver S N R  is therefore 

(2.3 1 )  

(2.32) 

where we have ignored the noise contribution of the detector dark current. In the limit of large LO power, 

thermal noise and shot noise due to signal and background radiations will be negligible compared to the LO 

shot noise. In this case the S N R  reduces to that of an ideal, quantum limited photodetector [3] ,  [26],  [27]: 

(2.33) 

Note that because of the large LO strength, pin diode can be used to detect heterodyned signal. The excess 

noise factor for the pin diode is equal to 1 .  Compared to the SNR of a direct detection receiver given in (2.16) 

it is seen that, when spatial tracking between the signal and LO is perfectly established, the heterodyne 

receiver offers a significant improvement in S N R  over the direct detection receiver. Background radiation and 

thermal noise that affect the direct detection receiver can be easily overcome by increasing the LO signal 

strength. 

2.5 Background Radiation 

In addition to the transmitted signal power, optical receivers also collcct background radiation. The 

amount of background power collected by the receiver depends on the receiver's ficld of view (FOV) and the 

optical bandwidth [124] [125]. In order to reduce the amount of background power admitted by the receiver, it 

is desirable to have as small a receiver FOV and optical bandwidth as possible. Receiver FOV can be limited 

using a field stop in the optical path. However, the pointing and tracking problems are more severe with small 
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FOV. Typical values of the receiver FOV are on the order of 0.1 mrad. Similarly, the receiver optical 

bandwidth can be limited using an interference filter. For a white background radiation, the amount of power 

admitted by an interference filter is proportional to its bandwidth. However, the transmittances of typical 

interference filters decrease with decreasing bandwidth. Consequently, at small optical bandwidths the signal 

itself may be severely attenuated. For most applications, interference filters with bandwidths of 10-20 A and 

transmittances of 50-70% are used. 

The amount of background power incident on the receiver can in general be measured in terms of the 

spectral radiant emittance "(1) which is the radiant power at wavelength h emitted into a hemisphere per unit 

area of source in the hemisphere. Assuming a Lambertian source of diameter d, at a distance z from the 

receiver, the amount of background power incident on the detector surface can be written as [124]. [125] 

(2.34) 

where 

q~ is the receiver optical efficiency, 

ds is the source aperture diameter, 

dR is the receiver aperture size, and 

A1 is the bandwidth of the interference filter. 

Equation (2.34) was derived for a background source that is contained within the receiver FOV. For an 

extended source where the size of the object is larger than the FOV, the background power is given to a good 

approximation by [1241, [1251 

where QR is the solid angle receiver FOV which can be related to the planar angle FOV by 

no$ RR = 7. 

(2.35) 

(2.36) 

For smaller sources such as stars, the background radiation is usually measured in terms of the spectral 

irradiance H ( I )  which is the power per unit wavelength incident on a unit area of the receiver. For a given 
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spectral irradiance H (A), the background power collected by the receiver is given by [ 1241 

(2.37) 

The total background power collected by the receiver is the sum of powers due to earth reflection, the 

moon, the planets, and the stars. The radiation due to the sun is usually so intense that direct communication 

with the sun in the background is not achievable using direct detection receivers. Figure 2.8 shows the spectral 

radiant emittance of the earrh versus wavelength. Note that for the wavelength of interest (850 nm for GaAs 

diode lasers), W(h) is on the order of 10-* W/cm2-w. As indicated in the figure, this measurement is carried 

out when there is no cloud cover in the earth's atmosphere. Radiance from cloud-covered earth is 

approximately one order of magnitude higher than that given by the figure and represents the strongest 

background source to be considered. By evaluating the amount of received power using the assumed receiver 

characteristics shown in Table 2.2, the background power due to earth reflection can be seen to be 

lO-'OW with cloud cover, 

10-11W no cloud. 
(Earth reflection) PE ;{ 

Next to the earth reflection, lunar spectral irradiance is the strongest background emission source. Figure 

2.9 is a plot of the lunar and planetary spectral irradiance versus wavelength which shows, typically, a spectral 

irradiance of the moon is approximately lo-' W/cm2-pm. Because of the close proximity of the moon, the 

amount of background power gathered due to the moon cannot be evaluated using Eq.(2.37) since it assumes 

the receiver FOV is greater than the angular span of the moon while actually only a portion of the moon is 

visible within the receiver FOV. By modeling the lunar surface as a uniformly illuminated Lambertian 

reflector, the amount of background radiation received due to the moon is given by 

(2.38) 

where z is the mean distance between the earth and the moon, and d,,, is the diameter of the moon. After 

substituting the lunar irradiance into (2.38), the amount of background power collected due to the moon is 

given by 

PB = 5 ~ 1 0 - ' * W  . (Moon) 
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Table 2.2 Typical ISL link paramters. 

Parameters 

Transmitter Laser 
Power 
Extinction Ratio 
Modulation Bandwidth 
Linewidth 

Optical Antenna 
Transmitter Diameter 
Receiver Diameter 

~ 

Transmitter and Receiver Optics 
Transmitter Efficiency 

Receiver Efficiency 
Tracking Split 

Receiver Optical Bandwidth 
Receiver Field-of-View 

Optical Detector 
Quantum Efficiency 

k& 
Gain 

Excess Noise Factor 
Gain Dependent Dark Current 

Gain Independent Dark Current 
Bandwidth 
Noise Equivalent Temperature 
Load Resistance 

Direct Detection System 

200 mW 

5% 
>15 GHz 

10.6 cmt 
30.0 cm 

50% 
35% 

5% 
2 nm 

0.1 mrad 

70% 

0.01 

150 

3.5 
10-'OA 

lCSA 
>10 GHz 
40°K 
2K!2 

Heterodyne System 

30 mW 

>15 GHz 

3 M H z  

11.4 cmf 

11.4 cmf 

50% 
35% 
5% 

70% 

1 

>10 GHz 

f Optimized for RMS pointing and Tracking errors of lprad. 
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Fig.2.8. Spectral radiant emittance of the earth. (From W. K. Pratt, Laser Communication Systems, New 
York: Wiley, 1968; p. 125.) 
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Fig.2.9. Calculated planetary and lunar spectral irradiance outside the atmosphere. (From W. K. Pratt. 
Laser Communication Systems, New York: Wiley, 1%8; p. 123.) 
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Background powers due to planets and stars are many magnitudes smaller than those of the earth 

reflection and the moon. From Figures 2.9 and 2.10 it is seen that, even under the worst case, the spectral 

irradiances of the planets and stars are at least three orders of magnitude smaller than the lunar irradiance. 

This results in a background power of 

which is considerably lower than the earth and moon contributions. 

2.6 Summary 

Various components of an optical ISL have been described. It is seen that semiconductor lasers with 

sufficiently high power and reliability can be used as the primary transmitter for an intersatellite link. The 

signal and background power collected by the ISL receiver have been derived as functions of the transmitter 

and the receiver parameters. Both direct and heterodyne receivers can be used to implement the optical link. 

The direct detection receiver offers simplicity in design and a potentially higher reliability, but is more 

sensitive to the thermal and background noises. The sensitivity with respect to the thermal noise can be 

improved at the cost of increasing gain fluctuation by using an APD. On the other hand, the heterodyne 

receiver promises a much improved detection sensitivity and a better background noise rejection. However, 

the higher complexity of the receiver implies lower reliability and longer development time. For the design of 

the practical ISL, it is the probability of bit error (PBE) that is of ultimate interest. Given the signal and 

background powers at the receiver, the PBE for systems employing the direct and heterodyne receivers will be 

analyzed in the next two chapters. 
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Fig.2.10. Spectral irradiance of brightest stars outside the atmosphere. (From W. K. Pratt, Laser Com- 
rnunicaiion Systems, New York: Wiley, 1968; p. 126.) 



3. DIRECT DETECTION SYSTEMS 

In the previous chapter the signal and background power collected by the receiver were evaluated as 

functions of the link design. Given the signal and background power at the receiver, it is of interest to evaluate 

the performance of the link in data communication. In particular, we are interested in a digital link in which 

the information is first digitally encoded before being modulated onto the optical carrier. In this chapter, the 

performance of a direct detection optical communication link will be analyzed. 

3.1 Digital Encoding Schemes 

In a typical M-ary  digital communication link the information to be transmitted consists of a sequence of 

codewords ( d l d ~ ,  ... d ~ ) ,  where each dk can take on values between (O,l, ...,M- 1). A modulator then maps the 

codewords (Q ) into a set of transmitter waveforms [ Sdk (t )) . During each of the transmission intervals, the 

codeword dk is transmitted by sending a waveform S d k ( t )  over the channel. When M = 2 ,  the communication 

system is referred to as a binary channel. For M > 2 ,  the system is known as an M-ary (block encoded) 

channel. For a binary channel, each transmitted waveform carries exactly one bit of informatior.. 

Consequently, the bit data rate R of the binary channel is equal to the rate of transmission of waveforms R,. 

For M -ary channels, on the other hand, several bits can be encoded into one transmitted waveform such that, 

on the average, log2M bits are transmitted per waveform. The bit data rate associated with the M -ary channel 

is therefore 

The actual symbols transmitted over the channel can be any of the amplitude, frequency, or phase 

modulated signals. For optical communication systems employing direct detection receivers, only the signal 

intensity is detected so that the modulation schemes are limited to polarization and intensity modulations, 

Polarization modulated signals can be detected as an intensity modulated signal by polarization filtering prior 

to photodetection. Polarization modulation can be accomplished using an electro-optic material, and intensity 

modulation of the transmitter laser can be achieved by varying the injection current of the laser diode [126], or 

by using an external electro-optic [127]-[129] or electro-absorption [ 13014 1321 modulator. 
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Modulation schemes commonly used in direct detection systems include on-off-keying (OOK) and 

pulse-position modulation (PPM). In OOK the binary data are transmitted as a sequence of optical pulses such 

that a binary one is transmitted by the presence of the pulse while the absence of the pulse signals a binary 

zero. A typical OOK encoded signal is shown in Fig. 3.1. Alternatively, information can be encoded in the 

PPM scheme. In a M-ary PPM system, each word frame is divided into M time slots. Information is then 

transmitted by sending an optical pulse in one of the M time slots. Fig. 3.2 shows a typical PPM encoded 

signal. Because multiple bits of information can be transmitted using a single pulse, PPM is more power 

efficient than OOK. On the other hand, because each word is divided into many time slots, the bandwidth 

requirement for a high order PPM system is significantly larger than that of an OOK system. Furthermore, 

PPM systems are more complicated and more difficult to implement. However, as we shall see, PPM systems 

offer significant improvements in performance over OOK systems, and are therefore more suitable for 

spaceborne applications. 

3.2 Detector Statistics and MAP Decoding 

Because photodetection is essentially a discrete process, output of the photodetector is corrupted by the 

signal shot noise in addition to the detector thermal noise. The detector photocount rate, which is related to the 

received optical power by Eq. (2.1), can be written as 

where & ( t )  is the photocount rate associated with the signal s ( t ) ,  and 1,q is the count rate due to the uniform 

background radiation. The purpose of the digital demodulator, therefore, is to determine which of the M 

waveforms ( s k ( l ) )  was transmitted given the detector output r ( t ) .  

In order to decode the transmitted information, the receiver performs the maximum a posteriori (MAP) 

decision [133]. Under this criterion, the output of the photodetector is observed over a given symbol period 

(0, T,). The decoder then selects the codeword that has the highest probability of having being transmitted. 

Mathematically, given the output of the photodetector r (t ), OS[ IT,, the decoder selects the codeword which 

maximizes 

P (sk (t ) I r (t))= probability that Sk ( t )  was transmitted given the received signal r (t ) 
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For a binary system, the decoder outputs a binary one i f P ( s l ( t ) l t ( t ) ) > P ( s o ( t ) l r ( t ) )  and decides a binary 

zero if P(s l ( t ) l r ( t ) )cP(so( t ) l r ( t ) ) .  If P(sl(t)Ir(r))=P(so(t)Ir(t)), then both so( t )  and s l ( t )  are equally 

likely to be transmitted and a random decision is made to determine the decoder output. Similarly, for an M - 
ary block encoded system, the decoder outputs the k* codeword if P(sk( t )  I r ( t ) )  is the largest among the M 

posterior probabilities. In the case where several highest posterior probabilities are equal, a random decision is 

made among these codewords. 

For systems where codewords have equal prior probabilities to be transmitted, the MAP decision rule 

reduces to the maximum likelihood (ML) test [133] where the receiver compares the likelihood function 

and makes the decision by choosing the codeword corresponding to the maximum likelihood function. The 

likelihood function in Eq. (3.4) is easier to evaluate than the posterior probability function in Eq. (3.3) and, 

consequently, for systems with equal priors, the ML test is often used. 

In general, given the detector output in Eq. (2.3). the probabilities in Eqs. (3.3) and (3.4) are difficult to 

calculate. Under two special conditions, however, the calculation of the likelihood function Ak can be 

simplilied significantly. The first case is when both thermal noise and detector gain noise can be ignored. In 

this quantum limited case the detector simply counts the number of photons detected during each interval. 

Section 3.3 describes the performance of this quantum limited detector. Another special case of interest is 

when the random avalanche gain is significant such as when APDs are used as the primary photodetectors. In 

this case, the output of the detector can be approximated by Gaussian statistics and the calculation of prior 

probabilities Ak can be greatly simplified. Section 3.4 discusses the performance of ML decoders when using 

APDs. 

3.3 The MAP Decoder for Photon Counting Receivers 

The optimal photodetector measures the arrival time of each photon. The PMTs, with their large internal 

gains, can best approximate the quantum limited detectors. For systems using a quantum limited detector, the 

probability of observing k photons during the period (0, T,) at timeT=(T1;52, . . . , OL) is given by [741 

. 
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where h(s) is the photocount rate at time 6. For systems where the photocount rate X ( Q  is maintained constant 

throughout the period (0, T,), Eq. (3.5) reduces to 

Note that Eq. (3.6) depends only on the number of photons received during the period (0, Ts), and not on the 

arrival time of individual photons. Consequently, for the MAP decoding of OOK and PPM signals where 

rectangular pulses are transmitted, the optimal decoder measures only the number of photons received during 

the period. For this reason, optimal, quantum limited detectors are often known as photon counting detectors. 

OOK Systems The maximum a posteriori (MAP) decoder for the OOK system compares the number of 

received photons with a threshold 8 and makes the decision based on the sign of the difference. If the number 

of received photons is greater than 8, a binary one is decoded. Otherwise, a binary zero is decoded. The 

decision threshold 8 depends on the signal and background photocounts and the probability distribution of the 

transmitted data. For systems with equal priors, 8 is given by [31 

r 

(3.7) 

where T, and K B = ~ B  T, are the expected photocounts due to the signal and background radiations, 

respectively. In practice, the decoding can be achieved by integrating the photodetector output over a bit 

period, then comparing the integrator output with a threshold, as depicted in Fig. 3.3. If the detector impulse 

response time is short compared to the integration period and if thermal noise and detector gain noise can be 

neglected, the output of the integrator will be proportional to the number of photons received during the pulse 

period, and the MAP decision can be made accordingly. 

For the MAP decision rule given above, a decision error occurs whenever y<8 and a binary 1 was 

transmitted, or when y>8 and a binary 0 was transmitted. Using the fact that receiver photocounts are Poisson 

distributed, the probability of bit error (PBE) for the OOK system is given by [3] 

(3.8) 

where r(8) and L(8) denote the smallest integer larger than 8 and the largest integer smaller than 8, 

respectively. Figure 3.4 is a plot of probability of bit error for an OOK system using photon counting detectors 
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vs. the expected signal photocount, KS . The cusps in the curve are due to the fact that KS and KB are integer- 

valued variables. 

OOK systems are simple and easy to construct However, the decision threshold in Eq. (3.7) depends on 

both the signal and background photocounts. For systems where the signal and background intensities are not 

precisely known, optimal performance cannot be achieved. Instead, when operating under conditions where 

the signal and background strength are not known a priori, it is desirable to have a robust decoding algorithm 

that does not depend on signal and background photocount rates. An obvious alternative is to use the pulse- 

position modulation scheme. 

PPM Systems The optimal PPM decoder counts the number of photons in each of the M time slots and 

chooses the slot with largest photocount. Figure 3.5 shows a practical implementation of this decoding 

algorithm. Because photocounts from the M time slots are compared, this decoding algorithm is insensitive to 

fluctuations in background and signal intensities. The probability of word error (PWE) for an M-ary PPM 

system using a quantum limited, photon counting detector is given by [3] 

P W E ( K ~ , K ~ . M ) =  i -  

where 

Il-kzpf-1 
Ma 

(3.9) 

The error rate given in Eq. (3.9) is difficult to evaluate. However, when the background count rate is much 

smaller than the signal count rate, Eq. (3.9) can be approximated by the union bound, 

PWE (Ks ,KB , M )  5 (M-l)*PWE (Ks , KB ,2) , (3.10) 

where PWE (Ks , K B ,  2) is the error rate of the binary PPM channel, given by [ 1241 

and Q (a ,b) is the Marcum's Q function [30!, [124], 
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(3.12) 

The error rate of a binary PPM channel can be further bounded by using the Chernoff bound [74], [133] 

When both signal and background counts are high, receiver photocounts in both signal and background slots 

can be approximated by Gaussian random variables and the resulting error probability is given by 

(3.14) PE (Ks , KB ,2) = i e r f c  KS LSl~ 
The validity of the union bound can be seen in Fig. 3.6 where the PWE of a 4-ary PPM system calculated 

using Eqs. (3.9) and (3.10) is plotted against the signal photocount Ks. Note that the union bound gives an 

excellent approximation of the error rate at high signal-to-noise ratios. A comparison of the binary PPM error 

rate calculated using the Chemoff bound, the Gaussian approximation, and the exact expression can be seen in 

Fig. 3.7. It is seen that the Chemoff bound is tight for small background counts, and the Gaussian 

approximation is good when both signal and background counts are high. The error probabilities given in Eqs. 

(3.9) and (3.10) are the probabilities of word error (FWE). For communication system design, it is usually 

desirable to specify the equivalent bit error probability for the system. The probability of bit error (PBE) for an 

M -ary PPM system can be related to the PWE by determining the probability that a given bit is incorrect after 

an erroneous decoding. In general, when an error occurs at the decoding, any bit will have a probability of 

(ID) to be correctly decoded. However, out of the M possible codewords, one codeword will result in a correct 

decoding. Consequently, the PBE is related to the PWE by [31 

PBE = - P W E .  
2(M-1) (3.15) 

Figure 3.8 is a plot of the PBE vs the PPM order with the equivalent bit data rate and signal power fixed. 

Notice that the performance of the PPM improves with increasing PPM order, because at a fixed bit data rate 

R the word rate R, actually decreases with increasing PPM order. Consequently, at a fixed signal power the 

signal photocount Ks increases with increasing PPM order. At the same time, since the equivalent slot period 

decreases with increasing PPM order, the background count per time slot, KS , decreases. Therefore, the PBE 

of the M - a r y  PPM system decreases with increasing M. However, it should be noted that the system 
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bandwidth and decoder complexity required for higher order PPM increase rapidly with increasing M. 

Furthermore, in order to maintain a constant signal power, the peak transmitter power must increase linearly 

with increasing PPM order. In practice, both bandwidth and maximum peak power of lasers are limited by 

physical constraints. Consequently, it is not possible to increase the PPM order indefinitely. 

It should also be noted that the improvement in system performance with increasing PPM order is 

possible only for systems where the transmitter laser has a perfect modulation extinction. In the presence of a 

finite extinction ratio m , receiver photocounts in the background slots are limited by the residual signal power. 

Therefore, even though the peak transmitter power increases with increasing PPM order, the background 

photocount also increases proponionally. Consequently, there is a limit at which further increase in the PPM 

order will only result in an increasing error rate. Fig. 3.9 is a plot of the PBE versus the PPM order for a 

system with a constant data rate and fixed signal and background powers. Note that for a nonzero extinction 

ratio, an optimum PPM order exists which minimizes the PBE. 

3.4 Avalanche Detectors 

Previous considerations of direct detection receiver performance have assumed that quantum limited, 

photon-counting detectors are used to detect the incoming optical radiation. In reality, when APDs are used in 

place of the photodetectors for the receivers shown in Figs. 3.3 and 3.5, the output of the integrator is no 

longer Poisson distributed because of the random avalanche gain. The derailed statistics of the APD output are 

difficult to characterize [75]-[77]. However, for communication receivers, the output of the integrator can be 

effectively approximated using Gaussian statistics [23]-[25]. The mean and variance of the integrator output 

can be written as [23] 

vur (X  ) = G *F (Ks +KB +e) Ib + + K,: , e 

where 

X = JoT'i (t)dr 

(3.16) 

(3.17) 

(3.18) 

is the integral of APD output over the period T, . I b ,  I, are the gain dependent and gain independent portions of 
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the detector dark current, and K,; is the variance due to thermal noise. K i  can be related to the detector 

parameter by 

(3.19) 

By approximating the integrator oufput as Gaussian random variables, the PBE of an OOK system can 

be written as 

(3.20) 

where 

are the means and variances of the integrator output in the absence and the presence of a signal pulse, 

respectively, and it has been assumed that both binary zero and binary one are equally likely to be transmitted. 

The threshold 8 can be related to the integrator output by 
. .  

(3.21) 

The PBE of an APD-based OOK system is calculated using the APD parameters shown in Table 2.2 and 

plotted in Fig. 3.10 versus the signal photocount K s .  It is seen that a significantly higher signal power is 

needed to compensate for the avalanche noise. 

