88 research outputs found

    Survey of advanced CABAC accelarator architectures for future multimedia.

    Get PDF
    The future high quality multimedia systems require efficient video coding algorithms and corresponding adaptive high-performance computational platforms. In this paper, we survey the hardware accelerator architectures for Context-based Adaptive Binary Arithmetic Coding (CABAC) of H.264/AVC. The purpose of the survey is to deliver a critical insight in the proposed solutions, and this way facilitate further research on accelerator architectures, architecture development methods and supporting EDA tools. The architectures are analyzed, classified and compared based on the core hardware acceleration concepts, algorithmic characteristics, video resolution support and performance parameters, and some promising design directions are discussed

    CABAC accelerator architectures for video compression in future multimedida : a survey

    Get PDF
    The demands for high quality, real-time performance and multi-format video support in consumer multimedia products are ever increasing. In particular, the future multimedia systems require efficient video coding algorithms and corresponding adaptive high-performance computational platforms. The H.264/AVC video coding algorithms provide high enough compression efficiency to be utilized in these systems, and multimedia processors are able to provide the required adaptability, but the algorithms complexity demands for more efficient computing platforms. Heterogeneous (re-)configurable systems composed of multimedia processors and hardware accelerators constitute the main part of such platforms. In this paper, we survey the hardware accelerator architectures for Context-based Adaptive Binary Arithmetic Coding (CABAC) of Main and High profiles of H.264/AVC. The purpose of the survey is to deliver a critical insight in the proposed solutions, and this way facilitate further research on accelerator architectures, architecture development methods and supporting EDA tools. The architectures are analyzed, classified and compared based on the core hardware acceleration concepts, algorithmic characteristics, video resolution support and performance parameters, and some promising design directions are discussed. The comparative analysis shows that the parallel pipeline accelerator architecture seems to be the most promising

    Decoder Hardware Architecture for HEVC

    Get PDF
    This chapter provides an overview of the design challenges faced in the implementation of hardware HEVC decoders. These challenges can be attributed to the larger and diverse coding block sizes and transform sizes, the larger interpolation filter for motion compensation, the increased number of steps in intra prediction and the introduction of a new in-loop filter. Several solutions to address these implementation challenges are discussed. As a reference, results for an HEVC decoder test chip are also presented.Texas Instruments Incorporate

    High-Speed FPGA Architecture for CABAC Decoding Acceleration in H.264/AVC Standard

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Journal of Signal Processing Systems. The final authenticated version is available online at: https://doi.org/10.1007/s11265-012-0718-y.[Abstract] Video encoding and decoding are computing intensive applications that require high performance processors or dedicated hardware. Video decoding offers a high parallel processing potential that may be exploited. However, a particular task challenges parallelization: entropy decoding. In H.264 and SVC video standards, this task is mainly carried out using arithmetic decoding, an strictly sequential algorithm that achieves results close to the entropy limit. By accelerating arithmetic decoding, the bottleneck is removed and parallel decoding is enabled. Many works have been published on accelerating pure binary encoding and decoding. However, little research has been done into how to integrate binary decoding with context managing and control without losing performance. In this work we propose a FPGA-based architecture that achieves real time decoding for high-definition video by sustaining a 1 bin per cycle throughput. This is accomplished by implementing fast bin decoding; a novel and area efficient context-managing mechanism; and optimized control scheduling.Ministerio de Ciencia e Innovación; TIN2010-17541Xunta de Galicia, Consellería de Cultura, Educación e Ordenación Universitaria; 2010/6Xunta de Galicia, Consellería de Cultura, Educación e Ordenación Universitaria; 2010/28

    A Deeply Pipelined CABAC Decoder for HEVC Supporting Level 6.2 High-tier Applications

    Get PDF
    High Efficiency Video Coding (HEVC) is the latest video coding standard that specifies video resolutions up to 8K Ultra-HD (UHD) at 120 fps to support the next decade of video applications. This results in high-throughput requirements for the context adaptive binary arithmetic coding (CABAC) entropy decoder, which was already a well-known bottleneck in H.264/AVC. To address the throughput challenges, several modifications were made to CABAC during the standardization of HEVC. This work leverages these improvements in the design of a high-throughput HEVC CABAC decoder. It also supports the high-level parallel processing tools introduced by HEVC, including tile and wavefront parallel processing. The proposed design uses a deeply pipelined architecture to achieve a high clock rate. Additional techniques such as the state prefetch logic, latched-based context memory, and separate finite state machines are applied to minimize stall cycles, while multibypass- bin decoding is used to further increase the throughput. The design is implemented in an IBM 45nm SOI process. After place-and-route, its operating frequency reaches 1.6 GHz. The corresponding throughputs achieve up to 1696 and 2314 Mbin/s under common and theoretical worst-case test conditions, respectively. The results show that the design is sufficient to decode in real-time high-tier video bitstreams at level 6.2 (8K UHD at 120 fps), or main-tier bitstreams at level 5.1 (4K UHD at 60 fps) for applications requiring sub-frame latency, such as video conferencing