For an M -PPM system, each of the M integrator outputs in Fig. 3.5 is Gaussian distributed. Since only 

one time slot contains the signal pulse, the integrator outputs for the remaining (M-1) time slots are 

identically distributed. Consequently, the PWE of the M-PPM channel can be written as 
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The signal-to-noise ratio (SNR) of the APD-based PPM receiver can be defined as 

(3.22) 

(3.23) 

When M =2, the PBE of the binary PPM system can be written as 

The PBE given by Eq. (3.21) is calculated using the parameters shown in Table 2.2 and and plotted against the 

signal photocount KS in Fig. 3.11. Again, it is seen that a much higher signal power is needed to overcome the 

avalanche noise. 

Given the receiver design, the gain of the APD is an important parameter which must be properly 

specified. The higher the detector gain, the smaller the effect of thermal noise on the receiver SNR. However, 

higher detector gain also implies larger excess noise factor which in turn can reduce the receiver SNR. 

Consequently, given the receiver parameter and the signal and background strength, there is an optimum 

detector gain which maximizes the detector S M .  This optimum detector gain can be calculated by 

differentiating Eq. (3.23) with respect to the detector gain G , and solving the resulting equation. By using the 

fact that the excess noise factor F is related to the detector gain G by Eq. (2.6). and the assumption that the 

detector dark current is small compared to the detector thermal noise, the optimum APD gain can be 

approximated by 

(3.25) 

Given the receiver design and the signal strength, an optimum APD gain can be chosen to maximize the 

system performance. 

The effect of a finite modulation extinction ratio on the PPM channel can also be analyzed using Eq. 

(3.23). In the presence of a finite extinction ratio m , the signal and background photocounts can be related to 

the average signal and background power by 

53 



I 

lo-' 

lo-2 

10-3 

 IO-^ 
W 
m a 

IO+ 

IO+ 

 IO-^ 

10-8 

1 I I 1 - 7  
4 -PPM 
F = 5  - 

\ - 

5 0  100 I50 200 250 300 
lo-'o 

SIGNAL PHOTOCOUNT ( Ks) 

1 
I 

Fig.3.11. Probability of bit error (PBE) of an APD-based 4-ary PPM system versus the signal photocount 
KS . 

54 



(3.26) 

where M is the order of PPM, and oc=q/hv k the detector responsivity. The word period Tw can be Written in 

terms of the data rate R and the order of PPM as 

T, = logfl/R . (3.27) 

By substituting Eqs. (3.26) and (3.27) into Eq. (3.23). the receiver SNR can be written as a function of the 

signal and background power, as well as the data rate: 

(3.28) 

Note that the receiver S N R  increases with increasing signal power and decreasing background power and data 

rate. When the modulation extinction ratio m is equal to 0, the receiver S N R  increases asymptotically as 

log2M. In the presence of a finite extinction ratio, however, the receiver S N R  first increases with increasing 

M until an optimum S N R  is reached, and further increase in M will only result in a smaller SNR. In general, 

this optimum PPM order can be calculated by differentiating Eq. (3.28) with respect to M and solving the 

resulting equation. In the limit where the detector dark current, thermal noise, and background power are 

negligible compared to the signal power, the optimum M is seen to satisfy 

M(lnM-l)=- m . (3.29) 

It should be noted that in deriving Eq. (3.27), it has been assumed that the average signal power is maintained 

at a constant level regardless of the PPM order. This implies that the peak transmitter power increases linearly 

with the PPM order M. In practice, because of device limitations, the peak power of lasers is often limited. 

For such systems, the average transmitter power is a function of PPM order M , and the optimal PPM order is 

determined not only by the extinction ratio m , but also by the ratio between peak and avenge laser power. 

3.5 Summary 

The performance of direct detection systems using OOK and PPM have been investigated. It is seen that 

PPM systems offer comparable PBE at a much lower signal power requirement. When the transmitter laser has 
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a perfect modulation extinction, the PBE of the PPM systems is seen to improve with increasing PPM order at 

constant signal power. Furthermore, the PPM signal can be decoded regardless of the signal and background 

strength. The combination of these advantages makes PPM highly attractive for spaceborne implementations. 

For these reason, it will be assumed in the following that PPM is used whenever direct detection systems are 

employed. It should be noted that the performance analysis for PPM systems carried out in this chapter have 

taken into account only the detector shot noise and thermal noise. Other noises that are present in a realistic 

PPM system, such as spatial and temporal tracking errors, have been ignored. In the presence of these errors, 

the performance of the PPM system can be seriously deteriorated. The performance analysis of PPM systems 

under spatial and temporal tracking errors will be carried out in Chapters 5 and 6, respectively. 
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4. HETERODYNE SYSTEMS 

The direct detection PPM system described in the last chapter is structurally simple and easy to 

implement. However, the large power requirement of a practical PPM link (5150-200 photons for 4-ary PPM 

at 10-9 error rate) presents a serious disadvantage in an ISL application where the available signal power is 

limited. Alternatively, optical communication systems can be implemented using heterodyne receivers. 

Compared to direct detection PPM systems, heterodyne systems offer an improved receiver sensitivity and 

better background noise rejection. In addition, frequency and phase encodings can be used in heterodyne 

systems to further improve the system performance. However, heterodyne systems are very sensitive to the 

phase fluctuation in the optical Carrier and their performances can be seriously deteriorated in the presence of 

large carrier phase noise. Consequently, for practical heterodyne systems, the spectral linewidths of lasers must 

be carefully controlled. The purpose of this chapter is to analyze the performance of the heterodyne system 

both in the absence and the presence of canier phase noise. 

4.1 Heterodyne Modulation Schemes 

Information encoding in optical heterodyne systems is similar to its counterpart in RF carrier modulation 

systems. Modulation schemes such as optical amplitude-shift keying (ASK), frequency-shift keying (FSK), 

and phase-shift keying (PSK) can be used to transmit messages over the heterodyne channel. 

Amplitude shift keying (ASK) is the simplest form of digital carrier modulation. The information is 

encoded onto the optical carrier by varying the amplitude of the transmitted signal. The ASK schemes 

commonly used in digital optical transmissions include on-off keying (OOK) and pulse-position modulation 

(PPM). The transmitted signal corresponding to these signaling schemes can be modeled as: 

A sin(2xfc t ii)c ) OIt ST, for a binary one, and 

OIt ST, for a binary zero, 
S(t) = 

{ ; sin(2xfctii),) kT,St I(k+l)Ts 
s k ( t )  = Olt<XT, , P P W  (4.2) 

elsewhere 

where q ( t )  is transmitted when the message codeword is equal to k, and A, fc and & are the amplitude, 

frequency and phase of the transmitted carrier, respectively. 
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In practice, ASK signals can be encoded by either externally modulating a frequency stabilized laser, or 

by directly modulating the injection current density of a semiconductor laser. External intensity modulation 

can be implemented using the electrooptic [1271-[129] or electro-absorption (Franz-Keldysh) effect [130]- 

[132]. External modulation of lasers provides a better frequency stability but, because the modulator severely 

attenuates the signal, a smaller signal power is available at the output. In contrast, direct modulation of 

semiconductor lasers provides a higher output power, a better modulation efficiency, and a larger modulation 

bandwidth. However, because of the spurious frequency modulation due to changes in the injection current 

density [134], direct modulation of semiconductor lasers suffers from the poor temporal coherence of the 

transmitted signal. A frequency stabilized external post amplifier can be used to reduce the phase fluctuation 

[135], but at the cost of increased system complexity. Another disadvantage of direct modulation is that, in 

order to facilitate rapid switching, the device is usually biased just below the lasing threshold. This leads to a 

small leakage of the optical signal and a finite extinction ratio. The presence of this finite extinction ratio 

imposes a ceiling on the maximum S N R  that can be achieved at the decoder. 

Frequency shift keying (FSK) is by far the preferred method for implementing the optical heterodyne 

system. Unlike the ASK system, the information is encoded by varying the signal frequency. The transmitted 

signal for an FSK system can be modeled as 

where the signal frequency is chosen from a set Cfoft, . . . , f , ~ - l )  of frequencies such that f k  is transmitted 

when the message codeword is equal to k. The correlation coefficients pi; between the i* and j* signal 

waveforms can be defined as 

(4.4) 

where 

is the energy of the i* signal waveform. For an M-ary system, it is desirable that signal waveforms 

corresponding to different codewords are orthogonal. The correlation coefficients between signals for an 

orthogonal system are equal to zero if i #j , and equal to 1 if i =j . Orthogonality can be realized for an MFSK 
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system if the tone spacing between signaling frequencies is a multiple of the symbol frequency fs=lflJ [28]- 

[311. 

Frequency modulation of the optical carrier can be accomplished in practice by either internal or 

external modulation techniques. External frequency modulation of laser output can be realized using 

electrooptic [136] or acoustooptic [1371 effects. As was the case with external amplitude modulation, these 

techniques suffer from large insertion losses and limited modulation bandwidths, Direct frequency modulation 

of semiconductor lasers can be achieved using electrooptic [138] or photoelastic [139] modulations or by 

directly modulating the injection current density [140], [141]. These different frequency modulation techniques 

are compared in Table 4.1 [32]. Among them, the injection current modulated system is the easiest to 

implement. 

In addition to ASK and FSK, the optical canier can also be phase modulated. By changing the index of 

refraction of the medium with an external voltage, the phase of the transmitted signal can be controlled using 

the electro-optic effect [1421-[1441. The transmitted signal for a PSK system can be modeled as 

where @k is chosen from a set of phases (+0,@1,. . . , $ ~ - l ) .  When M = 2  and $I-+, the amplitude of the 

signal when a binary one is transmitted is the negative of that when a binary zero is sent. This particular BPSK 

scheme is also known as the antipodal ASK, which has the property that the correlation coefficient between the 

two signals is equal to -1. 

4.2 Demodulation in the Absence of Phase Noise 

At the receiver, the optical signal is mixed with a strong LO output and then photodetected. This 

heterodyne process shifts the spectrum of the input signal from the optical frequency down to an IF frequency, 

f , F ,  where it can be easily processed using conventional RF electronics. When both temporal and spatial 

trackings can be perfectly realized, the output of the photodetector is often modeled as the sum of an IF signal, 

s (t ), and an additive shot noise, n, (t ), 

r ( t ) = s ( t ) + n , ( t ) ,  O<tIT, . (4.7) 

At sufficiently high LO power, the additive noise, n, (t). which is is due primarily to the LO shot noise, can be 
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modeled as an additive white Gaussian noise (AWGN) with power spectral density 

Consequently, the heterodyne channel can be effectively modeled as an AWGN channel, and the demodulation 

of the IF signal is similar to that of an RF carrier modulation system. In the case where an M -ary signaling 

scheme is used to modulate the optical signal, ~ ( t )  can be any one of the M signal waveforms ( s k ( t ) } .  The 

purpose of the IF demodulator, therefore, is to determine which of the signals ( sk ( t ) )  was transmitted given 

the receiver output r (t ), OIt IT,. 

In general, the carrier modulated signal can be demodulated using either phase coherent or incoherent 

techniques. Coherent demodulation of the IF signal can be achieved by using a matched filter or, equivalently, 

the correlation detector [28]-[31]. Both methods can be implemented directly at the carrier frequency, or at the 

baseband frequency by 6rst demodulating the IF signal using a coherent reference carrier. Figure 4.1 shows the 

alternative implementations of phase coherent correlation detectors. For M -ary phase coherent systems, M 

correlators are used to demodulate the IF signal, and the decoder simply picks the channel corresponding to the 

largest correlator output. Figure 4.2 shows the block diagram of a M -ary phase coherent receiver implemented 

using correlation detectors. The probability of error for the coherent demodulator can be written as 

where P E ( ~ )  is the probability of decoding emr given that sc( t )  was transmitted, and nc is the prior 

probability of transmitting q ( t ) .  The conditional probability P E ( ~ )  can be evaluated by realizing that the 

outputs of the correlators are Gaussian distributed with statistics 

(4.10) 

where xi is the output of the i* correlator. A decoding error occurs when the output of the J* correlator, 

xi, J#i,  is greater than xc.  Using the fact that X=(XOJ~, . * J M - ~ )  are jointly Gaussian, P E ( ~ )  can be written as 

1291 
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Fig.4.1. Alternative implementations of the correlation detector. 
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Fig.4.2. Block diagram of an M-ary coherent receiver. 
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(4.1 1) 

6 Y 

Po.0 Pl.0 , . PM-1.0 
P0.l P1.1 . . PM-1.1 

POY-1 PlY-1 * * PM-1Y-1 

. .. . .. P =  

L > 

(4.12) 

(Orthogonal Systems) (4.13) 

where 

pc = E m s  = A2Ts14Ns (4.14) 

is the signal-to-noise mi0 of the coherent demodulator. For binary orthogonal systems, (4.14) can be further 

reduced to 

(4.15) 

Another important system employing the coherent demodulator is the binary antipodal system (BPSK). For 

this system the correlation maaix has zero determinant and, consequently. the two correlator outputs are 

degenerated. Decoding of the binary antipodal signaling scheme can therefore be accomplished using only 

one correlator. Figure 4.3 depicts the block diagram of the BPSK decoder. Note that a decoding error occurs if 

x<O when ~ ( t )  is transmitted, or if x > O  when -SO)  is transmitted. Using the fact that x has mean 

E [x I +r ( t  )] = h?3 and variance axLNs E, the probability of error for the BPSK decoder can be written as 

(4.16) 

Comparison of Eqs. (4.15) and (4.16) shows that the antipodal system (BPSK) offers a 3 dB improvement in 

S N R  over the orthogonal system (BFSK). 

Table 4.2 is a list of probability of errors for various coherently demodulated heterodyne systems in 

terms of the signal to noise ratio pC . The detection threshold for the OOK system has been chosen to minimize 
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Fig.4.3. Block diagram of a BPSK receiver. 

65 



Table 4.2 Error probabilities of the coherent heterodyne channel. 

Modulation Format Error Probability 

OOK Lerfc(dp, 3 14) 
L 
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the error probability. For a heterodyne MPPM system, it is assumed that the correlation detection is carried out 

for each of the M time slots. Since only one slot contains the signal pulse, the performance of the MPPM 

system is similar to that of an MFSK system. Note that by substituting the expressions for signal amplitude and 

noise density from (2.30) and (4.8) into (4.14). the IF S N R  can be written as 

(4.17) 

which is just the product of the heterodyne efficiency and the number of (expected) signal photons detected 

over the period T, . 

Phase coherent demodulation is optimal in the sense that both signal amplitude and phase are used to 

decode the transmitted data. However, in order to perform the correlation detection, the receiver must have a 

pnor knowledge of the carrier’s frequency and phase so that the local reference signals ( S k ( t ) ,  k=o, l ,  ..&- 1) 

can be generated. This carrier reference must be acquired through a separate synchronization circuit. 

Alternatively, carrier modulated signals can be demodulated using noncoherent techniques such as envelope or 

differentially coherent detections. These techniques do not require the presence of a reference carrier. 

Therefore, the receiver design can be considerably simplified. In addition, for systems where the carrier 

reference is difficult to generate, such as in the presence of a large, randomly fluctuating phase noise, 

noncoherent systems have the distinct advantage since they require no phase information to perform the 

decoding. 

Figure 4.4(a) shows the structure of an envelope detector centered at frequency f k .  The output of the 

detector is given by 

where 

(1.19) 

Note that uk2 can be written as 
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(4.20) 

which is simply the Fourier transform magnitude square of t ( r )  at f =fk. This spectral analyzer decoder has 

been shown to be optimal for decoding MFSK signals when the carrier phase is unavailable [28], [1451. In 

practice, envelope detectors are usually implemented using the structure shown in Figure 4.40). In the absence 

of a rapidly fluctuating carrier phase, these alternative configurations are equivalent. 

The probability distribution of &, given that s, (t  )=A sin(2xf, l+$) was msmitted, can be written as: 

A;..? 
" - lo (UkAkj /No)  , (4.21) 

P k ( u k ) =  xe 

where 

No = uu, n; 

The parameter A$ in (4.21) is given by 

(4.22) 

(4.23) 

where Vkj=fk-fj is the tone spacing between j &  and k* frequencies, and we have assumed that the sum 

frequency terms have negligible contributions to ?he integral. When A@, the above probability density 

function is known as the Rice-Nakagami distribution, or simply the R i c h  distribution. When either the signal 

amplitude is zero, or when the transmitted signal frequency is orthogonal to the detector center frequency, the 

parameter A$ is equal to zero. In this case P (&) reduces to a Rayleigh dismbution. 

Given h e  probability density function of the envelope detector output, the probability of error for an 

OOK system can be written as 

(4.24) 
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where 8 is the decision threshold, and Q (a#) is the Marcum’s Q function [301. The first term on the right- 

handed side of Eq. (4.24) is the probability that U k > 8  when no signal is transmitted, and the second term is the 

probability that uk<0 when a binary one is sent. The PBE in Eq. (4.24) can be minimized by choosing the 

threshold 8 to satisfy 

(4.25) 

For M-ary FSK systems, M envelope detectors, each tuned to a particular signal frequency, are used to 

demodulate the signal. The decoder then selects the channel with the largest detected envelope. The 

probability of error for this system, given thatft was transmitted, can be written as 
c 

(4.26) 

When the frequencies transmitted are orthogonal, the outputs of the envelope detectors not matched to the 

signal frequency are identically dismbuted with Rayleigh densities. The probability of decoding emor can 

therefore be evaluated as 

(4.27) 

where 

pkk = A ~ T ~ N , .  (4.28) 

For systems with equal energy pulses, p~=p..12Ts/4Ns, k 0 . 1 ,  ...,M- 1 ,  and the unconditioned probability of 

error is equal to the PE (k) given by Eq. (4.27). When M=2. the probability of error for the binary system can 

be further reduced to 
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For nonorthogonal FSK systems, the probability of error given by Eq. (4.26) is in general difficult to calculate. 

However, when M=2, the error probability can be written in a closed-form [30]: 

P E ( ~ ) =  ~ [ l - Q ( c . ' & + Q ( ~ , ' & ) l  j,k=O,l: j+k , (4.30) 

where pi,=AjTJ/4NJ. Note that for an orthogonal system, 

of an orthogonal BFSK given by Eq. (4.29). 

when j& ,  and Eq. (4.30) reduces to the PBE 

In addition to the envelope detection, noncoherent demodulation can also be realized using a 

differentially coherent technique. Figure 4.5 shows the block diagram of a differentially coherent 

demodulator. The received signal is delayed by one bit period and used as the carrier reference to demodulate 

the next waveform received. Because no absolute carrier reference is available, the infoxmation must be 

encoded in the differential changes of the carrier phase. This system is commoniy known as the differential 

phase-shift keying (DPSK) system. The analysis of binary DPSK receivers in AWGN can be found in standard 

communication theory texts [28]-[31], [146], and the probability of decoding error can be given by 

(4.3 1) p E = = e + .  1 

By comparing Eq. (4.31) and (4.29), it is seen that the binary DPSK system offers a 3dB improvement in SNR 

over the envelope detected BFSK system. 

Table 4.3 is a list of the probability of errors for various systems using noncoherent detectors. Note that 

by substituting expressions for the signal amplitude and the noise spectral density into Eq. (4.21), the 

noncoherent SNR p can also be reduced to q,&. 

Figure 4.6 is a plot of error probabilities for various heterodyne systems versus the signal-to-noise ratios 

p. Note that the PSK system requires 3dB less signal power to achieve comparable error rate than the FSK and 

PPM systems. Similarly, FSK and PPM systems have a 3dB power advantage over the OOK system. Also 

shown in Figure 4.6 is the error probability of an ideal, quantum limited, photon counting direct detection 

binary PPM system with no background noise iriterference. It is Seen from the figure that, when operating 

under ideal conditions, the performance of the direct detection BPPM system is comparable to that of the 

heterodyne DPSK system, and is superior to both heterodyne FSK and PPM systems. It should be noted, 

however, that although quantum limited detection can be easily achieved for heterodyne systems, direct 
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Table 4.3 Error probabilities for the noncoherent heterodyne channel. 

Modulation Format Error Probability 

OOK 

k + l  MPPM 
k=l  

Mi* [ M.11 e-kPl(k+l) 
k+l  MFSK 

k=l 

-e-P 1 
2 DPSK 
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Fig.4.6. Probability of bit error (PBE) versus the SNR for various binary heterodyne systems. Also plot- 
ted in the figure is the PBE of an ideal direct detection BPPM system versus the signal photo- 
count KS . 
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detection systems are usually not shot noise limited. Incoherent background interference, thermal noise, and 

avalanche noise that can be ignored in heterodyne systems will have a significant impact on the performance of 

direct detection systems. It is shown in Figure 4.6 that noncoherent systems require a slightly higher signal 

power to achieve a given error rate than the comparable coherent systems. However, it should be realized that 

the analysis leading to the error rate expressions has assumed that the heterodyne channel can be modeled as 

an AWGN channel with ideal carrier synchronization and local reference recovery. In practice, the output of 

the heterodyne receiver is contaminated with LO intensity noise and laser phase noise in addition to the LO 

shot noise. The spurious amplitude modulation at the output of the transmitter laser can also have a 

measurable impact on the error performance of heterodyne receivers. Intensity noise at the output of a 

semiconductor laser has been characterized as a Gaussian process [147], and may be considered as part of the 

additive noise. The impact of intensity noise on the performance of heterodyne FSK systems has been studied. 

It is shown that, at a data rate of 1 Gb/s, the power penalty due to the intensity noise is approximately 1.5 dB 

[148]. The phase noise, on the other hand, modulates the phase of the received IF signal and cannot be 

modeled as an additive noise. In the presence of the carrier phase noise, carrier recovery that is required for the 

coherent demodulator cannot be perfectly realized. Consequently, higher signal power is needed to maintain 

the system performance. Noncoherent demodulators, on the other hand, do not require a carrier reference to 

perform the decoding, and are therefore less sensitive to the carrier phase noise. 

4.3 Statistics of the Laser Phase Noise 

The presence of carrier phase noise at the laser output results in the broadening of the observed laser 

linewidth. For systems using gas or solid state lasers, the observed linewidth broadening is very small 

compared to the data rate. Consequently, the effect of carrier phase noise can be practically ignored for these 

lasers. Semiconductor lasers, on the other hand, suffer from large frequency and phase fluctuations that can 

seriously affect the performance of heterodyne systems. Even when mode stabilized lasers are used, the 

observed linewidths for semiconductor lasers are typically on the order of 1-50 MHz. At these linewidths, the 

effect of carrier phase noise on the performance of the communication link cannot be neglected. The linewidth 

broadening effect of the semiconductor laser has been attributed to the changes in the index of refraction of the 

cavity due to the fluctuation in carrier density [42]. 
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Experimentally. the spectral lineshape of semiconductor lasers has been characterized as Lorentzian 

[149]. The frequency spectrum of the laser output has also been carefully measured [43]. It is shown that the 

spectrum of the laser phase noise consists of three major components: a l/f component at low frequencies, 

one or several resonance peaks at high (1-1OGHz) frequencies and, in between, the laser exhibits a white 

frequency noise spectrum which is dominant throughout the spectral range of interest. Figure 4.7 shows a 

typical frequency spectrum of a semiconductor laser [43]. For a well designed system, the llf noise can be 

tracked out by the receiver and the resonant peaks are usually far above the system bandwidth. Consequently, 

only the white frequency component remains in the detected IF phase noise. 

Motivated by these experimental results, the phase noise of the semiconductor laser can be modeled as a 

Wiener process +(I), and instantaneous frequency &(t)  satisfies 

where Af is the power spectral density of the instantaneous frequency. The phase of the laser output is 

randomly modulated by the carrier phase noise $ ( t )  such that the carrier signal s (t) can be modeled as 

where 40 is the initial phase angle of the laser output. The power spectra of + ( t )  and s ( t )  can be deduced from 

(4.32) and (4.33) to be 

(4.35) 

Note that the spectral lineshape of the IF signal derived from the white frequency noise assumption is indeed 

Lorentzian with linewidth Af. For a symmetric heterodyne system where both signal and LO lasers have 

nonzero linewidths, the observed IF phase fluctuation will be the difference of the two laser phases and, 

consequently, the linewidth of the IF signal will be the sum of individual laser linewidths. 

Because the carrier phase noise is nonstationary, the ideal maximum likelihood demodulator for the 

heterodyne signal must consider the past history of the phase [150], [151]. However, such receivers are very 

difficult to implement in practice. Instead, phase coherent and noncoherent receivers introduced in Section 4.2 
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are often used to demodulate the IF signal. 

4.4 Carrier Synchronization and Coherent Demodulation of IF Signals 

Successful demodulation using a phase coherent receiver demands a receiver capable of estimating the 

frequency and phase of the transmitted signals. In practice, phase coherent demodulation requires the presence 

of a local reference carrier that is synchronized to the transmitter carrier. Before the coherent demodulation 

can take place, this carrier reference must be properly established 

At sufficiently high signal levels, carrier synchronization can be accomplished by injection locking [152] 

a local oscillator laser with the incoming signal. However, injection locking typically requires a high signal 

power (-20-30 dBm) [153] that is not achievable in ISL links. Alternatively. phase-locked loops (PLL) 

[28], [29] can be used to recover the transmitted carrier. Shown in Figure 4.8, a PLL consists of a local 

oscillator (LO) that can be frequency tuned by an externally supplied signal, a phase comparator with an 

output that is proportional to the phase difference between the signal and LO, and a loop filter. The 

applications of PLLs to RF carrier synchronizations have been well documented [28]-[31]. When the input 

signal to the PLL contains a spectral component at the desired lock-in frequency, the PLL can be used to 

recover the frequency and phase of the signal. For signals that do no contain a spectral component at the 

desired lock-in frequency, such as in a suppressed carrier transmission system, the simple PLL shown in 

Figure 4.8 cannot be used. Instead, one of several suppressed carrier tracking loops must be employed to 

establish the carrier synchronization. Figure 4.9 shows the different configurations of suppressed carrier 

tracking loops. These loops in general employ nonlinearities to generate the desired spectral component at the 

lock-in frequency. 

Carrier synchronization in optical heterodyne systems is similar to that of RF systems [154]-[156!. The 

VCO is implemented using a local oscillator laser which can be frequency tuned by changing the supplied 

current or voltage. The phase comparator can be implemented using a heterodyne receiver. For suppressed 

carrier systems, an optical hybrid can be used to replace both in-phase and quadrature arms of an 1-Q loop 

11561. Optical PLLs have been successfully used to track the incoming signal frequencies at a signal level of 

-50-65 dBm [ 1531. 
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Fig.4.9. Suppressed carrier tracking loops: (a) the squaring loop, (b) the Costas I-Q loop, and (c) h e  deci- 
sion feed-back loop. 
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The performance of the carrier tracking PLL depends on the properties of the input signal and that of the 

loop design. In general, when tracking is established, the phase difference w between the signal and LO output 

can be modeled as a Gaussian random process. The variane of w can be written as the sum of contributions 

from the shot noise and phase noise: 

(4.36) 2 2  o$=am+opN. 

The shot noise contribution to the phase noise variance can be deduced from the linearized PLL theory [156] 

as 

where A is the amplitude of the IF signal, Ns is the noise spectral density, and B ,  is the (two-sided) closed- 

loop bandwidth of the PLL. B, can be related to the closed-loop transfer function H, (f ) by 

B ,  = c I H c ( f ) 1 2 d f  . (4.38) 

The contribution of carrier phase noise to the synchronization error w can be written as [31] 

where S + ( f )  is the power spectrum of the phase noise. Note that the phase noise contribution to the 

synchronization error in (4.39) can be interpreted as the amount of the phase noise power not filtered by the 

tracking loop of transfer function H, (f ). By approximating H, (f ) as an ideal low-pass filter with bandwidth 

B, , the phase noise contribution to the synchronization error can be simplified to 

t&=2AflxBc . (4.40) 

For a more realistic loop design, (4.40) should be multiplied by a constant < which, for a second-order PLL 

with a damping factor 0.7, is equal to 3.7 [31], [1561. 

By combining Eqs. (4.37) and (4.40), it is seen that the variance of phase noise contains a term that is 

proportiond to the loop bandwidth and a term that is inversely proportional to B ,  . Consequently, for a given 

linewidth Af and the signal-to-noise ratio, an optimal PLL bandwidth exists which minimizes the phase error 

variance. This optimal PLL bandwidth can be evaluated to be [ 1561 

Bop = 44Ws Af Ts Jxf , (4.41) 

81 



where fs=l/Ts is the symbol rate of the channel. 

When the bandwidth of the PLL is small compared to fs , the synchronization error w is slowly varying 

with respect to the symbol period. In this case the synchronization error w may be approximated by a constant 

during each symbol period. The conditional error probability for a coherent heterodyne receiver, given the 

signal to noise ratio Pc and the synchronization phase error w, can be written as 

where Pc is the S N R  defined in Eq. (4.10). The unconditioned PBE for the system is therefore the expectation 

of Eq. (4.42) with respect to the distribution of w: 

PE(P, ,a$) = E  [ P E ( ~ ~ , V ) ]  = ~ E P E  (p, cos2~)e-v2n%y/ . 
Jzxa, 

(4.43) 

In writing (4.43). it is assumed that the Carrier synchronization has been properly established and that the 

instantaneous carrier tracking e m r  yf is Gaussian distributed. 

The effects of phase noise and synchronization error on a coherent demodulator can be seen in Figures 

4.10-4.12. In Figure 4.10, the probability of error for a BPSK system is plotted against the S N R  for several 

values of the IF linewidth. The loop bandwidth B, is equal to 10-'fs. Note that for AfT..2Oo.0O5 an error rate 

"floor" is visible which is independent of the SNR. This is because at a high signal power and a constant B, , 

the probability of synchronization error is dominated by the phase noise contribution which cannot be reduced 

by increasing the signal power. However, if the loop bandwidth is adjusted to minimize the synchronization 

error, the performance of the demodulator becomes much less sensitive to the laser phase noise. Figure 4.1 1 is 

a plot of the PBE versus the S N R  for a BPSK system where the loop bandwidth is chosen to minimize c$. It is 

seen that, at PBE=10-9, an IF linewidth as large as 2% of the symbol rate can be tolerated with a 3dB increase 

in the required SNR. The power penalties associated with the synchronization error are shown in Figures 

4.12(a) and 4.12(b) for a binary PSK system at PBE=le9. Figure 4.12(a) is plotted assuming that the 

synchronization bandwidth is constant, and Figure 4.12(b) is plotted assuming that B, has been optimized 

using Eq. (4.41). It is seen from these figures that the power penalty associated with the laser phase noise 

increases rapidly when the laser linewidth becomes a significant fraction of the loop bandwidth. For systems 

where the loop bandwidth is optimally adjusted, the power penalty is less sensitive to the IF phase noise. 

However, it should be noted that the assumption leading to the expression of error rate is valid only when the 
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Fig.4.10. Probability of bit error versus the receiver SNR for a BPSK system at several values of the IF 
linewidth. The bandwidth of the carrier tracking loop, E , ,  is equal to O.lfs.  
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Fig.4.11. Probability of bit error versus the receiver SNR for a BPSK receiver in which the bandwidth of 
the carrier tracking loop is chosen u) minimize the variance of phase error. 
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loop bandwidth is small compared to the data rate. At large IF linewidths, the loop bandwidth required to 

achieve the optimal performance can be a significant fraction of the data rate. Such a large synchronization 

bandwidth can lead to a significant phase fluctuation within a given codeword period. For such systems, a 

much higher signal power is needed to maintain the system performance [157]. 

4.5 Noncoherent Demodulation in the Presence of Phase Noise 

Because optical phase synchronization requires a much higher signal power than can be achieved 

through an ISL, coherent heterodyne systems are difficult to implement in practice. Instead, noncoherent 

systems that do not require the carrier phase synchronization are more suited for the application. 

M-ary orthogonal FSK is one of the most efficient noncoherent schemes. Unfortunately, because of the 

nonstationary nature of the carrier phase noise, performance analysis of the noncoherent MFSK system is very 

difficult to accomplish, and some assumptions are needed to simplify the analysis. A simple, yet effective 

approximation of the phase error is to assume that the phase diffusion is introduced by a random frequency 

noise v [52] such that the phase diffusion occurred during the observation interval (O,T,) are approximated by 

Because the carrier phase noise can be modeled as a Wiener process, the frequency v can be modeled as a 

Gaussian random variable. The variance of v can be calculated from Eqs. (4.33) and (4.44) to be: 

Var(v)== Af . 
s 

(4.45) 

Recall from Section 4.2 that the performance of noncoherent FSK systems is determined by the parameters pij 

where pij=AifTs/4N,. By substituting Eq. (4.44) into Eq. (4.23), it is seen that 

(4.46) 

where Vkjifk-f, is the tone spacing between the j &  and the k* signals, and v is the random frequency noise. 

Note that because of the frequency noise v, pk, is in general not equal to zero even when vkj is an integer 

multiple of the symbol frequency. Consequently, in the presence of the carrier phase noise the M signaling 

frequencies of the MFSK system are no longer orthogonal. This channel cross talk is the major source of error 

for the MFSK systems. 
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Given the random frequency noise v, the PBE of the binary FSK system can be calculated using Eq. 

(4.30). Consequently, by averaging over the distribution of v, an approximation of the error rate can be 

obtained for a binary FSK system operating with finite laser phase noise. Figure 4.13 is a plot of the PBE for a 

binary FSK system versus the receiver SNR. The tone spacing between the frequencies v01 is equal to the 

symbol rate fs . Note that the presence of carrier phase noise introduces an error rate "floor" at the decoder 

which is clearly visible for Af T, >0.05. This e m  rate floor has been estimated [36] to be 

(4.47) 

By comparing the performance shown in Figure 4.13 with the performance of the coherent BPSK system 

shown in Figure 4.10, it is seen that the noncoherent system is far less sensitive to carrier phase noise than the 

phase coherent system. It is intuitive that the channel cross talk due to phase noise can be minimized by 

increasing the tone spacing. Figure 4.14 is a plot of the PBE versus the tone spacing for several values of the 

IF linewidth. Note that when the phase noise can be ignored, the performance of the FSK system is optimized 

when the tone spacing is equal to an integer multiple of f, . However, at nonzero linewidth. the orthogonality is 

destroyed and the performance becomes a function of the tone spacing in addition to the S N R  and the IF 

linewidth. The power penalties associated with the phase noise are plotted in Figure 4.15 versus the IF 

linewidth for a binary FSK system at different values of the tone spacing and PBE. Note that the power 

penalty decreases with increasing tone spacing and decreasing IF linewidth. Furthermore, because of the error 

rate "floor," the power penalty is seen to increase sharply when the error rate floor due to the carrier phase 

noise becomes greater than the desired PBE. It should be noted that the power penalty curves shown in Figure 

4.15 are derived using the assumption that the carrier phase noise can be approximated by a random frequency 

noise. The actual power penalty incurred by the phase noise is higher than those shown in Figure 4.15. In 

practice, care must be taken to allocate sufficient power margins to account for this error in approximation. 

Table 4.4 shows the power penalty due to carrier phase noise for a binary FSK system at different values of the 

PBE and IF linewidths. Note that the power penalty increases rapidly with increasing IF linewidth. 

Another noncoherent system commonly used in RF systems is the differentially coherent PSK system 

(DPSK). Unlike the NCFSK system, which uses the envelope detector, the DPSK receiver performs the 

decoding by correlating the signal with the waveform received over the previous bit period. Unfortunately, as 
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was the case with NCFSK receivers, the performance analysis becomes very difficult when the phase noise is 

considered. When the laser linewidth is sufficiently small, however, the probability of error for a DPSK 

system with carrier phase noise can be approximated by (Appendix A): 

(4.48) 

Figure 4.16 is a plot of the PBE evaluated using Eq. (4.48) versus the SNR. Also plotted in the figure is the 

PBE of an ideal DPSK receiver evaluated using Eq. (4.31). Note that at small laser linewidths, the 

approximation in Eq. (4.48) gives a higher error probability than the actual PBE. However, at PBE = 10-9. the 

difference in the required signal power calculated using Eq. (4.48) instead of Eq. (4.31) is small. Note that as 

AfT,=O.Ol the required signal power needed to achieve lW9 error rate begins to increase rapidly. The power 

penalty associated with the carrier phase noise is plotted in Figure 4.17 versus the IF linewidth. It is seen that 

a sharp increase in the power penalty in Figure 4.17 occurs when the error rate "floor" exceeds the desired 

PBE. The error rate "floor" can be calculated from Eq. (4.43) by noting that at p+-, the probability of error is 

bounded by [1581 

P E  2 +erfc(-) . (4.49) 

Note that the error rate "floor" is greazer than lo", when the IF linewidth is greater than 2% of the data rate. 

4.6 Summary 

In the absence of carrier phase noise and spatial tracking error, the heterodyne channel can be modeled 

as an AWGN channel. Under this ideal condition, the coherently demodulated heterodyne channel offers a 

superior performance compared to the noncoherent channel. However, when carrier phase noise is present, 

such as when semiconductor lasers are used, the coherent heterodyne channel becomes very sensitive to h e  

carrier synchronization error. When operating under extremely low signal power such as in an ISL, the signal 

power needed to achieve coherent carrier synchronization may be difficult to achieve. Noncoherent 

heterodyne systems, on the other hand, do not require the presence of a synchronized local reference and, 

therefore, can be more easily implemented. In particular, the noncoherent FSK (NCFSK) system is less 

sensitive to the phase noise compared to the DPSK system. For these reasons, the analysis of the heterodyne 

ISL will be concentrated on the NCFSK system. 

92 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 



I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
8 
I 
I 
I 
I 
I 
I 
I 
I 

W 
m a 

I O 0  I I I I 1 1 1 1  I I I I I I I I  

DPSK - 
Approximate PBE 

- 
10-3 - 

- 

10-6 - 

10-7 - 

lo-* - - 
 IO-^ I I I I I I l l 1  I I I I I I  

IO0 IO' IO2 

SNR 

Fig.4.16. Probability of error for a DPSK receiver versus the receiver SNR at several values of the IF 
linewidth Af . 

c -a- 
93 



I 0.00 * I I I I I I I I  I I I 1 1 1 I I  

10-3 Heterodyne DPSK PEE= 10-9 10-6 

8.00 - - 

6.00 - - 

4.00 - - 

2.00 - - 

0.00 I I I I I 1 1 1 1  

fn 
-0 

> 
Y 

5 a 
a 

3 

Z 
W 

E 
W 

b a 

Fig.4.17. Power penalty due to the d e r  phase noise versus the IF linewidth for a DPSK receiver. 

94 I 
I 



I 
1 
E 
I 
8 
I 
I 
I 
I 
1 
I 
1 
I 
I 
1 
I 
E 
I 
1 

5. SPATIAL TRACKING 

Because of the small beam divergence and the low available signal power, the spatial tracking requirement 

for an optical ISL is more stringent than that of a conventional microwave link. An optical ISL operating at 850 

nm wavelength using a 10 cm diameter transmitter telescope will have an effective angular beamwidth of only 

10 pad compared to a typical microwave beamwidth of several milliradians. When operating at such a narrow 

beamwidth. line-of-sight (LOS) tracking between the receiver and transmitter must be properly established so 

that the main lobe of the transmitted signal will fall on the receiver aperture. The purpose of the tracking 

subsystem, therefore, is to acquire the mutual positions of the transmitter and receiver and maintain the LOS 

tracking for the duration of the communication. 

5.1 Spatial Acquisition 

Before high speed data uansfer can take place over the ISL, the transmitter and receiver optics must 

achieve mutual LOS tracking of each other. Initially, by using the known satellite trajectory and the telemetry 

data, relative angular positions of the satellites can be stabilized to within 1 mrad. The angular width of a typical 

transmitted signal, however, is only a few microradians wide. Consequently, spatial acquisition must be carried 

out to reduce the angular uncertainty. 

In order for the receiver to acquire the angular position of the transmitter, a beacon signal from the remote 

transmitter must illuminate the receiver. In general, illumination of the initial angular uncertainty zone can be 

accomplished using either a parallel or a serial illumination scheme. In a parallel illumination scheme, the entire 

uncertainty zone is illuminated simultaneously. Because of the larger beam divergence needed to cover the 

search zone, smaller signal power is available at the receiver, and longer observation time is needed to collect 

sufficient signal photons for an acceptable acquisition accuracy. In contrast, in a serial illuminated system, the 

angular uncertainty.zone is divided into smaller cells, and the transmitter illuminates each cell sequentially. 

Acquisition is possible only when the spatial cell containing the receiver is illuminated. Since each cell is now 

illuminated with a higher signal intensity, however, a shorter observation period is needed to achieve the desired 

acquisition accuracy. 

At the receiver, the angular position of the incident optical signal is extracted and the resulted angular 

position estimate is used to control the servo system which aligns the optical LOS. Estimation of the incident 
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angle for an optical signal is equivalent to determining the position of the signal image at the receiver focal 

plane. Fig. 5.1 illustrates the relationship between the incident angle of the signal and the image position. 

Position acquisition at the receiver focal plane is usually accomplished by dividing the focal plane area into 

smaller acquisition cells where each cell can be individually photodetected [55], [159]. For a typical uncertainty 

zone of 1 mrad, and a desired angular resolution of several microradians, the required acquisition array is very 

large (several hundred squared). Charge-coupled devices (CCD) with high pixel density can be used to detect 

this focal plane intensity pattern and estimate the centroid of the diffraction pattern [ l a ] .  Smaller detector 

arrays can also be used to achieve comparable acquisition accuracy by either mechanically scanning the detector 

over the entire focal plane area or using a zooming algorithm. In a zooming algorithm. the acquisition is divided 

into several stages. At each stage, the remaining uncertainty zone is divided into a number of acquisition cells, 

and the acquisition is carried out among these cells. This process is then repeated until the desired acquisition 

accuracy is achieved. 

Both direct and heterodyne detection schemes can be used to detect the image position at the receiver 

focal plane. The direct detection acquisition sensor is simpler to operate, but is more sensitive to the background 

and thermal noise. Consequently, systems employing direct detection acquisition sensors generally require a 

longer acquisition time to achieve a comparable acquisition accuracy [54]. [55]. On the other hand, heterodyne 

acquisition systems are relative immune to the background and thermal noise, but require a much more 

complicated optical structure. 

The performances of spatial acquisition systems using different illumination strategies and detection 

schemes have been studied for the ISL application [55]. It is Seen in the study that acceptable acquisition 

accuracy can be achieved within a reasonable amount of time (1-10 sec) using a relatively small laser power 

(=lo mW). In the following, it will be assumed that spatial acquisition procedure is completed and that both the 

transmitter and receiver have achieved mutual LOS tracking of each other. 

5.2 The LOS Tracking 

After the angular position of the remote satellite has been properly acquired, the optical assembly can then 

be rotated to point along the LOS. Because of the relative motion and the on-board mechanical noise of the 

satellites, pointing of the transmitter optics is subjected to some continuous, time-v'arying fluctuations even after 
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the initial spatial acquisition has been achieved. For a heterodyne system, these mechanical perturbations can 

also affect the optical alignment between the incoming signal and the LO and result in a degraded receiver 

performance. In a practical ISL. the initial alignment of the optical LOS and the subsequent fine tracking of the 

LOS perturbations are usually achieved using a servo-driven opto-mechanical spatial tracking loop. 