    Fast algorithms and hardware architectures for H.264/AVC

    Get PDF
    制度:新 ; 文部省報告番号:甲2460号 ; 学位の種類:博士(工学) ; 授与年月日:2007/6/25 ; 早大学位記番号:新456

    Novel VLSI Architecture for Quantization and Variable Length Coding for H-264/AVC Video Compression Standard

    Get PDF
    Integrated multimedia systems process text, graphics, and other discrete media such as digital audio and video streams. In an uncompressed state, graphics, audio and video data, especially moving pictures, require large transmission and storage capacities which can be very expensive. Hence video compression has become a key component of any multimedia system or application. The ITU (International Telecommunications Union) and MPEG (Moving Picture Experts Group) have combined efforts to put together the next generation of video compression standard, the H.264/MPEG-4 PartlO/AVC, which was finalized in 2003. The H.264/AVC uses significantly improved and computationally intensive compression techniques to maximize performance. H.264/AVC compliant encoders achieve the same reproduction quality as encoders that are compliant with the previous standards while requiring 60% or less of the bit rate [2]. This thesis aims at designing two basic blocks of an ASIC capable of performing the H.264 video compression. These two blocks, the Quantizer, and Entropy Encoder implement the Baseline Profile of the H.264/AVC standard. The architecture is implemented in Register Transfer Level HDL and synthesized with Synopsys Design Compiler using TSMC 0.25(xm technology, giving us an estimate of the hardware requirements in real-time implementation. The quantizer block is capable of running at 309MHz and has a total area of 785K gates with a power requirement of 88.59mW. The entropy encoder unit is capable of running at 250 MHz and has a total area of 49K gates with a power requirement of 2.68mW. The high speed that is achieved in this thesis simply indicates that the two blocks Quantizer and Entropy Encoder can be used as IP embedded in the HDTV systems

    КОНВЕЙЕРНАЯ АРХИТЕКТУРА ДЕКОДЕРА CABAC СТАНДАРТА Н.264/AVC ДЛЯ МОБИЛЬНЫХ ПРИЛОЖЕНИЙ

    Get PDF
    The paper describes a three-stage pipeline architecture implementation of the CABAC decoder for mobile applications, with image resolution up to 625SD. The decoder architecture is suggested for pipeline calculations with the decoding performance of one bin per clock cycle. The decoder is compatible with profiles high profile, high 10 profile and high 4:2:2 profile and supports regime MBAFF and 8×8 blocks. It is scalable both in the resolution and in the supported decoding tools described in standard H.264. A comparison of our implementation with implementations of a prototype CABAC decoder on FPGA from the company Xilinx is given.Описывается архитектура декодера CABAC для мобильных приложений c разрешением до 625SD с трехступенчатым конвейером, позволяющая обеспечить декодирование одного бина за такт. Декодер совместим с профилями high profile, high 10 profile, high 4:2:2 profile, поддерживает режим MBAFF и блоки 8 ? 8, а также масштабируем как по разрешению, так и по поддерживаемым инструментам декодирования, описанным в стандарте H.264. Выполняется сравнение с известными реализациями прототипа декодера CABAC на FPGA фирмы Xilinx

    Parallel algorithms and architectures for low power video decoding

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 197-204).Parallelism coupled with voltage scaling is an effective approach to achieve high processing performance with low power consumption. This thesis presents parallel architectures and algorithms designed to deliver the power and performance required for current and next generation video coding. Coding efficiency, area cost and scalability are also addressed. First, a low power video decoder is presented for the current state-of-the-art video coding standard H.264/AVC. Parallel architectures are used along with voltage scaling to deliver high definition (HD) decoding at low power levels. Additional architectural optimizations such as reducing memory accesses and multiple frequency/voltage domains are also described. An H.264/AVC Baseline decoder test chip was fabricated in 65-nm CMOS. It can operate at 0.7 V for HD (720p, 30 fps) video decoding and with a measured power of 1.8 mW. The highly scalable decoder can tradeoff power and performance across >100x range. Second, this thesis demonstrates how serial algorithms, such as Context-based Adaptive Binary Arithmetic Coding (CABAC), can be redesigned for parallel architectures to enable high throughput with low coding efficiency cost. A parallel algorithm called the Massively Parallel CABAC (MP-CABAC) is presented that uses syntax element partitions and interleaved entropy slices to achieve better throughput-coding efficiency and throughput-area tradeoffs than H.264/AVC. The parallel algorithm also improves scalability by providing a third dimension to tradeoff coding efficiency for power and performance. Finally, joint algorithm-architecture optimizations are used to increase performance and reduce area with almost no coding penalty. The MP-CABAC is mapped to a highly parallel architecture with 80 parallel engines, which together delivers >10x higher throughput than existing H.264/AVC CABAC implementations. A MP-CABAC test chip was fabricated in 65-nm CMOS to demonstrate the power-performance-coding efficiency tradeoff.by Vivienne. Sze.Ph.D

    Performance and complexity analyses of H.264/AVC CABAC entropy coder

    Get PDF
    Master'sMASTER OF ENGINEERIN
    corecore