Figure 5.2 shows the block diagram of a spatial tracking loop. The beacon signal from the remote 

transmitter is detected using an appropriate tracking sensor. The beacon signal can be a separate, low data rate 

signal or, for the case of an optical ISL, the information-canying signal itself. The tracking sensor generates a 

signal output that is proportional to the angular deviation between the current receiver LOS and the angular 

position of the remote transmitter. This angular estimate is then used to control the tracking servo and align the 

receiver LOS. For an optical ISL between LEO and GEO satellites, transmitter point-ahead must be added to 

the receiver LOS to compensate for the long path delay and the large relative velocity. In order to achieve a high 

degree of accuracy in spatial rracking, the servo system usually employs a nested loop design [56]-[59], which 

consists of a low bandwidth coarse-gimbal loop that tracks the lower frequency perturbations of the LOS, and a 

high bandwidth inner loop, which compensates for the higher frequency motion disturbances. The use of nested 

servo loops essentially decouples the tracking of high freqJency, mechanical perturbations from t!!e tracking of 

low frequency LOS motions. For the spatial tracking system just described, tracking error arises primarily from 

the noise associated with the tracking sensor, and the disturbances associated with base motion and mechanical 

vibration of the satellite. The point-ahead calculation can be achieved to a high degree of accuracy using the 

known ephemerides data, and other systematic errors can be minimized by a proper design. 

The effect of the sensor noise on the tracking system performance can be characterized by its noise 

equivalent angle (NEA), which is defined as the standard deviation in estimating the current angular position. 

The problem of estimating the angular deviation of the received signal is equivalent to acquiring the incident 

angle of the received signal, and can be accomplished using a focal plane detector array. Because of h e  small 

angular deviation expected after the spatial acquisition procedure is completed, only a small number of spatial 

cells are needed to detect the focal plane intensity variation. A quadrant photodetector is commonly used to 

derive an angular position estimate of a closely tracked signal [56], [57], [158], [161]. Shown in Fig. 5.3, the 

quadrant detector contains four separate photodetector cells that are carefully matched in detection sensitivities. 

The use of quadrant detectors allows the azimuthal and elevation angular position estimates to be separated, and 
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therefore considerably simplifies the tracking loop design. For spatial tracking systems using direct detection 

detectors, the angular position deviations can be estimated using [561, (571 

K ~ - K T K ~ + K ~  
6pz = [ 1 . 2 2 4  KT 

where 6pz and & are the azimuthal and elevation angular deviation estimate, d~ is the diameter of the receiver 

aperture, K1&2&3&4 are photocounts from the four quadrants, respectively, and K T = K ~ + K ~ + K ~ + K ~  is the total 

photocount from the tracking detector. When the angular deviation is small and when the background noise can 

be neglected, the estimator shown in Eq. (5.1) can be shown to be unbiased. The variance of the estimator error 

(e&) can be calculated directly from Eq. (5.1) to be 1561, [57]: 

€I&, = Vur(6) = [ 1.22$] '-& = [ 1 . 2 2 4  ' F S  
where BT is the bandwidth of the tracking loop, KS is the number of signal photons collected, 1s is the signal 

photocount rate, and F is the excess noise factor of the APD. Equation (5.2) was derived using the assumption 

that the intensity pattern on the detector surface can be approximated by a uniformly illuminated circular disk 

with radius 1.22hf /dR. Similar results for 0 L  can be derived for an Airy intensity pattern with only a small 

change in the coefficient. Given the bandwidth of the tracking loop, the NEA due to sensor noise can be 

evaluated from Eq. (5.2). Because of the small tracking bandwidth, the amount of signal photons received 

during the observation period is generally very large. Consequently, for a practical spatial tracking system, 

sensor noise contribution to the tracking error is practically negligible. 

In addition to the direct detection tracking sensor, angular position discrimination can also be 

accomplished using heterodyne sensors [54]. Ideally the heterodyne detector offers a quantum limited detection 

sensitivity and a higher S N R  compared to the direct detection tracking sensor. In practice, the performance of 

the heterodyne spatial tracker is very sensitive to the LO alignment and the carrier phase noise. The sensitivity 

to the LO alignment e m r  can be minimized by using a smaller receiver aperture, and the susceptibility to carrier 

phase noise can be reduced by using a noncoherent envelope detector. However, these measures can reduce the 

SNR and affect the detector NEA. In addition, heterodyne detectors are much more complicated and offer only 
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a marginal improvement in performance. Consequently, for most practical purposes, only direct detection 

tracking sensors are used. 

Base motion and mechanical noise are the dominant sources of spatial tracking error. Because of the 

noises due to satellite motion and gimbal friction, some small motions in the optical LOS can be expected even 

when the sensor noise can be neglected. The effect of these noises on the tracking servo system can be more 

effectively analyzed using the simplified block diagram shown in Fig. 5.4. Note that the mechanical 

perturbation appears as an additive noise in this block diagram. Using the linearized PLL theory, the residual 

receiver LOS tracking error can be written as [56], [162] 

where Se(W) is the power spectral density of the residual mechanical noise, and HT(o) is the closed-loop 

transfer function of the spatial tracking loop. The residual mechanical noise given by Eq. (5.3) can be interpreted 

as the amount of motion disturbance that falls outside the tracking loop bandwidth. The effect of motion and 

mechanical noise on the spatial tracking accuracy has been analyzed using the base motion disturbance record of 

the LANDSAT [%I, [57, [59]. It is seen that, for a well-designed servo loop, an RMS tracking error of 0.5-1 

pad  can be expected. 

In addition to the sensor noise and the base motion disturbances, the accuracy of the LOS tracking is also 

affected by the friction of the gimbal, the error in point-ahead calculation, and other systematic errors. However, 

detailed studies of these noises [56], [57], [59] have shown that, with a careful implementation, the effects of 

these noises are small compared to that of the base motion disturbances. Consequently, for the analysis of the 

spatial tracking system, it is assumed that an RMS tracking accuracy of q.5-1 p a d  can be achieved. In 

particular, for the analysis of the system performance and link budget allocation, an RMS pointing error of 

l p a d  will be assumed. Note that since the rms tracking error is dominated by the residual mechanical vibration 

of the satellite, it cannot be minimized by simply increasing the signal power. Furthermore, since the azimuth 

and elevation trackings are decoupled by the tracking sensor, it will be assumed that the tracking errors in the 

azimuth and elevation directions are independent and identically Gaussian distributed. The resulting radial 

tracking error is therefore Rayleigh distributed with probability distribution: 
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(5.4) 

Finally, because the point-ahead calculation can be achieved with a high degree of accuracy, it will be assumed 

that, for a heterodyne system, the LO alignment error and the transmitter pointing error are identically 

distributed. 

5.3 The Design of ISL in the Presence of Pointing and Tracking Errors 

Given the performance of the spatial tracking system, the design of the communication link must be 

optimized to account for the tracking e m .  For direct detection systems, this implies tailoring the angular width 

of the transmitted signal in order to minimize the power requirement for a given error rate. For heterodyne 

systems, the finite tracking error for the LO also implies that the receiver aperture diameter must be carefully 

selected in order to optimize the signal-to-noise ratio. 

5.3.1 Direct Detection PPM Systems 

Given the receiver design, the number of signal photons collected at the receiver is a function of the 

transmitter power PL , the transmitter antenna gain GT, and the instantaneous pointing error €)T [60]. For an M- 

ary PPM system operating at wavelength h over a link distance z , the signal photocount KS can be written as 

where q ~ ,  TR are efficiencies of the transmitter and receiver optics, GT, GR are the transmitter and receiver 

antenna gains, LT(GT,€)T) is the pointing loss factor associated with the pointing error €IT, q is the quantum 

efficiency of the detector, hv  is the photon energy, PL is the average transmitter power, Ts is the time slot 

period, and it has been assumed that the peak transmitter power is M times the average power. The receiver 

antenna gain GR can be related to the receiver aperture diameter dR and the wavelength h by 

For a transmitter with a uniformly illuminated, unobscured circular aperture of diameter d T ,  the transmitter 

antenna gain and the pointing loss factor can be written as 
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In practice, the intensity cross-section of a single mode laser output can be better approximated by a Gaussian 

beam. When the intensity cross section of the signal at the transmitter aperture is Gaussian with RMS width W, 

GT andLT are given by 

(5.10) 

Because the instantaneous pointing error fluctuates in time, the signal photocount KS and the probability 

of bit error (PBE) through the ISL will be functions of time. For a given RMS pointing error. 0%. the average 

PBE at the receiver can be Written as: 

(5.11) 

where PE(Ks,KB) is the PBE of the direct detection PPM system given the signal photocount KS and the 

background photocount KB , and it has been assumed that the pointing error & is Rayleigh distributed. Equation 

(5.11) shows that the PBE is a function of P L ,  GT,  and 0%. By normalizing the instantaneous pointing error 0~ 

with respect to its RMS value, however, the signal photocount KS in Eq. (5.5) can be written as 

r 1 

(5.12) 

where a0 = q ~ q ~  ( - & ) ( & ) q F ) 2 M T s  is a constant that is independent of the transmitter antenna gain and 

the signal power. Note that the parameter a O p ~  represents the signal photocount per unit transmitter antenna 

gain at the detector in the absence of spatial tracking error. By substituting Eq. (5.12) into Eq. (5.11) and 

carrying out the substitution of variable u = ~ T / c % ,  it is seen that, instead of three independent parameters, the 

PBE for a direct detection PPM systems depends only on the parameters .,P,/o& and GTO&. Consequent!y, a 

constant PBE can be maintained at different values of the RMS pointing error provided that the transmitter 
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power PL and the transmitter antenna gain GT are scaled such that the parameters a&h& and G T ~ &  remain 

constant. 

For a given a+, there is a finite probability that a large instantaneous pointing error can occur which 

results in a small received signal photocount and a high probability of error regardless of the transmitter power. 

Thus, for a given transmitter power, the PBE increases rapidly when the RMS pointing jitter becomes a 

significant fraction of the transmitted beamwidth. This fact is demonstrated in Fig. 5.5 where the PBE of a 4-ary 

PPM system is plotted against the signal power for several values of the RMS pointing error as,. Note that 

when the RMS pointing jitter exceeds ~ 1 5 %  of U&. a much higher signal power is needed to maintain the PBE 

at 10-9. This is because at large a+, the probability that the main lobe of the transmitted signal does not cover 

the receiver aperture can exceed the desired PBE and, therefore, result in a large power penalty. The power loss 

due to pointing error can be minimized by increasing the angular width of the transmitted signal or, equivalently, 

reducing the size of the transmitter aperture. However, even though a wider transmitted signal reduces the loss 

due to pointing error, a larger angular width of the transmitted signal implies a smaller signal intensity at the 

receiver and, consequently, a smaller detector S N R  and a higher error rate. Given the receiver design, therefore, 

there is a trade-off between the size of the transmitter aperture and the power of the transmitter laser. Figure 5.6 

is a plot of the transmitter power needed to achieve 10-9 error rate versus the lransmitter antenna GT for a 4-ary 

PPM system operating at 200 Mbps. Note that, when the spatial tracking can be perfectly realized (oe, = 0), the 

required transmitter power is inversely proportional to GT. When a+&, however, the required signal power 

first decreases with increasing GT until an optimum antenna gain is reached, and any further increase in the 

transmitter antenna gain will only result in a higher power requirement. This is because at large transmitter 

antenna gains the probability of error due to the transmitter pointing error becomes more significant as the 

beamwidth decreases with an increasing aperture size. Consequently, for a given RMS pointing jitter and PBE, 

an optimal antenna gain exists which minimizes the laser power requirement. 

It is of interest to investigate the optimum transmitter antenna gain and the required signal power as 

functions of the RMS pointing jitter. By differentiating both sides of Eq. (5.1 1) with respect to the antenna gain 

GT while maintaining a constant PBE, it is seen that 
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(5.13) 

where KS is an implicit function of P ~ / b h ,  GTO&, and U=&/a+. At the optimal antenna gain GT- which 

minimizes the required signal power, dpL/dGT=O, and it follows from Eq. (5.13) that 

(5.14) 

Given PBE and modulation format, Eqs. (5.11) and (5.14) are a pair of equations that can be solved 

simultaneously for the parameters cbpt/cr& and G~crg .  Since Eqs. (5.11) and (5.14) depend on the RMS 

pointing error only through aOp~/a,$ and GTO& it follows that, if ~ = G T , G &  and YP=@L-/C$~ can be 

found to satisfy both Eqs. (5.11) and (5.14). then at all values of cr% the optimal aperture and the minimal 

power requirement can be related to the RMS pointing error by 

and 

(5.15) 

(5.16) 

That is, given the PBE and the modulation format, the optimal transmitter antenna gain is inversely proportional 

to the square of the RMS pointing error and the required transmitter power PL- is proportional to the square of 

the FWS pointing emr. Note that the values of YT and yp are independent of the RMS pointing jitter. In 

practice, given the transmitter pointing error, and y p  can be calculated numerically. Plotted in Fig. 5.7 is the 

value of p versus the PBE for a 4-ary PPM system calculated using the ISL parameters shown in Table 2.1. It 

is seen that, for systems with a uniformly illuminated circular aperture, the value of yr ranges from 

approximately 0.15 rad2 at PEE=1W9 to about 0.5 rad2 at PBE=le3. For systems operating at k850 nm and 

RMS pointing error of 1 pad. this is equivalent to an optimum transmitter aperture diameter of 310 cm at 

P B E = I P  and 517 cm at PBE=lW3. The value of is slightly higher for systems where the transmitted signal 

can be approximated by Gaussian beams. 

Figure 5.8 is a plot of y p  versus the PBE for a 4-ary PPM ISL. The value of the parameter yp ranges from 

=200/rad2 at PBE = le3 to approximately 1500/rad2 at PBE = IC9. Note that the transmitter power needed to 
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Fig.5.7. The parameter ~ = G T ~ O ~  versus the PBE for a 4-ary PPM system. 
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Fig.5.8. The parameter y p  versus PBE for a 4-ary PPM system. 
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achieve a given PBE is smaller for systems where the intensity cross section of the signal is Gaussian distributed 

than for systems with uniformly illuminated apertures. 

The power penalty associated with the spatial tracking error can be calculated by comparing the signal 

power needed to achieve a fixed error rate in the presence of spatial tracking emrs with the required signal level 

when the spatial tracking can be perfectly realized. The presence of this power penalty can be seen from Fig. 

5.6. Note that, even when the optimal transmitter aperture is used. the signal power required to achieve a given 

error rate is about 1.6 dB higher than when the RMS pointing error can be ignored. By combining Eqs. (5.15) 

and (5.16). the required transmitter power can be related to the optimal transmitter antenna gain by 

r 

(5.17) 

For systems with perfect spatial tracking, the signal power needed to maintain a constant PBE can also be 

inversely related to the transmitter antenna gain GT by inverting Eq. (5.5). Since the required transmitter power 

is inversely proportional to the transmitter antenna gain in both cases, it follows that for a given antenna gain, 

the ratio between the required signal power in the presence of random pointing error and that when the spatial 

tracking can be perfectly realized is a constant which is independent of GT. Furthermore, because both y~ and 

yp m independent of 0%. the power penalty due to spatial tracking error is independent of the RMS pointing 

error. Figure 5.9 is the plot of this power penalty as a function of the PBE for a 4-ary PPM system. Note that the 

power penalty ranges from 1.6 dB at PBE=lW to about 2.3 dE3 at PBE=1P3. For systems with Gaussian 

transmitted beams, the power penalty is slightly higher. This is because the optimal transmitter antenna gain is 

smaller for an uniformly illuminated aperture than for a Gaussian beam. Therefore, a larger transmitter power is 

needed to achieve a given PBE when 0% = 0, and hence a smaller power penalty. 

Table 5.1 shows a typical link budget for a 4-ary direct detection PPM system calculated using the ISL 

parameters shown in Table 2.1. Note that for direct detection systems, there is no constraint on the size of the 

receiver aperture. The receiver aperture diameter of 30 cm was chosen because of the size and weight 

constraints. In contrast, the presence of a random transmitter pointing error results in an optimal transmitter 

aperture diameter which minimizes the required signal power. Compared to the system using a 30 cm diameter, 

uniformly illuminated, transmitter telescope, the ISL design that is optimized for an RMS pointing error of 1 

pad  has a much smaller transmitter antenna gain (27.5 dB at as,=' pad  and PBE=lV). In addition, a power 
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Fig.5.9. Power penalty due to the transmitter pointing error versus the PBE for a 4-ary PPM system. 
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Table 5.1 Typical link budget of a direct detection QPPM system with 1 pad RMS pointing error. 

PointingLos 

Svnchronizarion Loss 

Laser Power 
Path Loss 
AntennaGain 

TransmitW 
Receiver 

Optics Efficiency 
Transmittex 
Receiver 

Receiver Sensitivity @ 
200Mbps and PBE=lW 

-1.8 dB 

-0.1 dB 

100 mW 20.0 dBm 

4o.OOokm -295.4 dB 

12.6 cm 113.4 dB 
30 cm 120.9 dB 

0.5 -3.0 dB 
0.35 4.6 dB 

73 Phomnsbit -53.1 dBm 

I LinkMargin I 2.5 dB I 
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penalty (~1 .8  dB at PBE=lV) must be allocated to account for the random pointing error. Compared to the 

small power penalty due to synchronization error (0.1 dB) [MI, it is seen that the spatial tracking error dominates 

the power allocation in the direct detection ISL. 

5.3.2 Heterodyne NCFSK Systems 

For heterodyne systems, spatial tracking errors affect not only the pointing accuracy of the transmitter, but 

also the alignment between the received signal and the LO [3]. Given an instantaneous LO tracking error of OR 

and a transmitter pointing error of &, the signal-to-noise ratio (SM) at the heterodyne receiver can be written 

as 

(5.18) 

h where a l = q T q R  ( X ) ( - ) ' T S  is a constant which is independent of the transmitter power and the pointing and 

tracking errors. Note that alPL is simply the receiver S N R  per unit transmitter and receiver antenna gains. In 

deriving Eq. (5.18), it has been assumed that the transmitter aperture is uniformly illuminated and that both 

hv 4x2 

signal and LO can be approximated by plane waves that cover the receiver aperture of diameter d R  . In addition 

to the pointing loss facmr, L T ( G T b & , O T l b ~ ) ,  the presence of the LO tracking error results in a tracking loss 

factor LR (GR beR ,OR /beR ) which, when both signal and LO are plane waves, is given by 

(5.19) 

By normalizing the pointing and tracking emors by their respective RMS values, the receiver S N R  depends on 

pointing and tracking errors only through ( a l p =  /ci,$cr& 1, GTcT&., GR c&, OT /o+, and OR / b e R .  

The probability of error for a binary heterodyne NCFSK system, conditioned on the IF SNR, can be 

written as E281 

1 PE = -e+2 . 2 (5.20) 

Equation (5.20) was derived assuming that the carrier phase noise. has a negligible impact cn the performance of 
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the NCFSK system. In the presence of carrier phase noise, the PBE depends not only on the receiver SNR, but 

also on the linewidths of the transmitter and LO lasers. The unconditional probability of error for the heterodyne 

NCFSK channel can be written as 

r 1 

(5.21) 

where u=8T/oe and v=eR/oeR are the normalized pointing and tracking errors, respectively. Note that the 

unconditional PBE depends only on three parameters (alPL/o&o&). GTG&, and GRO&. Because of the 

trade-off between the pointing loss factor and the beam divergence, it can be argued that, for a given RMS 

pointing error and the desired PBE, an optimal transmitter antenna gain exists which minimizes the required 

signal power. For a heterodyne system, the presence of an LO tracking loss factor suggests a similar trade-off 

between the receiver aperture diameter and the signal-to-noise ratio. By inspecting Eq. (5.18) it is seen that, 

when the LO tracking can be perfectly realized, the receiver SNR is proportional to the receiver antenna gain 

G R .  In the presence of the LO tracking error, however, the S N R  decreases rapidly when the argument of the 

Bessel function, G&, approaches 3.84. Consequently, the receiver aperture diameter cannot be increased 

indefinitely, and an optimal receiver antenna gain exists which maximizes the system performance. 

By differentiating both sides of Eq. (5.21) with respect to GT and G R .  and realizing that 

~ P L  ldGT--dpt /dGR =O at optimal antenna gains, it is seen that the optimal antenna gains must satisfy 

(5.22) 

Given the PBE, the optimal antenna gains and the required signal power can be calculated by solving Eqs. 

(5.21)-(5.23). Note that these equations depend only on alPL/(o&o&), GTG&, and GRO&. Therefore, if 

~T=GT*G&, ~ R = G R  opt o&, and yp=a#L-/(o&o&) can be found to satisfy Eqs. (5.21)-(5.23) for a given PBE, 

then for all values of the RMS pointing and tracking errors the optimal antenna gains can be related to the RMS 

pointing and tracking jitters by 
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(5.24) 

Furthermore, the required transmitter power can be related to the RMS pointing and tracking errors by 

(5.25) 

When o+= DeR. the symmetry of Eq. (5.18) between GT and GR suggests that the optimal transmitter and 

receiver antenna gains are equal to each other. As a result, ~ = Y R  for all values of GS, and GeR. 

The parameter yr can be calculated by solving Eqs. (5.21)-(5.23). The resulting value of yr is plotted in 

Fig. 5.10 versus the PBE for a binary NCFSK system. By comparing Fig. 5.10 and Fig. 5.7, it is seen that, for a 

similar RMS transmitter pointing error, the performance of the heterodyne system is optimized at a slightly 

higher transmitter antenna gain than the direct detection PPM system. However, it should be noted that for 

heterodyne systems, the receiver antenna gain is constrained by the RMS LO tracking error while no such 

constraint exists for the direct detection PPM system. As a result, the product of the transmitter and receiver 

antenna gains is usually smaller for the heterodyne system than for a comparable direct detection system. 

Figure 5.11 is a plot of y p  versus PBE for a heterodyne 4-ary NCFSK system. The value of yp ranges 

from =160/rad4 at PBE = le3 to approximately 2,600/rad4 at PBE = 10-9. Note that the required transmitter 

power for a heterodyne NCFSK system is proportional to both o& and o&. In contrast, the required signal 

power for a direct detection PPM system is proportional to o&. Consequently, the heterodyne channel is more 

sensitive to spatial tracking errors. For systems with large RMS pointing and tracking jitters, the amount of 

transmitter power needed to achieve a given PBE can be significantly larger for the heterodyne system despite 

the higher receiver sensitivity. For example, given the link parameters shown in Table 2.1 and the parameter y p  

plotted in Fig. 5.1 1, the required transmitter power needed to achieve l@ error rate is approximately 0.1 mW 

at 0% = COR = 0.2 pad). However, at large pointing and tracking jitters, the required transmitter power is 

unacceptably high (a1 W for 0% = GeR = 2 pad). 

In addition to imposing constraints on the antenna gains, random pointing and tracking errors also incur a 

power penalty in the link budget. By combining Eqs. (5.24) and (5.25), the required transmitter power in the 

presence of pointing and tracking errors can be related to the optimal transmitter and receiver antenna gains by 
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Fig.5.10. The parameter y~=G~,oc and ~ R = G R ~ C T &  versus the PBE for a 4-ary NCFSK system. The 
transmitter aperture is assumed to be uniformly illuminated by the signal. 
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(5.26) 

In the absence of pointing and tracking errors, it is seen from Eq. (5.18) that, in order to maintain a constant 

PBE, the required transmitter power is also inversely related to the product of GT and GR . Consequently when 

both transmitter and receiver antenna gains are optimized, the power penalty, which is defined as the ratio 

between the required signal power in the presence of pointing and tracking errors and that when spatial tracking 

can be perfectly realized, is independent of the antenna gains. It follows from Eq. (5.23) that the power penalty 

is independent of the RMS pointing and tracking emrs. The power penalty for a binary FSK system is plotted in 

Fig. 5.12 versus the PBE. Note that the power penalty associated with the spatial tracking error is approximately 

4 dB for PBE=lW, and increases to about 5 dB for PBE=W3. The power penalty shown in Fig. 5.12 is 

calculated assuming that both transmitter and receiver antenna gains are optimized. Therefore, despite the 

relatively small increase in the power penalty (2-3 dB) over the direct detection system, the actual power margin 

in a heterodyne system is much smaller since a smaller receiver antenna must be used. 

Table 5.2 shows the typical link budget for a 4-ary NCFSK system designed with 1 p a d  RMS transmitter 

pointing and LO tracking errors. The link budget is calculated using the ISL parameters shown in Table 2.1. 

Compared to an ideal system using 30 cm transmitter and receiver telescopes, the design optimized for RMS 

pointing and tracking errors of 1 p a d  has much smaller transmitter and receiver antenna gains. In addition, a 

power penalty (4 dB) must be allocated in the link budget because of the random pointing and tracking errors. 

By comparing Tables 5.1 and 5.2, it is seen that the spatial tracking error affects the heterodyne channel much 

more severely than the direct detection channel. In fact, the advantage of using a heterodyne system because of 

the higher detection sensitivity (-5-10 dB) is quickly offset by the smaller receiver antenna gain and the larger 

power penalty due to spatial tracking error. The link budget shown in Table 5.2 was calculated assuming that a 

signal power of 100 mW is available at the transmitter. In practice, because heterodyne systems are very 

sensitive to carrier phase noise, mode-stabilized semiconductor lasers with dynamic linewidths on the order of 

several megahertz are required to maintain a reasonable detection sensitivity. Such lasers are not readily 

available at power output exceeding 50 mW. It should be emphasized, however, that even though the power 

budget given in Table 5.2 shows a smaller power margin than the direct detection PPM system, heterodyne 

systems offer better background noise immunity and narrower field-of-view. In the presence of strong 
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Table 5.2 Link Budget of a heterodyne QFSK system with OS, = aeR = 1 pad. 

~~ 

Modulation Format 

Data Rate 

PBE 

Laser Power 

4-FSK 

200 Mbps 

10-6 

100 mW 20.0 dBm 

Path Loss 

Antenna Gain 
Transmitter? 
Receiver? 

14.1 cm 
14.1 cm 

114.3 dB 
114.3 dB 

Optics Efficiency 
Transmitter 
Receiver 

0.5 
0.35 

-3.0 dB 
-4.6 dB 

~~ 

Receiver Sensitivity @ 
200h4bps and PBE=10'6 I 14 Photonsbit -60.4 dBm 

Pointing and Tracking Loss I -4.0 dB 

Synchronization Loss I I -0.1 dB 

-0.8 dB 

Link Margin I 1.1 dB 

Af = IF linewidth, vd = FSK tone spacing. 

t Optimum for 0% = oeR = 1 pad. 
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background noise and hostile jamming. heterodyne systems can have a superior performance. Furthermore. the 

power budget shown in Table 5.2 was calculated for RMS pointing and tracking errors of 1 pad. By reducing 

the RMS errors from 1 p a d  to 0.5 pad, the power margin of the heterodyne system can be increased by 12 dB 

compared to a 6 dB increase in power margin for the direct detection PPM system. 

5.3.3 Suboptimal Design 

Because the optimal antenna gains are inversely related to the RMS pointing and tracking errors, antenna 

diameters at which the system performance is optimized can be very large for systems with small RMS pointing 

errors. For instance, the optimal antenna diameter is greater than 50 cm for an optical ISL operating with 0.2 

pad  RMS pointing errors. For such systems, the sizes of the transmitter and receiver antennas are limited by the 

weight and budget constraints rather than performance considerations. In practice, these systems usually employ 

a suboptimal design in which h e  antenna gains are chosen to be smaller than the optimal values. Because the 

antenna gains are not optimized, higher signal power is needed to maintain the system performance. However, 

since the transmitted beamwidth increases with decreasing transmitter antenna gain, such systems are less 

sensitive to the random pointing errors. Similarly, a smaller receiver antenna gain implies that the receiver S N R  

is much less sensitive to the LO tracking error. In fact, an inspection of Fig. 5.6 shows that, when the antenna 

gains are chosen to be smaller than their optimal value, a smaller power penalty due to spatial tracking error is 

expected. Figures 5.13 and 5.14 are plots of power penalty versus antenna gain for a 4-ary PPM system and a 

binary NCFSK system, respectively. Note that the power penalty increases slowly until the optimal antenna gain 

is reached, and then increases rapidly for G T > G T ~ .  

Table 5.3 summarizes the link budgets for a direct detection QPPM and a heterodyne QFSK systems with 

RMS pointing and tracking errors of 0.2 prad and transmitter and receiver antenna diameters of 20 cm. Note 

that since the antenna gains are much smaller than the optimal value (G~co . lG~opS ,  only a small power penalty 

needs to be allocated for pointing and tracking errors (0.2 dB for direct detection PPM systems, and 0.4 dB for 

heterodyne FSK systems). Consequently, ir! the limit of small pointing and tracking jitters, the heterodyne 

channel is superior to the direct detection PPM channel because of the higher receiver sensitivity. 
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Fig.5.13. Power penalty versus antenna gain for a 4-ary PPM system. 
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Table 5.3 Link budgets for QPPM and QFSK systems with 0.2 wad RMS tracking jitters and 20 cm diameter 

transmitter and receiver apertures. 

Direct Detection 
4-PPM 

Heterodyne 
4-FSK 

~~~ ~ 

Data Rate 

PBE 

Laser Power 

Antenna Gain 
Transmitter? 117.4 dB 117.4 dB 
Receivert 117.4 dB 117.4 dB 

200 Mbps 200 Mbps 

1W 10-6 

20.0 dBrn 20.0 dBm 

Optics Efficiencies 
Transmitter 
Receiver 

-3.0 dB 
-4.6 dB 

-3.0 dB 
-4.6 dB 

Receiver Sensitivity I -53.1 dBm 1 -60.4dBm 
~~ 

Pointing and Tracking Losses 

Temuoral Trackinn Loss 

-0.2 dB -0.4 dB 

-0.1 dB 1 -0.1 dB 

Phase Noise+ 

Link Margin 

i Assumes 20 cm diameter apertures. 
$Calculated at PBE=10-6. VdTs=lr and Af Ts=0.03. 

-0.8 dB 
4.6 dB 10.9 dB 
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5.4 Impact of Static Pointing Error 

Thus far the analysis on the impact of spatial tracking errors has assumed that tracking errors in each of 

the two axes can be modeled as zero-mean Gaussian distributed random variables such that the resulting radial 

tracking error is Rayleigh distributed. The impact of Rayleigh distributed pointing and tracking errors on the 

design of ISLs is seen by the existence of optimal antenna gains and the additional power penalty. In some 

systems, however, because of systematic noises, there may be a static bias at the output of the spatial tracking 

circuit The presence of this bias results in a static pointing error at the transmitter and receiver in addition to the 

random, zero-mean Gaussian pointing jitters. When both static and random pointing errors are present at the 

transmitter, the probability distribution of the instantaneous pointing error OT is no longer Rayleigh distributed. 

Instead, for ISLs with a static pointing error of 80, the instantaneous pointing error e T  is Rician distributed with 

density function 

(5.27) 

where 0% is the variance of the random pointing jitter, and f o ( x )  is the modified Bessel function of the first 

kind. In the presence of static and random pointing errors, the PBE can be calculated by substituting Eq. (5.27) 

for the density of €IT in Eq. (5.11) and carrying out the integration. Note that by normalizing the random 

pointing jitter by its RMS value, the PBE can be written as a function of e&+, P"/a,$ and GTO&. 

Consequently, in the presence of static pointing errors, both the optimal antenna gain and the minimal signal 

power are functions of the static pointing error. Both Crop and PL- can be calculated numerically. Figure 5.15 

is a plot of the optimal transmitter antenna gain versus the RMS pointing jitter for a 4-ary PPM system operating 

at PBE=10-6. Note that in the presence of a static pointing error, the optimal transmitter antenna gain is smaller 

than that when O d .  At small RMS pointing errors, the optimal antenna gain is much smaller for systems with 

large static pointing errors. However, at large RMS pointing jitters, the effect of static pointing error is 

practically negligible. Similarly, given €lo, and oar, the required transmitter power, PL-, can be calculated. 

Figure 5.16 is a plot of PL,, versus the RMS pointing jitter for a 4-ary PPM system, Note that at small RMS 

pointing jitters, static pointing jitter can result in a large increase in the required signal power. As the RMS 

pointing jitter increases, however, the impact of static pointing enor becomes less significant and the required 

transmitter power converges to that of a system with &O. 
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Fig.5.15. Optimal transmitter antenna gain versus the RMS pointing jitter for a 4-ary PPM system with 
both static and random pointing errors. 
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Detailed analysis of the system performance in the presence of static and random pointing errors is in 

general very difficult. Under two special conditions, however, the performance analysis can be simplified 

considerably. The first case occurs when the RMS pointing error is much greater than the static pointing error, 

a+>>Bo. In this case the probability dislribution of 01 given in Eq. (5.27) can be approximated by the Rayleigh 

density shown in Eq. (5.4). and the analysis for the spatial tracking error can be carried out by considering only 

the random pointing error. The second case occurs when the RMS pointing error 0 0 ,  is much smaller than the 

static pointing error 00. In this case the probability distribution of BT is concentrated around BT=6O. and the 

analysis can be carried out assuming that only the static pointing error is present. 

In the presence of static pointing emr, the transmitter power is related to the received photocount and the 

transmitter parameters by 

where LP(S~,6o) is the pointing loss factor given by Eq. (5.1 1). For given KS and 60, the required transmitter 

power can be minimized by maximizing the product 

(5.29) 

Since the function J l ( x )  is maximized at x=1.84, the required transmitter power can be minimized if the 

transmitter antenna gain is chosen such that 

G~*6$=(1.84)~=3.38 . (5.30) 

Notice that, in the presence of a static pointing error, the optimal antenna gain depends only on the static 

pointing error. The pointing loss factor Lp (GT ,eo) at the optimal antenna gain is given by 

Lp(C~wpt,6~) 0.4 1 -4dB , GT- = 3.38/6$ . (5.31) 

In other words, in the presence of a static pointing error, a design which optimizes the transmitter antenna gain 

will require 4 dB higher transmitter power to maintain the system performance. Compared to the value of GrW 

calculated from Fig. 5.7, it is seen that the optimal antenna gain in the presence of a fixed pointing error is much 

higher than that when the pointing error is randomly distributed. 
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Similarly. for heterodyne systems, the presence of static pointing and tracking errors implies that optimal 

transmitter and receiver antenna gains can be found to optimize the system performance. These optimal antenna 

gains can be found by maximizing the product of the hacking loss factor and the antenna gain. For systems 

where the pointing and tracking loss factors can be approximated by the Airy patterns given in Eqs. (5.8) and 

(5.19), the signal power can be minimized by choosing the antenna gains to satisfy 

GT- = 3.38/8$ ,GR- = 3.38/0$R , (5.32) 

where 8% and 80, are static pointing and tracking errors at the transmitter and receiver, respectively. When 

both transmitter and receiver antenna gains are optimized for static pointing errors, the power penalty, which is 

the product of pointing and tracking loss factors at optimal antenna gains, is approximately 0.16 or, equivalently, 

-8 dB. 

5.5 Summary and Discussion 

The performance of the spatial tracking system is dominated by the residual mechanical noise which 

cannot be reduced by increasing the SLUR. The presence of these residual spatial pointing and tracking errors 

imposes additional constraints in the link design. In contrast to the perfectly tracked system where the link 

performance improves with increasing transmitter and receiver aperture diameters, the presence of random 

pointing and tracking errors affects the ISL design in two respects. First, in the presence of random pointing and 

tracking errors, system performance is optimized at particular values of the transmitter and receiver antenna 

gains. When hacking errors can be modeled as Rayleigh distributed random variables, these optimal antenna 

gains are inversely proportional to the mean square pointing and tracking emrs. Second, the presence of 

pointing and tracking errors imposes an additional power penalty in the ISL link budget. The power penalty 

was shown to be approximately 1.5 to 3 dB for a direct detection PPM system, and between 3 and 5 dB for a 

heterodyne NCFSK system. 

The impact of random pointing and tracking errors on the design of ISLs can be summarized by the ISL 

link budgets shown in Tables 5.1-5.3. In the absence of spatial tracking error, the heterodyne channel offers a 

5-10 dB advantage in detection sensitivity over the comparable direct detection PPM system. However, the 

heterodyne system is much more sensitive to spatial tracking errors at the transmitter and receiver and the 

advantage gained in detection sensitivity can be qiiickly offset by the smaller receiver antenna gain (16 dB at 
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Ge,=lPd) and a higher power penalty (“2 dB) due to randomly distributed tracking and pointing errors. As a 

result, for systems with large pointing and tracking errors, the direct detection channel is preferred over the 

heterodyne channel despite the smaller receiver sensitivity. For systems with small pointing and tracking jitters, 

on the other hand, the antenna gains are limited by the size and weight of the optical system rather than 

performance considerations. Because the antenna gains are smaller than the optimal values, these systems are 

less sensitive to the pointing and tracking jitters. Consequently, in the limit of small pointing and tracking jitters, 

the heterodyne channel demonstrates a superior performance because of the higher receiver sensitivity. 

Thus far the analysis of the system performance was carried out for an un-encoded system. In practice. the 

performance of the link can be improved considerably by using error control techniques such as source encoding 

and forced retransmission. Because the tracking and pointing errors are due primarily to the residual mechanical 

noise that has a typical frequency of several kilohertz, it is evident that errors introduced by the tracking errors 

generally occur in bursts with a typical burst period of several hundred microseconds. The error control 

techniques, therefore, must effectively reduce this burst error probability [601-[63]. Several methods are 

effective for controlling the burst error. For systems demonstrating short error bursts, source encoding can be 

used to facilitate error detection and error recovery [163], [164]. However, because of the high data rate of the 

channel, error bursts due to spatial tracking errors typically span a period of several hundreds or even thousands 

of bits. Burst error correction for such a long bit stream is impractical because of the complexity of the decoder. 

Alternatively. burst errors can be effectively controlled by requiring the receiver to acknowledge (ACK) the 

transmitter upon receiving an error free transmission. In the case where errors occur during the transmission, a 

no-acknowledgement (NAK) is sent and the transmitter will then re-transmit the previous data packet. When 

coupled with an effective error detection code, this acknowledge-no acknowledge (ACK-NAK) scheme can be 

used to ensurcd that only valid data are received at the receiver. However, because of the long round trip delay 

for an ISL, a large buffer memory is needed to store the data before an acknowledgement is received. 

Consequently, for channels demonstrating large burst error probabilities, such a scheme can severely reduce the 

effective rate of transmission through the channel. 
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6. TIMING SYNCHRONIZATION 

In order to implement an efficient decoding scheme, the receiver requires the presence of a clock signal 

that is synchronized to the transmitted data stream. Receiver synchronization is also required for spaceborne 

systems where the actual data rate is affected by the Doppler shift due to the relative motion. Furthermore, 

receiver synchronization is needed to control the timing jitter and frequency drift corresponding to the 

oscillator mise. 

In some systems, the receiver synchronization is maintained by transmitting a separate timing signal on 

top of the message waveform. The receiver then extracts the necessary sync infomation to perform the 

decoding. For such systems, the receiver synchronization is relatively easy to implement. However, 

additional signal energy and bandwidth are required by the sync channel. Alternatively, the receiver timing can 

be recovered directly from the received data bearing signal such that no additional timing signal is necessary. 

This method has the advantage of power and bandwidth conservation and, consequently, is preferred for 

applications where the signal power and available bandwidth are limited. 

6.1 Synchronization of Direct Detection PPM Systems 

The problem of symbol synchronization from a data bearing signal deals with the estimation of the time 

at which the modulation changes its state. In the case of a direct detection PPM system, this implies estimating 

and tracking the slot timing from the output of the photodetector t ( 1 ) .  where [3], [741 

In Eq. (6.1), T, and C, are the anival time and gain associated with the j* photon event, h ( t )  is the impulse 

response of the detector, and the thermal noise has been assumed to be negligible compared to the signal shot 

noise. The photocount rate of the detector is proportional to the total power received at the photodetector and, 

for an Wary PPM system, can be modeled as 

where X B , ~ S  are the photocount rates due to the background and 

NT=T/T, is the number of codewords in the observation period, dk 
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signal, T,=MT, is the word period, 

is the k* data word. and p ( r )  is the 



transmitted pulse shape. The purpose of the synchronization system, therefore, is to recover the slot timing 

given the photodetector output in Eq. (6.1). After the slot timing has been recovered, frame and word 

synchronizations can then be achieved using a coding technique [16q, [166]. 

6.1.1 The MAP Estimator 

Given the received signal r ( t ) ,  the optimal symbol timing estimator is the one which maximizes the 

u posteriori probability p (z I r ( t ) ) ,  where '5 is the timing offset between the receiver and the transmitter. 

Mathematically, the output of the optimal estimator can be written as 131. [74] 

The estimator which implements Eq. (6.3) is known as the MAP estimator. When the u priori probability 

distribution of the pulse delay is unknown, the probability can be assumed to be equally distributed over the 

observation interval. In this case the MAP decision reduces to an ML estimator which maximizes 

p ( r ( t ) .  W I T  IT). 

For a general receiver output given in Eq. (6.1). the probability p ( r ( t ) ,  O l t l T  I T )  is very difficult to 

calculate. The calculation can be simplified considerably, however, if it is assumed that the detector impulse 

response can be modeled as a delta function, and that the detector gain Cj is constant. Under these 

assumptions, the ML estimator is given by [3] 

(6.4) 
T 

<ML = urg m,ax (t )logh(t +z)dt -j,, h(t 

where the expectation is taken with respect to the random code sequence h(t). The term involving the integral 

of h(t+.r) is the total expected photocount during the period (0, T). For a long observation interval, the 

fluctuation in this term will be small compared to the total received photocount. Therefore, the ML timing 

estimator is effectively 

iML = urg m,a" E L  exp I,r(t)logh(t+z)dr . (6.5) I [ '  11 
By substituting the expression of the PPM photocount rate from Eq. (6.2) into (6.5) and taking the expectation 

with respect to dk, the ML pulse delay estimator can be reduced to the one which maximizes 
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The ML timing estimator that implements the decision rule is shown in Figure 6.1. Judging from the 

complexity of the estimator, it is apparent that the ML timing estimator, although it maximizes the probability 

of choosing the correct estimate, is far from practical. A large number of cornlators are needed to provide an 

acceptable timing estimate. Consequently, in order to implement pulse tracking, some simplification to the ML 

decision rule must be devised. 

6.1.2 Early-Late Gate Tracking Loop 

A direct and straightforward simplification of the MAP estimator is to reduce the number of correlators 

required by using a tracking loop. Recall that the ML estimator maximizes the likelihood function f ( r ( t ) , ~ )  

given by (6.6). If it is assumed that f ( r ( f ) ,T )  is differentiable with respect to the delay time 2, then the 

derivative off (r  ( t ) , T )  can be used as an indication for the timing offset. Note that af (r (t),z)/& is given by 

r 

a u, +(j+l)T, +'F 

r(t)xlog[hB + Asp ( t - k T w - / T , ~ ) ] d t  (6.7) 

. - 1 

J 

For a given initial estimate of the timing delay i, Eq. (6.7) can be used to provide an indication of the search 

direction. At &T, af (r(t).T)/& I; is negative, while at ier, the value of Eq. (6.7) is positive. Consequently, it 

is possible to design a closed-loop tracking circuit which makes use of this property. Figure 6.2 shows an 

example of such an implementation. The phase of the timing estimator is updated every word period by the 

amount that is proportional to the derivative of the likelihood function. 

The timing loop implemented using Eq. (6.7). however, is still very complicated and further 

simplifications are needed to simplify the design. One such simplification is to approximate the second term 
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Fig.6.2. Tracking loop which approximates the ML synchronizer. 

137 



on the right-handed side of Eq. (6.7) by a convolution of the received signal pulse r ( t )  with an early-late gate 

pulse g (t) where 

Another simplification can be made by noting the value computed by the upper branch in Figure 6.2 strongly 

emphasizes the early-late gate output during the slot which contains the actual signal pulse. Consequently, it is 

possible to replace the upper branch in Figure 6.2 by the decision value of the decoder. That is, only the 

early-late gate output during the signal slot will be used to update the timing oscillator. Figure 6.3 shows a 

block diagram of this simplified decision-driven early-late gate tracking loop. 

The application of the decision-driven early-late-gate loop in symbol synchronization has been studied 

previously [3]. It has been shown that, at high SNR, the variance of the timing error for a binary PPM system 

can be given by 

(6.9) 

where &=r/TS is the normalized timing error, BL is the bandwidth of the tracking loop, Ts is the slot width, and 

KS is the signal photocount received over the slot period. 

6.1.3 Phase-locked loops 

The early-late gate described in the previous section is an approximation to the optimal MAP timing 

estimator. Consequently, it represents a lower bound on the performance of a synchronization system. 

However, when used in a direct detection PPM system, the early-late gate synchronizer requires a complicated 

decision feedback structure which may be difficult to implement. Alternatively, when the input signal to the 

synchronization subsystem contains a spectral component at the desired lock-in frequency, a simple phase- 

locked loop (PLL) shown in Figure 4.10 can be used to recover the pulse timing. 

The applications of PLLs in radio and optical communication systems have been studied extensively 

[28]-[31]. [631-[681, [167]-[169]. Gagliardi and Haney [167] and Snyder and Forrester [168] analyzed the 

probability density of tracking error for a PLL under shot noise input. Mengali and Pezzani [671 studied the 

phase error variance of a PLL driven by photodetector current in an optical pulse amplitude modulation 
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system. Marshall 1651 studied the performance of PLL tracked PPM systems with pulses occupying a fraction 

of the time slot. These studies have shown that PLLs can be used to track the transmitter timing provided that 

the transmitted signal contains a frequency component at the desired lock-in frequency. 

Given the photodetector output r(r),  the time-averaged power spectrum of r ( r )  can be defined as [3] 

T 
&(a) = Jim -9- &E[ I LTr(r)eiwdf Iz] 

(6.10) 

The expectation in Eq. (6.10) can be evaluated by first taking the expectation with respect to the shot noise 

process, conditioned on h(r), then taking the expectation of the resulting expression with respect to h(r). The 

first expectation can be evaluated by differentiating the joint characteristics function of the filtered Poisson 

(6.11) 

where @ ~ ( a ) = E [ e ~ ~ ]  is the characteristics function of the detector gain G .  The resulting joint expectation 

of the photodztector output can be written as 

where the brackets <Gn> denote the ensemble average of G". By substituting (6.12) into (6.10) and taking 

the expectation with respect to the codewords ( d k ) ,  assuming that (dk )  are independent and uniformly 

distributed over (O,l, ...,M- 1), the resulting power spectrum of the photodetector output can be written as 

(Appendix C) 

+g IP(0 )  I2(1- IR (0) 12) (6.13) 

where F denotes the excess noise factor of the detector, 
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(6.14) 

and P (a). H ( o )  are the Fourier transforms of the pulse shape and the impulse response of the detector-filter, 

respectively. If p ( t )  is a rectangular pulse with width T,, its Fourier transform P (a) will be zem at all integer 

multiples of the slot frequency, 2 f l , .  In this case, the detector output spectrum in Eq. (6.13) contains no 

discrete frequency components at the slot frequency or its harmonics. Consequently, the PLL cannot track the 

output of the photodetector directly. Preprocessing of the detector output is necessary to generate a frequency 

component at the slot frequency. 

Only nonlinear processing needs to be considered, because any linear filtering will simply amount to 

multiplying the power spectrum in Eq. (6.13) by the magnitude square of the filter transfer function, and will 

not affect the absence of the spectral component at the slot frequency. One approach is to filter the signal and 

then square the filter output, as depicted in Figure 6.4. The output of this preprocessing circuit can be written 

as 

(6.15) 

where h ( t )  now denotes the combined impulse response of the detector and the preprocessing filter. The 

expectation value of the preprocessor output can be evaluated by first differentiating its conditional 

characteristics function in Eq. (6.11). then taking the expectation with respect to the codewords (dk). The 

resulting expression for the expected preprocessor output is given by 

L 1 

(6.16) 

where we have used the fact that 
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By examining Eq. (6.16). it is seen that the last term at the right-handed side is periodic with period T,. 

Therefore, in contrast to the photodetector output, the squared current does have a strong spectral component 

at the slot frequency. The output of the preprocessing circuit can therefore be regarded as the sum of a 

periodic signal s (t) and an additive noise term n ( t  ) 

where from (6.16) 

(6.19) 

and the noise is simply the part of the preprocessor output that is not periodic, 

n ( t )  = i2 ( t  )-s ( t )  . (6.20) 

Figure 6.5 shows the power spectra of a computer simulated photodetector output before and after 

preprocessing. The simulation was carried out assuming that a photon counting detector (F=l)  was used to 

detect the optical radiation. Note that the frequency component at slot frequency is strongly enhanced by the 

preprocessor. The analytic expression for the power spectrum of the preprocessed signal is quite complicated. 

However, the expression can be simplified considerably if it is assumed that H (a) blocks the dc component of 

the signal, and that both P (a) and H (a), the Fourier transforms of p (t ) and h (t), are slowly varying functions 

of frequency compared to R (a), defined in Eq. (6.14). The first assumption is made because the dc component 

of the detector output contains no timing information and will only contribute noise to the squared signal. The 

second assumptions holds for higher-order PPMs (Le., for M large). Because, in general, h (t ) and p (1) are 

pulses of width comparable to T, , their Fourier transforms will have supports on the order of a,=2x/T,. The 

support for R (a). on the other hand, is on the order of a, lM , where M is the PPM order. Consequently, for 

higher-order PPMs, the assumption that P (a) and H ( o )  are slowly varying compared to R (a) usually holds. 

For high signal counts, the power spectrum of the preprocessed signal i 2 ( r )  near the slot frequency can be 

approximated under these assumptions by (Appendix B) [1691 
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where 

s, (0) = - GG4 IP(0)H(O)*P(0)H(W) 126(*0,) 
T,2 

(6.22) 

is the spectral component corresponding to the first harmonic of s ( I ) .  and 

Sn(0)=4-  Jp (o’)P* (w”)zJ* (w’-o”)H(w)H (o-o’)H* (w”)H* (*o”)d d d o ”  (6.23) 
T, (2x)z 

is the power spectrum of the random, non periodic component, n ( t ) .  The presence of a spectral peak at w=os 

implies that the output of the preprocessor contains a sinusoidal component with frequency O=O,. The 

amplitude of this sinusoidal component can be given by 

(6.24) 

where ws=2xlTs is the slot frequency. 

The variance of the timing error for a PLL driven by a sinusoidal signal embedded in an additive white 

noise can be approximated by 

(6.25) 

where &=5/Ts is the normalized timing error, S,(w) is the power spectral density of the additive noise, A is the 

amplitude of the input sinusoid, and BL is the closed-loop bandwidth of the tracking loop. The parameter p in 

Eq. (6.25) can be interpreted as the ratio of signal power and the amount of noise power admitted by the loop 

with bandwidth BL.  Equation (6.25) was derived for a sinusoidal signal in an AWGN. The shot noise at the 

output of the squarer, however, is non-stationary. For non-stationary noise, the phase error variance of the 

PLL is in general a function of time. Nevertheless, it can be shown [170] that for a sufficiently narrow loop 

bandwidth, phase error is stationary, and the phase error variance for the receiver in Figure 6.4 is indeed given 

by Eq. (6.25). 

By substituting the expression for noise power spectrum from (6.23) and the expression for signal 

amplitude from (6.24) into (6.25). the following expression for the variance of timing error is obtained: 

145 

(6.26) 



(6.27) 2T, JP (o’)P* (W”)P* (O’”’’)H(d)H(O-O’)H* (o”)H ( ~ ” ) d  d d ~ ”  
Y=[ IP(o)H(w)*P(w)H(o)l2 

where K, is the signal count per word, M is the order of the PPM, BL is the equivalent closed-loop bandwidth, 

and y is a dimensionless parameter which depends only on the pulse shape and the preprocessing filter transfer 

function. Note that because f,=l/T,, the parameter BL T, is actually a ratio of the loop bandwidth and the slot 

frequency. The values of y for some choices of preprocessing filter transfer functions are listed in Table 6.1. 

For a given pulse shape, the transfer function of the preprocessing filter can be chosen to minimize the value of 

y. One choice is to model H ( w )  as an ideal low pass differentiator with bandwidth BO. Figure 6.6 is a plot of 

the value of y versus the bandwidth of the differentiator for the case where p(t) is a square pulse of width T, . It 
is shown that the value of y is minimized (yminz3.2) for BoT,=1.3. Also shown in Figure 6.6 is the value of y 

evaluated using the preprocessing filter which consists of a low pass Gaussian filter with RMS bandwidth BO, 

followed by an ideal differentiator. The minimum values of y obtained using both preprocessing filters are 

similar. Equation (6.26) shows that the variance of the phase error is inversely proportional to the signal 

power (Le., signal photocount Ks) and is proportional to the number of time slots M and the loop bandwidth. 

Compared to an optimal, decision-driven, early-late gate timing estimator, the PLL requires y times more 

signal power (Le., 5 dB for y = 3.2) to achieve comparable timing performance. However, the performance of 

the PLL does not depend critically on the assumption of pulse shape or the decision process. Furthermore, the 

important system performance factor is bit error rate (BER), not the timing variance. The system BER, which 

is calculated in Section 6.3, shows that the actual power penalty for using a suboptimal PLL synchronizer is 

small (less than 0.1 dB) for a sufficiently narrow loop bandwidth (BLT, <lop3) even when a conservative value 

of 10 is assumed for y. 

It should be noted that the loop bandwidth BL actually increases with increasing signal amplitude. In 

order to accommodate a wide dynamic range of input signals, it is the usual practice to precede the PLL by 

either an automatic gain control (AGC) circuit or a limiter. The effect of the AGC is to dynamically scale the 

input signal so that the signal amplitude and, consequently the loop bandwidth, remain essentially constant. By 

using an AGC or limiter, the performance of the PLL will improve inversely with the signal strength. 

Equation (6.26) was verified by a computer simulation [68], [169] for direct detection PPM systems using 

photon counting detectors (F=l). The results, which are summarized in Figures 6.7 and 6.8, are in excellent 
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Table 6.1 Values of y for various choices of preprocessing filter. 

i Filter I Y 1  
i i i 

3.58 elsewhere 

j a  l01<2~/T, 
= 0 elsewhere 6.97 
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agreement with the theory. In particular, the phase error variance for binary PPM systems is found to be in 

good agreement with the theoretical predictions even though the derivation leading to Eq. (6.26) required M to 

be large. 

6.2 Synchronization of Heterodyne Systems 

Unlike the direct detection systems where the shot noise follows the Poisson statistics, the noise in a 

heterodyne receiver is predominately Gaussian distributed. The problems of timing synchronization and 

carrier recovery for a heterodyne system are therefore similar to that of an AWGN channel. 

6.2.1 Synchronization of Coherent Heterodyne Channels 

Synchronization of a coherent heterodyne channel consists of several steps. First, the receiver must 

establish the reference carrier synchronization by phase-locking onto the incoming carrier modulated signal. 

The problems of carrier synchronization and its impact on the performance of the heterodyne system have 

been analyzed in Chapter 4, and will not be repeated here. After a coherent carrier reference is established. 

symbol timing synchronization can then be achieved by phase-locking onto the demodulated baseband signal. 

Several methods can be used to establish the symbol timing synchronization for a coherent heterodyne 

channel [28]-[31]. Figures 6.9(a)-(d) show the structures of some commonly used symbol synchronizers for 

the coherent BPSK system. The ML timing estimator shown in Figure6.9(a) offers the optimal timing 

performance, but is impractical to use because of its complexity [28]. The early-late gate loop is an 

approximation of the ML tracking loop. The received signal is integrated over the early and late gate period, 

and nonlinearly (absolute value) conditioned to make the integrator outputs bit independent. The channels are 

then subtracted and the difference is fed into a timing oscillator. The structure of an early-late gate tracking 

loop is shown in Figure6.9(b). Symbol timing synchronization can also be achieved using the data transition 

tracking loop (DTTL) shown in Figur&.9(c). The in-phase branch determines the polarity of the bit transition 

while the quadrature phase branch obtains a measure of the synchronization error. Finally, like the direct 

detection PPM system, nonlinear phase-locked loops can be used to track the symbol timing of an AWGN 

channel. Examples of the nonlinear PLL for synchronizing the BPSK system are shown in Figure6.9(d). 

The performances of the various symbol synchronizers have been investigated extensively [28], [31]. It 

can be shown that the variance of the synchronization error for these loops generally have the following form: 
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Fig.6.9(a). Maximum likelihood (ML) timing synchronizer for the BPSK system. 
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(6.28) 

where BL is the bandwidth of the tracking loop, pc is the coherent SNR, and y is a dimensionless constant 

which depends on the loop structure and the pulse shape. 

6.2.2 Synchronization of Noncoherent Heterodyne FSK Systems 

Figure 6.10 shows a block diagram of a symbol synchronizer for the noncoherent binary FSK channel. 

During the acquisition period, a sequence of alternating frequencies is transmitted. This acquisition sequence is 

then envelope detected using two envelop detectors, each centered at one of the signal frequencies, over a T, 

interval in quadrature with the primary detection interval (Figure 6.10). A maximum likelihood estimate of the 

normalized timing offset E can then be derived from the output of these envelope detectors as 

(6.29) 

where M 1 and Mz denote the outputs of the sync envelope detectors. The conditional probability density 

function of this timing estimator is difficult to derive [28]. However, at high SNR, the output of the envelope 

detector can be approximated by a signal embedded in a Gaussian noise. In which case the estimator in Eq. 

(6.29) becomes unbiased and the variance of the estimator error can be easily calculated by 
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(6.30) 

where ~A2T, /4N,  is the SNR. The timing error variance can be reduced by averaging the estimator output 

over a large number of code periods or, equivalently, by using a tracking loop with a narrow loop bandwidth. 

The analysis of the tracking loop follows closely the derivation leading to Eq. (6.8) [3]. It can be shown that, 

for a tracking loop with bandwidth BL , the variance of the tracking error can be written as 

156 

(6.3 1) 



I 
I 
I 
1 
I 
I 
I 

Sig nal+Noisf Sync - 
Detector M2 

Timing Digital 
Estimator ’ * Fl l ter  

T 
Timing 

Oscillator 

Received Signal Timing 

I fl 1 f2 I fl I f 2  I fl I 
TS+ 

ETS Detector Timing 
p- Ts-q 1 I I I 

1 T d 2  Sync Detector Timing 
i++r+- T s - q  I I I 

Fig.6.10 The structure and the timing diagram of the symbol synchronization loop for a noncoherent 
FSK system. 

I 
I 
I 

157 



6.3 Error Performance in the Presence of Timing m o r  

6.3.1 Direct Detection PPM Systems 

In the presence of a timing error, signal energy that was transmitt d during a symbol interval may be 

interpreted as a strong background interference in the adjacent intervals. For a direct detection PPM system, 

such an intersymbol interference will result in a loss of S N R  and, hence, the increase in the probability of 

decoding error. For systems employing the quantum limited, photon counting detectors, the probability of 

error in the presence of a normalized timing error E can be approximated by [3] 

(6.32) 

where Ks ,  KB are the expected photocount due to the signal and background in one slot period, and E is the 

normalized timing offset. In practice, APDs are commonly used to detect the PPM encoded signal. In the 

presence of a fixed timing error E, the probability of decoding error for systems using APDs can be written as 
I r 1 

(6.33) 

where 

In writing Eq. (6.33), & , I s  are the gain dependent and gain independent dark currents, and Kfh is the 

equivalent photocount rate of the thermal noise. At sufficiently high S N R ,  Eq. (6.33) can be approximated by 

the union bound: 
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(6.34) 

Note that for M =2, the union bound gives an exact evaluation of Eq. (6.33). In deriving Eqs. (6.32) and (6.33), 

we have neglected the end-effect at the word boundaries as they may contain energy spillover from adjacent 

words. For higher order PPMs (MA) the assumption that the end-effect is negligible can be justified[3]. 

Furthermore, since APDs are more commonly used in direct detection PPM systems, and because the union 

bound proves to be an effective approximation of the PBE, Eq. (6.34) will be used to evaluate the PBE in the 

presence of a timing error. 

For receivers employing dynamic phase synchronization circuits such as a PLL, the receiver timing error 

is randomly distributed. However, when the loop bandwidth BL is much smaller than the word frequency, the 

timing mor will be slowly varying so that it is approximately constant during a given word period. The 

unconditional error probability for the PPM system is therefore the expectation of (6.33) with respect to the 

distribution of E. For a well-synchronized system, e can be assumed to be Gaussian distributed, and the 

unconditional PBE is given by 

(6.35) 

Equation (6.35) was evaluated numerically and the resulting PBE is plotted in Figure 6.1 1 versus the expected 

signal count, Ks , for a 4-ary PPM system. The results show a severe degradation of receiver performance with 

increasing timing error variance, particularly when o,=O. 1. 

Numerical evaluation of PBE has been carried out for various signaling conditions and receiver loop 

bandwidths. The results are shown in Figures 6.12 through 6.14. Figure 6.12 is a plot of the PBE versus signal 

count for various loop bandwidths. Note that these results and the results plotted in Figures 6.13 and 6.14 were 

calculated by assuming a conservative value of 10 for y. It was shown in Section 6.1.3 that ~3 for well- 

designed systems. For small loop bandwidths (& T, < the performance of the PLL synchronized system 

is almost identical to that of the perfectly synchronized system. However, for large loop bandwidths 

(BL T, >lo-*), higher signal levels are needed to compensate for the effects of synchronization errors. The 

increase in signal power needed to compensate for the imperfect synchronization (Le., maintain a given BER) 

can be described equivalently in terms of decibel loss in signal power due to synchronization error. Figure 
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6.13 is a plot of the loss factor versus the loop bandwidth at a fixed PBE of 10-9 for several PPM systems. 

Notice that the M = 2  curve is included because computer simulation of phase error variance agrees well with 

(6.26). It is seen from Figure 6.13 that for small loop bandwidths (& T, < le3),  imperfect synchronization 

accounts for less than 0.1 dB loss in signal power, while at higher loop bandwidths (BLT,=O.~), the loss can be 

significant. The loss factor curves plotted in Figure 6.13 are for a fixed PBE of 10-9. However, it can be easily 

deduced from the linearity of curves shown in Figure 6.13 that similar losses can be expected for PBE ranges 

from 10-3 to 10-9. 

Because of the coding gain, the PBE of a perfectly synchronized PPM system decreases with increasing 

PPM order. For PLL synchronized PPM systems, however, the variation of PBE with PPM order is more 

complicated because the timing error is also a function of the PPM order. Figure 6.14 is a plot of the PBE 

versus PPM orders for various loop bandwidths and background count rates with the number of signal photons 

per bit and the equivalent bit period kept constant The data show that for small loop bandwidths (& T, < 10-4) 

and for M <lo, the performance of the PU. synchronized system is almost indistinguishable from the perfectly 

synchronized system. Because the phase error variance increases with PPM order, the degradation in 

performance becomes more pronounced at larger values of M. At high enough values of M the 

synchronization error will dominate the coding gain so that eventually the PBE will become an increasing 

function of M .  Consequently, an optimal order of PPM exists where the coding gain balances the 

synchronization error and the PBE is minimum. Figure 6.14 shows that for a PPM system using the photon 

counting detector and operating with a received signal level of 2 photons per bit, a background count rate of 1 

photon per bit interval and BtT,=lO-3, the PBE is minimum near M=100. It should be noted that Figure6.14 

was generated assuming that the transmitter laser has a perfect modulation extinction. In the presence of a 

finite extinction ratio, the detector S N R  is limited by the residual signal in the background slots, and the c w e s  

shown in Figure6.14 must be modified. In fact, for a PPM system with perfect timing synchronization, the 

performance of the receiver improves with increasing PPM order until the limiting S N R  is achieved, and 

further increase in the PPM ordcr will only result in a deteriorated system performance. This optimum PPM 

order is typically on the order of M=10 for modulation extinction ratios between 1 and 10%. Consequently, 

the optimum PPM order due to synchronization error in Figure6.14 has very little impact on the design of the 

practical PPM channel. 
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6.3.2 Impact of Synchronization Error on Heterodyne Systems 

Just as it was in the direct detection system, synchronization error affects the performance of the 

heterodyne channel by introducing inter-symbol interference at the decoder. For simplicity, the following 

analysis will assume that the carrier phase fluctuation can be ignored and that the heterodyne channel can be 

approximated by an AWGN. Furthermore, the analysis will be confined to the binary coherent PSK (CPSK) 

and the noncoherent FSK (NCFSK) systems. Detailed discussions on the impact of symbol synchronization 

error can be found in many communication texts [281-[31]. 

Given a normalized timing error E, the conditional PBE for a binary CPSK system with rectangular 

baseband pulses can be written as [28], [3 11 

where pc is the coherent signal-to-noise ratio of the receiver in the absence of timing error. The conditional 

PBE can also be calculated for a noncoherent FSK (NCFSK) system as [28] 

(NCFSK) (6.37) 

where p is the signal-to-noise ratio of the noncoherent receiver, and Q (a$) is Marcum’s Q function defined in 

Eq. (3.11). Equation (6.37) is in general very difficult to calculate. When the signal-to-noise ratio is 

sufficiently high, union bound can be used to approximate the error rate: 

(NCFSK) (6.38) 

The unconditional PBE can be evaluated by taking the expectation of the conditional PBE given by Eqs. 

(6.36) and (6.37) with respect to the dismbution of the timing error. Again, for a well-synchronized system, 

the timing error can be assumed to be Gaussian dismbuted so that the unconditional PBE is given by Eq. (6.35) 

[28]. The random synchronization error affects the performance of the heterodyne channel in two respects. 

First, the synchronization error introduces intersymbol interference which reduces the S N R  and increases the 

PBE. Second, given an RMS sync emr. there is a finite probability that the normalized synchronization e m r  

will exceed 1/2. For this case, the output of the detector matched to the signal will be smaller than the output 
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of the detector matched to the adjacent symbol and, therefore, results in a large probability of error. At high 

SNR, the PBE due to the sync error can dominate the system error rate and result in an error rate "floor" which 

cannot be improved by increasing the S M .  Given an RMS sync error a,, the error rate "floor" can be given by 

(6.39) 

The degradation of the performance of heterodyne CPSK and NCFSK channels due to the synchronization 

error can be seen in Figures 6.15(a) and 6.15(6) where the PBE is plotted against the receiver SNR. Note the 

appearance of error rate "floors" when a,>O.l. The power penalties associated with the synchronization error 

for the heterodyne CPSK and NCFSK systems can be calculated as a function of the variance of the 

synchronization error. These power penalties are plotted in Figures 6.16(a) and 6.16(b) versus the RMS 

synchronization error at PBE 10-6, and 10-9, respectively. Note that, at small a,, the power penalties are 

independent of the PBE. However, at large RMS sync errors, the error rate "floor" due to the synchronization 

error can exceed the desired PBE, and result in a rapid increase in the power penalty. 

In practice, symbol synchronization of the heterodyne system is usually accomplished using a tracking 

loop such that the resulting RMS receiver timing error is inversely proportional to the S N R  (cf. $6.2). In this 

case the unconditional PBE of the heterodyne channel can be represented as a function of the loop bandwidth 

and the signal power. Figures 6.17(a) and 6.17(b) are plots of the power penalty versus the synchronization 

loop bandwidth, assuming that the variance of the synchronization error can be related to the loop bandwidth 

and the S N R  p by 

(6.40) 

Note that, by tightening the loop bandwidth, the power penalty associated with the symbol synchronization can 

be minimized. 

6.4 Summary 

The results in this chapter show that, given the detector output signal, the performance of the symbol 

synchronizer can be improved by reducing the bandwidth of the tracking loop and increasing the SNR. Even 

when suboptimal symbol synchronizers are used, the power penalty associated with the synchronization error 

can be minimized by reducing the bandwidth of the symbol tracking loop. It is seen from the analyses that, 
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with a loop bandwidth that is less than 0.1% of the slot frequency, the direct detection PPM system can be slot 

synchronized with less than 0.ldB of power penalty. It should be noted that for PPM decoding, word and 

frame synchronizations must also be achieved. Such a synchronization can be achieved using a coding 

technique after the slot synchronization is accomplished [165], [166]. For heterodyne systems, the analysis also 

shows that the power penalty due to symbol synchronization is small. In fact, it was seen in Chapter 4 that a 

more dominating source of error in the heterodyne system is due to the carrier synchronization and the carrier 

phase noise. 
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7. PERFORMANCE EVALUATION 

Optical communication links can be implemented using either direct or heterodyne detection receivers 

[31. The direct detection system [3]-[5] offers simplicity in design and, therefore, potentially higher reliability. 

In contrast, the heterodyne system [3], [6]-[8] provides higher detection sensitivity, better background noise 

rejection, and the potential of frequency and phase encodings. In principle, the heterodyne system has a 5-10 

dB advantage in the detection sensitivity over the comparable duect detection channel [6]-[8]. In practice, 

however, the heterodyne channel is very sensitive to the LO tracking error [54] and the laser phase noise [MI- 

[53]. When both the LO tracking error and the carrier phase noise are considered, the performance of the 

heterodyne channel can be seriously deteriorated. 

Both direct [11-[5] and heterodyne [6+[8] detection systems have been studied for ISL implementations. 

In this chapter, the design of typical direct and heterodyne detection ISLs will be studied and the performances 

of both systems in a realistic operating environment will be analyzed. 

7.1 Design Specifications 

Table 7.1 summarizes the mission requirements for an optical ISL. Because of the large demand 

projected for future space missions, a data rate which exceeds 200 Mbps with an averaged PBE less than lW 

is desired. The mean-time-to-failure 0 of the system should be better than 5 years. Based on the these 

mission requirements, detailed specifications on the ISL can be defined. Table 7.2 lists some of the parameters 

that are critical to the performance of the ISL. The choice of these parameters will be discussed in detail in 

following sections. 

7.1.1 Modulation Format 

Given the desired data rate (>200Mbps), modulation formats must be properly specified for both direct 

and heterodyne detection systems. 

Direct detection PPM svstem For direct detection systems, pulse-position modulation (PPM) is used to 

modulate the transmitter laser. The PPM is chosen over the OOK scheme because of its coding gain and the 

noise immunity 131, [ll]. It should be noted that because of the coding gain. the performance of the PPM 

system improves with increasing PPM order. In practice, however, it is not practical to use PPM with order 
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Table 7.1 ISL mission requirements. 

LINK DISTANCE 
40,000 km (LEO-GEO) 

80,000 km (GEO-GEO) 
z =  

DATA RATE 

BIT ERROR RATE 

SYSTEM WEIGHT 

LIFETIME 
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R = 200 Mbps 

< 

50 kg 

>5 yr 



Table 7.2 ISL Design Parameters. 

MODULATION FORMAT 

TR4NSMITTER LASER 

POWER 

EXTINCTION RATIO 

MODULATION BANDWI DTH 

MULTIPLEWDEMULTIPLEX SCHEMES 

Ll NEW I DTH 

OPTICAL ANTENNA 

APERTURE DIAMETERS 

TRANSMIITER AND RECElVEFi 3PTICS 

TRACKING SPLIT 

EFFICIENCY 

RECEIVER FIELD-OF-V EW (FOV) 

RECEIVER BANDWIDTI4 

OPTICAL DETECTOR 

QUANTUM EFFICIENCY 

BANDWIDTH 

GAIN 

NOISE CHARACTERISTICS 

173 



which exceeds M=256 because, at higher order PPMs, the system complexity and the required transmitter and 

receiver bandwidths increase rapidly. Furthermore, in the presence of a finite modulation extinction ratio, the 

receiver signal-to-noise ratio (SNR) is limited by the leakage signal in the background slots (cf. Chap. 3) and 

an optimum PPM order exists which maximizes the system performance. For the analysis of direct detection 

PPM systems, it will be assumed that M 4 .  

Heterodvne NCFSK svstem For heterodyne systems, the noncoherent frequency-shift keying (NCFSK) 

scheme is chosen because of its superior performance in the presence of carrier phase noise [6]-[8]. It should 

be noted that although coherent heterodyne schemes offer an improved detection sensitivity over the NCFSK 

system, they are not suitable for ISL implementations because the signal power required for optical carrier 

synchronization is difficult to achieve in practice [ 1521. 

For the heterodyne NCFSK system, tone spacing between frequencies is an important parameter (cf. 

Chap. 4). The performance of the NCFSK system can be optimized if the different transmitted signal 

waveforms are orthogonal [28], [31]. This is possible if the tone spacing is an integer multiple of the symbol 

frequency, f,=l/T, [28], [29]. In the presence of carrier phase noise, the system power penalty also dcpends 

on the tone spacing (cf. Chap. 4). The greater the tone spacing, the smaller the impact of carrier phase noise 

on the system performance [8], [36]. However, greater tone spacing implies larger system bandwidth and, in 

practice, it is not possible to increase the tone spacing indefinitely. For the analysis of heterodyne NCFSK 

systems, a tone spacing vd=fs will be assumed. 

Finally, since a fair comparison between direct and heterodyne systems can only be made if both 

systems have similar coding gains, the analysis of the heterodyne channel will be carried out for a 4-ary 

NCFSK system. 

7.1.2 Transmitter Laser 

One of the basic assumptions made at the beginning of the study is the availability of semiconductor 

lasers with sufficiently high power and reliability. The advantages of choosing a semiconductor laser include 

higher power efficiency and reliability. In addition, semiconductor lasers are smaller in size and can be more 

easily integrated. 

174 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
t 
8 
II 

Direct detection PPM system For use in a direct detection PPM system, laser power as high as several tens or 

hundreds of milliwatts will be needed. A frequency and polarization multiplexed system (cf. Fig. 2.1) can be 

used to provide the required transmitter power [102],[103]. This scheme is chosen because of the limited 

power output of single laser diodes and the fact that laser diode arrays currently available suffer from poor 

reliability and large far-field beam divergence. Other beam combining techniques such as grating [I051 and 

waveguide combining [102], [I031 are more difficult to implement and require a longer development cycle. 

The power output of the combined laser beam is assumed to be 200 mW [105], [171]. 

In addition to the power output, the selection of transmitter lasers for direct detection PPM systems also 

depends on the modulation bandwidth and the extinction ratio. The modulation bandwidth of laser diodes has 

been demonstrated to exceed 15GHz [91] and, for most practical systems, is well above the desired data rate. 

The modulation extinction ratio is defined as the mtio of power output when no signal is transmitted versus 

that when a signal pulse is sent [23]. In the presence of a finite extinction ratio, the detector background count 

is dominated by the residual optical signal which increases with increasing peak transmitter power. This finite 

extinction ratio can have a significant effect on the coding gain of the PPM channel because it limits the 

maximum achievable S N R  (cf. Chap.3). Typical values of the extinction ratio are between 1 and 10%. For the 

analysis of the direct detection PPM system, a modulation extinction ratio of 5% will be assumed. 

Heterodvne NCFSK svstem The wavelength and polarization combining technique provides sufficient power 

output for the direct detection PPM link. When implementing the heterodyne NCFSK system, however, lasers 

with narrow spectral linewidths are necessary. Laser diodes currently available with high power output 

generally have spectral linewidths on the order of 0.01-lnm or, equivalently, 109-1011Hz, and provide little 

control over the lasing frequency [96]. Consequently, these lasers are not suitable for the heterodyne 

application. Instead, laser diodes with narrow spectral linewidth must be used. These lasers generally employ 

feedback to stabilize the lasing wavelength and suppress the carrier phase noise. Techniques such as 

distributed feedback (DFB) [I 12141 151, distributed Bragg reflector (DBR) [ 1161, or coupled cavity [ 1093 can 

be used to achieve stable, single mode operation. However, laser diodes designed for narrow spectral 

linewidths generally have smaller output power. Fortunately, over the past few years, there has been a steady 

increase in the power output of frequency stabilized lasers. For the analysis of the heterodyne ISL, it will be 

assumed that, by 1990, frequency stabilized, narrow spectral linewidth, laser diodes will be available with an 
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average power output of 30 mW [I711 and a spectral linewidth no greater than 5 MHZ. 

An alternative to using frequency stabilized laser diodes in heterodyne systems is to use the diode 

pumped solid state NdYAG laser. hevious efforts in developing the diode pumped Nd:YAG laser have been 

limited by the low efficiency of the pumping mechanism. Recently, however, by using a tightly focused end- 

pump geometry, pumping efficiency as high as 8% had been achieved which resulted in 80 mW CW power 

output with only 1W of electrical power into a single semiconductor laser array pump [MI. Compared to 

semiconductor diode lasers, the diode pumped NdYAG laser offers a much improved spectral purity and a 

potential increase in output power. However, a wideband external electro-optical modulator is needed to 

modulate the laser which introduces additional loss in the signal power and consumes more prime electric 

power. A diode pumped NdYAG laser is expected to produce a power output of approximately IOomW with 

good spectfal purity. 

7.1.3 Antenna Gain 

The transmitter and receiver antenna gains or, equivalently, the transmitter and receiver aperture 

diameters, determine the amount of signal power that can be focused onto the receiver. 

Transmitter Antenna Gain Ideally, when spatial tracking can be perfectly realized, it is desirable to choose a 

large transmitter antenna gain so that a higher signal intensity can be focused onto the receiver. In the presence 

of random pointing errors, however, transmitter antenna gain cannot be increased arbitrarily. In fact, given the 

RMS pointing error, an optimal transmitter antenna gain exists which minimizes the required signal power (cf. 

Chap. 5). When the pointing error at the transmitter can be modeled as a Rayleigh distributed random 

variable, the optimal antenna gain is inversely related to the square of the RMS pointing error at the transmitter 

so that the product ~~.=GT,~O& is independent of the RMS pointing jitter. Table 7.3 summarizes the parameter 

for a direct detection 4-PPM system and a heterodyne noncoherent 4-FSK system at different values of the 

PBE. Given the RMS pointing error, the optimal transmitter antenna gain can be chosen according to Table 

7.3. 

Because the optimal transmitter antenna gain is inversely proportional to the square of the RMS pointing 

jitter, the optimal antenna gain can be very large for systems with small RMS pointing jitters. For such 

systems, a suboptimal design in which the transmitter antenna gain is smaller than the optimal value is usually 
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Table 7.3 The parameter ~ = C T ~ C Y $ ,  at different values of the PBE. 

Direct Detection QPPM Heterodyne QFSK 

0.42 I 0.48 

0.22 0.27 

I 0.15 0.19 I 

+ Derived with receiver parameters shown in Table 7.4. 
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systems, a suboptimal design in which the transmitter antenna gain is smaller than the optimal value is usually 

chosen. Because the antenna gain is not optimized, higher signal power is needed to maintain the system 

performance. However, since the transmitted beamwidth increases with decreasing transmitter antenna gain, 

such systems are less sensitive to the random pointing error. As a result, the power penalty due to random 

pointing error is much smaller for systems using the suboptimal design. Figures 5.14 and 5.15 show the power 

penalty versus the antenna gain for a Cary PPM system and a 4-ary NCFSK system, respectively. Note that 

when the antenna gain is much smaller than the optimal value, the power penalty is very small (COS dB). 

Receiver Antenna Gain For direct detection systems, the amount of signal power collected by the receiver is 

proportional to the area of the receiver aperture. For such systems, it is desirable to use a receiver with as large 

an aperture diameter as possible. In practice, however, a larger receiver aperture implies a larger system 

weight, a higher launch cost and a greater power demand for the steering system. Consequently, the size of the 

receiver aperture cannot be increased indefinitely. For the analysis of the direct detection ISL. a receiver 

aperture diameter of 30 cm will be assumed [171]. In contrast, a larger aperture diameter does not necessarily 

imply a greater S N R  for a heterodyne receiver, because, in addition to the receiver antenna gain, the S N R  of a 

heterodyne receiver also depends on the alignment between the signal and the LO. Given an RMS tracking 

error of the LO, an optimum receiver antenna gain can be found which optimizes the system performance (cf. 

Chap. 5). When the tracking error can be modeled as a Rayleigh distributed random variable, this optimum 

receiver antenna gain can be inversely related to the square of the LO tracking error. In fact, given the desired 

PBE and the modulation format, the parameter ~ R = G R ~ C T &  is equal to the parameter y~ given in Table 7.3 

and is independent of the R M S  tracking error. For the analysis of the heterodyne ISL, it will be assumed that 

the diameter of the receiver aperture is chosen such that the required transmitter power is minimized. 

7.1.4 Transmitter and Receiver Optics 

In addition to the transmitter and receiver aperture diameters, other transmitter and receiver optical 

parameters that affect the performance of the ISL include the transmitter and receiver optical efficiencies, the 

tracking split, the receiver field-of-view (FOV), and the optical bandwidth. The efficiencies of the transmitter 

and receiver optics depend on the number of reflecting and refracting surfaces. For the analysis, optical 

efficiencies of 50% and 35% will be assumed for the transmitter and receiver optics, respectively. The 
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will be assumed to be 5%. 

In addition to the signal power, the performance of the direct detection PPM system also depends on the 

amount of background power collected by the receiver. In order to reduce the amount of background radiation 

collected by the receiver, both the receiver FOV and the optical bandwidth should be carefully controlled. 

However, a small receiver FOV implies a more stringent tracking requirement, and a narrow band optical filter 

may have an unacceptably high loss. Furthermore, when the transmitter laser is frequency multiplexed, the 

receiver optical bandwidth should be wide enough to admit all wavelengths of the transmitter output. For the 

analysis, a receiver bandwidth of 2 nm and FOV of 0.1 mrad will be assumed. 

7.1.5 Optical Detectors 

Optical detectors with high bandwidth and low noise are required for ISL applications. The quantum 

efficiencies of semiconductor photodetectors are typically on the order of 50%-90%. Pin photodiodes with 

bandwidths as high as 2OGHz have been reported in laboratory work [73]. However, because of the low 

detector gain, pin diodes are used primarily in heterodyne systems where the detector thermal noise is 

negligible compared to the LO shot noise. For direct detection ISLs, APDs with large internal gain are needed 

to overcome the detector thermal noise. Table 7.4 lists the typical characteristics of a silicon-APD based direct 

detection receiver. For the comparison, the ratio of effective ionization coefficients of 0.01 will be assuri.led. 

An effective ionization ratio as small as 0.007 can be achieved with selected commercial devices [171]. 

Given the amount of optical power incident on the detector surface, the gain of the APD is an important 

parameter that must be properly specified. The effect of detector thermal noise on the receiver SNR can be 

minimized by increasing the detector gain. However, larger detector gain leads to an increased excess noise 

factor F which in turn can reduce the receiver SNR. Given &=200 and Ts=5ns. the optimal detector gain 

can be evaluated from Eq. (3.24) to be approximately 150. The excess noise factor at the optimal detector gain 

is therefore F,=3.5. Note that the optimal gain decreases with the 1/3 power of KS . At large signal level the 

optimal gain is 1 and the optimal excess noise factor is equal to 1. Therefore, a design which optimizes the 

gain at Ks=200 will have a power penalty of 5.4 dl3 at Ks==. 



Table 7.4 Typical Si-APD based direct detection receiver parameters. 

Ratio of Ionization Coefficients k d  0.01 

1 Detector Gain I I 150 I 
Excess Noise Factor I IFI 3.5 I 
Detector Dark Current 

Gain Dependent 

Gain Independent 
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7.1.6 Design Summary 

The design specifications for the ISL are summarized in Table 7.5. Note that the optimal antenna gains 

can be calculated from the tabulated value of "h. shown in Table 7.3. The background count rate at the direct 

detection receiver can be calculated from Eq. (2.35) to be 

~~ ={ 5x108/s cloud cover 
(7.1) 

5x107/s no cloud cover 

For the analysis of ISL performance, it will be assumed that RMS pointing and tracking jitters of 1 p a d  can be 

achieved and that the average background count rate is 5 ~ 1 0 % .  

Given the receiver parameters and the background photocount rate, the receiver sensitivity, which is 

defined as the received power needed to achieve a given PBE. can be calculated. Table 7.6 summarizes the 

receiver sensitivity at different values of the PBE and coding orders at a data rate of 200 Mbps. 

7.2 Performance Evaluation 

Given the link specifications, it is of interest to determine whether the mission requirements can be met 

within the design constraints. Furthermore, it is desirable to investigate the various trade-offs among the 

system performance, complexity, and component availability. 

7.2.1 Performance of the Direct Detection PPM System 

The link budgets for a 4-ary PPM link at 1 P  and 1W error rates are shown in Tables 7.7-7.8. These 

link budgets are calculated assuming that the RMS pointing error is equal to 1 pad. Note that, by using a 

2OOmW transmitter laser and a QPPM encoding scheme, a 200 Mbps channel can be implemented with 6.2 dB 

and 3.3 dl3 power margins, respectively. These link budgets show that the transmitter pointing error dominates 

the power allocation by limiting the transmitter antenna gain and imposing an additional power penalty. In 

contrast, the power penalty due to receiver synchronization error is relatively small (0.1 dB). 

The maximum data rate, R,,,, that the link can achieve is plotted in Fig. 7.1 versus the transmitter 

power PL for a QPPM system with RMS transmitter pointing error of 1 pad. A 3 dB power margin was 

included in the calculation of data rate. Note that at high laser powers, R,,, increases linearly with increasing 

signal power. At high signal powers, the receiver SNR is determined by the number of signal photons 
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Table 7.5 ISL design summary. 

rransmitter Laser 
Power 
Extinction Ratio 
Modulation Bandwidth 
Linewidth 

Optical Antenna 
Transmitter Aperture Diameter 
Receiver Aperture Diameter 

Transmitter and Receiver Optics 
Transmitter Efficiency 
Receiver Efficiency 
Tracking Split 
Receiver Optical Bandwidth 
Receiver Field-of-View 

Optical Detector 
Quantum Efficiency 
Gain 
Excess Noise Factor 
Gain Dependent Dark Current 
Gain Independent Dark Current 
Bandwidth 
Noise Equivalent Temperature 
Load Resistance 

Direct Detection 1 QPPM 

200 mW 
5% 

>15 GHz 

TBDt 
30 cm 

50% 
35% 
5% 

2 nm 
0.1 mrad 

70% 
150 
3.0 

A 
le8 A 

>10 GHz 
400 OK 
2Kn 

Modulation Format 1 4-aryPPM 

Heterodyne 
Q-NCFSK 

4-ary FSK 

25mW 

>15 GHz 
3MHz 

TBDt 
TBDt 

50% 
35% 
5% 

70% 
1 

>10 GHz 

t To be determined by the PBE and RMS pointinghracking errors. 
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Table 7.6 Receiver sensitivity at 200 Mbps. 

M 

2 

I I DirectDetectionPPMt Heterodyne NCFSK I 
PBE 

Number of Photons/Bit 

10-3 58 
lo" 111 
10-9 162 

4 

8 

10-3 35 
10-6 63 
10-9 91 

10-3 29 
lo" 50 
10-9 71 

Sensitivity 

-54.1 dBm 
-51.3 dBm 
-49.7 dBm 40 -55.7 dBm 

-56.4 dBm 
-53.8 dBm 
-52.2 dBm 

7 
14 
21 

~~~ ~~~ 

-63.4 dBm 
-60.4 dBm 
-58.6 dBm 

-57.2 dBm 
-54.8 dBm 
-53.2 dBm 

5 
10 
14 

-64.7 dBm 
-61.9 dBm 
-60.4 dBm 

t Derived with receiver parameters shown in Table 7.5. 
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Table 7.7 Link budget of a direct detection QPPM system at PBE=1W6. 

[Laser Power 

Antenna Gain 
Transmittert 
Receiver 

Optics Efficiency 
Transmitter 
Receiver 

Receiver Sensitivity @ 
200Mbps and P B E = l v  

Pointing Loss 

Link Margin 

200 m W  23.0dBm I 
4 0 , o o O h  -295.4dB I 
12.6 cm 
30 cm 

113.4 dB 
120.9 dB 

-3.0 dB 

63 Photonshit -53.8 dBm 

-1.8dB I 
-0.1dB I 
6.2 dB 

t Optimum for 0% = 1 pad. 
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Laser Power 

Path Loss 

Antenna Gain 
~ Transmittert 
I Receiver 

Table 7.8 Link budget of a direct detection QPPM system at PBE=1t9. 

Modulation Format b 

Optics Efficiency 
Transmitter 
Receiver 

Receiver Sensitivity @ 
L # z m d  PBE=1C9 

I Pointing ~ o s s  

4-PPM I 

-1 23.0 dBm 

40,000 km -295.4 dB 
~ 

10.6 cm 111.9 dB 
30 cm 120.9 dB 

0.5 -3.0 dB 
0.35 4.6 dB 

-1.6 dB 

-0.1 dB 

3.3 dB 

t Optimum for 0% = 1 pad. 
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Fig.7.1. Maximum data rates R,,,,= versus the transmitter power for a 4-ary PPM system with an RMS 
pointing error of 1 wad. The data rates are calculated with a 3dF3 power margin. 
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collected at the receiver. Consequently, by fixing the S N R  and hence the PBE, the maximum data rate 

increases linearly with increasing signal power. As the signal power decreases, the effect of background 

radiation becomes more prominent and the maximum data rate no longer depends linearly on the transmitter 

power. 

The performance of the link can be improved by reducing the RMS pointing error at the transmitter. 

Since the optimal transmitter antenna gain is inversely related to the mean square pointing jitter, a 6 dB 

improvement in power margin can be realized if the RMS pointing jitter is reduced by a factor of two at the 

transmitter. However, higher cost and complexity of the optical system are needed to achieve a small RMS 

pointing jitter. In practice, RMS pointing jitter less than 0.2 pad is difficult to achieve. Performance of the 

PPM system can also be improved by using higher order encoding schemes. In general, for a block-encoded 

system, k=log2(M) bits can be transmiaed for every symbol sent across the optical channel. Therefore, by 

increasing the order of PPM, a higher data rate can be achieved with a given signal power. However, at higher 

order PPMs, the system bandwidth and complexity increase rapidly with increasing PPM order. Furthermore, 

in the presence of a finite modulation extinction ratio, the maximum receiver S N R  is limited by the residual 

signal in the background slots. Consequently, one cannot increase the PPM order indefinitely. Figure 7.2 is a 

plot of the R,, versus PPM order for an ISL with 200mW transmitter laser power at different values of the 

modulation extinction ratio rn and the PBE. Note that for 0.014n10.1, the performance improvement is 

negligible for M > 10. 

7.2.2 Performance of the Heterodyne NCFSK System 

Tables 7.9-7.10 display the link budget of a 4-ary heterodyne NCFSK channel with 1 pad  RMS 

pointing and tracking errors. A comparison of these link budgets with that of the direct detection PPM system 

shown in Tables 7.7-7.8 shows that the heterodyne 4-FSK system has an approximately 5-10 dB advantage in 

the detection sensitivity over the direct detection PPM system. However, this advantage is quickly offset by 

the smaller transmitter power, smaller receiver antenna gain, larger power penalty due to spatial tracking error, 

and power penalty due to carrier phase noise (cf. Table 4.4). It should be noted that the link budgets shown in 

Tables 7.9-7.10 do not take into account the excess intensity noise of the transmitter and the LO. At a data rate 

of 1 Gb/s using 4-ary FSK, the power penalty due to the intensity noise is approximately 1.5 dB [ 1481. 
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Fig.7.2. Maximum data rates RmaX versus the PPM order for a direct detection PPM system at different 
values of the modulation extinction ratio and PBE. The transmitter power is assumed to be 
200rnW, and the data rates are calculated with a 3dB power margin. 
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Table 7.9 Link Budget of a heterodyne QFSK system at P B k l W .  

Modulation Format 

Data Rate 

4-FSK 

200 Mbps 

Laser Power 
~~ I 30mW 14.8 dBm 

Path Loss I 40,OOolan -295.4 dB 

Antenna Gain 
Transmittert 
Receivert 

14.1 cm 114.3 dB 
14.1 cm 114.3 dB 

Optics Efficiency 
Transmitter 
Receivex 

Receiver Sensitivity @ 
200Mbps and PBE=lW 

0.5 -3.0 dB 
0.35 -4.6 dB 

14 Photonshit -60.4 dBm 

Pointing and Tracking Loss I -4.0 dB 

Temporal Tracking Loss -0.1 dB 

Link Margin -4.1 dB 

t Optimum for 0% = = 1 pad. 
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Table 7.10 Link Budget of a heterodyne QFSK system at PBE=lW. 

Data Rate 

Laser Power 

Modulation Format I 4-FSK 

200 Mbps 

30 mW 14.8 dBm 
~ 

path Loss 

Antenna Gain 
Transmitter? 
Receiver? 

Optics Efficiency 
Transmitter 
Receiver 

40,Ooo km -295.4 dB 

11.7 cm 112.7 dB 
11.7 cm 112.7 dB 

0.5 -3.0 dB 
0.35 4 . 6  dB 

Receiver Sensitivity @ 

200Mbps and PBE=l@ 

Pointing and Tracking Loss 

Temporal Tracking Loss 

Phase Noise @ PBE=1O4 
AfTs=0.03, andVdT,=l 

Link Margin 

i Optimum for o+ = CeR = 1 pad. 

21 Photonsbit -58.6 dBm 

-3.8 dB 

-0.1 dB 

-3.0 dB 

-11.1 dB 
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The fact that the heterodyne NCFSK system shows a negative power margin implies that the desired 

data rate (200 Mbps) cannot be achieved for links with 1 p a d  pointing and tracking errors. In fact, the 

maximum data rate, R,,, that the ISL can support for the given link parameters is plotted in Fig. 7.3 versus 

the transmitter power. With a 3 dB link margin, the transmitter power needed to achieve 10-6 error rate is on 

the order of 100 mW. The performance can be improved by reducing the RMS pointing and tracking jitters. 

Since the required transmitter power is proportional to the product of mean square tracking and pointing jitters, 

a 12 dB improvement in power margin can be realized if the RMS pointing and tracking jitters can be reduced 

from 1 pad to 0.5 pad. In this case, the 200Mbps QFSK channel can be implemented with 0.9 and 7.9 dB of 

power margin at PBE=lC9 and 10-6, respectively. Performance of the heterodyne channel can also be 

improved by using higher order FSKs. However, as was the case with the direct detection PPM system, the 

transmitter and receiver bandwidths increase rapidly with increasing FSK order. Consequently, it is not 

possible to increase the encoding order indefinitely. 

7.2.3 The ACTS-Shuttle Link 

The link parameters for the proposed Advanced Communication Technology Satellite (ACTS)-shuttle 

link were supplied by NASA-Goddard and displayed in Table 7.11. Note that these parameters differ fiom 

those shown in Table 7.5 in that (a) a smaller laser power (70 mW average, 140 mW peak) is assumed for the 

direct detection link, (b) a static pointing loss (1-2 dB) is included in the link budget and, most significantly, 

(c) much smaller RMS pointing and tracking jitters are assumed. For such a small (0.21 pad  RMS) pointing 

jitter, the optimal antenna diameter is in excess of 50 cm. Consequently, the ACTS-shuttle link is designed 

using suboptimal antenna gains. Tables 7.12(a),(b) summarize the link budget for the direct detection PPM 

and heterodyne QFSK links calculated using the parameters shown in Table 7.1 1. Note that because the 

suboptimal design is chosen, the power penalty due to pointing and tracking errors is small (~0.2-0.4 dB). As 

a result, the performance of the heterodyne QFSK system is superior to that of the direct detection PPM 

system. Furthermore, since the peak transmitter power is equal to twice the average power, the receiver S N R  is 

optimized at M=2. Consequently, the binary PPM system has a higher power margin compared to the 4-ary 

PPM system. 
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Fig.7.3. Maximum data rates R,,, versus the transmitter power for a QFSK system with RMS pointing 
and tracking errors of 1 pad. The data rates are calculated with a 3dB power margin. 
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Table 7.11 ACTS-shuttle link parameters. 

Data Rate 

Modulation Format 

Transmitter Laser 
Power 

Extinction Ratio 
Modulation Bandwidth 
Linewidth 

Optical Antenna Gaint 
Transmitter 
Receivers 

Transmitter and Receiver Optics 
Tracking Split 
Rzceiver Optical Bandwidth 
Receiver Field-of-View 

Optical Detector 
Quantum Efficiency 
k eff 
Gain 
Excess Noise Factor 
Gain Dependent Dark Current 
Gain Independent Dark Current 
Bandwidth 
Noise Equivalent Temperature 
Load Resistance 

Direct Detection 
QPPM 

220 Mbps 

QPPM. BPPM 
~~ 

70 mW average 
140 mW peak 

5% 
>15 GHz 

113.7 dB 
115.2 dB 

5% 
2 nm 

0.1 mad 

70% 
0.007 
250 
3.75 

A 
10-8 A 

>10 GHz 
400 OK 
2KR 

i Includes optics losses. 
4 Assumes a 20 cm diamter aperture with 60% through-put. 
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Heterodyne 
Q-NCFSK 

220 Mbps 

QFSK 

30 mW 

>15 GHz 
3MHz 

113.7 dB 
113.7 dB 

5% 

70% 

1 

>10 GHz 



I 

Table 7.12(a) ACTS-shuttle link budget summary. 

-1.0 dB 
-0.2 dB 

Laser Power 

-2.0 dB 
-0.4 dB 

Antenna Gain 
Transmitter? 
Receiver? 

Receiver Sensitivity 

Pointing and Tracking Losses 
Static Tracking Error 
Random Tracking Eiror 

Temporal Tracking Loss 

I PhaseNoisei 

(-Margin 

Direct Detection Heterodyne 71 
220Mbps I 220Mbps I 

113.7 dB 113.7 dB 
115.2 dB 1 113.7dB 1 
-53.0dBm 1 -59.6dBm I 

-0.1 dB -0.1 dB 

-0.8 dB 

0.6 dB 3.1 dB 

;Calculated at PBE=104. vdT#=l, and Af T,=O.O3. 
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Table 7.12(b) ACTS-shuttle link budget summary. 

Laser Power 

Path Loss 

Antenna Gain 
Transmitter? 
Receivert 

Direct Detection 
BPPM 

18.4 dBm 

-295.4 dB 

113.7 dB 
115.2 dB 

Data Rate I 220Mbps 

Pointing and Tracking Losses 
Static Tracking Error 
Random Tracking Error 

-1.0 dB 
-0.2 dB 

Receiver Sensitivity I -50.6dBm 

Phase Noiset 

Link Margin 1.2 dB 

Temporal Tracking Loss I -0.1 dB 

Heterodyne 
QFSK 

220 Mbps 

14.8 dBm 

-295.4 dB 

113.7 dB 
113.7 dB 

-59.6 dBm 

-2.0 dB 
-0.4 dB 

t Calculated at PBE=lO&, vdT,=l, and Af Ts=0.03. 
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7.3 Conclusions 

The performance of the direct detection PPM ISL was evaluated and compared to that of the heterodyne 

NCFSK system. For systems with large (>OS pad) RMS pointing jitters, the spatial tracking error dominates 

the link budget by limiting the maximum antenna gains and incurring additional losses. For systems with small 

pointing jitters, on the other hand, the antenna gains are usually determined by the cost and sue constraints 

rather than performance consideration. When the antenna diameters are chosen to be much smaller than the 

optimal values, much smaller power penalties can be allocated for pointing and tracking errors. For the 

heterodyne system, power penalty due to the carrier phase noise is another major loss factor that must be 

carefully considered. For a 200 Mbps QFSK system with 100 MHZ tone spacing and 3 MHz linewidth, the 

power penalty is approximately 0.8 dB at PBE = 1V. The power penalty due to carrier phase noise can be 

minimized by increasing the FSK tone spacing and reducing the IF linewidth. In contrast, the receiver 

synchronization error has a relatively minor effect (0.1 dB) on the link budget. 

The performances of the direct and heterodyne detection ISLs can be compared by inspecting the link 

budgets shown in Tables 7.7-7.12. Note that, even though the heterodyne channel offers a better detection 

sensitivity, it is more sensitive to the spatial tracking error and the carrier phase noise. Therefore, for systems 

with large (=l pad) pointing and tracking errors, the direct detection PPM system has a superior performance. 

On the other hand, for systems with small ( ~ 0 . 3  pad) pointing and tracking jitters, such as in an ACTS-shuttle 

link, the heterodyne FSK system shows a larger power margin because of the higher sensitivity of the 

heterodyne receiver. 

Finally, it should be noted that the comparison above did not take into account the possibility of 

performance improvement using error control codes (ECCs) [163]-11641. By using a proper error control 

code, the desired PBE performance (~10-6) can be achieved for systems with raw PBE on the order of IW3. 

However, since the ECC is expected to affect both direct detection PPM and the heterodyne FSK systems 

similarly, the conclusions derived from this study should not be affected significantly with the inclusion of 

ECCs. 
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APPENDIX A 

APPROXIMATION OF THE DPSK ERROR RATE 

An approximation to the DPSK e m r  rate can be made by considering the alternative receiver structure 

shown in Figure A.1[16]. For a given bit period, the phase of the received signal r ( t )  is estimated and the 

output of the phase estimator is then differentially detected. When only white Gaussian noise is present at the 

estimator input, the error in estimating the phase angle can be shown to have the following distribution: 

For a DPSK receiver, the output of the phase estimator during the k& bit interval @(k) is delayed by one bit 

period and subtracted from the next estimator output. Since the additive noise over the two bit periods are 

uncorrelated, the resulted estimator error will be independent. Consequently, the probability distribution of the 

correlator output will be the self-convolution of Eq. (A.1). This calculation is in general very difficult. At 

sufficiently high signal-to-noise ratio, however, the error in estimating the phase angle is expected to be small. 

In which case sin<b,=Qn, cos@,,=l, erfc(%os@,,)=l, and the probability distribution can be approximated by 

the sum of a constant and a Gaussian peak: 

Using this approximation, the convolution can be calculated to be 

where Y(kW,,(k)-@,,(k-l) is the phase error at the correlator output. A decoding error occurs when the 

magnitude of Y exceeds pi /2. Using the probability distribution given by Eq. (A.3). the error probability can 

be written as 

At sufficiently high SNR, the difference between the PBE evaluated using Eq. (A.4) and the exact PBE is 

negligible. 
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Fig.Al. Alternative implementation of the DPSK receiver. 
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When phase noise is present at the IF signal, the analysis becomes more complicated. Given a sample 

path of the carrier phase noise $(f ), the output of the integrator prior to the phase estimator can be written as 

where N, and N, are the in-phase and quadrature components of the shot noise, respectively, and 6 1 . 5 ;  are 

some values between (kT,,(k+l)T,). In general t r e k .  However, at small linewidth the carrier phase varies 

slowly so that e&) is approximately equal to @ ( r k ) .  In this case the output of the phase estimator can be 

written as 

where Qp(k)=$(Sk)  is the phase noise contribution to the phase estimator error. When the IF linewidth is 

small compared to the data rate, the phase noise angle Qp(k) can be given to a good approximation by the 

average carrier phase: 

With the contribution of carrier phase noise to the phase estimator, the output of the phase correlator can be 

written as 

Since the instantaneous distribution of Qp is Gaussian, the phase noise contribution to the correlator output is 

Gaussian with zero mean and variance 

Vur (ap ( k W p  (k-1)) = Af Ts . (A.9) 

Consequently, the distribution of Y(k) can be given by the convolution of Eq. (A.3) with a Gaussian peak of 

variance 47cAf T, 13. 

199 



where 

(A.lO) 

(A. 1 1) 

The probability of error, which is simply the probability that the magnitude of Y exceeds x/2,  can therefore be 

approximated by 

PE = +e+++rfc(lr/4&,) . (A.12) 



APPENDIX B 

JOINT EXPECTATION OF THE PHOTODETECTOR OUTPUT 

The joint characteristics function of the photodetector output r ( t )  is defined as [57] 

where j = c ,  and r ( t )  can be modeled as a filtered Poisson process [57] 

Note that by associating a random gain Gj with the j*  photon event, this particular model is suitable for 

modeling the output of the avalanche photodiode (APD) as well as the pin diode (C rl). 

The joint characteristics function can be evaluated by substituting Eq. (B.2) into (B.l) and taking the 

expectation with respect to the photon arrival h e s  t k  . The arrival time of the kh photon can be shown to have 

the probability distribution 

where (t0.T) is the observation period. The expectation can be evaluated by first condition on the number of 

photons detected N T ,  then taking the expectation with respect to the random variable N T .  By substituting Eqs. 

(B.2) and (B.3) into (B.l) and using the fact that ( f k )  are independent and identically distributed, the 

conditional expectation can be written as 

.- 

where OG is the characteristics function of the detector gain G . In deriving Eq. (B.4), we ..me assumed that 

the detector gains (G, 1 are independent and identically distributed. The conditioning on the number of 

photons NT can be removed by taking the expectation with respect to the random variable k . Using the fact 

20 1 



that NT is Poisson distributed, the joint characteristics function of the photodetector output can be written as 

Given the joint characteristics function in Eq. (B.5), the joint expectation of the photodetector output can be 

evaluated by differentiating Eq. (B.5) with respect to its arguments. Some of the joint moments are given by 
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APPENDIX C 

POWER SPECTRUM OF THE PHOTODETECTOR OUTPUT 

C.1 Power Spectrum of the APD output 

For a nonstationary process such as the photodetector output, the power spectrum can be defined as (Eq. 

(6.10)) 

The conditional expectation in Eq. (C.l) is taken with respect to the shot noise process r (t), conditioned on the 

detector photocount rate A(t ) .  This expectation can be taken by differentiating the joint characteristics 

function @(co~.(iLL). and the result is given by Eq. (€3.6). By substituting Eq. (B.6) into Eq. (C.l) and taking the 

Fourier transform, the power spectrum of the photodetector output can be written as 

where H (a) is the Fourier transform of the detector impulse response h ( t ) ,  G , F are the detector gain and the 

excess noise, and 

T 
hT(u) = l , I ( t )e+  wtdt 

is the Fourier transform of h(t). For the PPM signaling scheme,  AT(^) is given by 

where P (a) is the Fourier transform of the pulse shape p (t ), and the summation is over the codewords in the 

interval (-T ,T ) . By using the summation rule 

and the fact that ( 4 )  are independent for nonoverlapping codewords, the expectation in Eq. (C.2) can be 

evaluated. Note that by using the fact 

the dependence in the boundary T can be removed, and the resulting power spectrum is given by 
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IP (a) 1q1- IR (0) 12) +T 

where 

C.2 Power Spectrum of the Preprocessor Output 

For a square-law nonlinear preprocessor, the power spectrum of the preprocessor output can be 

calculated by substituting Eq. (B.7) into Eq. (C.l) and taking the expectation with respect to the photocount 

rate h(r). Note that in the limit of a large photocount, only terms involving 13 and A4 are significant. The 

expression for the power spectrum can therefore be simplified by dropping terms corresponding to lower order 

A’s. By carrying out the Fourier transform on the remaining terms, the power spectrum of the preprocessor 

output can be written as 

+ G4 I h ~ ( o ) H  (w)* f i ~ ( o ) H  (a) Id 
where 

H ~ ( w )  =Jh*(r)e-iwdt . (C.10) 

The expectation is taken with respect to the data stream (a‘&). By substituting Eq. (C.5) into Eq. (C.10) and 

taking the expectation with respect to the data stream [ dk ) , the power spectrum of the preprocessed signal can 

be obtained. Note that by taking expectation with respect to the third and fourth powers of h, it is necessary to 
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use the sum rules 

z = z - z - z - z + 2 z  
k d u n  k J , m  k d , m  k 7 n . l  l q , k  k=l- 

and 

(C.11) 

(C.12) 

The results, after substitution, are very complicated. With some very simple assumptions, however, the 

expressions can be simplified considerably. First, it will be assumed that the preprocessor filter blocks the dc 

component of the signal, which is due largely to the uniform background count rate and contains no timing 

information. Next, note that after taking the expectation with respect to d k ,  the expression of the power 

spectrum contains the integral of the following form: 

1 = 1 R (a’)G ( w , ~ ’ ) d  W’ (C.13) 

where R (a) is given by Eq. ((2.4). and G ( w , ~ ’ )  is some function of H (a) and P (a). A plot of the function 

R (a) shows that the magnitude of R ( o )  is significant only in the vicinity of w=2xk/Ts. Therefore, if the 

function G(o) is slowly varying over the region where R is appreciable, we may approximate the function 

under the integral sign by a train of delta functions, 

where 

(C.14) 

(C.15) 

is the area under each peak of R (0). The width of each peak of IR (a) I is on the order of 2rc/MTs, where A2 

is the order of the PPM. For most cases of interest, H(a) and P(a) are slowly varying with respect to 

I R (a) I such that this approximation holds. 

By using the above assumptions, the power spectrum of the photodetector output can be approximated. 

The result, after lengthy derivation, is given by 
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Sz(w) = - GG4 IP(w)H(w)*P(w)H(w)1*6(o_w,) 
T2 

+ 4- 
T, 
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